Sample records for mesoscale numerical case

  1. Impact of aircraft exhaust on the atmosphere. Box model studies and 3-D mesoscale numerical case studies of seasonal differences

    Energy Technology Data Exchange (ETDEWEB)

    Petry, H.; Ebel, A.; Franzkowiak, V.; Hendricks, J.; Lippert, E.; Moellhoff, M. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie


    The impact of aircraft emissions released in the tropopause region on atmospheric trace gases as O{sub 3} or HNO{sub 3} is investigated by means of model studies. Special emphasis is drawn on seasonal effects. A box model is applied as well as a 3-D mesoscale chemistry transport model. These model studies show that the impact of aircraft emissions on ozone in the tropopause region is much stronger in summer than in late autumn with a difference of one order of magnitude. (author) 14 refs.

  2. Mesoscale Numerical Investigations of Air Traffic Emissions over the North Atlantic during SONEX Flight 8: A Case Study (United States)

    Bieberbach, George, Jr.; Fuelberg, Henry E.; Thompson, Anne M.; Schmitt, Alf; Hannan, John R.; Gregory, G. L.; Kondo, Yutaka; Knabb, Richard D.; Sachse, G. W.; Talbot, R. W.


    Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focussing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered during the previous 27-33 hours. Results indicate that high resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.

  3. Numerical Prediction of Marine Fog Using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

    National Research Council Canada - National Science Library

    Dumas, John


    .... The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is a leap forward in the Navy's numerical modeling ability but it still does not show great skill in fog forecasting...

  4. Release of potential instability by mesoscale triggering - An objective model simulation. [in precipitation numerical weather forecasting (United States)

    Matthews, D. A.


    The effects of mesoscale triggering on organized nonsevere convective cloud systems in the High Plains are considered. Two experiments were conducted to determine if a one-dimensional quasi-time dependent model could (1) detect soundings which were sensitive to mesoscale triggering, and (2) discriminate between cases which had mesoscale organized convection and those with no organized convection. The MESOCU model was used to analyze the available potential instability and thermodynamic potential for cloud growth. It is noted that lifting is a key factor in the release of available potential instability on the High Plains.

  5. Numerical Study of the Interaction Between an Internal Tide and Mesoscale/Submesoscale Turbulence (United States)

    Klein, P.; Ponte, A.


    Interactions between internal tides and mesoscale eddies are believed to be responsible for the incoherency of internal tides observed globally. This incoherency complicates the analysis of future high resolution altimetric missions (SWOT, COMPIRA). Attempts at quantifying the product of these interactions have been achieved with models of the ocean global circulation. These models resolve however the first few vertical modes of internal tide and their ability to represent interactions between internal tides and balanced circulation has to be tested against controlled high resolution numerical simulations. We present here first attempts in order to study such interactions in a controlled idealized setting. High resolution (1 km horizontal grid size) numerical simulations of mesoscale/submesoscale turbulence are produced by destabilizing a baroclinic jet in a zonally-periodic channel. An plane wave internal tide is generated inside the domain thanks to a localized wave-maker and propagates through the mesoscale/submesoscale turbulence. We quantify the level of incoherency of the internal tide and study how this level depends on the modal structure of the internal tide and the intensity of the mesoscale/submesoscale turbulence.

  6. Sensitivity study of the generation of mesoscale eddies in a numerical model of Hawaii islands

    Directory of Open Access Journals (Sweden)

    M. Kersalé


    Full Text Available The oceanic circulation around the Hawaiian archipelago is characterized by a complex circulation and the presence of mesoscale eddies west of the islands. These eddies typically develop and persist for weeks to several months in the area during persistent trade winds conditions. A series of numerical simulations on the Hawaiian region has been done in order to examine the relative importance of wind, inflow current and topographic forcing on the general circulation and the generation of eddies. Moreover, numerical cyclonic eddies are compared with the one observed during the cruise E-FLUX (Dickey et al., 2008. Our study demonstrates the need for all three forcings (wind, inflow current and topography to reproduce the known oceanic circulation. In particular, the cumulative effect plays a key role on the generation of mesoscale eddies. The wind-stress-curl, via the Ekman pumping mechanism, has also been identified as an important mechanism upon the strength of the upwelling in the lee of the Big Island of Hawaii. In order to find the best setup of a regional ocean model, we compare more precisely numerical results obtained using two different wind databases: COADS and QuikSCAT. The main features of the ocean circulation in the area are well reproduced by our model forced by both COADS and QuickSCAT climatologies. Nevertheless, significant differences appear in the levels of kinetic energy and vorticity. The wind-forcing spatial resolution clearly affects the way in which the wind momentum feeds the mesoscale phenomena. The higher the resolution, the more realistic the ocean circulation. In particular, the simulation forced by QuikSCAT wind data reproduces well the observed energetic mesoscale structures and their hydrological characteristics and behaviors.

  7. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.


    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  8. Mesoscale modelling in China: Risø DTU numerical wind atlas calculation for NE China (Dongbei)

    DEFF Research Database (Denmark)

    Badger, Jake; Larsén, Xiaoli Guo; Hahmann, Andrea N.

    of the wind resource for Dongbei south of 50oN. The results of the numerical wind atlas show a wind resource over the region of interest modulated mainly by topographic features. These are principally elevated terrain features, giving high resources on exposed ridges and lower resources adjacent to the low......This document reports on the methods and findings of project “A01 Mesoscale Modelling”, part of the CMA component of the Wind Energy Development (WED) programme, focusing mainly on the methods and work undertaken by Risø DTU. The KAMM/WAsP methodology for numerical wind atlas calculation....... The major new aspects of the project were the large number of KAMM/WAsP sensitivity studies, comparison with WRF, and the CMA’s numerical wind atlas method (WERAS). Additionally, the reliability of the input data for the methodology, and the wave-number spectra properties of the output data were...

  9. A fast and high accuracy numerical simulation algorithm of the polymer spherulite at the mesoscale Level (United States)

    Liu, Yongzhi; Geng, Tie; (Tom Turng, Lih-Sheng; Liu, Chuntai; Cao, Wei; Shen, Changyu


    In the multiscale numerical simulation of polymer crystallization during the processing period, flow and temperature of the polymer melt are simulated on the macroscale level, while nucleation and growth of the spherulite are simulated at the mesoscale level. As a part of the multiscale simulation, the meso-simulation requires a fast solving speed because the meso-simulation software must be run several times in every macro-element at each macro-step. Meanwhile, the accuracy of the calculation results is also very important. It is known that the simulation geometry of crystallization includes planar (2D) and three-dimensional space (3D). The 3D calculations are more accurate but more expensive because of the long CPU time consumed. On the contrary, 2D calculations are always much faster but lower in accuracy. To reach the desirable speed and high accuracy at the same time, an algorithm is presented, in which the Delesse law coupled with the Monte Carlo method and pixel method are employed to simulate the nucleation, growth, and impingement of the polymer spherulite at the mesoscale level. Based on this algorithm, a software is developed with the Visual C++ language, and its numerical examples’ results prove that the solving speed of this algorithm is as fast as the 2D classical simulation and the calculation accuracy is at the same level as the 3D simulation.

  10. Meso-Scale Experimental & Numerical Studies for Predicting Macro-scale Performance of Advanced Reactive Materials (ARMs) (United States)


    stretching, bending and torsion . Parameter optimization is achieved through minimization of a cost function using a single parameter search algorithm. In...and multi-investigator research project, combines numerical simulations with time-resolved impact experiments, to determine the meso-scale mechanisms...Advanced Reactive Materials (ARMs) ABSTRACT Our collaborative, multi-disciplinary and multi-investigator research project, combines numerical

  11. Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach (United States)

    Camponogara, Gláuber; Assunção Faus da Silva Dias, Maria; Carrió, Gustavo G.


    High aerosol loadings are discharged into the atmosphere every year by biomass burning in the Amazon and central Brazil during the dry season (July-December). These particles, suspended in the atmosphere, can be carried via a low-level jet toward the La Plata Basin, one of the largest hydrographic basins in the world. Once they reach this region, the aerosols can affect mesoscale convective systems (MCSs), whose frequency is higher during the spring and summer over the basin. The present study is one of the first that seeks to understand the microphysical effects of biomass burning aerosols from the Amazon Basin on mesoscale convective systems over the La Plata Basin. We performed numerical simulations initialized with idealized cloud condensation nuclei (CCN) profiles for an MCS case observed over the La Plata Basin on 21 September 2010. The experiments reveal an important link between CCN number concentration and MCS dynamics, where stronger downdrafts were observed under higher amounts of aerosols, generating more updraft cells in response. Moreover, the simulations show higher amounts of precipitation as the CCN concentration increases. Despite the model's uncertainties and limitations, these results represent an important step toward the understanding of possible impacts on the Amazon biomass burning aerosols over neighboring regions such as the La Plata Basin.

  12. Verification of some numerical models for operationally predicting mesoscale winds aloft

    International Nuclear Information System (INIS)

    Cornett, J.S.; Randerson, D.


    Four numerical models are described for predicting mesoscale winds aloft for a 6 h period. These models are all tested statistically against persistence as the control forecast and against predictions made by operational forecasters. Mesoscale winds aloft data were used to initialize the models and to verify the predictions on an hourly basis. The model yielding the smallest root-mean-square vector errors (RMSVE's) was the one based on the most physics which included advection, ageostrophic acceleration, vertical mixing and friction. Horizontal advection was found to be the most important term in reducing the RMSVE's followed by ageostrophic acceleration, vertical advection, surface friction and vertical mixing. From a comparison of the mean absolute errors based on up to 72 independent wind-profile predictions made by operational forecasters, by the most complete model, and by persistence, we conclude that the model is the best wind predictor in the free air. In the boundary layer, the results tend to favor the forecaster for direction predictions. The speed predictions showed no overall superiority in any of these three models

  13. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems (United States)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro


    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  14. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations (United States)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.


    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  15. Sensitivity of Numerical Simulations of a Mesoscale Convective System to Ice Hydrometeors in Bulk Microphysical Parameterization (United States)

    Pu, Zhaoxia; Lin, Chao; Dong, Xiquan; Krueger, Steven K.


    Mesoscale convective systems (MCSs) and their associated cloud properties are the important factors that influence the aviation activities, yet they present a forecasting challenge in numerical weather prediction. In this study, the sensitivity of numerical simulations of an MCS over the US Southern Great Plains to ice hydrometeors in bulk microphysics (MP) schemes has been investigated using the Weather Research and Forecasting (WRF) model. It is found that the simulated structure, life cycle, cloud coverage, and precipitation of the convective system as well as its associated cold pools are sensitive to three selected MP schemes, namely, the WRF single-moment 6-class (WSM6), WRF double-moment 6-class (WDM6, with the double-moment treatment of warm-rain only), and Morrison double-moment (MORR, with the double-moment representation of both warm-rain and ice) schemes. Compared with observations, the WRF simulation with WSM6 only produces a less organized convection structure with a short lifetime, while WDM6 can produce the structure and length of the MCS very well. Both simulations heavily underestimate the precipitation amount, the height of the radar echo top, and stratiform cloud fractions. With MORR, the model performs well in predicting the lifetime, cloud coverage, echo top, and precipitation amount of the convection. Overall results demonstrate the importance of including double-moment representation of ice hydrometeors along with warm-rain. Additional experiments are performed to further examine the role of ice hydrometeors in numerical simulations of the MCS. Results indicate that replacing graupel with hail in the MORR scheme improves the prediction of the convective structure, especially in the convective core region.

  16. Numerical modelling of two HMX-based plastic-bonded explosives at the mesoscale


    Handley, Caroline A.


    Mesoscale models are needed to predict the effect of changes to the microstructure of plastic-bonded explosives on their shock initiation and detonation behaviour. This thesis describes the considerable progress that has been made towards a mesoscale model for two HMX-based explosives PBX9501 and EDC37. In common with previous work in the literature, the model is implemented in hydrocodes that have been designed for shock physics and detonation modelling. Two relevant physics effects, heat co...

  17. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

    Directory of Open Access Journals (Sweden)

    R. Sorgente


    Full Text Available The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products.

    The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre.

    The classical kinetic energy decomposition (eddy and mean allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and

  18. Short range forecasting of sea breeze generated thunderstorms at the Kennedy Space Center: A real-time experiment using a primitive equation mesoscale numerical model (United States)

    Lyons, Walter A.; Schuh, Jerome A.; Moon, Dennis; Pielke, Roger A.; Cotton, William; Arritt, Raymond


    The operational efficiency of using guidance from a mesoscale numerical model to improve sea breeze thunderstorm forecasts at and around the Shuttle landing strip was assessed. The Prognostic Three-Dimensional Mesoscale (P3DM) model, developed as a sea breeze model, reveals a strong correlation between regions of mesoscale convergence and the triggering of sea breeze convection thunderstorms. The P3DM was modified to generate stability parameters familiar to the operational forecaster. In addition to the mesoscale fields of wind, vertical motion, moisture, temperature, a stability indicator, a combination of model-predicted K and Lifted Indices and the maximum grid cell vertical motion, were proposed and tested. Results of blind tests indicate that a forecaster, provided with guidance derived from model output, could improve local thunderstorm forecasts.

  19. Evaluation of cloud prediction and determination of critical relative humidity for a mesoscale numerical weather prediction model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Guo, Z.; Ackerman, T.P. [Pennsylvania State Univ., University Park, PA (United States)


    Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.

  20. Precipitation forecasting by a mesoscale numerical weather prediction (NWP model: eight years of experience

    Directory of Open Access Journals (Sweden)

    P. Kaufmann


    Full Text Available The Swiss Model, a hydrostatic numerical weather prediction model, has been used at MeteoSwiss for operational forecasting at the meso-beta scale (mesh-size 14 km from 1994 until 2001. The quality of the quantitative precipitation forecasts is evaluated for the eight years of operation. The seasonal precipitation over Switzerland and its dependence on altitude is examined for both model forecasts and observations using the Swiss rain gauge network sampling daily precipitation at over 400 stations for verification. The mean diurnal cycle of precipitation is verified against the automatic surface observation network on the basis of hourly recordings. In winter, there is no diurnal forcing of precipitation and the modelled precipitation agrees with the observed values. In summer, the convection in the model starts too early, overestimates the amount of precipitation and is too short-lived. Skill scores calculated for six-hourly precipitation sums show a constant level of performance over the model life cycle. Dry and wet seasons influence the model performance more than the model changes during its operational period. The comprehensive verification of the model precipitation is complemented by the discussion of a number of heavy rain events investigated during the RAPHAEL project. The sensitivities to a number of model components are illustrated, namely the driving boundary fields, the internal partitioning of parameterised and grid-scale precipitation, the advection scheme and the vertical resolution. While a small impact of the advection scheme had to be expected, the increasing overprediction of rain with increasing vertical resolution in the RAPHAEL case studies was larger than previously thought. The frequent update of the boundary conditions enhances the positioning of the rain in the model. Keywords: numerical weather prediction, quantitative precipitation forecast, model verification

  1. Numerical study of tracers transport by a mesoscale convective system over West Africa

    Directory of Open Access Journals (Sweden)

    C. Barthe


    Full Text Available A three-dimensional cloud-resolving model is used to investigate the vertical transport from the lower to the upper troposphere in a mesoscale convective system (MCS that occurred over Niger on 15 August 2004. The redistribution of five passive tracers initially confined in horizontally homogeneous layers is analyzed. The monsoon layer tracer (0–1.5 km is the most efficiently transported in the upper troposphere with concentrations 3 to 4 times higher than the other tracers in the anvil. On the contrary the African Easterly Jet tracer (~3 km has the lowest contribution above 5 km. The vertical profiles of the mid-troposphere tracers (4.5–10 km in the MCS exhibit two peaks: one in their initial layers, and the second one at 13–14 km altitude, underlying the importance of mid-tropospheric air in feeding the upper troposphere. Mid-tropospheric tracers also experience efficient transport by convective downdrafts with a consequent increase of their concentrations at the surface. The concentration of the upper troposphere–lower stratosphere tracer exhibits strong gradients at the edge of the cloud, meaning almost no entrainment of this tracer into the cloud. No downward transport from the upper troposphere is simulated below 5 km. A proxy for lightning produced NOx is transported preferentially in the forward anvil in the upper troposphere. Additionally, lateral inflows significantly contribute to the updraft and downdraft airflows emphasizing the three-dimensional structure of the West African MCSs.

  2. The role of mesoscale instabilities and frontolytic circulations in Sting-Jet dynamics: a case study (United States)

    Volonté, Ambrogio; Clark, Peter; Gray, Suzanne


    Sting jets (SJ) occur as an additional region of low-level strong winds present in some Shapiro-Keyser extratropical cyclones. While it is now widely accepted that those winds are not part of the warm or cold conveyor belts, the precise mechanisms responsible for their occurrence are yet to be fully understood. The key aspect of the current research concerns the dependence of SJ generation and strengthening upon the release of mesoscale instabilities and upon the balanced dynamics in the frontolytic region. The work to be presented tackles this question using a case study, windstorm Tini (affecting the UK on 12 February 2014), in which a SJ has been identified. The related investigation is carried out through simulations run with the MetUM and Lagrangian trajectories are used to gain further information on the dynamics of the SJ. Particular attention is devoted to the evolution of mesoscale atmospheric instabilities (e.g. symmetric and inertial instabilities) in the region where the descending airstream originates. The analysis of frontogenesis field, along with the use of vorticity budgets and of potential vorticity tracers, highlights the processes leading to the development of these instabilities and the banded structure in the cloud head. The results of this case study suggest that the SJ undergoes a process of destabilisation that enhances its descent and acceleration, adding to the strong winds already generated by the balanced dynamics. The same destabilisation does not occur in a coarser-resolution simulation, resulting in a weaker wind jet in the frontolytic region. This analysis thus reveals the synergy between the balanced dynamics and mesoscale instabilities in SJ formation.

  3. Modeling spatial patterns of wildfire susceptibility in southern California: Applications of MODIS remote sensing data and mesoscale numerical weather models (United States)

    Schneider, Philipp

    This dissertation investigates the potential of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and mesoscale numerical weather models for mapping wildfire susceptibility in general and for improving the Fire Potential Index (FPI) in southern California in particular. The dissertation explores the use of the Visible Atmospherically Resistant Index (VARI) from MODIS data for mapping relative greenness (RG) of vegetation and subsequently for computing the FPI. VARI-based RG was validated against in situ observations of live fuel moisture. The results indicate that VARI is superior to the previously used Normalized Difference Vegetation Index (NDVI) for computing RG. FPI computed using VARI-based RG was found to outperform the traditional FPI when validated against historical fire detections using logistic regression. The study further investigates the potential of using Multiple Endmember Spectral Mixture Analysis (MESMA) on MODIS data for estimating live and dead fractions of vegetation. MESMA fractions were compared against in situ measurements and fractions derived from data of a high-resolution, hyperspectral sensor. The results show that live and dead fractions obtained from MODIS using MESMA are well correlated with the reference data. Further, FPI computed using MESMA-based green vegetation fraction in lieu of RG was validated against historical fire occurrence data. MESMA-based FPI performs at a comparable level to the traditional NDVI-based FPI, but can do so using a single MODIS image rather than an extensive remote sensing time series as required for the RG approach. Finally this dissertation explores the potential of integrating gridded wind speed data obtained from the MM5 mesoscale numerical weather model in the FPI. A new fire susceptibility index, the Wind-Adjusted Fire Potential Index (WAFPI), was introduced. It modifies the FPI algorithm by integrating normalized wind speed. Validating WAFPI against historical wildfire events using

  4. Permeability of fiber reinforcements for liquid composite molding: Sequential multi-scale investigations into numerical flow modeling on the micro- and meso-scale (United States)

    Luchini, Timothy John Franklin

    Composites are complex material mixtures, known to have high amounts of variability, with unique properties at the micro-, meso-, and macro-scales. In the context of advanced textile composite reinforcements, micro-scale refers to aligned fibers and toughening agents in a disordered arrangement; meso-scale is the woven, braided, or stitched fabric geometry (which compacts to various volume fractions); and macro-scale is the component or sub-component being produced for a mechanical application. The Darcy-based permeability is an important parameter for modeling and understanding the flow profile and fill times for liquid composite molding. Permeability of composite materials can vary widely from the micro- to macro-scales. For example, geometric factors like compaction and ply layup affect the component permeability at the meso- and macro-scales. On the micro-scale the permeability will be affected by the packing arrangement of the fibers and fiber volume fraction. On any scale, simplifications to the geometry can be made to treat the fiber reinforcement as a porous media. Permeability has been widely studied in both experimental and analytical frameworks, but less attention has focused on the ability of numerical tools to predict the permeability of reinforced composite materials. This work aims at (1) predicting permeability at various scales of interest and (2) developing a sequential, multi-scale, numerical modeling approach on the micro- and meso-scales. First, a micro-scale modeling approach is developed, including a geometry generation tool and a fluids-based numerical permeability solver. This micro-scale model included all physical fibers and derived the empirical permeability constant directly though numerical simulation. This numerical approach was compared with literature results for perfect packing arrangements, and the results were shown to be comparable with previous work. The numerical simulations described here also extended these previous

  5. Wind-induced mesoscale circulation off the Ebro delta, NW Mediterranean: a numerical study (United States)

    Espino, M.; Arcilla, A.-S.; García, M. A.


    It is well known that the general circulation on the Catalan continental slope is dominated by a quasi-permanent southwestward geostrophic jet associated to the so-called Catalan front [Millot, C., 1987. Circulation in the western Mediterranean sea. Oceanol Acta 10, 143-149; Font, J., Salat, J., Tintoré, J., 1988. Permanent features of the circulation in the Catalan Sea. Oceanol. Acta 9, 51-57]. On the continental shelf, however, the flow is modified by the action of friction which enhances also other nonlinear interactions. Several authors have hypothesized that the shelf circulation is anticyclonic north of the Ebro delta [Salat, J., Manriquez, M., Cruzado, A., 1978. Hidrografia del golfo de Sant Jordi. Campaña Delta (Abril 1970). Investigación Pesquera 42 (2), 255-272; Ballester, A., Castellvı´, J., 1980. Estudio hidrográfico y biológico de las plataformas continentales españolas: I. Efecto de los efluentes de una planta de energı´a nuclear en el Golfo de San Jorge (Febrero 1975-Octubre 1976). Informes Técnicos del Instituto de Investigaciones Pesqueras 76, 70 pp.]. A quasi-3D finite element code based on the shallow-water equations has been used to explore the effect of several mechanisms which might be responsible for such a local circulation pattern, and in particular of wind. The obtained numerical results suggest that the basic anticyclonic structure of the mean flow is controlled by the bathymetry and that the clockwise-rotating mean flow pattern is not a permanent circulation feature. It is seen that the characteristic local wind stress fields—computed through interpolation of the records of a local network of meteo stations—may `enhance' or `delete' the anticyclonic gyre depending on the sign of their relative vorticity. According to the analysis of a 2-yr record of local wind data, the net contribution of wind events with a duration longer than 24 h is to reinforce the anticyclonic circulation (over 70% of these wind fields supply

  6. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi


    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  7. Real-Time Mesoscale Prediction on workstations. (United States)

    Cotton, William R.; Thompson, Gregory; Mieike, Paul W., Jr.


    Experience in performing real-time mesoscale numerical prediction forecasts using the Regional Atmospheric Modeling System (RAMS) over Colorado for a winter season on high-performance workstations is summarized. Performance evaluation is done for specific case studies and, statistically, for the entire winter season. RAMS forecasts are also compared with nested grid model forecasts. In addition, RAMS precipitation forecasts with a simple "dump bucket" scheme are compared with explicit, bulk microphysics parameterization schemes. The potential applications and political/ social problems of having a readily accessible, real-time mesoscale forecasting capability on low-cost, high-performance workstations is discussed.

  8. Effect of Mesoscale and Multiscale Modeling on the Performance of Kevlar Woven Fabric Subjected to Ballistic Impact: A Numerical Study (United States)

    Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang


    In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.

  9. Numerical study on the interactions between the Kuroshio current in the Luzon Strait and a mesoscale eddy (United States)

    Kuo, Yi-Chun; Chern, Ching-Sheng; Zheng, Zhe-Wen


    The Luzon Strait (LS) connects the northwestern Pacific Ocean and the South China Sea (SCS) and is the western boundary gap for the Kuroshio current (KC). Satellite observations indicate that a cyclonic mesoscale eddy can trigger westward extension of the KC into the SCS and shed a smaller anticyclonic eddy to the west of the LS. We used a nonlinear reduced-gravity (primitive equation) model to study this phenomenon and analyzed the dynamic process. The location of the collision between the eddy and the KC could be critical for varying the circulation in the LS. The eddy's deformation rate, associated with its decaying speed, is also closely related to the location of the eddy during collision. When a cyclonic eddy moved from a region to the east of the Luzon Island toward the LS, the KC intruded into the SCS with growing negative vorticity during the collision of the eddy and KC. This tendency for negative vorticity is attributed to the beta effect and squeezing of the planetary vorticity caused by the flow divergence. As the eddy dissipated, the KC in the LS recovered its original pattern. When the collision of the eddy occurred at the center of the LS, the momentum balance of the KC loop was dominated by the inertial term, and the circulation in the LS remained in a leaping state.

  10. On the forcing mechanisms of mesocyclones in the eastern Weddell Sea region, Antarctica: Process studies using a mesoscale numerical model

    Directory of Open Access Journals (Sweden)

    Thomas Klein


    Full Text Available Development mechanisms of Antarctic mesocyclones in the eastern Weddell Sea area are examined by means of simulations with a mesoscale model using different idealized initial conditions. In one of the experiments, a mesocyclone develops over an area of open water close to the coast of the Antarctic continent. The forcing mechanisms of this mesocyclogenesis are investigated by means of sensitivity studies in which certain physical processes and the relevance of the surface conditions topography, sea surface temperature and sea ice coverage are examined. The sensitivity experiments show that the simulated mesocyclone is forced by an interaction of several forcing mechanisms at different stages of the development rather than by a single mechanism. The topography of the eastern Weddell Sea region and the summertime coastal polynia are shown to be of great importance for the mesocyclogenesis. A suitable synoptic-scale flow is necessary to support the katabatic flow over the sloped ice sheet, and to enhance the generation of cyclonic vorticity due to vertical stretching for the initial mesocyclogenesis. The diabatic process of the convergence of the sensible and latent heat fluxes in the boundary layer over the coastal polynia then becomes the dominant forcing mechanism for the further development of the mesocyclone.

  11. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    Energy Technology Data Exchange (ETDEWEB)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.


    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  12. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Houze, Jr., Robert A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences


    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  13. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2 (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.


    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  14. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping


    observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results

  15. An extreme precipitation event in Dronning Maud Land, Antarctica: A case study with the antarctic mesoscale prediction system

    NARCIS (Netherlands)

    Schlosser, Elisabeth; Powers, J. G.; Duda, M. G.; Manning, K. W.; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643


    An extreme precipitation event that influenced almost the whole polar plateau of Dronning Maud Land, Antarctica, is investigated using Antarctic Mesoscale Prediction System archive data. For the first time a high-resolution atmospheric model especially adapted for polar regions was used for such a

  16. Infants' metaphysics: the case of numerical identity. (United States)

    Xu, F; Carey, S


    Adults conceptualize the world in terms of enduring physical objects. Sortal concepts provide conditions of individuation (establishing the boundaries of objects) and numerical identity (establishing whether an object is the same one as one encountered at some other time). In the adult conceptual system, there are two roughly hierarchical levels of object sortals. Most general is the sortal bounded physical object itself, for which spatiotemporal properties provide the criteria for individuation and identity. More specific sortals, such as dog or car, rely on additional types of properties to provide criteria for individuation and identity. We conjecture that young infants might represent only the general sortal, object, and construct more specific sortals later (the Object-first Hypothesis). This is closely related to Bower's (1974) conjecture that infants use spatiotemporal information to trace identity before they use property information. Five studies using the visual habituation paradigm were conducted to address the Object-first Hypothesis. In these studies, 10-month-old infants were able to use spatiotemporal information but failed to use property/kind information to set up representations of numerically distinct individuals, thus providing empirical evidence for the Object-first Hypothesis. Finally, infants succeed at object individuation in terms of more specific sortals by 12 months. The relation between success at our task and early noun comprehension is discussed.

  17. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.


    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as, project no. 2007-1-7141. (Author)

  18. Mesoscale and synoptic scale transport of aerosols

    International Nuclear Information System (INIS)

    Wolff, G.T.


    An overview is presented of mesoscale and synoptic-scale (macroscale) aerosol transport as observed in recent air pollution field studies. Examples of mesoscale transport systems are discussed, including urban plumes, sea breezes, the mountain-valley wind cycle, and the urban-heat-island circulation. The synoptic-scale systems considered are migrating high- and low-pressure systems. Documented cases are reviewed of aerosol transport in the various mesoscale systems, aerosol accumulation and transport in high-pressure systems, and acid precipitation in low-pressure systems. The characteristics of the transported aerosols are identified, along with the chemical species that occur primarily in aerosols in the accumulation mode (particle diameters of 0.1-3 microns). It is shown that aerosol particles in the accumulation mode are the most important in terms of synoptic-scale and mesoscale transport and that such particles are primarily responsible for visible haze

  19. Case studies in the numerical solution of oscillatory integrals

    International Nuclear Information System (INIS)

    Adam, G.


    A numerical solution of a number of 53,249 test integrals belonging to nine parametric classes was attempted by two computer codes: EAQWOM (Adam and Nobile, IMA Journ. Numer. Anal. (1991) 11, 271-296) and DO1ANF (Mark 13, 1988) from the NAG library software. For the considered test integrals, EAQWOM was found to be superior to DO1ANF as it concerns robustness, reliability, and friendly user information in case of failure. (author). 9 refs, 3 tabs

  20. Operational mesoscale atmospheric dispersion prediction using a ...

    Indian Academy of Sciences (India)

    An operational atmospheric dispersion prediction system is implemented on a cluster supercomputer for Online Emergency Response at the Kalpakkam nuclear site.This numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion ...

  1. Assimilation of Doppler weather radar observations in a mesoscale ...

    Indian Academy of Sciences (India)

    ) Doppler radar data in a numerical model for the prediction of mesoscale convective complexes around Chennai and Kolkata. Three strong convective events both over Chennai and Kolkata have been considered for the present study.

  2. Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: the San Fruttuoso case of 1915 (United States)

    Parodi, Antonio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco; Boni, Giorgio


    Highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood-producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapour content. However, analyses of the historical record do not provide a univocal answer, but these are likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria: the San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs that show strong convergence over the Ligurian Sea (17 out of 56 members) as these runs are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Ligurian Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers, and even photographs, can be very valuable sources of knowledge in the reconstruction of past extreme events.

  3. Assimilation of Chinese Doppler Radar and Lightning Data Using WRF-GSI: A Case Study of Mesoscale Convective System

    Directory of Open Access Journals (Sweden)

    Yi Yang


    Full Text Available The radar-enhanced GSI (version 3.1 system and the WRF-ARW (version 3.4.1 model were modified to assimilate radar/lightning-proxy reflectivity. First, cloud-to-ground lightning data were converted to reflectivity using a simple assumed relationship between flash density and reflectivity. Next, the reflectivity was used in the cloud analysis of GSI to adjust the cloud/hydrometeors and moisture. Additionally, the radar/lightning-proxy reflectivity was simultaneously converted to a 3D temperature tendency. Finally, the model-calculated temperature tendencies from the explicit microphysics scheme, as well as cumulus parameterization at 3D grid points at which the radar temperature tendency is available, were updated in a forward full-physics step of diabatic digital filter initialization in the WRF-ARW. The WRF-GSI system was tested using a mesoscale convective system that occurred on June 5, 2009, and by assimilating Doppler radar and lightning data, respectively. The forecasted reflectivity with assimilation corresponded more closely to the observed reflectivity than that of the parallel experiment without assimilation, particularly during the first 6 h. After assimilation, the short-range precipitation prediction improved, although the precipitation intensity was stronger than the observed one. In addition, the improvements obtained by assimilating lightning data were worse than those from assimilating radar reflectivity over the first 3 h but improved thereafter.

  4. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso


    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  5. Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling (United States)

    Kowitz, A.; Güldemeister, N.; Reimold, W. U.; Schmitt, R. T.; Wünnemann, K.


    A combination of shock recovery experiments and numerical modeling of shock deformation in the low pressure range from 2.5 to 17.5 GPa in dry, porous Seeberger sandstone provides new, significant insights with respect to the heterogeneous nature of shock distribution in such important, upper crustal material, for which to date no pressure-calibrated scheme for shock metamorphism exists. We found that pores are already completely closed at 2.5 GPa shock pressure. Whole quartz grains or parts of them are transformed to diaplectic quartz glass and/or SiO2 melt starting already at 5 GPa, whereas these effects are not observed below shock pressures of 30-35 and ˜45 GPa, respectively, in shock experiments with quartz single crystals. The appearance of diaplectic glass or melt is not restricted to the zone directly below the impacted surface but is related to the occurrence of pores in a much broader zone. The combined amount of these phases increases distinctly with increasing shock pressure from 0.03 vol.% at 5 GPa to ˜80 vol.% at 17.5 GPa. In accordance with a previous shock classification for silica phases in naturally shocked Coconino sandstone from Meteor Crater that was based on varied slopes of the Coconino sandstone Hugoniot curve, our observations allow us to construct a shock pressure classification for porous sandstone consistent with shock stages 1b-4 of the progressive shock metamorphism classification of Kieffer (1971).

  6. Mesoscale model forecast verification during monsoon 2008

    Indian Academy of Sciences (India)

    There have been very few mesoscale modelling studies of the Indian monsoon, with focus on the verification and intercomparison of the operational real time forecasts. With the exception of Das et al (2008), most of the studies in the literature are either the case studies of tropical cyclones and thunderstorms or the sensitivity ...

  7. Mesoscale Connections Summer 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Our challenge derives from the fact that in metals or explosives grains, interfaces and defects control engineering performance in ways that are neither amenable to continuum codes (which fail to rigorously describe the heterogeneities derived from microstructure) nor computationally tractable to first principles atomistic calculations. This is a region called the mesoscale, which stands at the frontier of our desire to translate fundamental science insights into confidence in aging system performance over the range of extreme conditions relevant in a nuclear weapon. For dynamic problems, the phenomena of interest can require extremely good temporal resolutions. A shock wave traveling at 1000 m/s (or 1 mm/μs) passes through a grain with a diameter of 1 micron in a nanosecond (10-9 sec). Thus, to observe the mesoscale phenomena—such as dislocations or phase transformations—as the shock passes, temporal resolution better than picoseconds (10-12 sec) may be needed. As we anticipate the science challenges over the next decade, experimental insights on material performance at the micron spatial scale with picosecond temporal resolution—at the mesoscale— are a clear challenge. This is a challenge fit for Los Alamos in partnership with our sister labs and academia. Mesoscale Connections will draw attention to our progress as we tackle the mesoscale challenge. We hope you like it and encourage suggestions of content you are interested in.

  8. Mesoscale hybrid calibration artifact (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.


    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  9. Numerical analysis of CFRP mesoscale models


    Mangualde, Pedro Miguel Ferreira de Sousa Pepe


    Composite materials, specifically Carbon Fiber Reinforced Polymers, have a complex mechanical behaviour, therefore it is extremely complicated to predict failure and damage. There has been an increasing use of composite materials for structural applications as an alternative to metal due its lightweight and strength properties. Consequently, it is important to consolidate the knowledge about its behaviour under different loads in order to apply them correctly in structural applications. ...

  10. Two case studies on the interaction of large-scale transport, mesoscale photochemistry, and boundary-layer processes on the lower tropospheric ozone dynamics in early spring

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    Full Text Available The vertical distribution of ozone in the lower troposphere over the Swiss Plateau is investigated in detail for two episodes in early spring (February 1998 and March 1999. Profile measurements of boundary-layer ozone performed during two field campaigns with a tethered balloon sounding system and a kite are investigated using regular aerological and ozone soundings from a nearby site, measurements from monitoring stations at various altitudes, backward trajectories, and synoptic analyses of meteorological fields. Additionally, the effect of in situ photochemistry was estimated for one of the episodes employing the Metphomod Eulerian photochemical model. Although the meteorological situations were completely different, both cases had elevated layers with high ozone concentrations, which is not untypical for late winter and early spring. In the February episode, the highest ozone concentrations of 55 to 60 ppb, which were found at around 1100 m asl, were partly advected from Southern France, but a considerable contribution of in situ photochemistry is also predicted by the model. Below that elevation, the local chemical sinks and surface deposition probably overcompensated chemical production, and the vertical ozone distribution was governed by boundary-layer dynamics. In the March episode, the results suggest that ozone-rich air parcels, probably of stratospheric or upper tropospheric origin, were advected aloft the boundary layer on the Swiss Plateau.

    Key words. Atmospheric composition and structure (pollution – urban and regional; troposphere – composition and  chemistry – Meteorology and atmospheric dynamics (mesoscale meteorology

  11. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.


    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  12. Mesoscale eddies in the Subantarctic Front-Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Pablo D. Glorioso


    Full Text Available Satellite and ship observations in the southern southwest Atlantic (SSWA reveal an intense eddy field and highlight the potential for using continuous real-time satellite altimetry to detect and monitor mesoscale phenomena with a view to understanding the regional circulation. The examples presented suggest that mesoscale eddies are a dominant feature of the circulation and play a fundamental role in the transport of properties along and across the Antarctic Circumpolar Current (ACC. The main ocean current in the SSWA, the Falkland-Malvinas Current (FMC, exhibits numerous embedded eddies south of 50°S which may contribute to the patchiness, transport and mixing of passive scalars by this strong, turbulent current. Large eddies associated with meanders are observed in the ACC fronts, some of them remaining stationary for long periods. Two particular cases are examined using a satellite altimeter in combination with in situ observations, suggesting that cross-frontal eddy transport and strong meandering occur where the ACC flow intensifies along the sub-Antarctic Front (SAF and the Southern ACC Front (SACCF.

  13. Mesoscale Simulations of Power Compaction

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, I; Fujino, D; Antoun, T; Liu, B


    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  14. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  15. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.


    mesoscale fluctuations in a mesoscale model is then examined using the weather research and forecasting (WRF) model. A set of case studies demonstrate that realistic hour-scale wind fluctuations and open cellular convection patterns develop in WRF simulations with 2 km horizontal grid spacing. The atmospheric conditions during one of the case studies are then used to initialise a simplified version of the model that has no large scale weather forcing, topography or surface inhomogeneties. Using the simplified model, the sensitivity of the modelled open cellular convection to choices in model setup and to aspects of the environmental forcing are tested. Finally, the cell-scale kinetic energy budget of the modelled cells is calculated, and it is shown that the buoyancy and pressure balance terms are important for cell maintenance. It is explained that the representation of mesoscale convection in a mesoscale model is not only important to end users such as wind farm operators, but to the treatment of energy transport within the boundary layer. (Author)

  16. Mesoscale Polymer Assemblies (United States)

    Choudhary, Satyan; Pham, Jonathan; Crosby, Alfred


    Materials encompassing structural hierarchy and multi-functionality allow for remarkable physical properties across different length scales. Mesoscale Polymer (MSP) assemblies provide a critical link, from nanometer to centimeter scales, in the definition of such hierarchical structures. Recent focus has been on exploiting these MSP assemblies for optical, electronic, photonics and biological applications. We demonstrate a novel fabrication method for MSP assemblies. Current fabrication methods restrict the length scale and volume of such assemblies. A new method developed uses a simple piezo-actuated motion for de-pinning of a polymer solution trapped by capillary forces between a flexible blade and a rigid substrate. The advantages of new method include ability to make MSP of monodisperse length and to fabricate sufficient volumes of MSP to study their physical properties and functionality in liquid dispersions. We demonstrate the application of MSP as filler for soft materials, providing rheological studies of the MSP with surrounding matrices.

  17. Incorporating expert knowledge in calibrating a complex hydrological conceptual model: A FLEX-TOPO case study for a central European meso-scale catchment (United States)

    Gharari, Shervan; Hrachowitz, Markus; Fenicia, Fabrizio; Gao, Hongkai; Euser, Tanja; Savenije, Huub


    Catchments are open systems meaning that it is impossible to find out the exact boundary conditions of the real system spatially and temporarily. Therefore models are essential tools in capturing system behavior spatially and extrapolating it temporarily for prediction. In recent years conceptual models have been in the center of attention rather than so called physically based models which are often over-parameterized and encounter difficulties for up-scaling of small scale processes. Conceptual models however are heavily dependent on calibration as one or more of their parameters can typically not be physically measured at the catchment scale. Parallel to the evolution of modeling attempts, our understanding of rainfall/runoff models increased due to improvements of measurement techniques. Heavily instrumented catchments have been studied, and measured system responses have been modeled for testing a priori hypothesis of system function. Although our understanding of how catchments may work has increased the lessons learned from the case specific studies remain locally valid and are not widely used in model calibration and development. In this study we try to constrain parameters of a complex conceptual model built on landscape units classified according to their hydrological functions, based on our logical considerations and general lessons from previous studies across the globe for the Luxembourgish meso-scale Wark catchment. The classified landscapes were used to assign different model structures to the individual hydrological response units. As an example deep percolation was defined as dominant process for plateaus, while rapid subsurface flow as dominant process for hillslope, and saturation overland flow as dominant process for wetlands. The modeled runoffs from each hydrological unit were combined in a parallel set-up to proportionally contribute to the total catchment runoff. The hydrological units are, in addition, linked by a common groundwater

  18. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang


    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  19. Incorporating expert knowledge in a complex hydrological conceptual model: A FLEX-TOPO case study for a central European meso-scale catchment (United States)

    Gharari, S.; Hrachowitz, M.; Fenicia, F.; Gao, H.; Savenije, H.


    Models are essential tools in capturing system behavior, catchments, spatially and extrapolating it temporarily for prediction. In recent years conceptual models have been in the center of attention rather than so called physically based models which are often over-parameterized and encounter difficulties for up-scaling of small scale processes. Conceptual models however are heavily dependent on calibration as one or more of their parameters can typically not be physically measured at the catchment scale. In this study we try to constrain parameters of a complex conceptual model built on landscape units classified according to their hydrological functions, based on our logical considerations and general lessons from previous studies across the globe for the Luxembourgish meso-scale Wark catchment. The classified landscapes were used to assign different model structures to the individual hydrological response units. As an example deep percolation was defined as dominant process for plateaus, while rapid subsurface flow as dominant process for hillslope, and saturation overland flow as dominant process for wetlands. The modeled runoffs from each hydrological unit were combined in a parallel set-up to proportionally contribute to the total catchment runoff. The hydrological units are, in addition, linked by a common groundwater reservoir. The parallel hydrological units, although increasing the number of parameters, have the benefit of separate calibration. By stepwise calibration different mechanisms can be calibrated at periods when these mechanisms are active in isolation. For instance, the groundwater module is calibrated during dry season recession and the wetland module during isolated summer storms when the hillslopes are below the activation threshold. Moreover, one can constrain parameters by realistic conditions. As an example, the lag time of wetlands is likely to be shorter than the lag time of water traveling to the outlet from a plateau. Moreover, due to

  20. Numerical analysis of electro-osmosis consolidation : A case study

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.


    A numerical model for the design and analysis of electro-osmosis consolidation in soft clay is used to study a well-documented full-scale field test. The large-strain model, which considers coupled electro-osmosis flow, hydraulic flow and electric density flow in a deformable elasto-plastic porous

  1. Mesoscale modeling of the atmosphere (United States)

    Pearce, R. P.


    The Naval Research Laboratory (NRL) is presently developing a non-hydrostatic mesoscale model which is suitable for forecasting meso-Beta and gamma scale phenomena over complex terrain. The model will be delivered to the Army in 1997. However, until the non-hydrostatic model becomes operational, HOTMAC (Higher Order Turbulence Model for Atmospheric Circulation) will be used as an operational model in the U.S. Army's IMETS (Integrated METeorological System) to make a short-range (up to 24 hours) forecast of battlescale atmospheric phenomena. The U.S. Army is mainly concerned with meteorological conditions spatially within the area of 500 km x 500 km x 10 km or less and temporally within the period of 24 hours or less. The Army Research Laboratory's (ARL) prototype IMETS is currently receiving the forecast and analysis fields of meteorological variables produced from the U.S. Air Force Global Spectral Model (GSM) through the Automated Weather Distribution System (AWDS). In the near future, the Relocatable Window Model (RWM) output is expected to become available. The RWM is the Air Force's regional meso-alpha model similar to the Navy Operational Regional Atmospheric Prediction System (NORAPS). The U.S. Army is planning to use the output of GSM (or RWM) to initialize and assimilate into HOTMAC. HOTMAC has been used extensively at the ARL (formerly Atmospheric Sciences Laboratory), and simulate the evolution of locally forced circulations due to surface heating and cooling over meso-Beta and gamma scale areas. HOTMAC is numerically stable and easy to use and thus, suitable for operational use.

  2. Identification of Mesoscale Convective Complex (MCC) phenomenon with image of Himawari 8 Satellite and WRF ARW Model on Bangka Island (Case Study: 7-8 February 2016) (United States)

    Rinaldy, Nanda; Saragih, Immanuel J. A.; Wandala Putra, Agie; Redha Nugraheni, Imma; Wijaya Yonas, Banu


    Based on monitoring on 7th and 8th February 2016 there has been a flood that occurred due to heavy rainfall in a long time in some areas of Bangka Island. Mesoscale Convective Complex (MCC) is one type of Mesoscale Convective System (MCS). Previous research on MCC mentions that MCC can cause heavy rain for a long time. This study aims to identify the phenomenon of MCC in Bangka Island both in the satellite imagery and the output of the model. In addition, this study was also conducted to determine the effect of MCC on the weather conditions in Bangka Island. The study area in this research is Bangka Island with Pangkalpinang Meteorological Station as the centre of research. The data used in this research are FNL (Final Analysis) data from, Satellite Image of Himawari-8 IR1 Channel from BMKG, and meteorological observation data (synoptic and radiosonde) from Pangkalpinang Meteorological Station. The FNL data is simulated using the WRF-ARW model, verified using observation data and then visualized using GrADS. The results of the analysis of Himawari-8 satellite image data showed that two MCCs occurred on 7th and 8th February 2016 on Bangka Island and the MCC was nocturnal, which appeared at night which then continued until extinction in the morning the next day. In a peak cloud temperature review with the coordinates of Pangkalpinang Meteorological Station (-2,163 N 106,137 E) when 1st MCC and 2nd MCC events ranged from -60°C to -80°C. The result of WRF-ARW model output analysis shows that MCC area has high humidity value and positive vertical velocity value which indicates the potential of heavy rain for a long time.

  3. Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution techniques

    Directory of Open Access Journals (Sweden)

    John F. Moxnes


    Full Text Available There has been increasing interest in numerical simulations of fragmentation of expanding warheads in 3D. Accordingly there is a pressure on developers of leading commercial codes, such as LS-DYNA, AUTODYN and IMPETUS Afea, to implement the reliable fracture models and the efficient solution techniques. The applicability of the Johnson–Cook strength and fracture model is evaluated by comparing the fracture behaviour of an expanding steel casing of a warhead with experiments. The numerical codes and different numerical solution techniques, such as Eulerian, Lagrangian, Smooth particle hydrodynamics (SPH, and the corpuscular models recently implemented in IMPETUS Afea are compared. For the same solution techniques and material models we find that the codes give similar results. The SPH technique and the corpuscular technique are superior to the Eulerian technique and the Lagrangian technique (with erosion when it is applied to materials that have fluid like behaviour such as the explosive and the tracer. The Eulerian technique gives much larger calculation time and both the Lagrangian and Eulerian techniques seem to give less agreement with our measurements. To more correctly simulate the fracture behaviours of the expanding steel casing, we applied that ductility decreases with strain rate. The phenomena may be explained by the realization of adiabatic shear bands. An implemented node splitting algorithm in IMPETUS Afea seems very promising.

  4. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts (United States)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  5. A lung cancer case with numerous calcified metastatic nodules of the brain

    International Nuclear Information System (INIS)

    Fukuda, Y.; Homma, T.; Kohga, H.; Uki, J.; Shisa, H.


    A case of pulmonary adenocarcinoma with numerous calcified metastatic nodules of the brain is reported. Autopsy revealed about 400 metastatic nodules in the central nervous system, most of which were calcified. (orig.)


    Directory of Open Access Journals (Sweden)

    Jan-Cristian GRIGORE


    Full Text Available In this paper an algorithm based on [1] [2] are numerical simulations, achieving generalized coordinates of motion, positions, speeds of a rigid rotating kinematic coupling with big clearance in joint, case without friction

  7. A numerical approach to the study of the perpetual case of Ameripean options (United States)

    Kandilarov, J.


    A new numerical method for solving the perpetual case of Ameripean options is proposed. The Ameripean delayed exercise model analyzes a new class of option model with American and ParAsian features. The model is mathematically described by ultraparabolic and parabolic PDE's which are valid over different regions. The perpetual case leads to the parabolic-elliptic two-phase Stefan problem with free internal boundary. To deal with the obtained nonlinear problem an iterative numerical method is proposed. Numerical analysis are presented and discussed.

  8. Multiscale Modeling of Mesoscale and Interfacial Phenomena (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  9. Enhanced mesoscale climate projections in TAR and AR5 IPCC scenarios: a case study in a Mediterranean climate (Araucanía Region, south central Chile). (United States)

    Orrego, R; Abarca-Del-Río, R; Ávila, A; Morales, L


    Climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962-1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070-2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°-40°S and 71°-74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns such as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.

  10. Plankton Dynamics and Mesoscale Turbulence (United States)


    We model meso- and large-scale interactions between fluid dynamics and biology by resorting to reaction-advection-diffusion equations. The reaction...terms represent biologi - cal interactions. The advection terms here represent horizontal advection, mainly due to mesoscale circulations and flows...affected by the variations of topography which take place at steep continental shelves and near seamounts - areas where large abundances of plankton

  11. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David


    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  12. Thermally forced mesoscale atmospheric flow over complex terrain in Southern Italy

    International Nuclear Information System (INIS)

    Baldi, M.; Colacino, M.; Dalu, G. A.; Piervitali, E.; Ye, Z.


    In this paper the Authors discuss some results concerning the analysis of the local atmospheric flow over the southern part of Italy, the peninsula of Calabria, using a mesoscale numerical model. Our study is focused on two different but related topics: a detailed analysis of the meteorology and climate of the region based on a data collection, reported in Colacino et al., 'Elementi di Climatologia della Calabria', edited by A. Guerrini, in the series P. S., 'Clima, Ambiente e Territorio nel Mezzogiorno' (CNR, Rome) 1997, pp. 218, and an analysis of the results based on the simulated flow produced using a mesoscale numerical model. The Colorado State University mesoscale numerical model has been applied to study several different climatic situations of particular interest for the region, as discussed in this paper

  13. Thermally forced mesoscale atmospheric flow over complex terrain in Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, M.; Colacino, M.; Dalu, G. A.; Piervitali, E.; Ye, Z. [CNR, Rome (Italy). Ist. di Fisica dell`Atmosfera


    In this paper the Authors discuss some results concerning the analysis of the local atmospheric flow over the southern part of Italy, the peninsula of Calabria, using a mesoscale numerical model. Our study is focused on two different but related topics: a detailed analysis of the meteorology and climate of the region based on a data collection, reported in Colacino et al., `Elementi di Climatologia della Calabria`, edited by A. Guerrini, in the series P. S., `Clima, Ambiente e Territorio nel Mezzogiorno` (CNR, Rome) 1997, pp. 218, and an analysis of the results based on the simulated flow produced using a mesoscale numerical model. The Colorado State University mesoscale numerical model has been applied to study several different climatic situations of particular interest for the region, as discussed in this paper.

  14. A numerical approach to calculate the induced voltage in the case of conduced perturbations

    International Nuclear Information System (INIS)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M.


    This paper presents a method of numerical simulation that makes it possible to calculate the induced tension to the terminals of the cardiac pacemaker subjected to conduced disturbances. The physical model used for simulation is an experimental test bed which makes it possible to study the behaviour of pacemaker, in vitro, subjected to electromagnetic disturbances in low frequencies range (50 hz - 500 khz). The test bed in which the pacemaker is implanted is described in this article. The process of calculation uses the admittance method adapted to the case of conducted disturbances. Results obtained by numerical simulation are close to experimental values. (authors)

  15. A numerical approach to calculate the induced voltage in the case of conduced perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M. [Nancy-1 Univ. Henri Poincare, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France)


    This paper presents a method of numerical simulation that makes it possible to calculate the induced tension to the terminals of the cardiac pacemaker subjected to conduced disturbances. The physical model used for simulation is an experimental test bed which makes it possible to study the behaviour of pacemaker, in vitro, subjected to electromagnetic disturbances in low frequencies range (50 hz - 500 khz). The test bed in which the pacemaker is implanted is described in this article. The process of calculation uses the admittance method adapted to the case of conducted disturbances. Results obtained by numerical simulation are close to experimental values. (authors)

  16. Numerical Simulation on the Performance of a Mixed-Flow Pump under Various Casing Structures

    Directory of Open Access Journals (Sweden)

    Wu Dazhuan


    Full Text Available With regard to the reactor coolant pump and high flow-rate circulating pump, the requirements on the compactness of the structure, safety, and hydraulic performance are particularly important. Thus, the mixed-flow pump with cylindrical casing is adopted in some occasions. Due to the different characteristics between the special cylindrical casing and the common pump casing, the influence of the special casing on a mixed-flow pump characteristics was numerically investigated to obtain better performance and flow structure in the casing. The results show that the models with cylindrical casing have much worse head and efficiency characteristics than the experimental model, and this is caused by the flow in the pump casing. By moving the guide vanes half inside the pump casing, the efficiency gets improved while the low pressure zone at the corner of outlet pipe and pump casing disappeared. When the length of pump casing increases from the size equal to the diameter of outlet pipe to that larger than it, the efficiency drops obviously and the flow field in the outlet pipe improved without curved flow. In addition, the length of the pump casing has greater impacts on the pump performance than the radius of it.

  17. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.


    parameterizations are demonstrated in theWeather Research and Forecasting mesoscale model (WRF) in an idealized atmospheric flow. The model framework is the Horns Rev I wind farm experiencing an 7.97 m/s wind from 269.4o. Three of the four parameterizations use thrust output from the CRESflow-NS microscale model......In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake....... The characteristics of the mesoscale wake that developed from the four parameterizations are examined. In addition the mesoscale model wakes are compared to measurement data from Horns Rev I. Overall it is seen as an advantage to incorporate microscale model data in mesocale model wake parameterizations....

  18. Mesoscale partitioned analysis of brick-masonry arches


    Zhang, Y; Macorini, L; Izzuddin, BA


    ? 2016 Elsevier Ltd.Past research has shown that masonry mesoscale descriptions, where bricks and mortar joints are modelled separately, offer a realistic representation of the mechanical behaviour of masonry components. In the case of masonry arches, thus far the use of this approach has been restricted to 2D analysis mainly because of the significant computational effort required. However conventional 2D models may lead to a crude representation of the response of masonry arches which is in...

  19. Experimental and numerical study on casing wear in highly deviated drilling for oil and gas

    Directory of Open Access Journals (Sweden)

    Hao Yu


    Full Text Available Aimed at studying the casing wear in the highly deviated well drilling, the experimental study on the casing wear was carried out in the first place. According to the test data and the linear wear model based on the energy dissipation proposed by White and Dawson, the tool joint–casing wear coefficient was obtained. The finite element model for casing wear mechanism research was established using ABAQUS. The nodal movement of the contact surface was employed to simulate the evolution of the wear depth, exploiting the Umeshmotion user subroutine. In addition, the time-dependent geometry of the contact surfaces between the tool joint and casing was being updated continuously. Consequently, the contact area and contact pressure were changed continuously during the casing wear process, which gives a more realistic simulation. Based on the shapes of worn casing, the numerical simulation research was carried out to determine the remaining collapse strength. Then the change curve of the maximum casing wear depth with time was obtained. Besides, the relationship between the maximum wear depth and remaining collapse strength was established to predict the maximum wear depth and the remaining strength of the casing after a period of accumulative wear, providing a theoretical basis for the safety assessment of worn casing.

  20. Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China (United States)

    Zhang, Guangchao; Liang, Saijiang; Tan, Yunliang; Xie, Fuxing; Chen, Shaojie; Jia, Hongguo


    This paper presents a new numerical modeling procedure and design principle for longwall pillar design with the assistance of numerical simulation of FLAC3D. A coal mine located in Yanzhou city, Shandong Province, China, was selected for this case study. A meticulously validated numerical model was developed to investigate the stress changes across the longwall pillar with various sizes. In order to improve the reliability of the numerical modeling, a calibration procedure is undertaken to match the Salamon and Munro pillar strength formula for the coal pillar, while a similar calibration procedure is used to estimate the stress-strain response of a gob. The model results demonstrated that when the coal pillar width was 7-8 m, most of the vertical load was carried by the panel rib, whilst the gateroad was overall in a relatively low stress environment and could keep its stability with proper supports. Thus, the rational longwall pillar width was set as 8 m and the field monitoring results confirmed the feasibility of this pillar size. The proposed numerical simulation procedure and design principle presented in this study could be a viable alternative approach for longwall pillar design for other similar projects.

  1. Mesoscale cyclogenesis over the western north Pacific Ocean during TPARC

    Directory of Open Access Journals (Sweden)

    Christopher A. Davis


    Full Text Available Three cases of mesoscale marine cyclogenesis over the subtropics of the Western Pacific Ocean are investigated. Each case occurred during the THORPEX Pacific Asia Regional Campaign and Tropical Cyclone Structure (TCS-08 field phases in 2008. Each cyclone developed from remnants of disturbances that earlier showed potential for tropical cyclogenesis within the tropics. Two of the cyclones produced gale-force surface winds, and one, designated as a tropical cyclone, resulted in a significant coastal storm over eastern Japan. Development was initiated by a burst of organized mesoscale convection that consolidated and intensified the surface cyclonic circulation over a period of 12–24 h. Upper-tropospheric potential vorticity anomalies modulated the vertical wind shear that, in turn, influenced the periods of cyclone intensification and weakening. Weak baroclinicity associated with vertical shear was also deemed important in organizing mesoscale ascent and the convection outbreaks. The remnant tropical disturbances contributed exceptional water vapour content to higher latitudes that led to strong diabatic heating, and the tropical remnants contributed vorticity that was the seed of the development in the subtropics. Predictability of these events more than three days in advance appears to be minimal.

  2. Mesoscale Climate Evaluation Using Grid Computing (United States)

    Campos Velho, H. F.; Freitas, S. R.; Souto, R. P.; Charao, A. S.; Ferraz, S.; Roberti, D. R.; Streck, N.; Navaux, P. O.; Maillard, N.; Collischonn, W.; Diniz, G.; Radin, B.


    The CLIMARS project is focused to establish an operational environment for seasonal climate prediction for the Rio Grande do Sul state, Brazil. The dynamical downscaling will be performed with the use of several software platforms and hardware infrastructure to carry out the investigation on mesoscale of the global change impact. The grid computing takes advantage of geographically spread out computer systems, connected by the internet, for enhancing the power of computation. The ensemble climate prediction is an appropriated application for processing on grid computing, because the integration of each ensemble member does not have a dependency on information from another ensemble members. The grid processing is employed to compute the 20-year climatology and the long range simulations under ensemble methodology. BRAMS (Brazilian Regional Atmospheric Model) is a mesoscale model developed from a version of the RAMS (from the Colorado State University - CSU, USA). BRAMS model is the tool for carrying out the dynamical downscaling from the IPCC scenarios. Long range BRAMS simulations will provide data for some climate (data) analysis, and supply data for numerical integration of different models: (a) Regime of the extreme events for temperature and precipitation fields: statistical analysis will be applied on the BRAMS data, (b) CCATT-BRAMS (Coupled Chemistry Aerosol Tracer Transport - BRAMS) is an environmental prediction system that will be used to evaluate if the new standards of temperature, rain regime, and wind field have a significant impact on the pollutant dispersion in the analyzed regions, (c) MGB-IPH (Portuguese acronym for the Large Basin Model (MGB), developed by the Hydraulic Research Institute, (IPH) from the Federal University of Rio Grande do Sul (UFRGS), Brazil) will be employed to simulate the alteration of the river flux under new climate patterns. Important meteorological input variables for the MGB-IPH are the precipitation (most relevant

  3. Numerical simulation and comparison of conventional and sloped solar chimney power plants: the case for Lanzhou. (United States)

    Cao, Fei; Li, Huashan; Zhang, Yang; Zhao, Liang


    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights.

  4. Coastal wind in the transition from turbulence to mesoscale (United States)

    Champagne-Philippe, MichèLe


    During the second survey of the Travaux d'Océanographie Spatiale: Capteurs actifs dans l'Atlantique Nord-Est (TOSCANE T) experiment (February 14 to April 17, 1985), seven wind masts were operated on the shore of the "Baie d'Audierne." Distances between them ranged from 1.5 to 13.7 km, and the data were sampled at 3 s. An important portion of the data was recorded under severe weather conditions. Results from 27 cases of wind blowing from the sea, which corresponded to synoptically stationary wind regimes, show that for both horizontal components the spectral energy in the transition region between mesoscale and Kolmogorov turbulence takes the shape of a well-marked dip when weather types are stable or slightly unstable. But, in more convective cases the dip disappears and the transition region becomes almost horizontal; spectral energy density follows an n-1 law (where n is equal to frequency) until the Kolmogorov region is reached. Coherences and cross correlations between masts show that in the 6-s to 1-hour period range, only mesoscale fluctuations are coherent. Turbulent fluctuations are not correlated for the separation distances of the masts. Under synoptically steady or slightly unstable conditions, such single-point measurements could reliably be time-averaged for use in satellite wind sensor calibration. In more convective conditions, especially for the ubiquitous open mesoscale cells found over mid-latitude oceans in cold air advections, interpretation problems might occur because mesoscale events, as time-averaged from coastal masts, buoys, or ships, could be different from those spatially integrated in the footprint of a satellite sensor. In these cases, some relationship must be used to relate single-point averaging times to the area illuminated by the satellite. To do so, Taylor's hypothesis is commonly extended to the mesoscale; but, the present data show that such an extension cannot be made under usual actual conditions because of the structure of

  5. Current issues concerning the representativeness and utility of cloud drift winds in mesoscale meteorology (United States)

    Koch, Steven E.


    High-resolution cloud motion wind (CMW) data sets obtained from geostationary satellites for approximately the past decade have been used for the purpose of estimating mesoscale wind fields in various research studies. Yet there remains much controversy surrounding the proper interpretation and use of the resultant wind vector and kinematic fields. This paper is concerned with: (1) how representative are cloud draft winds of actual ambient air motions; and (2) what is the degree of practical usefulness of CMW fields for both mesoscale analysis and as input to numerical weather prediction models.

  6. Numerous cerebral hemorrhages in a patient with influenza-associated encephalitis: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Ye; Seong, Su Ok; Park, Noh Hyuck; Park, Chan Sup [Dept. of Radiology, Myongji Hospital, Goyang (Korea, Republic of)


    Influenza-associated encephalitis (IAE) is a complication of a common disease that is rare even during an epidemic. Awareness of magnetic resonance imaging features of IAE is important in treatment planning and prognosis estimation. Several reports have described necrotizing encephalopathy in children with influenza. However, few reports have described multifocal hemorrhages in both cerebral hemispheres in adults with concomitant infection with influenza A and B. Here, we describe a case of influenza A- and B-associated encephalitis accompanied by numerous cerebral hemorrhages.

  7. Numerical Verification Of Geotechnical Structure In Unfavourable Geological Conditions – Case Study

    Directory of Open Access Journals (Sweden)

    Drusa Marián


    Full Text Available Numerical modelling represents a powerful tool not only for special geotechnical calculations in cases of complicated and difficult structure design or their foundation conditions, but also for regular tasks of structure foundation. Finite element method is the most utilized method of numerical modelling. This method was used for calculations of the retaining wall monitored during 5 years after construction. Retaining wall of the parking lot with the facing from gabion blocks was chosen for numerical model. Besides the unfavourable geological conditions, a soft nature of the facing was also a difficult part of the modelling. This paper presents the results of the modelling when exact geometry, material characteristics and construction stages were simulated. The results capture the trend of displacements even though the basic material models were utilized. The modelling proved the ability of the finite element method to model the retaining structure with sufficient accuracy as well as reasonable demand on quality and quantity of input data. This method can then be used as a regular design tool during project preparation.

  8. Discounting model selection with area-based measures: A case for numerical integration. (United States)

    Gilroy, Shawn P; Hantula, Donald A


    A novel method for analyzing delay discounting data is proposed. This newer metric, a model-based Area Under Curve (AUC) combining approximate Bayesian model selection and numerical integration, was compared to the point-based AUC methods developed by Myerson, Green, and Warusawitharana (2001) and extended by Borges, Kuang, Milhorn, and Yi (2016). Using data from computer simulation and a published study, comparisons of these methods indicated that a model-based form of AUC offered a more consistent and statistically robust measurement of area than provided by using point-based methods alone. Beyond providing a form of AUC directly from a discounting model, numerical integration methods permitted a general calculation in cases when the Effective Delay 50 (ED50) measure could not be calculated. This allowed discounting model selection to proceed in conditions where data are traditionally more challenging to model and measure, a situation where point-based AUC methods are often enlisted. Results from simulation and existing data indicated that numerical integration methods extended both the area-based interpretation of delay discounting as well as the discounting model selection approach. Limitations of point-based AUC as a first-line analysis of discounting and additional extensions of discounting model selection were also discussed. © 2018 Society for the Experimental Analysis of Behavior.

  9. Numerical Calculation of Secondary Flow in Pump Volute and Circular Casings using 3D Viscous Flow Techniques

    Directory of Open Access Journals (Sweden)

    K. Majidi


    Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.

  10. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.


    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  11. Cycloidal meandering of a mesoscale anticyclonic eddy (United States)

    Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael


    By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic eddies, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual eddy were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three eddies constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.

  12. Numerical simulation of the double pits stress concentration in a curved casing inner surface

    Directory of Open Access Journals (Sweden)

    Wei Yan


    Full Text Available Sour or sweet oil fields development is common in recent years. Casing and tubing are usually subjected to pitting corrosion because of exposure to the strong corrosion species, such as CO2, H2S, and saline water. When the corrosion pits formed in the casing inner surface, localized stress concentration will occur and the casing strength will be degraded. Thus, it is essential to evaluate the degree of stress concentration factor accurately. This article performed a numerical simulation on double pits stress concentration factor in a curved inner surface using the finite element software ABAQUS. The results show that the stress concentration factor of double pits mainly depends on the ratio of two pits distance to the pit radius (L/R. It should not be only assessed by the absolute distance between the two pits. When the two pits are close and tangent, the maximum stress concentration factor will appear on the inner tangential edges. Stress concentration increased by double pits in a curved casing inner surface is more serious than that in a flat surface. A correction factor of 1.9 was recommended in the curved inner surface double pits stress concentration factor predict model.

  13. Experiments with the Mesoscale Atmospheric Simulation System (MASS) using the synthetic relative humidity (United States)

    Chang, Chia-Bo


    This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model

  14. Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Nieto, Enrique D., E-mail: [Departamento de Matemática Aplicada I, Universidad de Sevilla, E.T.S. Arquitectura, Avda, Reina Mercedes, s/n, 41012 Sevilla (Spain); Gallardo, José M., E-mail: [Departamento de Análisis Matemático, Universidad de Málaga, F. Ciencias, Campus Teatinos S/N (Spain); Vigneaux, Paul, E-mail: [Unitée de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)


    This paper deals with the numerical resolution of a shallow water viscoplastic flow model. Viscoplastic materials are characterized by the existence of a yield stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In the context of avalanches, it means that after going down a slope, the material can stop and its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid). The model involves variational inequalities associated with the yield threshold: finite-volume schemes are used together with duality methods (namely Augmented Lagrangian and Bermúdez–Moreno) to discretize the problem. To be able to accurately simulate the stopping behavior of the avalanche, new schemes need to be designed, involving the classical notion of well-balancing. In the present context, it needs to be extended to take into account the viscoplastic nature of the material as well as general bottoms with wet/dry fronts which are encountered in geophysical geometries. We derived such schemes and numerical experiments are presented to show their performances.

  15. Efficient numerical schemes for viscoplastic avalanches. Part 2: The 2D case (United States)

    Fernández-Nieto, Enrique D.; Gallardo, José M.; Vigneaux, Paul


    This paper deals with the numerical resolution of a shallow water viscoplastic flow model. Viscoplastic materials are characterized by the existence of a yield stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In the context of avalanches, it means that after going down a slope, the material can stop and its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid). The model involves variational inequalities associated with the yield threshold: finite volume schemes are used together with duality methods (namely Augmented Lagrangian and Bermúdez-Moreno) to discretize the problem. To be able to accurately simulate the stopping behavior of the avalanche, new schemes need to be designed, involving the classical notion of well-balancing. In the present context, it needs to be extended to take into account the viscoplastic nature of the material as well as general bottoms with wet/dry fronts which are encountered in geophysical geometries. Here we derive such schemes in 2D as the follow up of the companion paper treating the 1D case. Numerical tests include in particular a generalized 2D benchmark for Bingham codes (the Bingham-Couette flow with two non-zero boundary conditions on the velocity) and a simulation of the avalanche path of Taconnaz in Chamonix-Mont-Blanc to show the usability of these schemes on real topographies from digital elevation models (DEM).

  16. Disseminated tuberculosis in a pregnant woman presenting with numerous brain tuberculomas: case report

    Directory of Open Access Journals (Sweden)

    Gasparetto Emerson L.


    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which has the pulmonary form as the most common presentation. Dissemination of the disease is common in immunocompromised patients, but immunodeficiency related to pregnancy severe enough to cause dissemination of the Mycobacteria is exceedingly rare. When dissemination occurs, any organ may be affected and in central nervous system, the infection presents as meningitis and single brain parenchyma tuberculomas. We report the case of a 17 year-old woman at the 34th week of pregnancy with respiratory and high intracranial pressure symptoms. On the day before admission she had a sudden onset of paraparesis and urinary retention and ten hours after the delivery she presented with paraplegia . The chest X-ray and CT scan were compatible with miliary tuberculosis. The cranial CT scan revealed numerous rounded hypodense lesions located at cerebral and cerebellar hemispheres, which presented ring-like enhancement after contrast injection. The patient underwent a craniotomy with biopsy of the lesions confirming the diagnosis of brain tuberculomas. The three-drug regimen was started and the cranial CT scan performed a year after diagnosis showed no brain lesions. We emphasize the aggressive dissemination of the disease in this case associated with pregnancy and the importance of early diagnosis and institution of therapy resulting in regression of the lesions.

  17. Use of ground-based wind profiles in mesoscale forecasting (United States)

    Schlatter, Thomas W.


    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  18. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    Directory of Open Access Journals (Sweden)

    V. Blažica


    Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.

  19. Analysis of mesoscale factors at the onset of deep convection on hailstorm days in Southern France and their relation to the synoptic patterns (United States)

    Sanchez, Jose Luis; Wu, Xueke; Gascón, Estibaliz; López, Laura; Melcón, Pablo; García-Ortega, Eduardo; Berthet, Claude; Dessens, Jean; Merino, Andrés


    Storms and the weather phenomena associated to intense precipitation, lightning, strong winds or hail, are among the most common and dangerous weather risks in many European countries. To get a reliable forecast of their occurrence is remaining an open problem. The question is: how is possible to improve the reliability of forecast? Southwestern France is frequently affected by hailstorms, producing severe damages on crops and properties. Considerable efforts were made to improve the forecast of hailfall in this area. First of all, if we want to improve this type of forecast, it is necessary to have a good "ground truth" of the hail days and zones affected by hailfall. Fortunately, ANELFA has deployed thousands of hailpad stations in Southern France. The ANELFA processed the point hailfall data recorded during each hail season at these stations. The focus of this paper presents a methodology to improve the forecast of the occurrence of hailfall according to the synoptic environment and mesoscale factors in the study area. One hundred of hail days were selected, following spatial and severity criteria, occurred in the period 2000-2010. The mesoscale model WRF was applied for all cases to study the synoptic environment of mean geopotential and temperature fields at 500 hPa. Three nested domains have been defined following a two-way nesting strategy, with a horizontal spatial resolution of 36, 12 and 4 km, and 30 vertical terrains— following σ-levels. Then, using the Principal Component Analysis in T-Mode, 4 mesoscale configurations were defined for the fields of convective instability (CI), water vapor flux divergence and wind flow and humidity at low layer (850hPa), and several clusters were classified followed by using the K-means Clustering. Finally, we calculated several characteristic values of four hail forecast parameters: Convective Available Potential Energy (CAPE), Storm Relative Helicity between 0 and 3 km (SRH0-3), Energy-Helicity Index (EHI) and

  20. Mesoscale eddies transport deep-sea sediments. (United States)

    Zhang, Yanwei; Liu, Zhifei; Zhao, Yulong; Wang, Wenguang; Li, Jianru; Xu, Jingping


    Mesoscale eddies, which contribute to long-distance water mass transport and biogeochemical budget in the upper ocean, have recently been taken into assessment of the deep-sea hydrodynamic variability. However, how such eddies influence sediment movement in the deepwater environment has not been explored. Here for the first time we observed deep-sea sediment transport processes driven by mesoscale eddies in the northern South China Sea via a full-water column mooring system located at 2100 m water depth. Two southwestward propagating, deep-reaching anticyclonic eddies passed by the study site during January to March 2012 and November 2012 to January 2013, respectively. Our multiple moored instruments recorded simultaneous or lagging enhancement of suspended sediment concentration with full-water column velocity and temperature anomalies. We interpret these suspended sediments to have been trapped and transported from the southwest of Taiwan by the mesoscale eddies. The net near-bottom southwestward sediment transport by the two events is estimated up to one million tons. Our study highlights the significance of surface-generated mesoscale eddies on the deepwater sedimentary dynamic process.

  1. Mesoscale wind fluctuations over Danish waters

    DEFF Research Database (Denmark)

    Vincent, Claire Louise

    in generated power are a particular problem for oshore wind farms because the typically high concentration of turbines within a limited geographical area means that uctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water...

  2. Wind-Farm Parametrisations in Mesoscale Models

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.


    In this paper we compare three wind-farm parametrisations for mesoscale models against measurement data from the Horns Rev I offshore wind-farm. The parametrisations vary from a simple rotor drag method, to more sophisticated models. Additional to (4) we investigated the horizontal resolution...

  3. Detection of Mesoscale Vortices and Their Role in Subsequent Convection (United States)

    Paulus, M.


    Mid-level mesoscale vortices impact warm-season precipitation by initiating and focusing deep convection. Given their significance to forecasting, it is important to understand mesoscale vortices, their frequency, and their impact on subsequent convection in greater detail. This research was a pilot study to identify such vortices using two separate techniques. Vortices were identified through a subjective visual identification technique that relied mostly on composite radar reflectivity and satellite imagery, as well as through an objective algorithm applied to hourly 20-km Rapid Update Cycle model analyses. Vortices arising within organized convection, called mesoscale convective vortices (MCVs), as well as ones forming in the absence of convection (dry vortices) were identified over the central United States during an active period from 1-10 June 2009. Additionally, MCVs were identified that were responsible for triggering subsequent convection. The results from the subjective and objective methods were compared, and vortex characteristics such as duration were analyzed. The objective algorithm detected more vortices than expected, as well as an approximately equal distribution of dry and convective vortices. Approximately two-thirds of the MCVs detected by the algorithm were also detectable by the subjective, visual method. MCVs that triggered new convection accounted for less than half of all cases, while in general MCVs lasted longer than dry vortices. While extension of this research is necessary in order to apply to a more broad range of MCVs, these results demonstrate the potential of the methodology in identifying these vortices, which will potentially lead to a greater understanding of such systems.

  4. Analytical and numerical methods for computing electron partial intensities in the case of multilayer systems

    International Nuclear Information System (INIS)

    Afanas’ev, Victor P.; Efremenko, Dmitry S.; Kaplya, Pavel S.


    Highlights: • The OKG-model is extended to finite thickness layers. • An efficient matrix technique for computing partial intensities is proposed. • Good agreement is obtained for computed partial intensities and experimental data. - Abstract: We present two novel methods for computing energy spectra and angular distributions of electrons emitted from multi-layer solids. They are based on the Ambartsumian–Chandrasekhar (AC) equations obtained by using the invariant imbedding method. The first method is analytical and relies on a linearization of AC equations and the use of the small-angle approximation. The corresponding solution is in good agreement with that computed by using the Oswald–Kasper–Gaukler (OKG) model, which is extended to the case of layers of finite thickness. The second method is based on the discrete ordinate formalism and relies on a transformation of the AC equations to the algebraic Ricatti and Lyapunov equations, which are solved by using the backward differential formula. Unlike the previous approach, this method can handle both linear and nonlinear equations. We analyze the applicability of the proposed methods to practical problems of computing REELS spectra. To demonstrate the efficiency of the proposed methods, several computational examples are considered. Obtained numerical and analytical solutions show good agreement with the experimental data and Monte-Carlo simulations. In addition, the impact of nonlinear terms in the Ambartsumian–Chandrasekhar equations is analyzed.

  5. Lexicalization errors in writing arabic numerals: a single-case study. (United States)

    Noël, M P; Seron, X


    This paper presents a single-case study of a patient suffering from several impairments in number processing. The main focus of the paper is to describe and interpret the patient's errors in verbal to arabic transcoding. The errors were of the syntactical type and consisted of partial lexicalizations appearing mainly in response to items with Thousand in sum relationships and less frequently with Hundred in sum relationships. The Discussion section compares three models in their ability to account for the patient's dissociation. It was suggested that models such as that of McCloskey, Caramazza, and Basili (1985), postulating a semantic representation for numbers built up on a base-ten system, are unable to account for the patient's errors. By contrast, Power et al.'s perspective (Power & Longuet-Higgins, 1978; Power & Dal Martello, 1990), which posits a semantic representation of numbers reflecting the structure of the verbal numeral system, could provide an economical interpretation for the dissociation observed between the mastery of sum and product relationships. Similarly, the asemantic transcoding model developed by Deloche and Seron (1987) gives a valid account for the patient's profile.

  6. Wind atlas for Egypt: Measurements, micro- and mesoscale modelling

    DEFF Research Database (Denmark)

    Mortensen, N.G.; Hansen, J.C.; Badger, J.


    with SRTM 3 elevation data and satellite imagery, provide the means for immediate WAsP wind resource assessments anywhere in Egypt. In addition to the very high wind resource in the Gulfs of Suez and Aqaba, the wind atlas has discovered a large region in the Western Desert with a fairly high resource......The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricity-producing wind turbine installations. The regional...... wind climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods...

  7. The mesoscale dispersion modeling system a simulation tool for development of an emergency response system

    International Nuclear Information System (INIS)

    Uliasz, M.


    The mesoscale dispersion modeling system is under continuous development. The included numerical models require further improvements and evaluation against data from meteorological and tracer field experiments. The system can not be directly applied to real time predictions. However, it seems to be a useful simulation tool for solving several problems related to planning the monitoring network and development of the emergency response system for the nuclear power plant located in a coastal area. The modeling system can be also applied to another environmental problems connected with air pollution dispersion in complex terrain. The presented numerical models are designed for the use on personal computers and are relatively fast in comparison with the similar mesoscale models developed on mainframe computers

  8. Coastal zone wind energy. Part I. Synoptic and mesoscale controls and distributions of coastal wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Garstang, M.; Nnaji, S.; Pielke, R.A.; Gusdorf, J.; Lindsey, C.; Snow, J.W.


    This report describes a method of determining coastal wind energy resources. Climatological data and a mesoscale numerical model are used to delineate the available wind energy along the Atlantic and Gulf coasts of the United States. It is found that the spatial distribution of this energy is dependent on the locations of the observing sites in relation to the major synoptic weather features as well as the particular orientation of the coastline with respect to the large-scale wind.

  9. A summary of research on mesoscale energetics of severe storm environments (United States)

    Fuelberg, H. E.


    The goals of this research were to better understand interactions between areas of intense convection and their surrounding mesoscale environments by using diagnostic budgets of kinetic (KE) and available potential energy (APE). Three cases of intense convection were examined in detail. 1) Atmospheric Variability Experiments (AVE) carried out on 24 to 25 April 1975 were studied. Synoptic scale data at 3 to 6 hour intervals, contained two mesoscale convective complexes (MCCs). Analyses included total KE budgets and budgets of divergent and rotational components of KE. 2) AVE-Severe Environmental Storms and Mesoscale Experiments (SESAME)-4 carried out on 10 to 11 April 1979 were studied. Synotpic and meso alpha-scale data (250 km spacing, 3 hour intervals), contained the Red River Valley tornado outbreak. Analyses included total KE budgets (separate synoptic and mesoscale version), budgets for the divergent and rotational components, and the generation of APE by diabatic processes. 3) AVE-SESAME 5 studies were carried out on 20 to 31 May 1979. Synoptic and meso beta-scale data (75 km spacing, 1 1/2 to 3 hour intervals), contained a small MCC. Analyses include separate KE budgets for the synotic and meso beta-scales and a water vapor budget. Major findings of these investigations are: (1) The synoptic scale storm environment contains energy conversions and transports that are comparable to those of mature midlatitude cyclones. (2) Energetic in the mesoscale storm environment are often an order of magnitude larger than those in an undisturbed region. (3) Mesoscale wind maxima form in the upper troposphere on the poleward sides of convective areas, whereas speeds decrease south of storm regions.

  10. Numerical modeling of storm surges in the coast of Mozambique: the cases of tropical cyclones Bonita (1996) and Lisette (1997) (United States)

    Bié, Alberto José; de Camargo, Ricardo; Mavume, Alberto Francisco; Harari, Joseph


    The coast of Mozambique is often affected by storms, particularly tropical cyclones during summer or sometimes midlatitude systems in the southern part. Storm surges combined with high freshwater discharge can drive huge coastal floods, affecting both urban and rural areas. To improve the knowledge about the impact of storm surges in the coast of Mozambique, this study presents the first attempt to model this phenomenon through the implementation of the Princeton Ocean Model (POM) in the Southwestern Indian Ocean domain (SWIO; 2-32°S, 28-85°E) using a regular grid with 1/6° of spatial resolution and 36 sigma levels. The simulation was performed for the period 1979-2010, and the most interesting events of surges were related to tropical cyclones Bonita (1996) and Lisette (1997) that occurred in the Mozambique Channel. The results showed that the model represented well the amplitude and phase of principal lunar and solar tidal constituents, as well as it captured the spatial pattern and magnitudes of SST with slight positive bias in summer and negative bias in winter months. In terms of SSH, the model underestimated the presence of mesoscale eddies, mainly in the Mozambique Channel. Our results also showed that the atmospheric sea level pressure had a significant contribution to storm heights during the landfall of the tropical cyclones Bonita (1996) and Lisette (1997) in the coast of Mozambique contributing with about 20 and 16% of the total surge height for each case, respectively, surpassing the contribution of the tide-surge nonlinear interactions by a factor of 2.

  11. Numerical modelling comparison of slow landslides: the Portalet case study (Central Pyrenees-Spain) (United States)

    Fernandez-Merodo, Jose Antonio; Garcia-Davalillo, Juan Carlos; Herrera, Gerardo


    Slow-moving landslides are a wide-spread type of active mass movement that cause severe damages to infrastructures and may be a precursor of sudden catastrophic slope failures. In this context, modelling slow-moving landslide behaviour is an important task in order to quantify and reduce the risk associated to this geological process. In practice, landslide occurrence and stability conditions are evaluated for a given scenario through a stability factor based on limit equilibrium analysis. This "static" approximation is hardly applied when boundary conditions are time dependent. Apart from earthquake studies, time dependent analysis is required when: (i) hydrological conditions change as in the case of rainfall; (ii) resistant parameters are reduced as in the case of strain softening or weathering processes and (iii) creep behaviour is taken into account. Different numerical models can be applied to reproduce the kinematic behaviour of large slow landslides. This paper compares four different models: i) a direct correlation with measured rainfall, ii) a simple 1D infinite slope viscoplastic model [1], iii) a 2D elasto-plastic finite element model [2] and iv) a 2D visco-plastic finite element model [3]. These models, ordered by increasing level of complexity, are compared by applying them to the Portalet case study. The Portalet landslide (Central Spanish Pyrenees) is an active paleo-landslide that has been "reactivated" by the construction of a parking area at the toe of the slope in 2004. This landslide is still active despite the corrective measures carried out to stabilize it. The measurements obtained with different monitoring techniques (ground based SAR, advanced DInSAR processing of satellite SAR images, DGPS and inclinometers) indicate that the hillside is still moving today following two patterns. The first one corresponds to a slow continuous motion of constant speed of about 100 mm/year, the second one corresponds to accelerations of the moving mass when

  12. Simulation of coastal winds along the central west coast of India using the MM5 mesoscale model

    Digital Repository Service at National Institute of Oceanography (India)

    Pushpadas, D.; Vethamony, P.; Sudheesh, K.; George, S.; Babu, M.T.; Nair, T.M.B.

    A high-resolution mesoscale numerical model (MM5) has been used to study the coastal atmospheric circulation of the central west coast of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3 km...

  13. Synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in Southern California (United States)

    Chenjie Huang; Y.L. Lin; M.L. Kaplan; Joseph J.J. Charney


    This study has employed both observational data and numerical simulation results to diagnose the synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in southern California. A three-stage process is proposed to illustrate the coupling of the synoptic-scale forcing that is evident from the observations,...

  14. Applicability of a high-resolution meso-scale meteorological model to a near-field-scale atmospheric dispersion problem

    International Nuclear Information System (INIS)

    Takimoto, Hiroshi; Michioka, Takenobu; Sato, Ayumu; Sada, Koichi


    This study examines the feasibility of numerical simulations using a meso-scale meteorological model (NuWFAS: Numerical Weather Forecasting and Analysis System) for a near-field-scale atmospheric dispersion problem. A series of observation data from a field tracer experiment was used for the validation of the model. In the experiments, the tracer was released from a tower at a height of 95 m. The receptors were located on the arc lines with distances from the source of 400, 750, 1500, and 3000 m. The numerical simulations were implemented with two different minimum spatial resolutions of 100 m and 300 m. The meteorological fields were reproduced with a reasonable accuracy, showing the less dependency on the mesh sizes of the simulation. The dispersion fields were also less dependent on the spatial resolutions except for the stable atmospheric conditions. In stable conditions, the smaller spatial resolution leads to the higher surface concentrations due to the larger turbulent diffusions. In most cases, the predicted surface concentrations agreed with the observation within the factor of ten. However, the simulation tends to underestimate the surface concentrations in stable conditions, whereas it overestimates in unstable conditions. Our study revealed that the limitation of the model in estimating the turbulent diffusion coefficients for thermally stratified conditions is the one cause of these trends. The current model underestimates the influences of atmospheric stability, which is one of the most important factors for the near-field-scale atmospheric dispersion. (author)

  15. The diffusion of radioactive gases in the meso-scale (20 km-400 km)

    International Nuclear Information System (INIS)

    Wippermann, F.


    The term ''Mesoscale'' refers to distances between 20 km and 400 km from the source; in defining this range, the structure of atmospheric turbulence is taken into account. To arrive at an evaluation of diffusion in the mesoscale, quantitative methods from the microscale (source distance 400 km) are extrapolated into the mesoscale. In the first case a table is given to read off the minimum factor by which the concentration is reduced in the mesoscale as the source distance increases to obtain the diffusion for the worst possible case, the existence of a mixing-layer topped by a temperature inversion, was assumed. For this it was essential, first of all, to determine the source distance xsub(D) beyond which the diffusing gases are completely mixed within the mixing-layer of thickness D. To make allowance for all possible thicknesses of this mixing-layer, a measurement carried out at ground level at only 10 km from the source can be used to calculate the correct concentrations in the mixing-layer; the dilution factors will then be related to this value. Possible ways of an improved incorporation of certain factors in the diffusion estimate, such as the topography of the earth's surface, the roughness of terrain, the vertical profiles of wind and exchange coefficients and the effects of non-stability are given in the last section

  16. Numerical simulation of tornadoes' meteorological conditions over Greece: A case study of tornadic activity over NW Peloponnese on March 25, 2009 (United States)

    Matsangouras, Ioannis T.; Nastos, Panagiotis T.; Pytharoulis, Ioannis


    Recent research revealed that NW Peloponnese, Greece is an area that favours pre-frontal tornadic incidence. This study presents the results of the synoptic analysis of the meteorological conditions during a tornado event over NW Peloponnese on March 25, 2009. Further, the role of topography in tornado genesis is examined. The tornado was formed approximately at 10:30 UTC, south-west of Vardas village, crossed the Nea Manolada and faded away at Lappas village, causing several damage. The length of its track was approximately 9-10 km and this tornado was characterized as F2 (Fujita scale) or T4-T5 in TORRO intensity scale. Synoptic analysis was based on ECMWF datasets, as well as on daily composite mean and anomaly of the geopotential heights at the middle and lower troposphere from NCEP/NCAR reanalysis. In addition, numerous datasets derived from weather observations and remote sensing were used in order to interpret better the examined extreme event. Finally, a numerical simulation was performed using the non-hydrostatic Weather Research and Forecasting model (WRF), initialized with ECMWF gridded analyses, with telescoping nested grids that allow the representation of atmospheric circulations ranging from the synoptic scale down to the meso-scale. In the numerical simulations the topography of the inner grid was modified by: a) 0% (actual topography) and b) -100% (without topography).

  17. Mesoscale interactions in tropical cyclone genesis


    Simpson, J.; Ritchie, E.; Halverson, J.; Stewart, S.; Holland, G. J.


    Approved for public release; distribution is unlimited With the multitude of cloud clusters over tropical oceans, is has been perplexing that so few develop into tropical cyclones. the authors postulate that a major obstacle has been the complexity of scale interactions particularly those on the mesoscale, which have only recently been observable. While there are well-known climatological requirements, these are by no means sufficient. A major reason for this rarity is the essentially s...

  18. Case studies of NOAA 6/TIROS N data impact on numerical weather forecasts (United States)

    Druyan, L. M.; Alperson, Z.; Ben-Amram, T.


    The impact of satellite temperatures from systems which predate the launching of the third generation of vertical sounding instruments aboard TIROS N (13 Oct 1978) and NOAA 6 (27 June 1979) is reported. The first evaluation of soundings from TIROS N found that oceanic, cloudy retrievals over NH mid latitudes show a cold bias in winter. It is confirmed for both satellite systems using a larger data base. It is shown that RMS differences between retrievals and colocated radiosonde observations within the swath 30-60N during the 1979-80 winter were generally 2-3K in clear air and higher for cloudy columns. A positive impact of TIROS N temperatures on the analysis of synoptic weather systems is shown. Analyses prepared from only satellite temperatures seemed to give a better definition to weather systems' thermal structure than that provided by corresponding NMC analyses without satellite data. The results of a set of 14 numerical forecast experiments performed with the PE model of the Israel Meteorological Service (IMS) are summarized; these were designed to test the impact of TIROS N and NOAA 6 temperatures within the IMS analysis and forecast cycle. The satellite data coverage over the NH, the mean area/period S1 and RMS verification scores and the spatial distribution of SAT versus NO SAT forecast differences are discussed and it is concluded that positive forecast impact occurs over ocean areas where the extra data improve the specification which is otherwise available from conventional observations. The forecast impact for three cases from the same set of experiments was examined and it is found that satellite temperatures, observed over the Atlantic Ocean contribute to better forecasts over Iceland and central Europe although a worse result was verified over Spain. It is also shown that the better scores of a forecast based also on satellite data and verified over North America actually represent a mixed impact on the forecast synoptic patterns. A superior 48 hr

  19. Effective diffusion of aircraft emissions at micro- and mesoscales

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, T.; Duerbeck, T.; Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere


    The project aimed to determine the transport, mixing and effective diffusion of aircraft exhaust from the airplane to the range of atmospheric mesoscale flow, i.e., from seconds and meters to hours and tens of kilometers. By means of a chain of large-eddy simulations the dynamics in the wake embedded in a stably stratified, sheared and turbulent atmosphere is calculated including the dilution of a chemically inert species (e.g. CO{sub 2}) concentration. The numerical data are compared to in-situ measured data. From the concentration fields various dilution and diffusion measures are obtained. It is found that the evolving wingtip vortices produced by the lift of the aircraft distort and attract the exhaust jets immediately. The largest fraction of the exhaust is trapped close to the vortex cores (primary wake) after 20 s where it is not further mixed and diluted with ambient air until the vortices collapse. However, the baroclinic torque at the border between vortex and surrounding air detrains about 10 to 30% of the exhaust mass (depending on atmospheric turbulence and stratification) from the vortices into the so-called secondary wake where it mixes rapidly. In the period between 1.5 and 3 minutes the organized vortices collapse into unorganized turbulence either by small-scale turbulent friction or by a large-scale oscillation driven by atmospheric turbulence. The trapped emissions are now released and further distributed and mixed by turbulence and shear in a stably stratified atmosphere. Under flow conditions typically found at cruising heights the emissions reach background concentrations between 2 and 12 hours for windshear between 0.002 and 0.01 s{sup -1} and the spatial plume extension does not exceed the lower mesoscale range (20 km horizontally and 0.3 km vertically). The outcome of the project in terms of dilution, effective diffusion and entrainment rate is summarized. (orig.) 144 figs., 42 tabs., 497 refs.

  20. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)


    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  1. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI


    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  2. Experimental and Numerical Investigation of the Tracer Gas Methodology in the Case of a Naturally Cross-Ventilated Building

    DEFF Research Database (Denmark)

    Nikolopoulos, Nikos; Nikolopoulos, Aristeidis; Larsen, Tine Steen


    , focusing on the time dependent character of the induced flow field. The numerical results are compared with corresponding experimental data for the three aforementioned experimental methodologies in the case of a full scale building inside a wind-tunnel. The numerical investigation reveals that for large...... incidence angle the flow is governed by an unsteady (in terms of time) character regarding especially the regions close to the inlet and outlet windows. Moreover, significant information and comments about the validity of the aforementioned experimental methodologies adopted in most of the recent works...... in this area of scientific research is provided, using the numerical predictions as a reference. It is concluded that velocity measurements in the inlet window are of high accuracy when the flow in this region has a steady character, whilst the accuracy of the tracer gas methodology depends significantly...

  3. Initialization of a mesoscale model with satellite derived temperature profiles (United States)

    Kalb, Michael W.


    The abilities of rawinsonde data and Tiros-N satellite derived temperature profile data to depict mesoscale precipitation accumulation are evaluated. Four mesoscale simulations using combinations of temperature, low-level wind, and low-level wind initialization were performed with the limited area mesoscale prediction system (LAMPS) model. Comparisons of the simulations with operational LFM forecast accumulations reveal that the LAMPS model simulations provide a better depiction of the observed precipitation accumulation than the LFM forecasts, and the satellite temperature profiles produce better mesoscale precipitation accumulation forecasts than the rawinsonde temperature data.

  4. A case for the introduction of numerical fiscal rules in the Serbian Constitution

    Directory of Open Access Journals (Sweden)

    Begović Boris


    Full Text Available The recommendation of numerical fiscal rules in Serbia, presented in this paper, is based on the inherent bias of fiscal policy towards expenditure, and consequently continuous fiscal deficit and excessive sovereign debt. It is recommended that simple and straightforward numeric fiscal rules should be introduced into the Serbian Constitution. There should be two cumulative numerical fiscal rules, the first regarding the ceiling on sovereign debt and the second regarding the ceiling on net new borrowing. Neither of the rules may be violated. The ceiling on the debt level should be prescribed by the Constitution. The ceiling on new net borrowing should depend on the distance of the sovereign debt from the debt ceiling. An illustrative example is provided, with a debt ceiling of 60%. However, the Fiscal Council should specify a specific sovereign debt ceiling as part of the proposed constitutional amendment.

  5. Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.S.; Newberger, P.A. [Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Holm, D.D. [Los Alamos National Lab., NM (United States)


    The authors consider the motion of a rotating, continuously stratified fluid governed by the hydrostatic primitive equations (PE). An approximate Hamiltonian (L1) model for small Rossby number {var_epsilon} is derived for application to mesoscale oceanographic flow problems. Numerical experiments involving a baroclinically unstable oceanic jet are utilized to assess the accuracy of the L1 model compared to the PE and to other approximate models, such as the quasigeostrophic (QG) and the geostrophic momentum (GM) equations. The results of the numerical experiments for moderate Rossby number flow show that the L1 model gives accurate solutions with errors substantially smaller than QG or GM.

  6. Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic learning algorithm (United States)

    Soize, C.


    This paper deals with the optimal design of a titanium mesoscale implant in a cortical bone for which the apparent elasticity tensor is modeled by a non-Gaussian random field at mesoscale, which has been experimentally identified. The external applied forces are also random. The design parameters are geometrical dimensions related to the geometry of the implant. The stochastic elastostatic boundary value problem is discretized by the finite element method. The objective function and the constraints are related to normal, shear, and von Mises stresses inside the cortical bone. The constrained nonconvex optimization problem in presence of uncertainties is solved by using a probabilistic learning algorithm that allows for considerably reducing the numerical cost with respect to the classical approaches.

  7. Numerical study of wave propagation around an underground cavity: acoustic case (United States)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz


    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN ( Using the basic mathematical understanding of the

  8. Combining Machine Learning and Mesoscale Modeling for Atmospheric Releases Hazard Assessment (United States)

    Cervone, G.; Franzese, P.; Ezber, Y.; Boybeyi, Z.


    In applications such as homeland security and hazards response, it is necessary to know in real time which areas are most at risk from a potentially harmful atmospheric pollutant. Using high resolution remote sensing measurements and atmospheric mesoscale numerical models, it is possible to detect and study the transport and dispersion of particles with great accuracy, and to determine the ground concentrations which might pose a threat to people and properties. Satellite observations from different sensors must be fused together to compensate for different spatial, temporal and spectral resolutions and data availability. Such observations are used to initialize and validate atmospheric mesoscale models, which can provide accurate estimates of ground concentrations. Such numerical models are, however, usually slow due to the complex nature of the computations, and do not provide real time answers. We will define probability maps of risks by running several atmospheric mesoscale and T&D simulations spanning the climatological input conditions of an entire year, observed using high resolution remote sensing instruments. Such maps provide an immediate risk assessment area associated with a given source location. If a release indeed occurs, the computed risk maps can be used for first assessment and rapid response. We analyze the output of the mesoscale model runs using machine learning algorithms to find characteristic patterns which relate potential risk areas with atmospheric parameters which can be observed using remote sensing instruments and ground measurements. Therefore, when a release occurs, it is possible to give a quick hazard assessment without running a time consuming model, but by comparing the current atmospheric conditions with those associated with each identified risk area. The offline learning provides knowledge that can later be used to protect people and properties.

  9. Intense mesoscale variability in the Sardinia Sea (United States)

    Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner


    From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a warm-core anticyclonic eddy in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another warm-core anticyclonic eddy of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-core cyclonic eddy of Winter Intermediate Water in the depth range between 170 m and 370 m. All three eddies showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.

  10. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries


    Currently, the existing estimation of the extreme gust wind, e.g. the 50-year winds of 3 s values, in the IEC standard, is based on a statistical model to convert the 1:50-year wind values from the 10 min resolution. This statistical model assumes a Gaussian process that satisfies the classical...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...

  11. Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data. (United States)

    Grégoire, David; Verdon, Laura; Lefort, Vincent; Grassl, Peter; Saliba, Jacqueline; Regoin, Jean-Pierre; Loukili, Ahmed; Pijaudier-Cabot, Gilles


    The purpose of this paper is to analyse the development and the evolution of the fracture process zone during fracture and damage in quasi-brittle materials. A model taking into account the material details at the mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to compute histograms of the relative distances between damaged points. These numerical results are compared with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of the relative distances between damage events in the numerical calculations and acoustic events in the experiments exhibit good agreement. It is shown that the mesoscale model provides relevant information from the point of view of both global responses and the local failure process. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

  12. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway (United States)

    Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang


    Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.

  13. Simplex-based optimization of numerical and categorical inputs in early bioprocess development: Case studies in HT chromatography. (United States)

    Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy


    Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.


    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  15. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals (United States)


    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  16. Prediction of monsoon rainfall with a nested grid mesoscale limited ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    mesoscale convective organization associated with monsoon depression. 1. Introduction. Indian monsoon rainfall is dominated by meso- β type disturbances, such as orographic rainfall along the west coast (Western Ghats) of India, and synoptically induced mesoscale convective systems during the passage of monsoon ...

  17. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases (United States)

    Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford


    In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.


    Energy Technology Data Exchange (ETDEWEB)

    Anter El-Azab


    The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled

  19. Onset of meso-scale turbulence in active nematics (United States)

    Doostmohammadi, Amin; Shendruk, Tyler N.; Thijssen, Kristian; Yeomans, Julia M.


    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.

  20. Perturbing the potential vorticity field in mesoscale forecasts of two Mediterranean heavy precipitation events

    Directory of Open Access Journals (Sweden)

    Maria-Del-Mar Vich


    Full Text Available In order to improve the quality of the Mediterranean high-impact weather (HIW numerical predictions, this study proposes to modify the potential vorticity (PV field of the model initial state, taking advantage of information provided by the water vapour (WV channel of the METEOSAT-7 satellite. The implemented PV field modifications aim to reduce the mismatch between the upper-level PV features and the WV brightness temperatures guided by the known relation between these two fields (PV-WV technique. The PV-WV technique effectiveness is evaluated on two HIW events, and is also compared with two additional PV modification techniques from an earlier study. The chosen episodes occurred on 9–10 June 2000 and 9–10 October 2002 and produced heavy precipitation over both Spain and France. The main difference between these two episodes is found in the driving mechanism, a mesoscale cyclone for the June 2000 event and a larger low-pressure centre for the October 2002 case. The two additional PV modification techniques introduce perturbations along the zones highlighted by the MM5 adjoint model calculated sensitivity zones (PV-adjoint and along the three-dimensional PV structure presenting the locally most intense values and gradients of the field (PV-gradient. A close examination of both case studies of the forecast rainfall fields and several objective verification indices show that the PV-WV technique performance exceeds the control (or non-perturbed forecast skill while remaining inside the distribution obtained by both PV-gradient and PV-adjoint techniques. This PV-WV technique could be used to increase the ensemble spread introducing higher amplitude modifications. Thus, a more skilled ensemble prediction system could be built by taking advantage of the subjectivity inherent to this method (manual perturbations and also of the uncertainty present in the initial state.

  1. Numerical Study of Mechanical Stirring in Case of Yield Stress Fluid with Circular Anchor Impeller

    Directory of Open Access Journals (Sweden)

    Brahim MEBARKI


    Full Text Available In this work the characterization of hydrodynamic fields of incompressible yield stress fluid with regularization model of Bercovier and Engelman in a cylindrical vessel not chicaned equipped with circular anchor stirrer was undertaken by means of numerical simulation using computational fluid dynamics. Simulations flow of a Bingham fluid agitated by straights blades anchor was used to validate the rheological model implemented of the fluid treated. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed. We have analyzed also the influence of rheological parameters on the hydrodynamic flow behaviours, such as the velocity components and the global characteristic like power consumption.

  2. Two-Dimensional Numerical Modeling of Intracontinental Extension: A Case Study Of the Baikal Rift Formation

    DEFF Research Database (Denmark)

    Yang, H.; Chemia, Zurab; Artemieva, Irina

    The Baikal Rift zone (BRZ) is a narrow ( 10 km) active intra-continental basin, located at the boundary between the Amurian and Eurasian Plates. Although the BRZ is one of the major tectonically active rift zones in the world andit has been a subject of numerous geological...... on topography,basin depth, the structure of the crust, lithosphere thickness, and the location of major tectonic faults. Our goal is to determine the physical models that reproduce reasonably well the ob-served deformation patterns of the BRZ.We perform a systematic analysis of the pa-rameter space in order...

  3. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases (United States)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.


    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  4. Mesoscale Eddies in the Solomon Sea (United States)

    Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.


    Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).

  5. Experimental study and numerical optimization of tensegrity domes - A case study (United States)

    Winkelmann, Karol; Kłos, Filip; Rąpca, Mateusz


    The paper deals with the design, experimental analysis and numerical optimization of tensegrity dome models. Two structures are analyzed - a Geiger system dome (preliminary dome), with PVC-U bars and PA6/PP/PET tendons and a Fuller system dome (target dome), with wooden bars and steel cables as tendons. All used materials are experimentally tested in terms of Young's modulus and yield stress values, the compressed bars are also tested for the limit length demarcating the elastic buckling from plastic failure. The data obtained in experiments is then implemented in SOFiSTiK commercial software FE model. The model's geometrical parameters are considered uniform random variables. Geometrically and materially nonlinear analysis is carried out. Based on the obtained structural response (displacements), a Monte Carlo simulation - based approach is incorporated for both structural design point formulation and the SLS requirements fulfillment analysis. Finally, an attempt is made to erect the Fuller dome model in order to compare the numerical results of an experimentally-derived model with the in situ measurements of an actual structure.

  6. Comparison between numerical models and CHENSI with experimental data (MUST within the case of the 0° approach flow.

    Directory of Open Access Journals (Sweden)

    Medjahed Bendida


    Full Text Available The MUST wind tunnel data set served as a validation case for obstacle-resolving micro-scale models in the COST Action 732 “Quality Assurance and Improvement of Micro-Scale Meteorological Models”.The code used for the numerical simulation is code CHENSI, simulations carried out showed a certain degree of agreement between the experimental results and those of the numerical simulation, they highlight the need for proceeding to an experimental campaign but with more measurements and the need for having a good control of determining factors in the exploitation of its results. The aim is to explain the experimental data obtained by atmospheric wind on the physical model. The site company of Mock Urban Setting Test (MUST was selected to be simulated by the code CEN CHENSI developed by the team of Dynamique of l’atmosphere Habitee of LME/ECN. The code was based on (K- ε model of (Launder and Spalding. For the integration of the PDE (Potential Dimensional equations constitute the mathematical model, the finite volume method of (Ferziger and Peric was used within the decade disposition of unknowns MAC of (Harlow and Welck for the discretisation of PDE terms. The boundary conditions were imposed according to the wall laws (In ground and on buildings or within Dirichlet condition (Inlet boundary or of Newman (Outlet boundary or top limit. The numerical domain used was comparable to the one of the atmospheric wind experiences within a three-dimensional Cartesian mesh. Numerical results presented in this study for the mean flow field, turbulent kinetic energy in the direction of wind incidence 0°. For an objective comparison of the CHENSI model performances within other European codes used for MUST configuration simulation. The results obtained by the numerical modelling approach are presented in this paper.

  7. Explicit simulation and parameterization of mesoscale convective systems. Final report, November 1, 1993--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, W.R.


    This research has focused on the development of a parameterization scheme for mesoscale convective systems (MCSs), to be used in numerical weather prediction models with grid spacing too coarse to explicitly simulate such systems. This is an extension to cumulus parameterization schemes, which have long been used to account for the unresolved effects of convection in numerical models. Although MCSs generally require an extended sequence of numerous deep convective cells in order to develop into their characteristic sizes and to persist for their typical durations, their effects on the large scale environment are significantly different than that due to the collective effects of numerous ordinary deep convective cells. These differences are largely due to a large stratiform cloud that develops fairly early in the MCS life-cycle, where mesoscale circulations and dynamics interact with the environment in ways that call for a distinct MCS parameterization. Comparing an MCS and a collection of deep convection that ingests the same amount of boundary layer air and moisture over an extended several hour period, the MCS will generally generates more stratiform rainfall, produce longer-lasting and optically thicker cirrus, and result in different vertical distributions of large-scale tendencies due to latent heating and moistening, momentum transfers, and radiational heating.

  8. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    Directory of Open Access Journals (Sweden)

    I. B. Konovalov


    Full Text Available Chemistry transport models (CTMs are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB; this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO measured in Finland (in the city of Kuopio, nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2, employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas

  9. An observational and numerical case study of a flash sea storm over the Gulf of Genoa

    Directory of Open Access Journals (Sweden)

    A. Orlandi


    Full Text Available During the night between the 8 and 9 December 2006 the seawall of the Savona harbour (Liguria Region in north west of Italy was overtopped by waves. In this work the "Savona flash sea storm" has been studied by analyzing the data recorded by meteo-marine observing stations and the data produced by high resolution meteo-marine numerical models. The data show that, due to the presence of a fast moving low pressure system, the event was characterized by a rapid transition and interaction between two different regimes of winds and related sea states.

    The results of the study suggest that the most damaging dynamics of the event could be correlated to a bi-modal structure of the wave spectrum. Based on this the authors suggest that a deeper study of the spectral structure of sea storms could lead to define new operational forecasting tools for the preventive evaluation of sea storms damaging potential.

  10. Numerical Simulations as Tool to Predict Chemical and Radiological Hazardous Diffusion in Case of Nonconventional Events

    Directory of Open Access Journals (Sweden)

    J.-F. Ciparisse


    Full Text Available CFD (Computational Fluid Dynamics simulations are widely used nowadays to predict the behaviour of fluids in pure research and in industrial applications. This approach makes it possible to get quantitatively meaningful results, often in good agreement with the experimental ones. The aim of this paper is to show how CFD calculations can help to understand the time evolution of two possible CBRNe (Chemical-Biological-Radiological-Nuclear-explosive events: (1 hazardous dust mobilization due to the interaction between a jet of air and a metallic powder in case of a LOVA (Loss Of Vacuum Accidents that is one of the possible accidents that can occur in experimental nuclear fusion plants; (2 toxic gas release in atmosphere. The scenario analysed in the paper has consequences similar to those expected in case of a release of dangerous substances (chemical or radioactive in enclosed or open environment during nonconventional events (like accidents or man-made or natural disasters.

  11. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli


    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  12. Numerical analysis of viscoelastic boundary layers : the case of plate withdrawal in a Maxwellian fluid

    International Nuclear Information System (INIS)

    Sadeghy, K.; Sharifi, M.


    The effect of a fluid's elasticity on the characteristics of its boundary layer was investigated in this work. A viscoelastic fluid of Maxwellian type was selected for this purpose and the flow induced in this fluid by a plate withdrawing at a constant velocity was studied. Conventional boundary layer assumptions were invoked to reduce the equations of motion to a simple form incorporating an elastic term in addition to the familiar inertial, viscous and pressure terms. It was shown that for elastic effects to be of an importance in a boundary layer, the fluid's relaxation time should be of an order much larger than its kinematic viscosity. By introducing a stream function, the governing equation was transformed into a nonlinear ODE with x-coordinate still appearing in the equation demonstrating that no similarity solution existed for this flow. The resulting equation was then solved numerically for Deborah numbers as large as 1.0. The results showed a marked formation of boundary layer adjacent to a moving wall for a Maxwellian fluid. The boundary layer thickness and the wall shear stress were found to scale with fluid's elasticity - both decreasing the higher the fluid's elasticity. It is thus anticipated that in free coating processes, the force required to impart a constant velocity to a withdrawing belt or plate would be lower if fluid's elasticity is significant. (author)

  13. A dynamic optimization on economic energy efficiency in development: A numerical case of China

    International Nuclear Information System (INIS)

    Wang, Dong


    This paper is based on dynamic optimization methodology to investigate the economic energy efficiency issues in developing countries. The paper introduces some definitions about energy efficiency both in economics and physics, and establishes a quantitative way for measuring the economic energy efficiency. The linkage between economic energy efficiency, energy consumption and other macroeconomic variables is demonstrated primarily. Using the methodology of dynamic optimization, a maximum problem of economic energy efficiency over time, which is subjected to the extended Solow growth model and instantaneous investment rate, is modelled. In this model, the energy consumption is set as a control variable and the capital is regarded as a state variable. The analytic solutions can be derived and the diagrammatic analysis provides saddle-point equilibrium. A numerical simulation based on China is also presented; meanwhile, the optimal paths of investment and energy consumption can be drawn. The dynamic optimization encourages governments in developing countries to pursue higher economic energy efficiency by controlling the energy consumption and regulating the investment state as it can conserve energy without influencing the achievement of steady state in terms of Solow model. If that, a sustainable development will be achieved. - Highlights: • A new definition on economic energy efficiency is proposed mathematically. • A dynamic optimization modelling links economic energy efficiency with other macroeconomic variables in long run. • Economic energy efficiency is determined by capital stock level and energy consumption. • Energy saving is a key solution for improving economic energy efficiency

  14. Oceanic mass transport by mesoscale eddies. (United States)

    Zhang, Zhengguang; Wang, Wei; Qiu, Bo


    Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 10(6) cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation. Copyright © 2014, American Association for the Advancement of Science.

  15. Probabilistic, meso-scale flood loss modelling (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno


    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  16. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Sarrao, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Barletta, William [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Bates, Frank [Univ. of Minnesota, Minneapolis, MN (United States); Brown, Gordon [Stanford Univ., CA (United States); French, Roger [Case Western Reserve Univ., Cleveland, OH (United States); Greene, Laura [Univ. of Illinois, Urbana, IL (United States); Hemminger, John [Univ. of California, Irvine, CA (United States); Kastner, Marc [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Kay, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Jennifer [Univ. of Illinois, Urbana, IL (United States); Ratner, Mark [Northwestern Univ., Evanston, IL (United States); Anthony, Rollett [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rubloff, Gary [University of Maryland, College Park, MD (United States); Spence, John [Arizona State Univ., Mesa, AZ (United States); Tobias, Douglas [Univ. of California, Irvine, CA (United States); Tranquada, John [Brookhaven National Lab. (BNL), Upton, NY (United States)


    This report explores the opportunity and defines the research agenda for mesoscale science—discovering, understanding, and controlling interactions among disparate systems and phenomena to reach the full potential of materials complexity and functionality. The ability to predict and control mesoscale phenomena and architectures is essential if atomic and molecular knowledge is to blossom into a next generation of technology opportunities, societal benefits, and scientific advances.. The body of this report outlines the need, the opportunities, the challenges, and the benefits of mastering mesoscale science.

  17. Mesoscale modeling for the Wind Atlas of South Africa (WASA) project


    Hahmann, Andrea N.; Lennard, Chris; Badger, Jake; Vincent, Claire Louise; Kelly, Mark C.; Volker, Patrick J.H.; Argent, Brendan; Refslund, Joakim


    This document reports on the methods used to create and the results of the two numerical wind atlases developed for the Wind Atlas for South Africa (WASA) project. The wind atlases were created using the KAMM-WAsP method and from the output of climate-type simulations of the Weather, Research and Forecasting (WRF) model, respectively. The report is divided into three main parts. In the first part, we document the method used to run the mesoscale simulations and to generalize the WRF model win...

  18. A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ. (United States)

    Georgiadis, Nicholas J.


    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental

  19. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)


    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  20. Class generation for numerical wind atlases

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, N.J.


    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12-16 sectors, 3-7 wind speed bins and dividing again on the stability of the atmosphere. Wind atlases are typically produced from many years of on-site measurements. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in as quickly as a day. 40 years of twice daily NCEPINCAR Reanalysis geostrophic wind data (200 km resolution) is represented in typically around 100 classes, each with a frequency of occurrence. The mean wind speeds and directions in each class is used as input data to force the mesoscale model, which down scales to 5 km resolution while adapting to the local topography. The number of classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method by optimising the representation of the data and by automating the procedure more. The Karlsruhe Atmospheric Mesoscale Model (KAMM) is combined with WASP to produce numerical wind atlases for two sites, Ireland and Egypt. The model results are compared with The New Irish Wind Resource Atlas and wind atlases made from meteorological station measurements in Egypt. The new clustering method has the ability to include wind data from different heights and thermal stability for the classification. The results show that the clustering method is able to produce results at least equivalent to the existing method results for both sites. A refined, general clustering procedure is devised which could improve the results for both sites, where the existing method requires two different parameter settings. (au)

  1. Mesoscale features and phytoplankton biomass at the GoodHope ...

    African Journals Online (AJOL)

    mesoscale features and mixed layer depth variability) and phytoplankton biomass at the GoodHope line south of Africa, during the 2010–2011 austral summer. The link between physical parameters of the upper ocean, specifically frontal activity, ...

  2. North American Mesoscale Forecast System (NAM) [12 km (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North American Mesoscale Forecast System (NAM) is one of the major regional weather forecast models run by the National Centers for Environmental Prediction...

  3. Meso-Scale Ericsson Power Generation System, Phase I (United States)

    National Aeronautics and Space Administration — Inventherm's patented meso-scale Ericsson power generation system (MEPS) will be used as the enabling technology for radioisotope generators that exceed the...

  4. The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

    National Research Council Canada - National Science Library

    Hodur, Richard M; Hong, Xiaodong; Doyle, James D; Pullen, Julie; Cummings, James; Martin, Paul; Rennick, Mary Alice


    ... of the Couple Ocean/Atmosphere Mesoscale Prediction System (COAMPS). The goal of this modeling project is to gain predictive skill in simulating the ocean and atmosphere at high resolution on time-scales of hours to several days...

  5. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Chang

    Full Text Available In this study, we explore the dynamical role of mesoscale eddies on fish larvae migration using the example of Subtropical Counter Current eddies and the migration of Japanese eel larvae in the western North Pacific Ocean. An idealized experiment is conducted to isolate the effects of eddies, and use a three-dimensional particle-tracking method to simulate virtual eel larvae (v-larvae migration, including both horizontal and vertical swimming behaviors. The impact of eddies strongly depends on the swimming speed of v-larvae relative to the eddy speed. Eddies accelerate the movement of v-larvae that swim slower than the propagation speed of the eddy, whereas faster-swimming v-larvae are dragged by eddies. A modified stream function that incorporates biological swimming ability explains the non-uniform trapping of v-larvae in mesoscale eddies. A high swimming speed and/or a small eddy rotation speed results in a weak trapping capacity. Simulations of v-larvae migration in realistic cases of eddy fields indicate that the abundance of eddies significantly affects the duration of larval migration, with the effects being largely dependent on the larvae swimming speed. We noted a negative relationship between the observed annual eel recruitment index in Taiwan and the eddy index subtropical countercurrent (STCC region, which suggests a potentially important role of mesoscale eddies in eel larvae migration.

  6. Impact of SLA assimilation in the Sicily Channel Regional Model: model skills and mesoscale features

    Directory of Open Access Journals (Sweden)

    A. Olita


    Full Text Available The impact of the assimilation of MyOcean sea level anomalies along-track data on the analyses of the Sicily Channel Regional Model was studied. The numerical model has a resolution of 1/32° degrees and is capable to reproduce mesoscale and sub-mesoscale features. The impact of the SLA assimilation is studied by comparing a simulation (SIM, which does not assimilate data with an analysis (AN assimilating SLA along-track multi-mission data produced in the framework of MyOcean project. The quality of the analysis was evaluated by computing RMSE of the misfits between analysis background and observations (sea level before assimilation. A qualitative evaluation of the ability of the analyses to reproduce mesoscale structures is accomplished by comparing model results with ocean colour and SST satellite data, able to detect such features on the ocean surface. CTD profiles allowed to evaluate the impact of the SLA assimilation along the water column. We found a significant improvement for AN solution in terms of SLA RMSE with respect to SIM (the averaged RMSE of AN SLA misfits over 2 years is about 0.5 cm smaller than SIM. Comparison with CTD data shows a questionable improvement produced by the assimilation process in terms of vertical features: AN is better in temperature while for salinity it gets worse than SIM at the surface. This suggests that a better a-priori description of the vertical error covariances would be desirable. The qualitative comparison of simulation and analyses with synoptic satellite independent data proves that SLA assimilation allows to correctly reproduce some dynamical features (above all the circulation in the Ionian portion of the domain and mesoscale structures otherwise misplaced or neglected by SIM. Such mesoscale changes also infer that the eddy momentum fluxes (i.e. Reynolds stresses show major changes in the Ionian area. Changes in Reynolds stresses reflect a different pumping of eastward momentum from the eddy to

  7. Radon exhalation from phosphogypsum building boards: symmetry constraints, impermeable boundary conditions and numerical simulation of a test case. (United States)

    Rabi, J A; da Silva, Nivaldo C


    Comprehensive understanding of (222)Rn exhalation from phosphogypsum-bearing building material and its accumulation in indoor air is likely to rely on numerical simulation, particularly if transient effects, three-dimensional domains and convection are to be included and investigated. Yet, experimental data and analytical results are helpful (if not crucial) as far as validation is concerned. Having in mind computational code simplicity and in the light of a recent experimental and theoretical report on (222)Rn release from phosphogypsum boards for housing panels, this paper presents and discusses an alternative testing set-up and the corresponding boundary conditions, namely one side of the panel bounded by impermeable wall. Although this is a new facility to be tested, the resultant steady-state one-dimensional diffusion-dominant analytical solution is shown to match the counterpart deduced in the aforementioned previous report, despite it relaxes the constraint of symmetry about the phosphogypsum board centerline, which is inferred in that prior experimental scenario. In addition, numerical results are conducted for a diffusion-dominant two-dimensional time-varying test case concerning (222)Rn accumulation in a closed chamber having an exhaling phosphogypsum board tightly placed at one wall.

  8. Convection methodology for fission track annealing: direct and inverse numerical simulations in the multi-exponential case

    International Nuclear Information System (INIS)

    Miellou, J.C.; Igli, H.; Grivet, M.; Rebetez, M.; Chambaudet, A.


    In minerals, the uranium fission tracks are sensitive to temperature and time. The consequence is that the etchable lengths are reduced. To simulate the phenomenon, at the last International Conference on Nuclear Tracks in solids at Beijing in 1992, we proposed a convection model for fission track annealing based on a reaction situation associated with only one activation energy. Moreover a simple inverse method based on the resolution of an ordinary differential equation was described, making it possible to retrace the thermal history in this mono-exponential situation. The aim of this paper is to consider a more involved class of models including multi-exponentials associated with several activation energies. We shall describe in this framework the modelling of the direct phenomenon and the resolution of the inverse problem. Results of numerical simulations and comparison with the mono-exponential case will be presented. 5 refs. (author)

  9. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes (United States)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro


    In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental

  10. A PBL-radiation model for application to regional numerical weather prediction (United States)

    Chang, Chia-Bo


    Often in the short-range limited-area numerical weather prediction (NWP) of extratropical weather systems the effects of planetary boundary layer (PBL) processes are considered secondarily important. However, it may not be the case for the regional NWP of mesoscale convective systems over the arid and semi-arid highlands of the southwestern and south-central United States in late spring and summer. Over these dry regions, the PBL can grow quite high up into the lower middle troposphere (600 mb) due to very effective solar heating and hence a vigorous air-land thermal interaction can occur. The interaction representing a major heat source for regional dynamical systems can not be ignored. A one-dimensional PBL-radiation model was developed. The model PBL consists of a constant-flux surface layer superposed with a well-mixed (Ekman) layer. The vertical eddy mixing coefficients for heat and momentum in the surface layer are determined according to the surface similarity theory, while their vertical profiles in the Ekman layer are specified with a cubic polynomial. Prognostic equations are used for predicting the height of the nonneutral PBL. The atmospheric radiation is parameterized to define the surface heat source/sink for the growth and decay of the PBL. A series of real-data numerical experiments has been carried out to obtain a physical understanding how the model performs under various atmospheric and surface conditions. This one-dimensional model will eventually be incorporated into a mesoscale prediction system. The ultimate goal of this research is to improve the NWP of mesoscale convective storms over land.

  11. Mesoscale elastic properties of marine sponge spicules. (United States)

    Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J


    Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mesoscale mechanics of twisting carbon nanotube yarns. (United States)

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J


    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  13. Mesoscale simulations of hydrodynamic squirmer interactions. (United States)

    Götze, Ingo O; Gompper, Gerhard


    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  14. Numerical Model Simulation of Offshore Flow during the Winter Season. (United States)

    Piccolo, Maria Cintia

    Because of the step function variability of heat and moisture flux in coastal zones, adequate descriptive models of mesoscale coastal circulation and weather patterns demand high spatial resolution in the analysis of wind, temperature and moisture patterns. To obtain realistic concepts of offshore flow the sparse offshore data networks need to be supplemented by mesoscale numerical models. The problems associated with the modeling of offshore flow across the east coast of the United States during the winter season have been investigated with a simple two dimensional numerical model of the planetary boundary layer. The model has two predictive equations for the potential temperature and humidity fields. A diagnostic equation based upon observed data is used to determine wind velocities. At each horizontal step the wind was integrated with height, and the equations for the temperature and humidity were solved for each level. A second order model using the Dufort-Frankel finite difference scheme with two vertical grid spacing and eddy coefficient formulations was applied to actual cases of offshore winter flow. The results of the model were compared with measurements at anemometer level at offshore stations. Different flux formulations were tested. Key problems related to the use of the Dufort-Frankel scheme were indicated. Problems associated with the use of a K-theory profile for the turbulent fluxes in the marine planetary boundary layer were isolated. The initial air-sea temperature difference and the K-theory formulations were crucial to the computational stability of the model as well as the resolution of the model, even after the stability problems were solved. A bulk aerodynamic formulation produced better results in the marine surface layer, however when merged with K-theory for the rest of the planetary boundary layer disastrous results can occur. A first order model with a similar resolution was applied to the same situation and showed superior results.

  15. Ensemble-sensitivity Analysis Based Observation Targeting for Mesoscale Convection Forecasts and Factors Influencing Observation-Impact Prediction (United States)

    Hill, A.; Weiss, C.; Ancell, B. C.


    The basic premise of observation targeting is that additional observations, when gathered and assimilated with a numerical weather prediction (NWP) model, will produce a more accurate forecast related to a specific phenomenon. Ensemble-sensitivity analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008) is a tool capable of accurately estimating the proper location of targeted observations in areas that have initial model uncertainty and large error growth, as well as predicting the reduction of forecast variance due to the assimilated observation. ESA relates an ensemble of NWP model forecasts, specifically an ensemble of scalar forecast metrics, linearly to earlier model states. A thorough investigation is presented to determine how different factors of the forecast process are impacting our ability to successfully target new observations for mesoscale convection forecasts. Our primary goals for this work are to determine: (1) If targeted observations hold more positive impact over non-targeted (i.e. randomly chosen) observations; (2) If there are lead-time constraints to targeting for convection; (3) How inflation, localization, and the assimilation filter influence impact prediction and realized results; (4) If there exist differences between targeted observations at the surface versus aloft; and (5) how physics errors and nonlinearity may augment observation impacts.Ten cases of dryline-initiated convection between 2011 to 2013 are simulated within a simplified OSSE framework and presented here. Ensemble simulations are produced from a cycling system that utilizes the Weather Research and Forecasting (WRF) model v3.8.1 within the Data Assimilation Research Testbed (DART). A "truth" (nature) simulation is produced by supplying a 3-km WRF run with GFS analyses and integrating the model forward 90 hours, from the beginning of ensemble initialization through the end of the forecast. Target locations for surface and radiosonde observations are computed 6, 12, and

  16. A mesoscale boundary layer forecast model and its use for air pollution emergencies

    International Nuclear Information System (INIS)

    Daggupaty, S.M.; Sahota, H.


    A three dimensional boundary layer forecast model was modified with recent boundary layer parameterizations and numerical schemes. It has also been modified as a potential tool for emergency response. It is being applied for numerical experimentation over a lake shore environment. The model is a primitive equation hydrostatic model with a terrain following coordinate in the vertical. The model is capable of reproducing topographically induced and transitional terrain induced (water - land - forest etc.) mesoscale circulations. The model is applied over a 150 km by 150 km area surrounding the Pickering Nuclear Generating Station on Lake Ontario. The model results are encouraging and have been compared with the meso-meteorological network data specially collected during 1988 and 1989. We hope to continue the study with a greater variety of synoptic situations and to improve the physics of the model

  17. Mesoscale inversion of carbon sources and sinks

    International Nuclear Information System (INIS)

    Lauvaux, T.


    Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO 2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO 2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO 2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model

  18. Impact of the "Symmetric Instability of the Computational Kind" at mesoscale- and submesoscale-permitting resolutions (United States)

    Ducousso, Nicolas; Le Sommer, J.; Molines, J.-M.; Bell, M.


    The energy- and enstrophy-conserving momentum advection scheme (EEN) used over the last 10 years in NEMO is subject to a spurious numerical instability. This instability, referred to as the Symmetric Instability of the Computational Kind (SICK), arises from a discrete imbalance between the two components of the vector-invariant form of momentum advection. The properties and the method for removing this instability have been documented by Hollingsworth et al. (1983), but the extent to which the SICK may interfere with processes of interest at mesoscale- and submesoscale-permitting resolutions is still unkown. In this paper, the impact of the SICK in realistic ocean model simulations is assessed by comparing model integrations with different versions of the EEN momentum advection scheme. Investigations are undertaken with a global mesoscale-permitting resolution (1/4 °) configuration and with a regional North Atlantic Ocean submesoscale-permitting resolution (1/60 °) configuration. At both resolutions, the instability is found to alter primarily the most energetic current systems, such as equatorial jets, western boundary currents and coherent vortices. The impact of the SICK is found to increase with model resolution with a noticeable impact at mesoscale-permitting resolution and a dramatic impact at submesoscale-permitting resolution. The SICK is shown to distort the normal functioning of current systems, by redirecting the slow energy transfer between balanced motions to a spurious energy transfer to internal inertia-gravity waves and to dissipation. Our results indicate that the SICK is likely to have significantly corrupted NEMO solutions (when run with the EEN scheme) at mesocale-permitting and finer resolutions over the last 10 years.

  19. Mesoscale modeling of solute precipitation and radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ke, Huibin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.

  20. Analysis of Atmospheric Mesoscale Models for Entry, Descent and Landing (United States)

    Kass, D. M.; Schofield, J. T.; Michaels, T. I.; Rafkin, S. C. R.; Richardson, M. I.; Toigo, A. D.


    Each Mars Exploration Rover (MER) is sensitive to the martian winds encountered near the surface during the Entry, Descent and Landing (EDL) process. These winds are strongly influenced by local (mesoscale) conditions. In the absence of suitable wind observations, wind fields predicted by martian mesoscale atmospheric models have been analyzed to guide landing site selection. Two different models were used, the MRAMS model and the Mars MM5 model. In order to encompass both models and render their results useful to the EDL engineering team, a series of statistical techniques were applied to the model results. These analyses cover the high priority landing sites during the expected landing times (1200 to 1500 local time). The number of sites studied is limited by the computational and analysis cost of the mesoscale models.

  1. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer (United States)

    Canuto, V. M.; Dubovikov, M. S.


    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  2. Numerical modeling of oil spills in continental and estuarine waters

    International Nuclear Information System (INIS)

    Goeury, C.


    The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project ( was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the TELEMAC hydro-informatics system (, by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model. (author)

  3. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea (United States)

    Lips, Urmas; Kikas, Villu; Liblik, Taavi; Lips, Inga


    High-resolution numerical modeling, remote sensing, and in situ data have revealed significant role of sub-mesoscale features in shaping the distribution pattern of tracers in the ocean's upper layer. However, in situ measurements are difficult to conduct with the required resolution and coverage in time and space to resolve the sub-mesoscale, especially in such relatively shallow basins as the Gulf of Finland, where the typical baroclinic Rossby radius is 2-5 km. To map the multi-scale spatiotemporal variability in the gulf, we initiated continuous measurements with autonomous devices, including a moored profiler and Ferrybox system, which were complemented by dedicated research-vessel-based surveys. The analysis of collected high-resolution data in the summers of 2009-2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale upwelling/downwelling, fronts, and eddies. The horizontal wavenumber spectra of temperature variance in the surface layer had slopes close to -2 between the lateral scales from 10 to 0.5 km. Similar tendency towards the -2 slopes of horizontal wavenumber spectra of temperature variance was found in the seasonal thermocline between the lateral scales from 10 to 1 km. It suggests that the ageostrophic sub-mesoscale processes could contribute considerably to the energy cascade in such a stratified sea basin. We showed that the intrusions of water with different salinity, which indicate the occurrence of a layered flow structure, could appear in the process of upwelling/downwelling development and relaxation in response to variable wind forcing. We suggest that the sub-mesoscale processes play a major role in feeding surface blooms in the conditions of coupled coastal upwelling and downwelling events in the Gulf of Finland.

  4. Improved VAS regression soundings of mesoscale temperature structure observed during the 1982 atmospheric variability experiment (United States)

    Chesters, Dennis; Keyser, Dennis A.; Larko, David E.; Uccellini, Louis W.


    An Atmospheric Variability Experiment (AVE) was conducted over the central U.S. in the spring of 1982, collecting radiosonde date to verify mesoscale soundings from the VISSR Atmospheric Sounder (VAS) on the GOES satellite. Previously published VAS/AVE comparisons for the 6 March 1982 case found that the satellite retrievals scarcely detected a low level temperature inversion or a mid-tropospheric cold pool over a special mesoscale radiosonde verification network in north central Texas. The previously published regression and physical retrieval algorithms did not fully utilize VAS' sensitivity to important subsynoptic thermal features. Therefore, the 6 March 1982 case was reprocessed adding two enhancements to the VAS regression retrieval algorithm: (1) the regression matrix was determined using AVE profile data obtained in the region at asynoptic times, and (2) more optimistic signal-to-noise statistical conditioning factors were applied to the VAS temperature sounding channels. The new VAS soundings resolve more of the low level temperature inversion and mid-level cold pool. Most of the improvements stems from the utilization of asynoptic radiosonde observations at NWS sites. This case suggests that VAS regression soundings may require a ground-based asynoptic profiler network to bridge the gap between the synoptic radiosonde network and the high resolution geosynchronous satellite observations during the day.

  5. Climate change, hydrological extremes and a multifractal analysis of a mesoscale model (United States)

    Gires, A.; Schertzer, D.; Tchiguirinskaia, I.; Royer, J. F.; Lovejoy, S.; Lac, C.; Ducrocq, V.


    The IPPC 4th report emphasizes the question of scales and the necessity to obtain in climate scenarios much finer resolutions for hydrological processes to assess the time evolution of the hydrological extremes. The present gap between climatological and hydrological scales led to consider downscaling techniques, which are statically or/and physically based. In particular, one may exploit the scaling properties of the precipitation to downscale it either numerically by stochastic subgrid modeling or theoretically with the help of a few scaling exponents (Royer et al. C.R. Geoscience, 340, 2008). We first discuss how these techniques can be validated with the help of a multifractal analysis of a mesoscale model. We then present the results obtained the Meso-NH model (Meteo-France/CNRM and Laboratoire d'Aérologie, Toulouse, France), a model which has been rather extensively used for mesoscale research and is partly included (its physical part) in the AROME model, the new operational meteorological model at 2.5 km resolution on France. These results are compared with the one obtained analyzing radar data.

  6. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik


    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  7. Description of the University of Auckland Global Mars Mesoscale Meteorological Model (GM4) (United States)

    Wing, D. R.; Austin, G. L.


    The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) is a numerical weather prediction model of the Martian atmosphere that has been developed through the conversion of the Penn State University / National Center for Atmospheric Research fifth generation mesoscale model (MM5). The global aspect of this model is self consistent, overlapping, and forms a continuous domain around the entire planet, removing the need to provide boundary conditions other than at initialisation, yielding independence from the constraint of a Mars general circulation model. The brief overview of the model will be given, outlining the key physical processes and setup of the model. Comparison between data collected from Mars Pathfinder during its 1997 mission and simulated conditions using GM4 have been performed. Diurnal temperature variation as predicted by the model shows very good correspondence with the surface truth data, to within 5 K for the majority of the diurnal cycle. Mars Viking Data is also compared with the model, with good agreement. As a further means of validation for the model, various seasonal comparisons of surface and vertical atmospheric structure are conducted with the European Space Agency AOPP/LMD Mars Climate Database. Selected simulations over regions of interest will also be presented.

  8. Investigating Deformation and Mesoscale Void Creation in HMX Based Composites using Tomography Based Grain Scale Finite Element Modeling (United States)

    Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.


    The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.

  9. Building the ensemble flood prediction system by using numerical weather prediction data: Case study in Kinu river basin, Japan (United States)

    Ishitsuka, Y.; Yoshimura, K.


    Floods have a potential to be a major source of economic or human damage caused by natural disasters. Flood prediction systems were developed all over the world and to treat the uncertainty of the prediction ensemble simulation is commonly adopted. In this study, ensemble flood prediction system using global scale land surface and hydrodynamic model was developed. The system requests surface atmospheric forcing and Land Surface Model, MATSIRO, calculates runoff. Those generated runoff is inputted to hydrodynamic model CaMa-Flood to calculate discharge and flood inundation. CaMa-Flood can simulate flood area and its fraction by introducing floodplain connected to river channel. Forecast leadtime was set 39hours according to forcing data. For the case study, the flood occurred at Kinu river basin, Japan in 2015 was hindcasted. In a 1761 km² Kinu river basin, 3-days accumulated average rainfall was 384mm and over 4000 people was left in the inundated area. Available ensemble numerical weather prediction data at that time was inputted to the system in a resolution of 0.05 degrees and 1hour time step. As a result, the system predicted the flood occurrence by 45% and 84% at 23 and 11 hours before the water level exceeded the evacuation threshold, respectively. Those prediction lead time may provide the chance for early preparation for the floods such as levee reinforcement or evacuation. Adding to the discharge, flood area predictability was also analyzed. Although those models were applied for Japan region, this system can be applied easily to other region or even global scale. The areal flood prediction in meso to global scale would be useful for detecting hot zones or vulnerable areas over each region.

  10. On the role of the stratosphere in the process of overflow of mesoscale mountains

    Directory of Open Access Journals (Sweden)

    K. B. Moiseenko


    Full Text Available A 2-D, two- and three-layer stratified airflow over a mountain of arbitrary shape is considered on the assumptions that upstream wind velocity and static stability within each layer are constant (Long's model. The stratosphere is simulated by an infinitely deep upper layer with enhanced static stability.

    The analytical solution for the stream function, as well as first (linear and second order approximations to the wave drag, are obtained in hydrostatic limit N1L/U0→∞, where N1 is the Brunt-Väsälä frequency in the troposphere, L is a characteristic length of the obstacle, and U0 is upstream velocity. The results of numerical computations show the principal role of long waves in the process of interaction between the model layers for a typical mesoscale mountains for which the hydrostatic approximation proves valid in a wide range of flow parameters, in accordance with the earlier conclusions of Klemp and Lilly (1975. Partial reflection of wave energy from the tropopause produces strong influence on the value of wave drag for typical middle and upper tropospheric lapse rates, leading to a quasi-periodic dependance of wave drag on a reduced frequency $k{=}N_1{tilde H}/pi U_0$ (${tilde H}$ is tropopause height in the troposphere. The flow seems to be statically unstable for k≥2 for sufficiently large obstacles (whose height exceeds 1 km. In this case, vast regions of rotor motions and strong turbulence are predicted from model calculations in the middle troposphere and the lower stratosphere. The model calculations also point to a testify

  11. Spatial and seasonal patterns of fine-scale to mesoscale upper ocean dynamics in an Eastern Boundary Current System (United States)

    Grados, Daniel; Bertrand, Arnaud; Colas, François; Echevin, Vincent; Chaigneau, Alexis; Gutiérrez, Dimitri; Vargas, Gary; Fablet, Ronan


    The physical forcing of the ocean surface includes a variety of energetic processes, ranging from internal wave (IW) to submesoscale and mesoscale, associated with characteristic horizontal scales. While the description of mesoscale ocean dynamics has greatly benefited from the availability of satellite data, observations of finer scale patterns remain scarce. Recent studies showed that the vertical displacements of the oxycline depth, which separates the well-mixed oxygenated surface layer from the less oxygenated deeper ocean, estimated by acoustics, provide a robust proxy of isopycnal displacements over a wide range of horizontal scales. Using a high-resolution and wide-range acoustic data set in the Northern Humboldt Current System (NHCS) off Peru, the spatial and temporal patterns of fine-scale-to-mesoscale upper ocean dynamics are investigated. The spectral content of oxycline/pycnocline profiles presents patterns characteristic of turbulent flows, from the mesoscale to the fine scale, and an energization at the IW scale (2 km-200 m). On the basis of a typology performed on 35,000 structures we characterized six classes of physical structures according to their shape and scale range. The analysis reveals the existence of distinct features for the fine-scale range below ∼2-3 km, and clearly indicates the existence of intense IW and submesoscale activity over the entire NHCS region. Structures at scales smaller than ∼2 km were more numerous and energetic in spring than in summer. Their spatiotemporal variability supports the interpretation that these processes likely relate to IW generation by interactions between tidal flows, stratification and the continental slope. Given the impact of the physical forcing on the biogeochemical and ecological dynamics in EBUS, these processes should be further considered in future ecosystem studies based on observations and models. The intensification of upper ocean stratification resulting from climate change makes such

  12. Skills of different mesoscale models over Indian region during ...

    Indian Academy of Sciences (India)

    Performance of four mesoscale models namely, the MM5, ETA, RSM and WRF, run at NCMRWF for short range weather forecasting has been examined during monsoon-2006. Evaluation is carried out based upon comparisons between observations and day-1 and day-3 forecasts of wind, temper- ature, specific humidity ...

  13. Mesoscale modeling study of the oceanographic conditions off the ...

    Indian Academy of Sciences (India)

    Mesoscale modeling; coastal upwelling; India. ... This model is part of a model and data assimilation system capable of describing the ocean circulation and variability in the Indian Ocean and its predictability in ... Nansen Environmental and Remote Sensing Center, Edvard Griegs Vei 3a, N-5059 Solheimsviken, Norway.

  14. Modeling air-quality in complex terrain using mesoscale and ...

    African Journals Online (AJOL)

    Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...

  15. Skills of different mesoscale models over Indian region during ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 5. Skills of different mesoscale models over Indian region during monsoon season: Forecast errors. Someshwar Das Raghavendra Ashrit Gopal Raman Iyengar Saji Mohandas M Das Gupta John P George E N Rajagopal Surya Kanti Dutta. Volume 117 ...

  16. The interaction of large scale and mesoscale environment leading to ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 118; Issue 5. The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata. Part I: Doppler radar and satellite observations. P Mukhopadhyay M Mahakur H A K Singh. Volume 118 Issue 5 October 2009 pp ...

  17. Mesoscale organization of CuO nanoslices: Formation of sphere

    Indian Academy of Sciences (India)


    Mesoscale organization of CuO nanoslices. 195. Figure 4. Illustration of formation mechanism of the sphere. 3. Results and discussion. The structure and chemical composition of CuO sample synthesized in this work was confirmed by XRD method. As reported in figure 1, typical XRD pattern for the sam- ple is displayed.

  18. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.


    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate dens...

  19. Modeling Air-Quality in Complex Terrain Using Mesoscale and ...

    African Journals Online (AJOL)

    Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...

  20. Mesoscale characterization of local property distributions in heterogeneous electrodes (United States)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.


    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  1. Prediction of monsoon rainfall with a nested grid mesoscale limited ...

    Indian Academy of Sciences (India)

    ... days in the month of August 1997 and one week in September 1997 during three monsoon depressions and one cyclonic storm in the Bay of Bengal. The model results are compared with observations. The study shows that the model can capture mesoscale convective organization associated with monsoon depression.

  2. Assimilation of Doppler weather radar observations in a mesoscale ...

    Indian Academy of Sciences (India)

    The variational data assimilation approach is one of the most promising tools available for directly assimilating the mesoscale obser- vations in order to improve the initial state. The horizontal wind derived from the DWR has been used alongwith other conventional and non-conventional data in the assimilation system.

  3. Mesoscale wind field modifications over the Baltic Sea

    DEFF Research Database (Denmark)

    Källstrand, B.; Bergström, H.; Højstrup, J.


    For two consecutive days during spring 1997, the wind field over the Baltic Sea has been studied. The strength of the geostrophic wind speed is the major difference in synoptic conditions between these two days. During both days, the mesoscale wind field over most of the Baltic Sea is quite heter...

  4. Meso-scale modeling of a forested landscape

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Arnqvist, Johan; Bergström, Hans


    Meso-scale models are increasingly used for estimating wind resources for wind turbine siting. In this study, we investigate how the Weather Research and Forecasting (WRF) model performs using standard model settings in two different planetary boundary layer schemes for a forested landscape and how...

  5. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling


    Standard meteorological measurements from a number ofmasts around two Danish offshore wind farms have been used to study the spectral structure of the mesoscale winds, including the power spectrum, the co- and quadrature spectrum and the coherence. When average conditions are considered, the powe...

  6. Mesoscale Modelling of Block Copolymers under External Fields.

    NARCIS (Netherlands)

    Lyakhova, Kateryna S.


    A remarkable feature of block copolymer systems is their ability to self-assemble into a variety of ordered structures with domain sizes in the mesoscale range. One of the open questions is the dynamics of structure formation, which can be highly dependent on external fields often present in

  7. Prediction of monsoon rainfall with a nested grid mesoscale limited ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    can be run at different resolutions normally rang- ing from 50 to 15 km with various (optional) cumu-. Keywords. Limited area model; meso-scale convective system; ... GAS software and a multivariate optimum inter- polation scheme. The first guess field for running the analysis is obtained online from the global fore-.

  8. Mesoscale Influences of Wind Farms Throughout a Diurnal Cycle (United States)

    Fitch, A. C.; Lundquist, J. K.; Olson, J. B.


    Few observations are available to give insight into the interaction between large wind farms and the boundary layer. As wind farm deployment increases, questions are arising on the potential impact on meteorology within and downwind of large wind farms. While large-eddy simulation can provide insight into the detailed interaction between individual turbines and the boundary layer, to date it has been too computationally expensive to simulate wind farms with large numbers of turbines and the resulting wake far downstream. Mesoscale numerical weather prediction models provide the opportunity to investigate the flow in and around large wind farms as a whole, and the resulting impact on meteorology. To this end, we have implemented a wind farm parameterization in the Weather Research and Forecasting (WRF) model, which represents wind turbines by imposing a momentum sink on the mean flow; converting kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. We simulate a wind farm covering 10x10 km over land, consisting of 100 turbines each of nominal power output of 5 MW. Results will be presented showing how the wake structure varies dramatically over a diurnal cycle characteristic of a region in the Great Plains of the US, where wind farm deployment is planned. At night, a low-level jet forms within the rotor area, which is completely eliminated by energy extraction within the wind farm. The deep stable layer and lack of higher momentum air aloft at this time maximises the wind deficit and the length of the wake. The presentation will discuss the maximum reduction of wind speed within and downwind from the farm, and the wake e

  9. Class Generation for Numerical Wind Atlases

    DEFF Research Database (Denmark)

    Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær


    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...... at specific sites. The sources are The New Irish Wind Resource Atlas and the Wind Atlas for the Gulf of Suez. The new clustering method has the ability to include wind-speed, direction and thermal stability from different heights for the classification. It is shown that the clustering method is able...


    Directory of Open Access Journals (Sweden)

    G. Trendafilov


    Full Text Available Numerical description of the groundwater levels change due to the re- and discharge of the adjacent surface water bodies – problems and case studies. The water exchange between the surface water bodies (rivers, lakes, seas, dams, etc. and adjacent water-bearing beds is possible if a hydraulic connection between them exists. The change of the levels of the first ones causes corresponding changes of the levels of the aquifers in the surrounding territories and vice versa. In many cases this interaction is the primary mechanism determining the groundwater regime. The aim of the present study is to examine the applicability of the most general possible analytical approach for quantitative description of the phenomena in the case of short-term changes with a significant magnitude (high waves of the level of the river of Maritsa in Plovdiv, Bulgaria. The study is performed through numerical simulations/calculations, with especially composed by the authors for this work computational programs.

  11. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse


    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  12. Meso-scale resolution for the definition of environmental flow standards in Mediterranean streams (United States)

    Vezza, Paolo; Martinez-Capel, Francisco; Muñoz-Mas, Rafael; Comoglio, Claudio; Spairani, Michele; Koutrakis, Emmanuil; Sapounidis, Argyris


    high sensitivity/specificity values, indicating substantial predictions with low cross-classification errors. In addition, the area under the ROC curve (AUC) was over 0.81 in all cases, indicating from good to excellent model performance. Finally, examples of model applications in regulated sites were also presented in order to quantify the available habitat under specific environmental conditions and to define environmental flow standards. The meso-scale approach showed its potential in modelling habitat for fish and the presented statistical techniques can be considered a promising tool for river restoration and ecological management of Mediterranean streams.

  13. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  14. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao


    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full field strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.

  15. Report on the use of stability parameters and mesoscale modelling in short-term prediction[Wind speed at wind farm sites

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J.; Giebel, G.; Guo Larsen, X.; Skov Nielsen, T.; Aalborg Nielsen, H.; Madsen, Henrik; Toefting, J.


    In this report investigations using atmospheric stability measures to improve wind speed predictions at wind farm sites are described. Various stability measures have been calculated based on numerical weather prediction model output. Their ability to improve the wind speed predictions is assessed at three locations. One of the locations is in complex terrain. Mesoscale modelling has been carried out using KAMM at this location. The characteristics of the measured winds are captured well by the mesoscale modelling. It can be seen that the atmospheric stability plays an important role in determining how the flow is influence by the terrain. A prediction system employing a look-up table approach based on wind class simulations is presented. The mesoscale modelling results produced by KAMM were validated using an alternative mesoscale model called WRF. A good agreement in the results of KAMM and WRF was found. It is shown that including a stability parameter in physical and/or statistical modelling can improve the wind speed predictions at a wind farm site. A concept for the inclusion of a stability measure in the WPPT prediction system is presented, and the testing of the concept is outlined. (au)

  16. A review of the LATEX project: mesoscale to submesoscale processes in a coastal environment (United States)

    Petrenko, Anne A.; Doglioli, Andrea M.; Nencioli, Francesco; Kersalé, Marion; Hu, Ziyuan; d'Ovidio, Francesco


    The main objective of the LAgrangian Transport EXperiment (LATEX) project was to study the influence of coastal mesoscale and submesoscale physical processes on circulation dynamics, cross-shelf exchanges, and biogeochemistry in the western continental shelf of the Gulf of Lion, Northwestern Mediterranean Sea. LATEX was a five-year multidisciplinary project based on the combined analysis of numerical model simulations and multi-platform field experiments. The model component included a ten-year realistic 3D numerical simulation, with a 1 km horizontal resolution over the gulf, nested in a coarser 3 km resolution model. The in situ component involved four cruises, including a large-scale multidisciplinary campaign with two research vessels in 2010. This review concentrates on the physics results of LATEX, addressing three main subjects: (1) the investigation of the mesoscale to submesoscale processes. The eddies are elliptic, baroclinic, and anticyclonic; the strong thermal and saline front is density compensated. Their generation processes are studied; (2) the development of sampling strategies for their direct observations. LATEX has implemented an adaptive strategy Lagrangian tool, with a reference software available on the web, to perform offshore campaigns in a Lagrangian framework; (3) the quantification of horizontal mixing and cross-shelf exchanges. Lateral diffusivity coefficients, calculated in various ways including a novel technique, are in the range classically encountered for their associated scales. Cross-shelf fluxes have been calculated, after retrieving the near-inertial oscillation contribution. Further perspectives are discussed, especially for the ongoing challenge of studying submesoscale features remotely and from in situ data.

  17. On the Eye Movement Control of Changing Reading Direction for a Single Word: The Case of Reading Numerals in Urdu. (United States)

    Khan, Azizuddin; Loberg, Otto; Hautala, Jarkko


    Typically orthographies are consistent in terms of reading direction, i.e. from left-to-right or right-to-left. However, some are bidirectional, i.e., certain parts of the text, (such as numerals in Urdu), are read against the default reading direction. Such sudden changes in reading direction may challenge the reader in many ways, at the level of planning of saccadic eye movements, changing the direction of attention, word recognition processes and cognitive reading strategies. The present study attempts to understand how readers achieve such sudden changes in reading direction at the level of eye movements and conscious cognitive reading strategies. Urdu readers reported employing a two-stage strategy for reading numerals by first counting the number of digits during right-to-left fixations, and only then forming numeric representation during left-to-right fixations. Eye movement findings were aligned with this strategy usage, as long numerals were often read with deliberate forward-and-backward fixation sequences. In these sequences fixations preceding saccades to default reading direction were shorter than against it, suggesting that different cognitive processes such as counting and formation of numeric representation were involved in fixations preceding left- and right-directed saccades. Finally, the change against the default reading direction was preceded by highly inflated fixation duration, pinpointing the oculomotor, attentional and cognitive demands in executing sudden changes in reading direction.

  18. Calculation of extreme wind atlases using mesoscale modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, X.G..; Badger, J.


    The objective of this project is to develop new methodologies for extreme wind atlases using mesoscale modeling. Three independent methodologies have been developed. All three methodologies are targeted at confronting and solving the problems and drawbacks in existing methods for extreme wind estimation regarding the use of modeled data (coarse resolution, limited representation of storms) and measurements (short period and technical issues). The first methodology is called the selective dynamical downscaling method. For a chosen area, we identify the yearly strongest storms through global reanalysis data at each model grid point and run a mesoscale model, here the Weather Research and Forecasting (WRF) model, for all storms identified. Annual maximum winds and corresponding directions from each mesoscale grid point are then collected, post-processed and used in Gumbel distribution to obtain the 50-year wind. The second methodology is called the statistical-dynamical downscaling method. For a chosen area, the geostrophic winds at a representative grid point from the global reanalysis data are used to obtain the annual maximum winds in 12 sectors for a period of 30 years. This results in 360 extreme geostrophic winds. Each of the 360 winds is used as a stationary forcing in a mesoscale model, here KAMM. For each mesoscale grid point the annual maximum winds are post-processed and used to a Gumbel fit to obtain the 50-year wind. For the above two methods, the post-processing is an essential part. It calculates the speedup effects using a linear computation model (LINCOM) and corrects the winds from the mesoscale modeling to a standard condition, i.e. 10 m above a homogeneous surface with a roughness length 5 cm. Winds of the standard condition can then be put into a microscale model to resolve the local terrain and roughness effects around particular turbine sites. By converting both the measured and modeled winds to the same surface conditions through the post

  19. An automated data quality control procedure applied to a mesoscale meteorological network (United States)

    Ranci, M.; Lussana, C.


    The mesoscale meteorological networks are composed by hundreds of stations providing continuous measurements of several meteorological variables. The large amount of observations collected at the data acquisition center must be checked using automatic Data Quality Control (DQC) tests. An automated DQC procedure describes the application of each individual test and the related decision making algorithms. The goal of a DQC procedure is to supply an efficient and powerful tool to the meteorological analyst. This work presents an automated DQC procedure and its application to the mesoscale meteorological network of the Lombardia's public weather service (ARPA). In particular, the DQC procedure is applied to hourly average observations of: temperature, relative humidity, wind velocity and direction, global solar radiation, net radiation and hourly cumulated precipitation. The main idea of the DQC procedure is that each observation undergoes simultaneously many different tests and only once obtained all the results a decision about the observation quality is taken. The implemented tests are variable-dependent but can be classified as: plausible values checks, temporal and spatial consistency checks. Finally, a close inspection of the DQC procedure behavior can also be useful to individuate critical parameters that can be used for the network performance monitoring. The application of the DQC procedure to some case-studies is reported in order to show the characteristics of the overall procedure. The procedure is still under development, nevertheless the first results respect to its integration in the DQC operative activities are very encouraging.

  20. Class generation for numerical wind atlases

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, N.J.; Joergensen, B.H.; Ersboell, B.K.; Badger, J.


    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP/NCAR Reanalysis geostrophic wind data (approximately 200 km resolution) are represented in typically around 150 classes, each with a frequency of occurrence. The mean wind-speed and direction in each class is used as input data to force the mesoscale model, which downscales the wind to a 5 km resolution while adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method by optimising the representation of the data and by automating the procedure more. The Karlsruhe Atmospheric Mesoscale Model (KAMM) is combined with the WAsP analysis to produce numerical wind atlases for two sites, Ireland and Egypt. The model results are compared with wind atlases made from measurements at specific sites. The sources are The New Irish Wind Resource Atlas and the Wind Atlas for the Gulf of Suez. The new clustering method has the ability to include wind-speed, direction and thermal stability from different heights for the classification. It is shown that the clustering method is able to produce results at least as accurate as the existing method for both sites. A refined, general clustering procedure is devised which could improve the results for both sites

  1. Medium-range mid-tropospheric transport of ozone and precursors over Africa: two numerical case studies in dry and wet seasons

    Directory of Open Access Journals (Sweden)

    B. Sauvage


    Full Text Available A meso-scale model was used to understand and describe the dynamical processes driving high ozone concentrations observed during both dry and monsoon season in monthly climatologies profiles over Lagos (Nigeria, 6.6° N, 3.3° E, obtained with the MOZAIC airborne measurements (ozone and carbon monoxide. This study focuses on ozone enhancements observed in the upper-part of the lower troposphere, around 3000 m. Two individual cases have been selected in the MOZAIC dataset as being representative of the climatological ozone enhancements, to be simulated and analyzed with on-line Lagrangian backtracking of air masses.

    This study points out the role of baroclinic low-level circulations present in the Inter Tropical Front (ITF area. Two low-level thermal cells around a zonal axis and below 2000 m, in mirror symmetry to each other with respect to equator, form near 20° E and around 5° N and 5° S during the (northern hemisphere dry and wet seasons respectively. They are caused by surface gradients – the warm dry surface being located poleward of the ITF and the cooler wet surface equatorward of the ITF.

    A convergence line exists between the poleward low-level branch of each thermal cell and the equatorward low-level branch of the Hadley cell. Our main conclusion is to point out this line as a preferred location for fire products – among them ozone precursors – to be uplifted and injected into the lower free troposphere.

    The free tropospheric transport that occurs then depends on the hemisphere and season. In the NH dry season, the AEJ allows transport of ozone and precursors westward to Lagos. In the NH monsoon (wet season, fire products are transported from the southern hemisphere to Lagos by the southeasterly trade that surmounts the monsoon layer. Additionally ozone precursors uplifted by wet convection in the ITCZ can also mix to the ones uplifted by the baroclinic cell and be advected up to Lagos by the trade

  2. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN) : Verification Phase Based on Canonical Cases

    NARCIS (Netherlands)

    Régnier, Julie; Bonilla, Luis-Fabian; Bard, Pierre-Yves; Bertrand, Etienne; Hollender, Fabrice; Kawase, Hiroshi; Sicilia, Deborah; Arduino, Pedro; Amorosi, Angelo; Asimaki, Dominiki; Pisano, F.


    PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the

  3. The Milling Assistant, Case-Based Reasoning, and machining strategy: A report on the development of automated numerical control programming systems at New Mexico State University

    Energy Technology Data Exchange (ETDEWEB)

    Burd, W. [Sandia National Labs., Albuquerque, NM (United States); Culler, D.; Eskridge, T.; Cox, L.; Slater, T. [New Mexico State Univ., Las Cruces, NM (United States)


    The Milling Assistant (MA) programming system demonstrates the automated development of tool paths for Numerical Control (NC) machine tools. By integrating a Case-Based Reasoning decision processor with a commercial CAD/CAM software, intelligent tool path files for milled and point-to-point features can be created. The operational system is capable of reducing the time required to program a variety of parts and improving product quality by collecting and utilizing ``best of practice`` machining strategies.

  4. High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex Arctic topography: case study from central Spitsbergen

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Hošek, Jiří


    Roč. 26, č. 4 (2017), s. 391-408 ISSN 0941-2948 Institutional support: RVO:68378289 Keywords : surface wind field * model evaluation * topographic effect * circulation pattern * Svalbard Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.989, year: 2016

  5. Mesoscale to microscale wind farm flow modeling and evaluation: Mesoscale to Microscale Wind Farm Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Rodrigo, Javier [National Renewable Energy Centre (CENER), Sarriguren Spain; Chávez Arroyo, Roberto Aurelio [National Renewable Energy Centre (CENER), Sarriguren Spain; Moriarty, Patrick [National Renewable Energy Laboratory (NREL), Golden CO USA; Churchfield, Matthew [National Renewable Energy Laboratory (NREL), Golden CO USA; Kosović, Branko [National Center for Atmospheric Research (NCAR), Boulder CO USA; Réthoré, Pierre-Elouan [Technical University of Denmark (DTU), Roskilde Denmark; Hansen, Kurt Schaldemose [Technical University of Denmark (DTU), Lyngby Denmark; Hahmann, Andrea [Technical University of Denmark (DTU), Roskilde Denmark; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore CA USA; Rife, Daran [DNV GL, San Diego CA USA


    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.

  6. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, M. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fromm, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teague, M. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  7. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS


    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  8. Correlation of mesoscale wind speeds over the sea

    DEFF Research Database (Denmark)

    Mehrens, Anna R.; Hahmann, Andrea N.; Hahmann, Andrea N.


    A large offshore observational data set from stations across the North and Baltic Sea is used to investigate the planetary boundary layer wind characteristics and their coherence, correlation and power spectra. The data of thirteen sites, with pairs of sites at a horizontal distance of 4 to 848 km...... fluctuations. Due to the large number of measurement sites, the results can be used for further plausibility validation for mesoscale model runs over the sea....

  9. Explicit simulation of a midlatitude Mesoscale Convective System

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.D.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)


    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  10. Numerical modelling of solid transport caused by an extreme flood: Case of the Hamiz dam failure (Algeria

    Directory of Open Access Journals (Sweden)

    Haddad Ali


    Full Text Available Study of solid transport caused by the flow of an extreme flood such as the propagation of dam failure wave aims to simulate the hydrodynamics behaviour of the solid particles contained in the valley during the flood passage. With this intention, we have developed a numerical model which is based on the resolution of the one-dimensional Saint Venant–Exner equations by the implicit finite difference scheme. Numerical stability of liquid phase calculation is checked by the Courant number and De Vries condition for the solid phase. The model has been applied to the Hamiz dam (Algeria which is built in the semi arid zone and presents a major risk of failure. The simulation of several scenarios of dam failure has allowed us to trace the cartography of sediment transport in the valley which is induced by the flood of dam failure.

  11. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data (United States)

    Sun, Liang; Li, Qiu-Yang


    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for

  12. Numerical relativity

    CERN Document Server

    Shibata, Masaru


    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  13. Scaling Laws for Mesoscale and Microscale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Spletzer, Barry


    The set of laws developed and presented here is by no means exhaustive. Techniques have been present to aid in the development of additional scaling laws and to combine these and other laws to produce additional useful relationships. Some of the relationships produced here have yielded perhaps surprising results. Examples include the fifth order scaling law for electromagnetic motor torque and the zero order scaling law for capacitive motor power. These laws demonstrate important facts about actuators in small-scale systems. The primary intent of this introduction into scaling law analysis is to provide needed tools to examine possible areas of the research in small-scale systems and direct research toward more fruitful areas. Numerous examples have been included to show the validity of developing scaling laws based on first principles and how real world systems tend to obey these laws even when many other variables may potentially come into play. Development of further laws may well serve to provide important high-level direction to the continued development of small-scale systems.

  14. Assimilation of low-level wind in a high-resolution mesoscale model using the back and forth nudging algorithm

    Directory of Open Access Journals (Sweden)

    Jean-François Mahfouf


    Full Text Available The performance of a new data assimilation algorithm called back and forth nudging (BFN is evaluated using a high-resolution numerical mesoscale model and simulated wind observations in the boundary layer. This new algorithm, of interest for the assimilation of high-frequency observations provided by ground-based active remote-sensing instruments, is straightforward to implement in a realistic atmospheric model. The convergence towards a steady-state profile can be achieved after five iterations of the BFN algorithm, and the algorithm provides an improved solution with respect to direct nudging. It is shown that the contribution of the nudging term does not dominate over other model physical and dynamical tendencies. Moreover, by running backward integrations with an adiabatic version of the model, the nudging coefficients do not need to be increased in order to stabilise the numerical equations. The ability of BFN to produce model changes upstream from the observations, in a similar way to 4-D-Var assimilation systems, is demonstrated. The capacity of the model to adjust to rapid changes in wind direction with the BFN is a first encouraging step, for example, to improve the detection and prediction of low-level wind shear phenomena through high-resolution mesoscale modelling over airports.

  15. Observed structure of mesoscale convective systems and implications for large-scale heating (United States)

    Houze, Robert A., Jr.


    The model for the idealized tropical mesoscale convective system proposed by Houze (1982) is examined. Observations of the structure of mesoscale convective systems are used to determine the applicability of the conceptual model. Data on the vertical distribution of vertical air motion in the convective and stratiform regions of mesoscale convective systems are discussed and the treatment of this distribution in Houze's model is considered.

  16. Mesoscale variability in the Bransfield Strait region (Antarctica during Austral summer

    Directory of Open Access Journals (Sweden)

    M. A. García


    Full Text Available The Bransfield Strait is one the best-known areas of Antarctica's oceanic surroundings. In spite of this, the study of the mesoscale variability of its local circulation has been addressed only recently. This paper focuses on the mesoscale structure of local physical oceanographic conditions in the Bransfield Strait during the Austral summer as derived from the BIOANTAR 93 cruise and auxiliary remote sensing data. Moreover, data recovered from moored current meters allow identification of transient mesoscale phenomena.

  17. The fate of a southwest Pacific bloom: gauging the impact of submesoscale vs. mesoscale circulation on biological gradients in the subtropics (United States)

    de Verneil, Alain; Rousselet, Louise; Doglioli, Andrea M.; Petrenko, Anne A.; Moutin, Thierry


    The temporal evolution of a surface chlorophyll a bloom sampled in the western tropical South Pacific during the 2015 Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise is examined. This region is usually characterized by largely oligotrophic conditions, i.e. low concentrations of inorganic nutrients at the surface and deep chlorophyll a maxima. Therefore, the presence of a surface bloom represents a significant perturbation from the mean ecological state. Combining in situ and remote sensing datasets, we characterize both the bloom's biogeochemical properties and the physical circulation responsible for structuring it. Biogeochemical observations of the bloom document the bloom itself, a subsequent decrease of surface chlorophyll a, significantly reduced surface phosphate concentrations relative to subtropical gyre water farther east, and a physical decoupling of chlorophyll a from a deep nitracline. All these characteristics are consistent with nitrogen fixation occurring within the bloom. The physical data suggest surface mesoscale circulation is the primary mechanism driving the bloom's advection, whereas balanced motions expected at submesoscales provide little contribution to observed flow. Together, the data provide a narrative where subtropical gyre water can produce significant chlorophyll a concentrations at the surface that is stirred, deformed, and transported great distances by the mesoscale circulation. In this case, for the time period considered, the transport is in an easterly direction, contrary to both the large-scale and mean mesoscale flow. As a result, future studies concerning surface production in the region need to take into account the role complex mesoscale structures play in redistributing subtropical gyre water.

  18. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Cerovecki, Ivana [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; McClean, Julie [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Koracin, Darko [Desert Research Inst. (DRI), Reno, NV (United States). Division of Atmospheric Sciences


    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employed in e.g. the Community Climate System Model (CCSM).

  19. Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P. H.; Nam, T. S.; Li, Cheng Jun; Lee, S. W. [Sungkyunkwan University, Seoul (Korea, Republic of)


    This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and MoS{sub 2} nanofluid MQL are used. For process characterization, the micro and meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish.

  20. An Approach to the Integrated Design of PCM-Air Heat Exchangers Based on Numerical Simulation: A Solar Cooling Case Study

    Directory of Open Access Journals (Sweden)

    Pablo Dolado


    Full Text Available A novel technique of design of experiments applied to numerical simulations is proposed in this paper as a methodology for the sizing and design of thermal storage equipment integrated in any specific application. The technique is carried out through the response surfaces in order to limit the number of simulation runs required to achieve an appropriate solution. Thus, there are significant savings on the time spent on the design as well as a potential cost saving on the experimentation if similarity relationships between the prototype and the model are met. The technique is applied here to a previously developed and validated numerical model that simulates the thermal behavior of a phase change material-air heat exchanger. The incorporation of the thermal energy storage unit is analyzed in the case of a solar cooling application, improving the system coefficient of performance. The economic viability is mainly conditioned by the price of the macroencapsulated phase change material.

  1. An equivalent fluid/equivalent medium approach for the numerical simulation of coastal landslides propagation: theory and case studies

    Directory of Open Access Journals (Sweden)

    P. Mazzanti


    Full Text Available Coastal and subaqueous landslides can be very dangerous phenomena since they are characterised by the additional risk of induced tsunamis, unlike their completely-subaerial counterparts. Numerical modelling of landslides propagation is a key step in forecasting the consequences of landslides. In this paper, a novel approach named Equivalent Fluid/Equivalent Medium (EFEM has been developed. It adapts common numerical models and software that were originally designed for subaerial landslides in order to simulate the propagation of combined subaerial-subaqueous and completely-subaqueous landslides. Drag and buoyancy forces, the loss of energy at the landslide-water impact and peculiar mechanisms like hydroplaning can be suitably simulated by this approach; furthermore, the change in properties of the landslide's mass, which is encountered at the transition from the subaerial to the submerged environment, can be taken into account. The approach has been tested by modelling two documented coastal landslides (a debris flow and a rock slide at Lake Albano using the DAN-W code. The results, which were achieved from the back-analyses, demonstrate the efficacy of the approach to simulate the propagation of different types of coastal landslides.

  2. Urban pluvial flood prediction: a case study evaluating radar rainfall nowcasts and numerical weather prediction models as model inputs. (United States)

    Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer


    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.

  3. Medium-term hydrologic forecasting in mountain basins using forecasting of a mesoscale numerical weather model (United States)

    Castro Heredia, L. M.; Suarez, F. I.; Fernandez, B.; Maass, T.


    For forecasting of water resources, weather outputs provide a valuable source of information which is available online. Compared to traditional ground-based meteorological gauges, weather forecasts data offer spatially and temporally continuous data not yet evaluated and used in the forecasting of water resources in mountainous regions in Chile. Nevertheless, the use of this non-conventional data has been limited or null in developing countries, basically because of the spatial resolution, despite the high potential in the management of water resources. The adequate incorporation of these data in hydrological models requires its evaluation while taking into account the features of river basins in mountainous regions. This work presents an integrated forecasting system which represents a radical change in the way of making the streamflow forecasts in Chile, where the snowmelt forecast is the principal component of water resources management. The integrated system is composed of a physically based hydrological model, which is the prediction tool itself, together with a methodology for remote sensing data gathering that allows feed the hydrological model in real time, and meteorological forecasts from NCEP-CFSv2. Previous to incorporation of meteorological forecasts into the hydrological model, the weather outputs were evaluated and downscaling using statistical downscaling methods. The hydrological forecasts were evaluated in two mountain basins in Chile for a term of six months for the snowmelt period. In every month an assimilation process was performed, and the hydrological forecast was improved. Each month, the snow cover area (from remote sensing) and the streamflow observed were used to assimilate the model parameters in order to improve the next hydrological forecast using meteorological forecasts. The operation of the system in real time shows a good agreement between the streamflow and the snow cover area observed. The hydrological model and the weather outputs were useful to predict the streamflow observed in the entire snowmelt season.

  4. Wake Effects of Large Offshore Wind Farms - a study of the Mesoscale Atmophere

    DEFF Research Database (Denmark)

    Volker, Patrick

    efficiency and the wind farm’s wake recovery to different atmospheric conditions aloft were found in an idealised case study. Moreover, the wind farm efficiency to different climates for wind farm sizes up to 375 km2 was examined. The modelled production varied with wind climate and were well above 1Wm−2......The power production contribution to the power system from offshore wind energy is continuously increasing in the northern European countries. A better understanding of the influence of wind farms to those downstream and to the lower atmosphere will help optimising energy production from large wind...... farm clusters. Mesoscale models allow the simulation of large domains sufficiently to capture large wind farms and surroundings at reasonable computational costs, but processes below the horizontal resolution remain unresolved and have to be parametrised, such as the effects of the wind turbines...

  5. On discontinuous Galerkin approach for atmospheric flow in the mesoscale with and without moisture

    Directory of Open Access Journals (Sweden)

    Dieter Schuster


    Full Text Available We present and discuss discontinuous Galerkin (DG schemes for dry and moist atmospheric flows in the mesoscale. We derive terrain-following coordinates on the sphere in strong-conservation form, which makes it possible to perform the computation on a Cartesian grid and yet conserves the momentum density on an f$f$-plane. A new DG model, i.e. DG-COSMO, is compared to the operational model COSMO of the Deutscher Wetterdienst (DWD. A simplified version of the suggested terrain-following coordinates is implemented in DG-COSMO and is compared against the DG dynamical core implemented within the DUNE framework, which uses unstructured grids to capture orography. Finally, a few idealised test cases, including 3d and moisture, are used for validation. In addition an estimate of efficiency for locally adaptive grids is derived for locally and non-locally occurring phenomena.

  6. Numerical investigation of flow and thermal pattern in unbounded flow using nanofluid - Case study: Laminar 2-D plane jet

    Directory of Open Access Journals (Sweden)

    Armaghani Taher


    Full Text Available In this article, a numerical study is carried out to analyze the effect of nanoparticle volume fraction over flow and thermal characteristics of laminar 2-D plane jet. Al2O3-water and TiO2-water nanofluids are considered in this investigation with lowest and highest values of particle volume concentration equals to 0 and 0.02 respectively. This paper propose four correlations for describing the relation between the solid volume fraction, δt and δu. The results show that the cross stream thermal diffusion depth and cross stream hydraulic diffusion depth are increased when particles volume concentration is increased and mean temperature and mean velocity decreases when the solid volume fraction is increased. The effects of nanoparticle volume fraction in velocity and temperature time histories are also studied and discussed.

  7. Mussel farming as a large-scale bioengineering tool: a numerical modelling case study in Rødsand lagoon, Denmark

    DEFF Research Database (Denmark)

    Forsberg, Pernille Louise; Ernstsen, Verner Brandbyge; Lumborg, Ulrik

    spill of sediment, which could increase the longshore sediment influx to Rødsand lagoon. Mussels can reduce the SSC in marine environments (Schröder et al., 2014), why the implementation of a mussel farm has been considered as a management option. In the present study we developed a module to include....... and Krost P. (2014). The impact of a mussel farm on water transparency in the Kiel Fjord. Ocean & Coastal Management, 101:42-52....... mussels as a bioengineering measure in a numerical sediment transport model and investigated how the implementation of an exterior mussel farm affect the sediment dynamics within Rødsand lagoon. On the basis of 2D modelling (MIKE21 by DHI) and field measurements, the flow and sediment dynamics to and from...

  8. Application of Elements of Numerical Methods in the Analysis of Journal Bearings in AC Induction Motors: An Industry Case Study (United States)

    Ahrens, Fred; Mistry, Rajendra


    In product engineering there often arise design analysis problems for which a commercial software package is either unavailable or cost prohibitive. Further, these calculations often require successive iterations that can be time intensive when performed by hand, thus development of a software application is indicated. This case relates to the…

  9. Experimental and Numerical Studies on Mudstone's Creep Behavior During Water Injection and Its Effect on Casing Damage (United States)

    Huang, X. L.; Yang, C. H.; Liu, J. J.; He, X.; Xiong, J.


    During the process of water injection production in oilfield, when water cuts into the mudstone, as a result, large numbers of casings are damaged because of mudstone's creep characteristic. In order to analyze this phenomenon, the uniaxial compression experiments and creep experiments of mudstone from Daqing Oil Field under different saturation conditions were done, it was studied that how the mudstone's mechanical parameters and creep characteristic would change with the increment of water contents. The results indicate that the rock strength and elastic modulus are decreased rapidly with the increment of water contents, on the other hand, the creep strain and steady state creep strain rate are increased with the increment of water contents, and also the steady state creep strain rate is enhanced with the increment of deviatoric stress. Through the creep characteristic curves, a nonlinear creeping constitutive equation of mudstone considering the changes of water contents was established. In the deep stratum of the oilfield, the calculation model of casing-cement sheath-mudstone was built, based on the experiment results of mudstone and its creep constitutive equation, mudstone's creep pressure with time under different water contents was simulated. The simulation results show that the increasing water content accelerates the incremental rate of the creep pressure of mudstone, so the time of reaching yield state of casing will descend greatly, which means service time of casing becomes much shorter.

  10. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India (United States)

    Madhulatha, A.; Rajeevan, M.


    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  11. Numerical Development (United States)

    Siegler, Robert S.; Braithwaite, David W.


    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  12. Hindi Numerals. (United States)

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  13. On the spatial structure and time evolution of shamal winds over the Arabian Sea – a case study through numerical modelling.

    Digital Repository Service at National Institute of Oceanography (India)

    VinodKumar, K.; Seemanth, M.; Vethamony, P.; Aboobacker, V.M.

    /Persian Gulf (Hubert et al., 1983). The shamal winds are strong enough to generate storm surges (El-Sabh and Murty, 1989), oil spills (Murty and El-Sabh, 1985; El-Sabh and Murty, 1988) and dust storms (Perrone, 1979; Walters and Sjoberg, 1988; El.... Simulation of coastal winds along the central west coast of India using the MM5 mesoscale model, Meteorol Atmos Phys 109:91–106, doi 10.1007/s00703-010-0086-8. El‐Sabh MI, Murty TS. 1988. Simulation of the movement and dispersion of oil slicks...

  14. Numerical analysis

    CERN Document Server

    Rao, G Shanker


    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  15. Does Making the Numerical Values of Verbal Anchors on a Rating Scale Available to Examiners Inflate Scores on a Long Case Examination? (United States)

    Devine, Luke A; Stroud, Lynfa; Gupta, Rajesh; Lorens, Edmund; Robertson, Sumitra; Panisko, Daniel


    Rating scales are frequently used for scoring assessments in medical education. The effect of changing the structural elements of a rating scale on students' examination scores has received little attention in the medical education literature. This study assessed the impact of making the numerical values of verbal anchors on a rating scale available to examiners in a long case examination (LCE). During the 2011-2012 academic year, the numerical values of verbal anchors on a rating scale for an internal medicine clerkship LCE were made available to faculty examiners. Historically, and specifically in the control year of 2010-2011, examiners only saw the scale's verbal anchors and were blinded to the associated numerical values. To assess the impact of this change, the authors compared students' LCE scores between the two cohort years. To assess for differences between the two cohorts, they compared students' scores on other clerkship assessments, which remained the same between the two cohorts. From 2010-2011 (n = 226) to 2011-2012 (n = 218), the median LCE score increased significantly from 82.11% to 85.02% (P rating scale, in addition to the verbal anchors themselves, led to a significant increase in students' scores on an internal medicine clerkship LCE. When constructing or changing rating scales, educators must consider the potential impact of the rating scale structure on students' scores.

  16. Numerical investigation of underground drain radius, depth and location on uplift pressure reduction (Case study: Tabriz diversion dam

    Directory of Open Access Journals (Sweden)

    Farzin Salmasi


    Full Text Available Water penetration from beneath of built structures on permeable soils causes uplift force along the contact of structure with foundation. This uplift force reduces hydraulic structure stability. Typically, these instabilities occur due to under-pressure development (uplift force, gradual inner degradation of foundation material (piping or sand boil phenomenon. Thus, it seems necessary to calculate the pressure applied to the contact surface of the dam. One method for preventing piping phenomenon, reduction in exit gradient as well as decrease of uplift force beneath diversion dams includes implementation of weep hole. This study aims to study the effect of radius, depth and location of pipe drains under stilling basin upon how much uplift force decreases. The benefit of this study in agricultural field for soil and water engineers is to have a safe design of lined canals, weirs or diversion dams. To do this, numerical simulation of Tabriz diversion dam with Geo-Studio software was carried out. Results showed that application of drain pipe under the structure reduced uplift force respect to without drain under the structure. Increasing of drain radius; caused reduction of uplift pressure more but increased of seepage flow slightly. Installation of drain in upper part of stilling basin had a tendency to decrease uplift pressure more. Existence of drain near the stilling basin bottom caused in more reducing of uplift pressure than of installation of it in deeper depth

  17. A numerical simulation study of landslides induced by irrigation in Heifangtai loess area—A case study of Huangci (United States)

    Lian, Baoqin; Wang, Xingang; Zhu, Rongsen; Liu, Jie; Wang, Yupeng


    In order to investigate the mechanism underlying the formation of landslides induced by irrigation in Heifangtai loess area, the Phase2 software was used for numerical simulation of the typical profile of Huangci landslide, and conditions of the landslide in natural and saturated states were respectively simulated. The following findings have been obtained through analysis and calculation: In natural state, the maximum shear strain increment is 0.072, and the maximum horizontal displacement is 0.096m, observed on the slope surface; the slope is stable at this point. In saturated state, the maximum shear strain increment is 0.084, and the horizontal displacement on the potential slip surface is especially large, which is 0.168m; the slope is unstable at this point. The Huangci landslide is a typical landslide in the Heifangtai landslide group containing landslides with similar characteristics. It can be preliminarily concluded that Heifangtai landslides are also induced by the increase of moisture content resulting from long-term irrigation.

  18. Defining Mediterranean and Black Sea biogeochemical subprovinces and synthetic ocean indicators using mesoscale oceanographic features

    DEFF Research Database (Denmark)

    Nieblas, Anne-Elise; Drushka, Kyla; Reygondeau, Gabriel


    employ a k-means clustering algorithm to objectively define biogeochemical subprovinces based on classical features, and, for the first time, on mesoscale features, and on a combination of both classical and mesoscale features. Principal components analysis is then performed on the oceanographic...

  19. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy). (United States)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.


    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own structural surveys of the area to better identify the major fault features (e.g., type of fractures, statistical properties, geometrical and petro-physical characteristics). In our model the damage zones of the fault are described as discretely fractured medium, while the core of the fault as a porous one. Our model utilizes the dfnWorks code, a parallelized computational suite, developed at Los Alamos National Laboratory (LANL), that generates three dimensional Discrete Fracture Network (DFN) of the damage zones of the fault and characterizes its hydraulic parameters. The challenge of the study is the coupling between the discrete domain of the damage zones and the continuum one of the core. The field investigations and the basic computational workflow will be described, along with preliminary results of fluid flow simulation at the scale of the fault.

  20. Wet-snow avalanche interaction with a deflecting dam: field observations and numerical simulations in a case study

    Directory of Open Access Journals (Sweden)

    B. Sovilla


    Full Text Available In avalanche-prone areas, deflecting dams are widely used to divert avalanches away from endangered objects. In recent years, their effectiveness has been questioned when several large and multiple avalanches have overrun such dams.

    In 2008, we were able to observe a large wet-snow avalanche, characterized by an high water content, that interacted with a deflecting dam and overflowed it at its lower end. To evaluate the dam's performance, we carried out an airborne laser scanning campaign immediately after the avalanche. This data, together with a video sequence made during the avalanche descent, provided a unique data set to study the dynamics of a wet dense snow avalanche and its flow behavior along a deflecting dam.

    To evaluate the effect of the complex flow field of the avalanche along the dam and to provide a basis for discussion of the residual risk, we performed numerical simulations using a two-dimensional dense snow avalanche dynamics model with entrainment.

    In comparison to dry dense snow avalanches, we found that wet-snow avalanches, with high water content, seem to be differently influenced by the local small-scale topography roughness. Rough terrain close to the dam deflected the flow to produce abrupt impacts with the dam. At the impact sites, instability waves were generated and increased the already large flow depths. The complex flow dynamics around the dam may produce large, local snow deposits. Furthermore, the high water content in the snow may decrease the avalanche internal friction angle, inducing wet-snow avalanches to spread further laterally than dry-snow avalanches.

    Based on our analysis, we made recommendations for designing deflecting dams and for residual risk analysis to take into account the effects of wet-snow avalanche flow.

  1. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM (United States)

    Payne, A. E.; Jablonowski, C.


    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  2. Numerical Modeling of Permeability Enhancement by Hydroshearing: the Case of Phase I Reservoir Creation at Fenton Hill (United States)

    Rutqvist, J.; Rinaldi, A. P.


    The exploitation of a geothermal system is one of the most promising clean and almost inexhaustible forms of energy production. However, the exploitation of hot dry rock (HDR) reservoirs at depth requires circulation of a large amount of fluids. Indeed, the conceptual model of an Enhanced Geothermal System (EGS) requires that the circulation is enhanced by fluid injection. The pioneering experiments at Fenton Hill demonstrated the feasibility of EGS by producing the world's first HDR reservoirs. Such pioneering project demonstrated that the fluid circulation can be effectively enhanced by stimulating a preexisting fracture zone. The so-called "hydroshearing" involving shear activation of preexisting fractures is recognized as one of the main processes effectively enhancing permeability. The goal of this work is to quantify the effect of shear reactivation on permeability by proposing a model that accounts for fracture opening and shearing. We develop a case base on a pressure stimulation experiment at Fenton Hill, in which observation suggest that a fracture was jacked open by pressure increase. The proposed model can successfully reproduce such a behavior, and we compare the base case of pure elastic opening with the hydroshearing model to demonstrate that this latter could have occurred at the field, although no "felt" seismicity was observed. Then we investigate on the sensitivity of the proposed model by varying some of the critical parameters such as the maximum aperture, the dilation angle, as well as the fracture density.

  3. Assimilation of ocean sea-surface height observations of mesoscale eddies (United States)

    Weiss, Jeffrey B.; Grooms, Ian


    Mesoscale eddies are one of the dominant sources of variability in the world's oceans. With eddy-resolving global ocean models, it becomes important to assimilate observations of mesoscale eddies to correctly represent the state of the mesoscale. Here, we investigate strategies for assimilating a reduced number of sea-surface height observations by focusing on the coherent mesoscale eddies. The study is carried out in an idealized perfect-model framework using two-layer forced quasigeostrophic dynamics, which captures the dominant dynamics of ocean mesoscale eddies. We study errors in state-estimation as well as error growth in forecasts and find that as fewer observations are assimilated, assimilating at vortex locations results in reduced state estimation and forecast errors.

  4. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea (United States)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder


    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE

  5. Numerical analysis

    CERN Document Server

    Scott, L Ridgway


    Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...

  6. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping


    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  7. Mesoscale variability of the Upper Colorado River snowpack (United States)

    Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.


    In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.

  8. Lightning characteristics of derecho producing mesoscale convective systems (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.


    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  9. Mesoscale eddies are oases for higher trophic marine life.

    Directory of Open Access Journals (Sweden)

    Olav R Godø

    Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  10. The Protistan Microbiome of Grassland Soil: Diversity in the Mesoscale. (United States)

    Venter, Paul Christiaan; Nitsche, Frank; Domonell, Anne; Heger, Peter; Arndt, Hartmut


    Genomic data for less than one quarter of ∼1.8 million named species on earth exist in public databases like GenBank. Little information exists on the estimated one million small sized (1-100μm) heterotrophic nanoflagellates and ciliates and their taxa-area relationship. We analyzed environmental DNA from 150 geo-referenced grassland plots representing topographical and land-use ranges typical for Central Europe. High through-put barcoding allowed the identification of operational taxonomic units (OTUs) at species level, with high pairwise identity to reference sequences (≥99.7%), but also the identification of sequences at the genus (≥97%) and class (≥80%) taxonomic level. Species richness analyses revealed, on average, 100 genus level OTUs (332 unique individual read (UIR) and 56 class level OTUs per gram of soil sample in the mesoscale (1-1000km). Database shortfalls were highlighted by increased uncertain taxonomic lineages at lower resolution (≥80% sequence identity). No single barcode occurred ubiquitously across all sites. Taxa-area relationships indicated that OTUs spread over the entire mesoscale were more similar than in the local scale and increased land-use (fertilization, mowing and grazing) promoted taxa-area separation. Only a small fraction of sequences strictly matched reference library sequences, suggesting a large protistan "dark matter" in soil which warrants further research. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.


    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  12. Application of a mesoscale forecasting model (NMM) coupled to the CALMET to develop forecast meteorology to use with the CALPUFF air dispersion model

    International Nuclear Information System (INIS)

    Radonjic, Z.; Telenta, B.; Kirklady, J.; Chambers, D.; Kleb, H.


    An air quality assessment was undertaken as part of the Environmental Assessment for the Port Hope Area Initiative. The assessment predicted potential effects associated with the remediation efforts for historic low-level radioactive wastes and construction of Long-Term Waste Management Facilities (LTWMFs) for both the Port Hope and Port Granby Projects. A necessary element of air dispersion modelling is the development of suitable meteorological data. For the Port Hope and Port Granby Projects, a meteorological station was installed in close proximity to the location of the recommended LTWMF in Port Hope. The recommended location for the Port Granby LTWMF is approximately 10 km west of the Port Hope LTWMF. Concerns were raised regarding the applicability of data collected for the Port Hope meteorological station to the Port Granby Site. To address this concern, a new method for processing meteorological data, which coupled mesoscale meteorological forecasting data the U.S. EPA CALMET meteorological data processor, was applied. This methodology is possible because a new and advanced mesoscale forecasting modelling system enables extensive numerical calculations on personal computers. As a result of this advancement, mesoscale forecasting systems can now be coupled with the CALMET meteorological data processor and the CALPUFF air dispersion modelling system to facilitate wind field estimations and air dispersion analysis. (author)

  13. Spatiotemporal distribution of nitrogen dioxide within and around a large-scale wind farm - a numerical case study (United States)

    Mo, Jingyue; Huang, Tao; Zhang, Xiaodong; Zhao, Yuan; Liu, Xiao; Li, Jixiang; Gao, Hong; Ma, Jianmin


    As a renewable and clean energy source, wind power has become the most rapidly growing energy resource worldwide in the past decades. Wind power has been thought not to exert any negative impacts on the environment. However, since a wind farm can alter the local meteorological conditions and increase the surface roughness lengths, it may affect air pollutants passing through and over the wind farm after released from their sources and delivered to the wind farm. In the present study, we simulated the nitrogen dioxide (NO2) air concentration within and around the world's largest wind farm (Jiuquan wind farm in Gansu Province, China) using a coupled meteorology and atmospheric chemistry model WRF-Chem. The results revealed an edge effect, which featured higher NO2 levels at the immediate upwind and border region of the wind farm and lower NO2 concentration within the wind farm and the immediate downwind transition area of the wind farm. A surface roughness length scheme and a wind turbine drag force scheme were employed to parameterize the wind farm in this model investigation. Modeling results show that both parameterization schemes yield higher concentration in the immediate upstream of the wind farm and lower concentration within the wind farm compared to the case without the wind farm. We infer this edge effect and the spatial distribution of air pollutants to be the result of the internal boundary layer induced by the changes in wind speed and turbulence intensity driven by the rotation of the wind turbine rotor blades and the enhancement of surface roughness length over the wind farm. The step change in the roughness length from the smooth to rough surfaces (overshooting) in the upstream of the wind farm decelerates the atmospheric transport of air pollutants, leading to their accumulation. The rough to the smooth surface (undershooting) in the downstream of the wind farm accelerates the atmospheric transport of air pollutants, resulting in lower concentration

  14. Successful pregnancy and live birth from a hypogonadotropic hypogonadism woman with low serum estradiol concentrations despite numerous oocyte maturations: a case report. (United States)

    Matsumoto, Kaori; Imakawa, Kazuhiko; Hayashi, Chuyu


    The increase in serum estradiol (E 2 ) concentrations during the follicular phase becomes the index of oocyte maturation in vivo. When ovarian stimulation is performed to hypogonadotropic hypogonadism (HH) patients with only follicle stimulating hormone (FSH), proper increase in serum E 2 concentrations is not observed. Even if oocytes are obtained, which usually have low fertilization rate. In this report, we would like to present an unique case, in which under low E 2 concentrations and without luteinizing hormone (LH) administration, numerous mature oocytes could be obtained and a healthy baby delivered. During controlled ovarian stimulation (COS) with only recombinant follicular stimulating hormone (rFSH) administrations, a 26-year-old Japanese woman with hypothalamic amenorrhea (i.e., hypogonadotropic hypogonadism) developed numerous follicles despite low serum E 2 , 701 pg/ml, and high progesterone (P 4 ) concentrations, 2.11 ng/ml, on the day of induced ovulation. However, 33 cumulus-oocyte complexes (COCs) were successfully obtained; following the embryo culture, four early embryos and six blastocysts were cryopreserved. This patient received hormone replacement therapy (HRT), during which one of six cryopreserved blastocysts was thawed and transferred into the uterine lumen. The patient became pregnant from the first transfer, went through her pregnancy without any complications, and delivered a healthy male baby in the 39th week. Low E 2 concentrations in follicular fluids (FFs) are suggestive that aromatase and/or 17β-hydroxysteroid dehydrogenase (17β-HSD) could be low. Serum E 2 concentrations may not be the most important index for oocyte maturation during COS, and suggested that oocyte maturation was in progress even under low serum E 2 and high P 4 conditions. Even if serum E 2 concentrations did not properly increase, numerous mature oocytes could be obtained, resulting in the birth of a healthy baby.

  15. Mesoscale Architecture Shapes Initiation and Richness of Spontaneous Network Activity. (United States)

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich


    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance, and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e., promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity, and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics. SIGNIFICANCE STATEMENT Computational studies predict richer and persisting spatiotemporal patterns of spontaneous activity in

  16. Numerical analysis

    CERN Document Server

    Brezinski, C


    Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<

  17. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation (United States)

    Harrison, D. E.; Holland, W. R.


    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  18. Mesoscale storm and dry period parameters from hourly precipitation data: program documentation

    Energy Technology Data Exchange (ETDEWEB)

    Thorp, J.M.


    Wet deposition of airborne chemical pollutants occurs primarily from precipitation. Precipitation rate, amount, duration, and location are important meteorological factors to be considered when attempting to understand the relationship of precipitation to pollutant deposition. The Pacific Northwest Laboratory (PNL) has conducted studies and experiments in numerous locations to collect data that can be incorporated into theories and models that attempt to describe the complex relationship between precipitation occurrence and chemical wet desposition. Model development often requires the use of average rather than random condition as input. To provide mean values of storm parameters, the task, Climatological Analysis of Mesoscale Storms, was created as a facet of the Environmental Protection Agency's related-service project, Precipitation Scavenging Module Development. Within this task computer programs have been developed at PNL which incorporate hourly precipitation data from National Weather Service stations to calculate mean values and frequency distributions of precipitation periods and of the interspersed dry periods. These programs have been written with a degree of flexibiity that will allow user modification for applications to different, but similar, analyses. This report describes in detail the rationale and operation of the two computer programs which produce the tables of average and frequency distributions of storm and dry period parameters from the precipitation data. A listing of the programs and examples of the generated output are included in the appendices. 3 references, 3 figures, 6 tables.

  19. Introducing uncertainty of radar-rainfall estimates to the verification of mesoscale model precipitation forecasts

    Directory of Open Access Journals (Sweden)

    M. P. Mittermaier


    Full Text Available A simple measure of the uncertainty associated with using radar-derived rainfall estimates as "truth" has been introduced to the Numerical Weather Prediction (NWP verification process to assess the effect on forecast skill and errors. Deterministic precipitation forecasts from the mesoscale version of the UK Met Office Unified Model for a two-day high-impact event and for a month were verified at the daily and six-hourly time scale using a spatially-based intensity-scale method and various traditional skill scores such as the Equitable Threat Score (ETS and log-odds ratio. Radar-rainfall accumulations from the UK Nimrod radar-composite were used.

    The results show that the inclusion of uncertainty has some effect, shifting the forecast errors and skill. The study also allowed for the comparison of results from the intensity-scale method and traditional skill scores. It showed that the two methods complement each other, one detailing the scale and rainfall accumulation thresholds where the errors occur, the other showing how skillful the forecast is. It was also found that for the six-hourly forecasts the error distributions remain similar with forecast lead time but skill decreases. This highlights the difference between forecast error and forecast skill, and that they are not necessarily the same.

  20. Mesoscale modulation of air-sea CO2 flux in Drake Passage (United States)

    Song, Hajoon; Marshall, John; Munro, David R.; Dutkiewicz, Stephanie; Sweeney, Colm; McGillicuddy, D. J.; Hausmann, Ute


    We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated biogeochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model. Both observations and model show a negative correlation between temperature and partial pressure of CO2 (pCO2) anomalies at the sea surface in austral summer, indicating that warm/cold anticyclonic/cyclonic eddies take up more/less CO2. In austral winter, in contrast, relationships are reversed: warm/cold anticyclonic/cyclonic eddies are characterized by a positive/negative pCO2 anomaly and more/less CO2 outgassing. It is argued that DIC-driven effects on pCO2 are greater than temperature effects in austral summer, leading to a negative correlation. In austral winter, however, the reverse is true. An eddy-centric analysis of the model solution reveals that nitrate and iron respond differently to the same vertical mixing: vertical mixing has a greater impact on iron because its normalized vertical gradient at the base of the surface mixed layer is an order of magnitude greater than that of nitrate.

  1. Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009 over Southern Taiwan

    Directory of Open Access Journals (Sweden)

    C.-Y. Lin


    Full Text Available Within 100 h, a record-breaking rainfall, 2855 mm, was brought to Taiwan by typhoon Morakot in August 2009 resulting in devastating landslides and casualties. Analyses and simulations show that under favorable large-scale situations, this unprecedented precipitation was caused first by the convergence of the southerly component of the pre-existing strong southwesterly monsoonal flow and the northerly component of the typhoon circulation. Then the westerly component of southwesterly flow pushed the highly moist air (mean specific humidity >16 g/kg between 950 and 700 hPa from NCEP GFS data set eastward against the Central Mountain Range, and forced it to lift in the preferred area. From the fine-scale numerical simulation, not only did the convergence itself provide the source of the heavy rainfall when it interacted with the topography, but also convective cells existed within the typhoon's main rainband. The convective cells were in the form of small rainbands perpendicular to the main one, and propagated as wave trains downwind. As the main rainband moved northward and reached the southern CMR, convective cells inside the narrow convergence zone to the south and those to the north as wave trains, both rained heavily as they were lifted by the west-facing mountain slopes. Those mesoscale processes were responsible for the unprecedented heavy rainfall total that accompanied this typhoon.

  2. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory (United States)

    Starr, David O. (Technical Monitor); Smith, Eric A.


    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  3. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale (United States)

    Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico


    A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.

  4. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy (United States)

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.


    Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation.

  5. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar


    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  6. Mathematical modeling and numerical study of a spray in a rarefied gas. Application to the simulation of dust particle transport in ITER in case of vacuum loss accident

    International Nuclear Information System (INIS)

    Charles, F.


    The thesis deals with kinetic models describing a rarefied spray. These models rely on coupling two Partial Differential Equations which describe the spatio-temporal evolution of the distribution of molecules and dust particles. The model presented in the first part is described by two Boltzmann-type equations where collisions between molecules and particles are modeled by two collision operators. We suggest two models of this collision operators. In the first one, collisions between dust particles and molecules are supposed to be elastic. In the second one, we assume those collisions are inelastic and given by a diffuse reflexion mechanism on the surface of dust specks. This leads to establish non classical collision operators. We prove that in the case of elastic collisions, the spatially homogeneous system has weak solutions which preserve mass and energy, and which satisfy an entropy inequality. We then describe the numerical simulation of the inelastic model, which is based on a Direct Simulation Method. This brings to light that the numerical simulation of the system becomes too expensive because the typical size of a dust particle is too large. We therefore introduce in the second part of this work a model constituted of a coupling (by a drag force term) between a Boltzmann equation and a Vlasov equation. To this end, we perform a scaling of the Boltzmann/Boltzmann system and an asymptotic expansion of one of the dimensionless collision operators with respect to the ratio of mass between a molecule of gas and a particle. A rigorous proof of the passage to the limit is given in the spatially homogeneous setting, for the elastic model of collision operators. It includes a new variant of Povzner's inequality in which the vanishing mass ratio is taken into account. Moreover, we numerically compare the Boltzmann/Boltzmann and Vlasov/Boltzmann systems with the inelastic collision operators. The simulation of the Vlasov equation is performed with a Particle

  7. Numerical Relativity (United States)

    Baker, John G.


    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  8. Introduction to focus issue: mesoscales in complex networks. (United States)

    Almendral, Juan A; Criado, Regino; Leyva, Inmaculada; Buldú, Javier M; Sendiña-Nadal, Irene


    Although the functioning of real complex networks is greatly determined by modularity, the majority of articles have focused, until recently, on either their local scale structure or their macroscopical properties. However, neither of these descriptions can adequately describe the important features that complex networks exhibit due to their organization in modules. This Focus Issue precisely presents the state of the art on the study of complex networks at that intermediate level. The reader will find out why this mesoscale level has become an important topic of research through the latest advances carried out to improve our understanding of the dynamical behavior of modular networks. The contributions presented here have been chosen to cover, from different viewpoints, the many open questions in the field as different aspects of community definition and detection algorithms, moduli overlapping, dynamics on modular networks, interplay between scales, and applications to biological, social, and technological fields.

  9. Advanced mesoscale forecasts of icing events for Gaspe wind farms

    International Nuclear Information System (INIS)

    Gayraud, A.; Benoit, R.; Camion, A.


    Atmospheric icing includes every event which causes ice accumulations of various shapes on different structures. In terms of its effects on wind farms, atmospheric icing can decrease the aerodynamic performance, cause structure overloading, and add vibrations leading to failure and breaking. This presentation discussed advanced mesoscale forecasts of icing events for Gaspe wind farms. The context of the study was discussed with particular reference to atmospheric icing; effects on wind farms; and forecast objectives. The presentation also described the models and results of the study. These included MC2, a compressible community model, as well as a Milbrandt and Yau condensation scheme. It was shown that the study has provided good estimates of the duration of events as well as reliable precipitation categories. tabs., figs.

  10. Mesoscale simulations of shockwave energy dissipation via chemical reactions. (United States)

    Antillon, Edwin; Strachan, Alejandro


    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  11. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong


    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  12. Optical 3D printing: bridging the gaps in the mesoscale (United States)

    Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas


    Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial

  13. Recipes for correcting the impact of effective mesoscale resolution on the estimation of extreme winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Ott, Søren; Badger, Jake


    Extreme winds derived from simulations using mesoscale models are underestimated due to the effective spatial and temporal resolutions. This is reflected in the spectral domain as an energy deficit in the mesoscale range. The energy deficit implies smaller spectral moments and thus underestimation...... in the extreme winds. We have developed two approaches for correcting the smoothing effect resulting from the mesoscale model resolution on the extreme wind estimation by taking into account the difference between the modeled and measured spectra in the high frequency range. Both approaches give estimates...... of the smoothing effect in good agreement with measurements from several sites in Denmark and Germany....

  14. Lagrangian simulation and tracking of the mesoscale eddies contaminated by Fukushima-derived radionuclides (United States)

    Prants, Sergey V.; Budyansky, Maxim V.; Uleysky, Michael Y.


    A Lagrangian methodology is developed to simulate, track, document and analyze the origin and history of water masses in ocean mesoscale features. It aims to distinguish whether water masses inside the mesoscale eddies originated from the main currents in the Kuroshio-Oyashio confluence zone. By computing trajectories for a large number of synthetic Lagrangian particles advected by the AVISO velocity field after the Fukushima accident, we identify and track the mesoscale eddies which were sampled in the cruises in 2011 and 2012 and estimate their risk of being contaminated by Fukushima-derived radionuclides. The simulated results are compared with in situ measurements, showing a good qualitative correspondence.

  15. Lagrangian simulation and tracking of the mesoscale eddies contaminated by Fukushima-derived radionuclides

    Directory of Open Access Journals (Sweden)

    S. V. Prants


    Full Text Available A Lagrangian methodology is developed to simulate, track, document and analyze the origin and history of water masses in ocean mesoscale features. It aims to distinguish whether water masses inside the mesoscale eddies originated from the main currents in the Kuroshio–Oyashio confluence zone. By computing trajectories for a large number of synthetic Lagrangian particles advected by the AVISO velocity field after the Fukushima accident, we identify and track the mesoscale eddies which were sampled in the cruises in 2011 and 2012 and estimate their risk of being contaminated by Fukushima-derived radionuclides. The simulated results are compared with in situ measurements, showing a good qualitative correspondence.

  16. The Bering Sea : communication with the Western subarctic gyre, mesoscale activity, shelf-basin exchange, and the flow through Bering Strait


    Kinney, Jaclyn Clement


    A 1/12th-degree, pan-Arctic ice-ocean numerical model is used to better understand the circulation and exchanges in the Bering Sea. Understanding the physical oceanography of the Bering Sea is significant for the U.S. Navy due to the expected increase in ship traffic and exploration of natural resources that will likely coincide with the ongoing retreat of sea ice in the Western Arctic. This model represents a large step forward in the ability to simulate the mesoscale eddies and meanders i...

  17. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach (United States)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick


    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the

  18. Range-Specific High-Resolution Mesoscale Model Setup: Data Assimilation (United States)

    Watson, Leela R.


    Mesoscale weather conditions can have an adverse effect on space launch, landing, and ground processing at the Eastern Range (ER) in Florida and Wallops Flight Facility (WFF) in Virginia. During summer, land-sea interactions across Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) lead to sea breeze front formation, which can spawn deep convection that can hinder operations and endanger personnel and resources. Many other weak locally driven low-level boundaries and their interactions with the sea breeze front and each other can also initiate deep convection in the KSC/CCAFS area. Some of these other boundaries include the Indian River breeze front, Banana River breeze front, outflows from previous convection, horizontal convective rolls, convergence lines from other inland bodies of water such as Lake Okeechobee, the trailing convergence line from convergence of sea breeze fronts due to the shape of Cape Canaveral, frictional convergence lines from the islands in the Bahamas, convergence lines from soil moisture differences, convergence lines from cloud shading, and others. All these subtle weak boundary interactions often make forecasting of operationally important weather very difficult at KSC/CCAFS during the convective season (May-Oct). These convective processes often build quickly, last a short time (60 minutes or less), and occur over small distances, all of which also poses a significant challenge to the local forecasters who are responsible for issuing weather advisories, watches, and warnings. Surface winds during the transition seasons of spring and fall pose the most difficulties for the forecasters at WFF. They also encounter problems forecasting convective activity and temperature during those seasons. Therefore, accurate mesoscale model forecasts are needed to aid in their decision making. Both the ER and WFF would benefit greatly from high-resolution mesoscale model output to better forecast a variety of unique weather

  19. Numerical relativity

    CERN Document Server

    Nakamura, T


    In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difficulties in principle as well as in practice.

  20. A Physically Based Horizontal Subgrid-scale Turbulent Mixing Parameterization for the Convective Boundary Layer in Mesoscale Models (United States)

    Zhou, Bowen; Xue, Ming; Zhu, Kefeng


    Compared to the representation of vertical turbulent mixing through various PBL schemes, the treatment of horizontal turbulence mixing in the boundary layer within mesoscale models, with O(10) km horizontal grid spacing, has received much less attention. In mesoscale models, subgrid-scale horizontal fluxes most often adopt the gradient-diffusion assumption. The horizontal mixing coefficients are usually set to a constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. In this work, horizontal turbulent mixing parameterizations using physically based characteristic velocity and length scales are proposed for the convective boundary layer based on analysis of a well-resolved, wide-domain large-eddy simulation (LES). The proposed schemes involve different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The current horizontal mixing formulations are also assessed a priori through the filtered LES results to illustrate their limitations. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes, and further demonstrate the weakness of the current schemes.

  1. Mesoscale boundaries and storm development in Southwestern Ontario during ELBOW 2001 (United States)

    Alexander, Lisa Susan

    The Effects of Lake Breezes on Weather (ELBOW) 2001 project was conducted in Southwestern Ontario, during summer 2001. Project goals included: understanding how lake breezes interact with one another, other mesoscale boundaries and synoptic fronts, understanding how lake breezes affect storm development, and helping to improve regional forecasts by transferring findings to forecasters. Radar, Satellite, Mesonet and Integrated (considering all data sets) analyses were each used to identify the mesoscale boundaries that occurred during the study period. A contingency table approach, for lake breeze occurrence, was used to evaluate each of the analyses against a Final 'Truth' Set. Findings showed that the Integrated analysis performed the best. Advantages and drawbacks of each analysis became apparent. Evaluation of the analyses was also done by studying the in land penetration distances of the lake breeze fronts. This revealed that most the analyses had good correlation to the Final 'Truth' Set. The Mesonet analysis was the least accurate for pinpointing lake breeze fronts, due to lack of information between surface stations. The boundary analysis showed that lake breeze fronts, originating from one or more of the surrounding lakes, occurred in the study area on 73 out of 86 days, or 85% of the days (for 1800 UTC). Exeter radar data (CAPPI and MAXR) were run through URP cell identification and tracking algorithms. The locations of storm cells, when they reached a 40 dBZ level, were measured relative to the closest boundary. Considering study days without warm front influence, 70.4% of the 40 dBZ CAPPI cell initiations and 68.5% of the 40 dBZ MAXR cell initiations occurred at a distance of 20 km or less from a boundary. Cell distribution plots were created to show the locations of the 40 dBZ cell initiations in front or behind a specified boundary type or boundary classification. Nowcasting techniques considering cumulus cloud development and Lifted Index values in

  2. LBA-ECO CD-03 Mesoscale Meteorological Data, Santarem Region, Para, Brazil: 1998-2006 (United States)

    National Aeronautics and Space Administration — A mesoscale network has been set up in the Santarem region of Para, Brazil. This network consists of eight meteorological stations named Belterra, Km 117 (Fazenda...

  3. LBA-ECO CD-03 Mesoscale Meteorological Data, Santarem Region, Para, Brazil: 1998-2006 (United States)

    National Aeronautics and Space Administration — ABSTRACT: A mesoscale network has been set up in the Santarem region of Para, Brazil. This network consists of eight meteorological stations named Belterra, Km 117...

  4. The California Coastal Jet: Synoptic Controls and Topographically Induced Mesoscale Structure

    National Research Council Canada - National Science Library

    Cross, Patrick


    The low-level jet along the coast of southern Oregon and California is examined in detail through an extensive data set and the application of COAMPS, a mesoscale model, for the purpose of improving...

  5. Structure and Variability of the Mesoscale Circulation in the Caribbean sea as Deduced From Satellite Altimetry

    National Research Council Canada - National Science Library

    Pibernat, Luis


    Four years of Topex/Poseidon (TIP) and European Remote Sensing Satellite (ERS) altimetry data in the Caribbean Sea are used to describe the structure and variability of the mesoscale circulation in this area...

  6. Oceanic mesoscale turbulence drives large biogeochemical interannual variability at middle and high latitudes

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Resplandy, L.; Lengaigne, M.

    Observed phytoplankton interannual variability has been commonly related to atmospheric variables and climate indices. Here we showed that such relation is highly hampered by internal variability associated with oceanic mesoscale turbulence...

  7. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Directory of Open Access Journals (Sweden)

    H. Kreibich


    Full Text Available Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB.In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  8. Tools and Methods for Visualization of Mesoscale Ocean Eddies (United States)

    Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.


    Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available

  9. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model (United States)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor


    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  10. Evaluation of a mesoscale dispersion modelling tool during the CAPITOUL experiment (United States)

    Lac, C.; Bonnardot, F.; Connan, O.; Camail, C.; Maro, D.; Hebert, D.; Rozet, M.; Pergaud, J.


    Atmospheric transport and dispersion were investigated during the CAPITOUL campaign using measurements of sulphur hexafluoride (SF6) tracer. Six releases of SF6 tracer were performed (March 9-11 and July 1-3, 2004) in the same suburban area of Toulouse conurbation, during the Intensive Observing Periods (IOP) of CAPITOUL. Concentration data were collected both at ground-level along axes perpendicular to the wind direction (at distances ranging between 280 m and 5000 m from the release point), and above the ground at 100 m and 200 m height using aircraft flights. Meteorological conditions were all associated with daytime anticyclonic conditions with weak winds and convective clear and cloudy boundary layers. A meso-scale dispersion modelling system, PERLE, developed at Meteo-France for environmental emergencies in case of atmospheric accidental release, was evaluated in terms of meteorology and dispersion, for the different tracer experiments, in its operational configuration. PERLE is based on the combination of the non-hydrostatic meso-scale MESO-NH model, running at 2 km horizontal resolution, and the Lagrangian particle model SPRAY. The statistical meteorological evaluation includes two sets of simulations with initialisation from ECMWF or ALADIN. The meteorological day-to-day error statistics show fairly good Meso-NH predictions, in terms of wind speed, wind direction and near-surface temperature. A strong sensitivity to initial fields concerns the surface fluxes, crucial for dispersion, with an excessive drying of the convective boundary layer with ALADIN initial fields, leading to an overprediction of surface sensible heat fluxes. A parameterization of dry and shallow convection according to the Eddy-Diffusivity-Mass-Flux (EDMF) approach (Pergaud et al. 2008) allows an efficient mixing in the Convective Boundary Layer (CBL) and improves significantly the wind fields. A statistical evaluation of the dispersion prediction was then performed and shows a

  11. A case study of radon-222 transport from continental North-East Asia to the Japanese islands in winter by numerical analysis

    International Nuclear Information System (INIS)

    Sakashita, T.; Doi, M.; Nakamura, Y.; Iida, T.


    A case study of the regional transport (∼3000 km) of radon-222 ( 222 Rn) from continental North-East Asia to the Japanese islands was performed by numerical analysis using five separate source areas (South, Middle and North China, Russia and Korea), while a seasonal northwest wind blew over the Japan Sea. The results for three periods (Term I: 16-18, Term II: 22-25 and Term III: 27-28 in December 1990) were compared with concentrations measured at the Kanazawa site (near the coast of the Japan Sea facing the seasonal wind) and the Nagoya site (overland and downwind on the shores of the Pacific Ocean). Most of the 222 Rn at the Kanazawa site was calculated to come from North China and Korea in Term I, Middle China, North China, and Korea in Term II, and Russia and Korea in Term III. The considerable differences in the origins of 222 Rn emanated from the continent were estimated between Terms I, II and III, even though the similar northwest wind was dominant over the Japan Sea. A contour line analysis indicated movement of 222 Rn emanated from Middle China in a northerly direction first and then a southeasterly direction, resulting from low pressure. The results suggest that the low-pressure systems play an important role in the transport of 222 Rn in North-East Asia

  12. High-Resolution Mesoscale Model Setup for the Eastern Range and Wallops Flight Facility (United States)

    Watson, Leela R.; Zavodsky, Bradley T.


    use a cycled GSI system similar to the operational North American Mesoscale (NAM) model. The scripts run a 12-hour pre-cycle in which data are assimilated from 12 hours prior up to the model initialization time. A number of different model configurations were tested for both the ER and WFF by varying the horizontal resolution on which the data assimilation was done. Three different grid configurations were run for the ER and two configurations were run for WFF for archive cases from 27 Aug 2013 through 10 Nov 2013. To quantify model performance, standard model output will be compared to the Meteorological Assimilation Data Ingest System (MADIS) data. The MADIS observation data will be compared to the WRF forecasts using the Model Evaluation Tools (MET) verification package. In addition, the National Centers for Environmental Prediction's Stage IV precipitation data will be used to validate the WRF precipitation forecasts. The author will summarize the relative skill of the various WRF configurations and how each configuration behaves relative to the others, as well as determine the best model configuration for each space launch range.

  13. Numerical analysis

    CERN Document Server

    Jacques, Ian


    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  14. Intercomparison of mesoscale meteorological models for precipitation forecasting

    Directory of Open Access Journals (Sweden)

    E. Richard


    Full Text Available In the framework of the RAPHAEL EU project, a series of past heavy precipitation events has been simulated with different meteorological models. Rainfall hindcasts and forecasts have been produced by four models in use at various meteorological services or research centres of Italy, Canada, France and Switzerland. The paper is focused on the comparison of the computed precipitation fields with the available surface observations. The comparison is carried out for three meteorological situations which lead to severe flashflood over the Toce-Ticino catchment in Italy (6599 km2 or the Ammer catchment (709 km2 in Germany. The results show that all four models reproduced the occurrence of these heavy precipitation events. The accuracy of the computed precipitation appears to be more case-dependent than model-dependent. The sensitivity of the computed rainfall to the boundary conditions (hindcast v. forecast was found to be rather weak, indicating that a flood forecasting system based upon a numerical meteo-hydrological simulation could be feasible in an operational context. Keywords: meteorological models, precipitation forecast

  15. Mesoscale convective systems in Spain: instability conditions and moisture sources involved

    Directory of Open Access Journals (Sweden)

    S. Queralt


    Full Text Available Source-receptor water vapor content areas are analyzed for a particular case of deep mesoscale convective system (MCS developed over the Mediterranean margin of Spain in October 1982. The aim of this work is to study simultaneously the atmospheric instability conditions and water vapour fluxes which finally resulted in very severe precipitation rates, reaching up to 600 mm in a single day. Humidity amounts and transport are quantified along the trajectories computed from a lagrangian particle simulation model (FLEXPART6.2. To evaluate the precipitation probability, the water vapor content and both thermodynamic and dynamic atmospheric instability components were assessed. The October 1982 Iberian MCS occurred as a consequence of a deep cutoff low detected between 500 and 200 hPa levels. The dynamical instability was measured through potential vorticity anomalies and Q vector divergence, which presented their maximum and minimum centers respectively over south-eastern Iberia. Synoptic and dynamic instability conditions were obtained from the ERA-40 reanalysis dataset. It is observed that during this severe weather episode, the specific humidity increased along the lowest and easternmost trajectories, which are mainly spread over the Mediterranean Sea.

  16. Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation

    Directory of Open Access Journals (Sweden)

    D. D. Flagg


    Full Text Available Mesoscale modeling of the urban boundary layer requires careful parameterization of the surface due to its heterogeneous morphology. Model estimated meteorological quantities, including the surface energy budget and canopy layer variables, will respond accordingly to the scale of representation. This study examines the sensitivity of the surface energy balance, canopy layer and boundary layer meteorology to the scale of urban surface representation in a real urban area (Detroit-Windsor (USA-Canada during several dry, cloud-free summer periods. The model used is the Weather Research and Forecasting (WRF model with its coupled single-layer urban canopy model. Some model verification is presented using measurements from the Border Air Quality and Meteorology Study (BAQS-Met 2007 field campaign and additional sources. Case studies span from "neighborhood" (10 s ~308 m to very coarse (120 s ~3.7 km resolution. Small changes in scale can affect the classification of the surface, affecting both the local and grid-average meteorology. Results indicate high sensitivity in turbulent latent heat flux from the natural surface and sensible heat flux from the urban canopy. Small scale change is also shown to delay timing of a lake-breeze front passage and can affect the timing of local transition in static stability.

  17. Observations of Coastally Transitioning West African Mesoscale Convective Systems during NAMMA

    Directory of Open Access Journals (Sweden)

    Bradley W. Klotz


    Full Text Available Observations from the NASA 10 cm polarimetric Doppler weather radar (NPOL were used to examine structure, development, and oceanic transition of West African Mesoscale Convective Systems (MCSs during the NASA African Monsoon Multidisciplinary Analysis (NAMMA to determine possible indicators leading to downstream tropical cyclogenesis. Characteristics examined from the NPOL data include echo-top heights, maximum radar reflectivity, height of maximum radar reflectivity, and convective and stratiform coverage areas. Atmospheric radiosondes launched during NAMMA were used to investigate environmental stability characteristics that the MCSs encountered while over land and ocean, respectively. Strengths of African Easterly Waves (AEWs were examined along with the MCSs in order to improve the analysis of MCS characteristics. Mean structural and environmental characteristics were calculated for systems that produced TCs and for those that did not in order to determine differences between the two types. Echo-top heights were similar between the two types, but maximum reflectivity and height and coverage of intense convection (>50 dBZ are all larger than for the TC producing cases. Striking differences in environmental conditions related to future TC formation include stronger African Easterly Jet, increased moisture especially at middle and upper levels, and increased stability as the MCSs coastally transition.

  18. Condensate localization by mesoscale disorder in high-Tc superconductors

    International Nuclear Information System (INIS)

    Kumar, N.


    We propose and solve approximately a phenomenological model for Anderson localization of the macroscopic wavefunction for an inhomogeneous superconductor quench-disordered on the mesoscale of the order of the coherence length ξ 0 . Our treatment is based on the non-linear Schroedinger equation resulting from the Ginzburg-Landau free-energy functional having a spatially random coefficient representing spatial disorder of the pairing interaction. Linearization of the equation, valid close to the critical temperature T c , or to the upper critical field H c2 (T c ) maps it to the Anderson localization problem with T c identified with the mobility edge. For the highly anisotropic high-T c materials and thin (2D) films in the quantum Hall geometry, we predict windows of re-entrant superconductivity centered at integrally spaced temperature values. Our model treatment also provides a possible explanation for the critical current J c perpendicular becoming non-zero on cooling before J c parallel does in some high-T c superconductors. (author). 18 refs

  19. Anvil Clouds of Tropical Mesoscale Convective Systems in Monsoon Regions (United States)

    Cetrone, J.; Houze, R. A., Jr.


    The anvil clouds of tropical mesoscale convective systems (MCSs) in West Africa, the Maritime Continent and the Bay of Bengal have been examined with TRMM and CloudSat satellite data and ARM ground-based radar observations. The anvils spreading out from the precipitating cores of MCSs are subdivided into thick, medium and thin portions. The thick portions of anvils show distinct differences from one climatological regime to another. In their upper portions, the thick anvils of West Africa MCSs have a broad, flat histogram of reflectivity, and a maximum of reflectivity in their lower portions. The reflectivity histogram of the Bay of Bengal thick anvils has a sharply peaked distribution of reflectivity at all altitudes with modal values that increase monotonically downward. The reflectivity histogram of the Maritime Continent thick anvils is intermediate between that of the West Africa and Bay of Bengal anvils, consistent with the fact this region comprises a mix of land and ocean influences. It is suggested that the difference between the statistics of the continental and oceanic anvils is related to some combination of two factors: (1) the West African anvils tend to be closely tied to the convective regions of MCSs while the oceanic anvils are more likely to be extending outward from large stratiform precipitation areas of MCSs, and (2) the West African MCSs result from greater buoyancy, so that the convective cells are more likely to produce graupel particles and detrain them into anvils

  20. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Directory of Open Access Journals (Sweden)

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  1. Investigating Mesoscale Convective Systems and their Predictability Using Machine Learning (United States)

    Daher, H.; Duffy, D.; Bowen, M. K.


    A mesoscale convective system (MCS) is a thunderstorm region that lasts several hours long and forms near weather fronts and can often develop into tornadoes. Here we seek to answer the question of whether these tornadoes are "predictable" by looking for a defining characteristic(s) separating MCSs that evolve into tornadoes versus those that do not. Using NASA's Modern Era Retrospective-analysis for Research and Applications 2 reanalysis data (M2R12K), we apply several state of the art machine learning techniques to investigate this question. The spatial region examined in this experiment is Tornado Alley in the United States over the peak tornado months. A database containing select variables from M2R12K is created using PostgreSQL. This database is then analyzed using machine learning methods such as Symbolic Aggregate approXimation (SAX) and DBSCAN (an unsupervised density-based data clustering algorithm). The incentive behind using these methods is to mathematically define a MCS so that association rule mining techniques can be used to uncover some sort of signal or teleconnection that will help us forecast which MCSs will result in tornadoes and therefore give society more time to prepare and in turn reduce casualties and destruction.

  2. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie


    % is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand....... Until the present study, no area-specific representation had been developed for the surface water pCO2 of the Baltic Sea and Danish inner waters. A surface water monthly climatology was implemented in the mesoscale modelling framework, and further improved with a near coastal climatology for the Danish...... inner waters. In the modelling framework, the heterogeneous land surfaces of Denmark were assessed by means of a detailed land surface classifications map and the inclusion of a high temporal and spatial resolution biosphere model. Available measurements of surface water pCO2, from stationary sites...


    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal


    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  4. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.


    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  5. Numerical simulation study of polar lows in Russian Arctic: dynamical characteristics (United States)

    Verezemskaya, Polina; Baranyuk, Anastasia; Stepanenko, Victor


    Polar Lows (hereafter PL) are intensive mesoscale cyclones, appearing above the sea surface, usually behind the arctic front and characterized by severe weather conditions [1]. All in consequence of the global warming PLs started to emerge in the arctic water area as well - in summer and autumn. The research goal is to examine PLs by considering multisensory data and the resulting numerical mesoscale model. The main purpose was to realize which conditions induce PL development in such thermodynamically unusual season and region as Kara sea. In order to conduct the analysis we used visible and infrared images from MODIS (Aqua). Atmospheric water vapor V, cloud liquid water Q content and surface wind fields W were resampled by examining AMSR-E microwave radiometer data (Aqua)[2], the last one was additionally extracted from QuickSCAT scatterometer. We have selected some PL cases in Kara sea, appeared in autumn of 2007-2008. Life span of the PL was between 24 to 36 hours. Vortexes' characteristics were: W from 15m/s, Q and V values: 0.08-0.11 kg/m2 and 8-15 kg/m2 relatively. Numerical experiments were carried out with Weather Research and Forecasting model (WRF), which was installed on supercomputer "Lomonosov" of Research Computing Center of Moscow State University [3]. As initial conditions was used reanalysis data ERA-Interim from European Centre for Medium-Range Weather Forecasts. Numerical experiments were made with 5 km spatial resolution, with Goddard center microphysical parameterization and explicit convection simulation. Modeling fields were compared with satellite observations and shown good accordance. Than dynamic characteristics were analyzed: evolution of potential and absolute vorticity [4], surface heat and momentum fluxes, and CAPE and WISHE mechanisms realization. 1. Polar lows, J. Turner, E.A. Rasmussen, 612, Cambridge University press, Cambridge, 2003. 2. Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine

  6. Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon) (United States)

    Salameh, Christelle; Bard, Pierre-Yves; Guillier, Bertrand; Harb, Jacques; Cornou, Cécile; Gérard, Jocelyne; Almakari, Michelle


    Post-seismic investigations repeatedly indicate that structures having frequencies close to foundation soil frequencies exhibit significantly heavier damages (Caracas 1967; Mexico 1985; Pujili, Ecuador 1996; L'Aquila 2009). However, observations of modal frequencies of soils and buildings in a region or within a current seismic risk analysis are not fully considered together, even when past earthquakes have demonstrated that coinciding soil and building frequencies leads to greater damage. The present paper thus focuses on a comprehensive numerical analysis to investigate the effect of coincidence between site and building frequencies. A total of 887 realistic soil profiles are coupled with a set of 141 single-degree-of-freedom elastoplastic oscillators, and their combined (nonlinear) response is computed for both linear and nonlinear soil behaviors, for a large number (60) of synthetic input signals with various PGA levels and frequency contents. The associated damage is quantified on the basis of the maximum displacement as compared to both yield and ultimate post-elastic displacements, according to the RISK-UE project recommendations (Lagomarsino and Giovinazzi in Bull Earthq Eng 4(4):415-443, 2006), and compared with the damage obtained in the case of a similar building located on rock. The correlation between this soil/rock damage increment and a number of simplified mechanical and loading parameters is then analyzed using a neural network approach. The results emphasize the key role played by the building/soil frequency ratio even when both soil and building behave nonlinearly; other important parameters are the PGA level, the soil/rock velocity contrast and the building ductility. A numerical investigation based on simulation of ambient noise for the whole set of 887 profiles also indicates that the amplitude of H/ V ratio may be considered as a satisfactory proxy for site amplification when applied to measurements at urban scale. A very easy implementation

  7. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... tools and implementation techniques are described and performance tests are carried out. The equations that govern the motion of fluids with losses and the corresponding boundary conditions are reduced to a form that is tractable for the Boundary Element Method (BEM) by adopting some hypotheses...... that are allowable in this case: linear variations, absence of flow, harmonic time variation, thermodynamical equilibrium and physical dimensions much larger than the molecular mean free path. A formulation of the BEM is also developed with an improvement designed to cope with the numerical difficulty associated...

  8. Interaction of Sea Breeze and Deep Convection over the Northeastern Adriatic Coast: An Analysis of Sensitivity Experiments Using a High-Resolution Mesoscale Model (United States)

    Kehler-Poljak, Gabrijela; Telišman Prtenjak, Maja; Kvakić, Marko; Šariri, Kristina; Večenaj, Željko


    This study investigates the sensitivity of a high-resolution mesoscale atmospheric model in the model reproduction of thermally induced local wind (i.e., sea breezes, SB) on the development of deep convection (Cb). The three chosen cases are simulated by the Weather and Research Forecasting (WRF-ARW) model at three (nested) model domains, whereas the area of the interest is Istria (peninsula in the northeastern Adriatic). The sensitivity tests are accomplished by modifying (1) the model setup, (2) the model topography and (3) the sea surface temperature (SST) distribution. The first set of simulations (over the three 1.5-day periods during summer) is conducted by modifying the model setup, i.e., microphysics and the boundary layer parameterizations. The same events are simulated with the modified topography where the mountain heights in Istria are reduced to 30% of their initial height. The SST distribution has two representations in the model: a constant SST field from the ECMWF skin temperature analysis and a varying SST field, which is provided by hourly geostationary satellite data. A comprehensive set of numerical experiments is statistically analyzed through several different approaches (i.e., the standard statistical measures, the spectral method and the image moment analysis). The overall model evaluation of each model setup revealed certain advantages of one model setup over the others. The numerical tests with the modified topography showed the influence of reducing the mountains heights on the pre-thunderstorm characteristics due to: (1) decrease of sensible heat flux and mid-tropospheric moisture and (2) change of slope-SB wind system. They consequently affect the evolution and dimensions of SBs and the features of the thunderstorm itself: timing, location and intensity (weaker storm). The implementation of the varying SST field in the model have an impact on the characteristics and dynamics of the SB and finally on the accuracy of Cb evolution

  9. Compression instrument for tissue experiments (cite) at the meso-scale: device validation - biomed 2011. (United States)

    Evans, Douglas W; Rajagopalan, Padma; Devita, Raffaella; Sparks, Jessica L


    Liver sinusoidal endothelial cells (LSECs) are the primary site of numerous transport and exchange processes essential for liver function. LSECs rest on a sparse extracellular matrix layer housed in the space of Disse, a 0.5-1LSECs from hepatocytes. To develop bioengineered liver tissue constructs, it is important to understand the mechanical interactions among LSECs, hepatocytes, and the extracellular matrix in the space of Disse. Currently the mechanical properties of space of Disse matrix are not well understood. The objective of this study was to develop and validate a device for performing mechanical tests at the meso-scale (100nm-100m), to enable novel matrix characterization within the space of Disse. The device utilizes a glass micro-spherical indentor attached to a cantilever made from a fiber optic cable. The 3-axis translation table used to bring the specimen in contact with the indentor and deform the cantilever. A position detector monitors the location of a laser passing through the cantilever and allows for the calculation of subsequent tissue deformation. The design allows micro-newton and nano-newton stress-strain tissue behavior to be quantified. To validate the device accuracy, 11 samples of silicon rubber in two formulations were tested to experimentally confirm their Young's moduli. Prior macroscopic unconfined compression tests determined the formulations of EcoFlex030 (n-6) and EcoFlex010 (n-5) to posses Young's moduli of 92.67+-6.22 and 43.10+-3.29 kPa respectively. Optical measurements taken utilizing CITE's position control and fiber optic cantilever found the moduli to be 106.4 kPa and 47.82 kPa.

  10. Meso-scale testing and development of test procedures to maintain mass balance. (United States)

    Bonner, James; Page, Cheryl; Fuller, Chris


    The Conrad Blucher Institute for Surveying and Science (Texas A&M University--Corpus Christi) has conducted numerous petroleum experiments at the Shoreline Environmental Research Facility (Corpus Christi, Texas, USA). The meso-scale facility has multiple wave tanks, permitting some control in experimental design of the investigations, but allowing for real-world conditions. This paper outlines the evolution of a materials balance approach in conducting petroleum experiments at the facility. The first attempt at a materials balance was during a 1998 study on the fate/effects of dispersant use on crude oil. Both water column and beach sediment samples were collected. For the materials balance, the defined environmental compartments for oil accumulation were sediments, water column, and the water surface, while the discharge from the tanks was presumed to be the primary sink. The "lessons learned" included a need to quantify oil adhesion to the tank surfaces. This was resolved by adhering strips of the polymer tank lining to the tank sides that could be later removed and extracted for oil. Also, a protocol was needed to quantify any floating oil on the water surface. A water surface (oil slick) quantification protocol was developed, involving the use of solid-phase extraction disks. This protocol was first tested during a shoreline cleaner experiment, and later refined in subsequent dispersant effectiveness studies. The effectiveness tests were designed to simulate shallow embayments which created the need for additional adjustments in the tanks. Since dispersant efficacy is largely affected by hydrodynamics, it was necessary to scale the hydrodynamic conditions of the tanks to those expected in our prototype system (Corpus Christi Bay, Texas). The use of a scaled model permits the experiment to be reproduced and/or evaluated under different conditions. To minimize wave reflection in the tank, a parabolic wave dissipater was built. In terms of materials balance, this

  11. The Influence of Aerosol Hygroscopicity on Precipitation Intensity During a Mesoscale Convective Event (United States)

    Kawecki, Stacey; Steiner, Allison L.


    We examine how aerosol composition affects precipitation intensity using the Weather and Research Forecasting Model with Chemistry (version 3.6). By changing the prescribed default hygroscopicity values to updated values from laboratory studies, we test model assumptions about individual component hygroscopicity values of ammonium, sulfate, nitrate, and organic species. We compare a baseline simulation (BASE, using default hygroscopicity values) with four sensitivity simulations (SULF, increasing the sulfate hygroscopicity; ORG, decreasing organic hygroscopicity; SWITCH, using a concentration-dependent hygroscopicity value for ammonium; and ALL, including all three changes) to understand the role of aerosol composition on precipitation during a mesoscale convective system (MCS). Overall, the hygroscopicity changes influence the spatial patterns of precipitation and the intensity. Focusing on the maximum precipitation in the model domain downwind of an urban area, we find that changing the individual component hygroscopicities leads to bulk hygroscopicity changes, especially in the ORG simulation. Reducing bulk hygroscopicity (e.g., ORG simulation) initially causes fewer activated drops, weakened updrafts in the midtroposphere, and increased precipitation from larger hydrometeors. Increasing bulk hygroscopicity (e.g., SULF simulation) simulates more numerous and smaller cloud drops and increases precipitation. In the ALL simulation, a stronger cold pool and downdrafts lead to precipitation suppression later in the MCS evolution. In this downwind region, the combined changes in hygroscopicity (ALL) reduces the overprediction of intense events (>70 mm d-1) and better captures the range of moderate intensity (30-60 mm d-1) events. The results of this single MCS analysis suggest that aerosol composition can play an important role in simulating high-intensity precipitation events.

  12. Surface Energy Balance in Jakarta and Neighboring Regions As Simulated Using Fifth Mesoscale Model (MM5

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah


    Full Text Available The objective of the present research was to assess the surface energy balance particularly in terms of the computed surface energy and radiation balance and the development of boundary layer over Jakarta and Neighboring Regions (JNR by means of numerical model of fifth generation of Mesoscale Model (MM5. The MM5 with four domains of 9 kilometers in spatial resolution presenting the outermost and the innermost of JNR is utilized. The research focuses on the third and fourth domains covering the entire JNR. The description between radiation and energy balance at the surface is obtained from the model. The result showed that energy balance is higher in the city area during daytime. Meanwhile, energy components, e.g., surface sensible and latent heat flux showed that at the sea and in the city areas were higher than other areas. Moreover, ground flux showed eastern region was higher than others. In general, radiation and energy balance was higher in the daytime and lower in the nighttime for all regions. The calculation of Bowen Ratio, the ratio of surface sensible and latent heat fluxes, was also higher in the city area, reflecting the dominations of urban and built-up land in the region. Meanwhile, Bowen Ratio in the rural area dominated by irrigated cropland was lower. It is consistent with changes of land cover properties, e.g. albedo, soil moisture, and thermal characteristics. In addition, the boundary layer is also higher in the city. Meanwhile western region dominated by suburban showed higher boundary layer instead of eastern region.

  13. A numerical study of atmospheric Kàrmàn vortex shedding from Jeju Island (United States)

    Ito, J.; Niino, H.


    Kàrmàn vortex shading universally occurs when a uniform flow pasts a bluff body. Similar vortex shading occurs when an atmospheric flow hits an isolated mountain, and can be seen in satellite images when the vortices are accompanied by clouds. While previous idealized numerical studies have focused on the mechanism of the atmospheric Kàrmàn vortex shading, there has been no simulation for a real case. In this study, a meso-scale non-hydrostatic model developed by the Japan Meteorological Agency (JMA) is used to reproduce the observed Kàrmàn vortex shedding, where initial and boundary conditions are given by the meso-scale objective analysis data of the JMA. The cases investigated here occurred on 16 and 20 February 2013 when satellite images clearly capture Kàrmàn vortex shading behind the Jeju Island over the East China sea. The size of simulation's domain is about 800 km by 1200 km in the horizontal direction, and the Jeju Island locates the center of the domain. The horizontal gird interval is 2 km. The cloud microphysics including the ice phase is considered. The numerical simulation successfully reproduced realistic Kàrmàn vortex shading which accompany characteristic clouds in the wake of the Jeju Island (see Figure; shading show mixing ratio of cloud water). The size of the vortices and there intervals appear to be comparable to those observed by the satellite. The winter monsoon flows out from Eurasia continent over the Yellow sea, which is 10 K warmer than the atmosphere, obtain much sensible and latent heat flux, and then a convective boundary layer is developed. Necessary conditions to form lee vortices proposed in previous studies are indeed satisfied: (1) the height of the convective boundary layer is lower than that of the mountain, and (2) the Froude number above the convective boundary layer is less than 0.4. The environment around the region in the wintertime is favorable for forming Kàrmàn vortex shading. The pressure depressions

  14. Numerical Approaches to Spacetime Singularities

    Directory of Open Access Journals (Sweden)

    Beverly K. Berger


    Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.

  15. Numerical simulation of precipitation formation in the case orographically induced convective cloud: Comparison of the results of bin and bulk microphysical schemes (United States)

    Sarkadi, N.; Geresdi, I.; Thompson, G.


    In this study, results of bulk and bin microphysical schemes are compared in the case of idealized simulations of pre-frontal orographic clouds with enhanced embedded convection. The description graupel formation by intensive riming of snowflakes was improved compared to prior versions of each scheme. Two methods of graupel melting coincident with collisions with water drops were considered: (1) all simulated melting and collected water drops increase the amount of melted water on the surface of graupel particles with no shedding permitted; (2) also no shedding permitted due to melting, but the collision with the water drops can induce shedding from the surface of the graupel particles. The results of the numerical experiments show: (i) The bin schemes generate graupel particles more efficiently by riming than the bulk scheme does; the intense riming of snowflakes was the most dominant process for the graupel formation. (ii) The collision-induced shedding significantly affects the evolution of the size distribution of graupel particles and water drops below the melting level. (iii) The three microphysical schemes gave similar values for the domain integrated surface precipitation, but the patterns reveal meaningful differences. (iv) Sensitivity tests using the bulk scheme show that the depth of the melting layer is sensitive to the description of the terminal velocity of the melting snow. (v) Comparisons against Convair-580 flight measurements suggest that the bin schemes simulate well the evolution of the pristine ice particles and liquid drops, while some inaccuracy can occur in the description of snowflakes riming. (vi) The bin scheme with collision-induced shedding reproduced well the quantitative characteristics of the observed bright band.

  16. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China. (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang


    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  17. Numerical evolutions beyond our belief


    de Almeida, Guilherme; Colégio Militar Associação Portuguesa de Astrônomos Amadores (APAA) Lisboa – Portugal


    The everyday life situations gave us a good enough training to deal with numerical evolutions operated by arithmetic progressions, so in this specific case we can make good numerical predictions. But our common sense is not usually prepared to deal with numbers that grow, or shrink, according to geometrical progressions. In the last cases, our intuition strongly fails, showing that our intuition is not always right. We also fail in comparing some other situations which we are not trained. Thi...

  18. Probabilistic flood damage modelling at the meso-scale (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno


    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  19. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations (United States)

    Berri, Guillermo J.; Bertossa, Germán


    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  20. Laser polishing of 3D printed mesoscale components (United States)

    Bhaduri, Debajyoti; Penchev, Pavel; Batal, Afif; Dimov, Stefan; Soo, Sein Leung; Sten, Stella; Harrysson, Urban; Zhang, Zhenxue; Dong, Hanshan


    Laser polishing of various engineered materials such as glass, silica, steel, nickel and titanium alloys, has attracted considerable interest in the last 20 years due to its superior flexibility, operating speed and capability for localised surface treatment compared to conventional mechanical based methods. The paper initially reports results from process optimisation experiments aimed at investigating the influence of laser fluence and pulse overlap parameters on resulting workpiece surface roughness following laser polishing of planar 3D printed stainless steel (SS316L) specimens. A maximum reduction in roughness of over 94% (from ∼3.8 to ∼0.2 μm Sa) was achieved at the optimised settings (fluence of 9 J/cm2 and overlap factors of 95% and 88-91% along beam scanning and step-over directions respectively). Subsequent analysis using both X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES) confirmed the presence of surface oxide layers (predominantly consisting of Fe and Cr phases) up to a depth of ∼0.5 μm when laser polishing was performed under normal atmospheric conditions. Conversely, formation of oxide layers was negligible when operating in an inert argon gas environment. The microhardness of the polished specimens was primarily influenced by the input thermal energy, with greater sub-surface hardness (up to ∼60%) recorded in the samples processed with higher energy density. Additionally, all of the polished surfaces were free of the scratch marks, pits, holes, lumps and irregularities that were prevalent on the as-received stainless steel samples. The optimised laser polishing technology was consequently implemented for serial finishing of structured 3D printed mesoscale SS316L components. This led to substantial reductions in areal Sa and St parameters by 75% (0.489-0.126 μm) and 90% (17.71-1.21 μm) respectively, without compromising the geometrical accuracy of the native 3D printed samples.

  1. Formation of ice supersaturation by mesoscale gravity waves

    Directory of Open Access Journals (Sweden)

    P. Spichtinger


    Full Text Available We investigate the formation and evolution of an ice-supersaturated region (ISSR that was detected by means of an operational radiosonde sounding launched from the meteorological station of Lindenberg on 21 March 2000, 00:00 UTC. The supersaturated layer was situated below the local tropopause, between 320 and 408 hPa altitude. Our investigation uses satellite imagery from METEOSAT and the Advanced Very High Resolution Radiometer (AVHRR and analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF. Mesoscale simulations reveal that the ISSR was formed by a temporary vertical uplift of upper tropospheric air parcels by 20 to 40 hPa in 1 to 2 h. This resulted in a significant local increase of the specific humidity by the moisture transport from below. The ascent was triggered by the superposition of two internal gravity waves, a mountain wave induced by flow past the Erzgebirge and Riesengebirge south of Lindenberg, and an inertial gravity wave excited by the anti-cyclonically curved jet stream over the Baltic Sea. The wave-induced ISSR was rather thick with a depth of about 2 km. The wave-induced upward motion causing the supersaturation also triggered the formation of a cirrus cloud. METEOSAT imagery shows that the cirrus cloud got optically thick within two hours. During this period another longer lasting thin but extended cirrus existed just beneath the tropopause. The wave-induced ISSR disappeared after about half a day in accordance with the decaying wave activity.

  2. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean (United States)

    Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.


    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447

  3. Numerical Analysis Technique for Sound Fields Including Perforated Plate(1st Report : Case in Which Vibration of Perforated Plate is not Considered)


    次橋, 一樹; 田中, 俊光; 草苅, 樹宏


    Numerical analysis technique by boundary element method for three dimensional sound fields in cluding perforated plates is proposed. This technique is effective to design sound absorption structures of perforated plates efficiently. To verify validity of this numerical analysis method, the sound field in the acoustic tube in which perforated plate was installed was computed, and the results were compared with experiments. The predicted sound absorption coefficient and the sound pressure distr...

  4. Specimen preparation for correlating transmission electron microscopy and atom probe tomography of mesoscale features. (United States)

    Hartshorne, Matthew I; Isheim, Dieter; Seidman, David N; Taheri, Mitra L


    Atom-probe tomography (APT) provides atomic-scale spatial and compositional resolution that is ideally suited for the analysis of grain boundaries. The small sample volume analyzed in APT presents, however, a challenge for capturing mesoscale features, such as grain boundaries. A new site-specific method utilizing transmission electron microscopy (TEM) for the precise selection and isolation of mesoscale microstructural features in a focused-ion-beam (FIB) microscope lift-out sample, from below the original surface of the bulk sample, for targeted preparation of an APT microtip by FIB-SEM microscopy is presented. This methodology is demonstrated for the targeted extraction of a prior austenite grain boundary in a martensitic steel alloy; it can, however, be easily applied to other mesoscale features, such as heterophase interfaces, precipitates, and the tips of cracks. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)


    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  6. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study (United States)

    Yang, Bin; Yang, Tianhong; Xu, Zenghe; Liu, Honglei; Shi, Wenhao; Yang, Xin


    Groundwater is an important factor of slope stability, and 90% of slope failures are related to the influence of groundwater. In the past, free surface calculations and the prediction of water inflow were based on Darcy's law. However, Darcy's law for steady fluid flow is a special case of non-Darcy flow, and many types of non-Darcy flows occur in practical engineering applications. In this paper, based on the experimental results of laboratory water seepage tests, the seepage state of each soil layer in the open-pit slope of the Yanshan Iron Mine, China, were determined, and the seepage parameters were obtained. The seepage behaviour in the silt layer, fine sand layer, silty clay layer and gravelly clay layer followed the traditional Darcy law, while the gravel layers showed clear nonlinear characteristics. The permeability increases exponentially and the non-Darcy coefficient decreases exponentially with an increase in porosity, and the relation among the permeability, the porosity and the non-Darcy coefficient is investigated. A coupled mathematical model is established for two flow fields, on the basis of Darcy flow in the low-permeability layers and Forchheimer flow in the high-permeability layers. In addition, the effect of the seepage in the slope on the transition from Darcy flow to Forchheimer flow was considered. Then, a numerical simulation was conducted by using finite-element software (FELAC 2.2). The results indicate that the free surface calculated by the Darcy-Forchheimer model is in good agreement with the in situ measurements; however, there is an evident deviation of the simulation results from the measured data when the Darcy model is used. Through a parameter sensitivity analysis of the gravel layers, it can be found that the height of the overflow point and the water inflow calculated by the Darcy-Forchheimer model are consistently less than those of the Darcy model, and the discrepancy between these two models increases as the permeability

  7. Development and application of a chemistry mechanism for mesoscale simulations of the troposphere and lower stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, E.; Hendricks, J.; Petry, H. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology


    A new chemical mechanism is applied for mesoscale simulations of the impact of aircraft exhausts on the atmospheric composition. The temporal and spatial variation of the tropopause height is associated with a change of the trace gas composition in these heights. Box and three dimensional mesoscale model studies show that the conversion of aircraft exhausts depends strongly on the cruise heights as well as on the location of release in relation to the tropopause. The impact of aircraft emissions on ozone is strongly dependent on the individual meteorological situation. A rising of the tropopause height within a few days results in a strong increase of ozone caused by aircraft emissions. (author) 12 refs.

  8. Combined flatland ST radar and digital-barometer network observations of mesoscale processes (United States)

    Clark, W. L.; Vanzandt, T. E.; Gage, K. S.; Einaudi, F. E.; Rottman, J. W.; Hollinger, S. E.


    The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.

  9. Environment and morphology of mesoscale convective systems associated with the Changma front during 9–10 July 2007

    Directory of Open Access Journals (Sweden)

    J.-H. Jeong


    Full Text Available To understand the different environment and morphology for heavy rainfall during 9–10 July 2007, over the Korean Peninsula, mesoscale convective systems (MCSs that accompanied the Changma front in two different regions were investigated. The sub-synoptic conditions were analysed using mesoscale analysis data (MANAL, reanalysis data, weather charts and Multi-functional Transport Satellite (MTSAT-IR data. Dual-Doppler radar observations were used to analyse the wind fields within the precipitation systems. During both the case periods, the surface low-pressure field intensified and moved northeastward along the Changma front. A low-level warm front gradually formed with an east-west orientation, and the cold front near the low pressure was aligned from northeast to southwest. The northern convective systems (meso-α-scale were embedded within an area of stratiform cloud north of the warm front. The development of low-level pressure resulted in horizontal and vertical wind shear due to cyclonic circulation. The wind direction was apparently different across the warm front. In addition, the southeasterly flow (below 4 km played an important role in generating new convective cells behind the prevailing convective cell. Each isolated southern convective cell (meso-β-scale moved along the line ahead of the cold front within the prefrontal warm sector. These convective cells developed when a strong southwesterly low-level jet (LLJ intensified and moisture was deeply advected into the sloping frontal zone. A high equivalent potential temperature region transported warm moist air in a strong southwesterly flow, where the convectively unstable air led to updraft and downdraft with a strong reflectivity core.

  10. The Australian Monsoon and its Mesoscale Convective Systems (United States)

    Mapes, Brian E.


    The 1987 Australian monsoon was observed with satellites, rawinsondes, radar and aircraft. These data are presented, with theory filling the gaps, in illustration of its dynamics. The engine of the monsoon is its embedded mesoscale convective systems (MCSs). Ten MCSs were explored with airborne Doppler radar. They all exhibited multicellular convection, in lines or arcs along the edges of cold pools, aging and evolving into areas of stratiform precipitation. This temporal evolution can be divided into three stages: "convective," "intermediary," and "stratiform." Doppler radar divergence profiles for each stage show remarkable consistency from one MCS to the next. Convective areas had low-level convergence, with its peak elevated off the surface, and divergence above ~8 km altitude. Intermediary areas had very little divergence through the lower troposphere, but strong convergence near 10 km altitude, associated with upper-tropospheric ascent. Stratiform areas had midlevel convergence between divergent layers. These divergence profiles indicate thermal forcing of the monsoon by the convection, in a form more useful than heating profiles. The response of the atmosphere to thermal forcing is considered in chapter 2. Thermal disturbances travel through a stratified fluid at a speed proportional to their vertical depth. A heat source with complex vertical structure excites disturbances ("buoyancy bores"), of many depths, that separate themselves out with distance from the heat source. Hence the deeper components of a heat source can be found at greater distances from the heat source, at any given moment and also in the limit of long time in a rotating or dissipative fluid. Low-level dynamical processes initiate deep convection within the active cyclonic areas of the monsoon trough, despite the warm core aloft and the consequent (small) decrease in CAPE. In 1987, four tropical cyclones were generated in the monsoon by this runaway positive feedback loop. Two forcing

  11. Laser polishing of 3D printed mesoscale components

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Debajyoti, E-mail: [Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Penchev, Pavel; Batal, Afif; Dimov, Stefan; Soo, Sein Leung [Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Sten, Stella; Harrysson, Urban [Digital Metal, Höganäs AB, 263 83 Höganäs (Sweden); Zhang, Zhenxue; Dong, Hanshan [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)


    , lumps and irregularities that were prevalent on the as-received stainless steel samples. The optimised laser polishing technology was consequently implemented for serial finishing of structured 3D printed mesoscale SS316L components. This led to substantial reductions in areal S{sub a} and S{sub t} parameters by 75% (0.489–0.126 μm) and 90% (17.71–1.21 μm) respectively, without compromising the geometrical accuracy of the native 3D printed samples.

  12. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones (United States)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)


    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June

  13. Estimation of actual evapotranspiration by numerical modeling of water flow in the unsaturated zone: a case study in Buenos Aires, Argentina (United States)

    Cesanelli, Andrés; Guarracino, Luis


    A method is presented to estimate actual evapotranspiration (ETA) from potential evapotranspiration (ETP) by numerical modeling of water flow in the unsaturated zone. Water flow is described by the Richards equation with a sink term representing the root water uptake. Evaporation is included in the model as a Neumann boundary condition at the soil surface. The Richards equation is solved in a one-dimensional domain using a mixed finite element method. The values of ETA are obtained by applying a water stress factor to ETP to account for soil moisture changes during the simulation period. The proposed numerical model is used to estimate ETA in an experimental plot located in a flatland area in Buenos Aires (Argentina). Numerical results show that the proposed model is a useful tool for evaluating evapotranspiration under different scenarios.

  14. Mesoscale convection system and occurrence of extreme low tropopause temperatures: observations over Asian summer monsoon region

    Directory of Open Access Journals (Sweden)

    A. R. Jain


    Full Text Available The present study examines the process of how tropospheric air enters the stratosphere, particularly in association with tropical mesoscale convective systems (TMCS which are considered to be one of the causative mechanisms for the observation of extremely low tropopause temperature over the tropics. The association between the phenomena of convection and the observation of extreme low tropopause temperature events is, therefore, examined over the Asian monsoon region using data from multiple platforms. Satellite observations show that the area of low outgoing long wave radiation (OLR, which is a proxy for the enhanced convection, is embedded with high altitude clouds top temperatures (≤193 K. A detailed analysis of OLR and 100 hPa temperature shows that both are modulated by westward propagating Rossby waves with a period of ~15 days, indicating a close linkage between them. The process by which the tropospheric air enters the stratosphere may, in turn, be determined by how the areas of convection and low tropopause temperature (LTT i.e. T≤191 K are spatially located. In this context, the relative spatial distribution of low OLR and LTT areas is examined. Though, the locations of low OLR and LTT are noticed in the same broad area, the two do not always overlap, except for partial overlap in some cases. When there are multiple low OLR areas, the LTT area generally appears in between the low OLR areas. Implications of these observations are also discussed. The present analysis also shows that the horizontal mean winds have a role in the spatial distribution of low OLR and LTT.

  15. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping (United States)

    Tice, Michael M.; Quezergue, Kimbra; Pope, Michael C.


    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks.

  16. Wind profiler data in a mesoscale experiment from a meteorological perspective (United States)

    Zipser, E. J.; Augustine, J.; Cunning, J.


    During May and June of 1985, the Oklahoma-Kansas Preliminary Regional Experiment of STORM-Central (OK PRE-STORM) was carried out, with the major objectives of learning more about mesoscale convective systems (MCSs) and gaining experience in the use of new sensing systems and measurement strategies that will improve the design of STORM-Central. Three 50-MHz wind profilers were employed in a triangular array with sides about 275 km. It is far too soon to report any results of this effort, for it has barely begun. The purpose here is to show some examples of the data, some of the surrounding conventional data, and to discuss some of the issues important to meteorologists in evaluating the contribution of the profiler data. The case of 10 to 11 June 1985, featuring a major squall line system which crossed the dense observing network from northwest to southeast, passing the Liberal site about 2230 GMT/10 June, the McPherson site about 0100 GMT/11 June, and Wichita about 0300 GMT/11 June is discussed. Radar and satellite data show that the system was growing rapidly when it passed Liberal, and was large and mature when it passed through McPherson and Wichita. The radar depiction of the system during this stage is given, with the McPherson site in the intense convective echoes near the leading edge at 01 GMT and in the stratiform precipitation at 03 GMT. The profiler wind data for a 9-hour period encompassing the squall line passage at each site are given.

  17. A Quality-Control-Oriented Database for a Mesoscale Meteorological Observation Network (United States)

    Lussana, C.; Ranci, M.; Uboldi, F.


    In the operational context of a local weather service, data accessibility and quality related issues must be managed by taking into account a wide set of user needs. This work describes the structure and the operational choices made for the operational implementation of a database system storing data from highly automated observing stations, metadata and information on data quality. Lombardy's environmental protection agency, ARPA Lombardia, manages a highly automated mesoscale meteorological network. A Quality Assurance System (QAS) ensures that reliable observational information is collected and disseminated to the users. The weather unit in ARPA Lombardia, at the same time an important QAS component and an intensive data user, has developed a database specifically aimed to: 1) providing quick access to data for operational activities and 2) ensuring data quality for real-time applications, by means of an Automatic Data Quality Control (ADQC) procedure. Quantities stored in the archive include hourly aggregated observations of: precipitation amount, temperature, wind, relative humidity, pressure, global and net solar radiation. The ADQC performs several independent tests on raw data and compares their results in a decision-making procedure. An important ADQC component is the Spatial Consistency Test based on Optimal Interpolation. Interpolated and Cross-Validation analysis values are also stored in the database, providing further information to human operators and useful estimates in case of missing data. The technical solution adopted is based on a LAMP (Linux, Apache, MySQL and Php) system, constituting an open source environment suitable for both development and operational practice. The ADQC procedure itself is performed by R scripts directly interacting with the MySQL database. Users and network managers can access the database by using a set of web-based Php applications.

  18. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment (United States)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.


    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  19. Quantitative modelling of the closure of meso-scale parallel currents in the nightside ionosphere

    Directory of Open Access Journals (Sweden)

    A. Marchaudon


    Full Text Available On 12 January 2000, during a northward IMF period, two successive conjunctions occur between the CUTLASS SuperDARN radar pair and the two satellites Ørsted and FAST. This situation is used to describe and model the electrodynamic of a nightside meso-scale arc associated with a convection shear. Three field-aligned current sheets, one upward and two downward on both sides, are observed. Based on the measurements of the parallel currents and either the conductance or the electric field profile, a model of the ionospheric current closure is developed along each satellite orbit. This model is one-dimensional, in a first attempt and a two-dimensional model is tested for the Ørsted case. These models allow one to quantify the balance between electric field gradients and ionospheric conductance gradients in the closure of the field-aligned currents. These radar and satellite data are also combined with images from Polar-UVI, allowing for a description of the time evolution of the arc between the two satellite passes. The arc is very dynamic, in spite of quiet solar wind conditions. Periodic enhancements of the convection and of electron precipitation associated with the arc are observed, probably associated with quasi-periodic injections of particles due to reconnection in the magnetotail. Also, a northward shift and a reorganisation of the precipitation pattern are observed, together with a southward shift of the convection shear. Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation – Magnetospheric physics (magnetosphere-ionosphere interactions

  20. Numerical evolutions beyond our belief

    Directory of Open Access Journals (Sweden)

    Guilherme de Almeida


    Full Text Available The everyday life situations gave us a good enough training to deal with numerical evolutions operated by arithmetic progressions, so in this specific case we can make good numerical predictions. But our common sense is not usually prepared to deal with numbers that grow, or shrink, according to geometrical progressions. In the last cases, our intuition strongly fails, showing that our intuition is not always right. We also fail in comparing some other situations which we are not trained. This article shows some of that limiting cases.

  1. Comments on numerical simulations

    International Nuclear Information System (INIS)

    Sato, T.


    The author comments on a couple of things about numerical simulation. One is just about the philosophical discussion that is, spontaneous or driven. The other thing is the numerical or technical one. Frankly, the author didn't want to touch on the technical matter because this should be a common sense one for those who are working at numerical simulation. But since many people take numerical simulation results at their face value, he would like to remind you of the reality hidden behind them. First, he would point out that the meaning of ''driven'' in driven reconnection is different from that defined by Schindler or Akasofu. The author's definition is closer to Axford's definition. In the spontaneous case, for some unpredicted reason an excess energy of the system is suddenly released at a certain point. However, one does not answer how such an unstable state far beyond a stable limit is realized in the magnetotail. In the driven case, there is a definite energy buildup phase starting from a stable state; namely, energy in the black box increases from a stable level subject to an external source. When the state has reached a certain position, the energy is released suddenly. The difference between driven and spontaneous is whether the cause (plasma flow) to trigger reconnection is specified or reconnection is triggered unpredictably. Another difference is that in driven reconnection the reconnection rate is dependent on the speed of the external plasma flow, but in spontaneous reconnection the rate is dependent on the internal condition such as the resistivity

  2. Assessment of the turbulence parameterization schemes for the Martian mesoscale simulations (United States)

    Temel, Orkun; Karatekin, Ozgur; Van Beeck, Jeroen


    of WRF model for the extraterrestrial atmospheres [11]. Based on the measurements, the performances of different PBL schemes have been evaluated and some improvements have been proposed. [1] Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., & Millour, E. (2013). A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research: Planets, 118(7), 1468-1487. [2] Balme, M., & Greeley, R. (2006). Dust devils on Earth and Mars. Reviews of Geophysics, 44(3). [3] Olsen, K. S., Cloutis, E., & Strong, K. (2012). Small-scale methane dispersion modelling for possible plume sources on the surface of Mars. Geophysical Research Letters, 39(19). [4] Savijärvi, H., & Siili, T. (1993). The Martian slope winds and the nocturnal PBL jet. Journal of the atmospheric sciences, 50(1), 77-88. [5] Fenton, L. K., Toigo, A. D., & Richardson, M. I. (2005). Aeolian processes in Proctor crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research: Planets, 110(E6). [6] Hong, Song-You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. [7] Janjic, Zavisa I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. [8] Michaels, T. I., & Rafkin, S. C. (2004). Large-eddy simulation of atmospheric convection on Mars. Quarterly Journal of the Royal Meteorological Society, 130(599), 1251-1274. [9] Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., & Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82(28), 4559-4574. [10] Martínez, G. et Al. (2015). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus. [11] Richardson, M. I., Toigo, A. D., & Newman, C. E. (2007). PlanetWRF: A general purpose, local to global numerical model for

  3. Idealized Mesoscale Model Simulations of Open Cellular Convection Over the Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Kelly, Mark C.


    The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized ...

  4. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Trebotich, D


    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  5. Three-dimensional Mesoscale Simulations of Detonation Initiation in Energetic Materials with Density-based Kinetics (United States)

    Jackson, Thomas; Jost, A. M.; Zhang, Ju; Sridharan, P.; Amadio, G.


    In this work we present three-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using a density-based kinetics scheme, adapted from standard Ignition and Growth models. The deposition term is based on previous results of simulations of pore collapse at the microscale, modelled at the mesoscale as hot-spots. We carry out three-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that the transition between no-detonation and detonation depends on the number density of the hot-spots, the initial radius of the hot-spot, the post-shock pressure of an imposed shock, and the amplitude of the power deposition term. The trends of transition at lower pressure of the imposed shock for larger number density of pore observed in experiments is reproduced. Initial attempts to improve the agreement between the simulation and experiments through calibration of various parameters will also be made.

  6. A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Kain, J.S.; Deng, A. [Pennsylvania State Univ., University Park, PA (United States)


    A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.

  7. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates (United States)

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen


    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  8. Phase Behavior of Semiflexible-Flexible Diblock Copolymer Melt: Insight from Mesoscale Modeling.

    Czech Academy of Sciences Publication Activity Database

    Beránek, P.; Posel, Zbyšek


    Roč. 16, č. 8 (2016), s. 7832-7835 ISSN 1533-4880 R&D Projects: GA MŠk(CZ) LH12020 Institutional support: RVO:67985858 Keywords : conformational asymmetry * dissipative particle dynamics * mesoscale modeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.483, year: 2016

  9. Scaling of mesoscale simulations of polymer melts with the bare friction coefficient

    NARCIS (Netherlands)

    Kindt, P.; Kindt, P.; Briels, Willem J.


    Both the Rouse and reptation model predict that the dynamics of a polymer melt scale inversely proportional with the Langevin friction coefficient (E). Mesoscale Brownian dynamics simulations of polyethylene validate these scaling predictions, providing the reptational friction (E)R=(E)+(E)C is

  10. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Energy Technology Data Exchange (ETDEWEB)

    Dolman, A.J.; Ashby, M.; Kabat, P. [DLO, Wageningen (Netherlands). Winand Staring Centre; Silva Dias, M.A. [Sao Paulo Univ., SP (Brazil); Calvet, J.-C.; Delire, C. [Centre National de Recherches Meteorologiques, 31 - Toulouse (France); Tahara, A.S.; Nobre, C.A. [INPE/CPTEC, Cachoeira Paulista (Brazil). Centro de Previsao de Tempo e Estidps Climaticos; Fisch, G.A. [Centro Tecnico Aerospacial, Sao Jose dos Campos (Brazil)


    As part of the preparation for the large-scale biosphere atmosphere experiment in amazonia, a mesoscale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to subcontinental scales in the dry season. Mesoscale models were run in 1D and 3D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture) poor. The models` underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area. The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the mesoscale. The results are used to identify key measurements for the LBA atmospheric mesoscale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role. (orig.) 39 refs.

  11. Shallow convection over land: a mesoscale modelling study based on idealized WRF experiments

    NARCIS (Netherlands)

    Lenaerts, J.T.M.; Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.


    A shallow cumulus over land redistributes heat and moisture in the boundary layer, but is also important on larger scales, because it can trigger severe convection events. Due to its small (102 - 103 m) spatial scale, this feature is defined as a sub-grid process in mesoscale models. The goal of

  12. WRF Mesoscale Pre-Run for the Wind Atlas of Mexico

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Pena Diaz, Alfredo; Hansen, Jens Carsten

    This report documents the work performed by DTU Wind Energy for the project “Atlas Eólico Mexicano” or the Wind Atlas of Mexico. This document reports on the methods used in “Pre-run” of the windmapping project for Mexico. The interim mesoscale modeling results were calculated from the output...

  13. Role of land state in a high resolution mesoscale model for ...

    Indian Academy of Sciences (India)

    Land surface characteristics; high resolution mesoscale model; Uttarakhand rainfall; monsoon season. .... radiation flux at the. Analysis for Research and surface (SW). Applications (MERRA). Downward longwave radiation flux at the surface (LW). Rain rate (PCP) ...... cal diffusion package with an explicit treatment of.

  14. Mesoscale plastic texture in body-centered cubic metals under uniaxial load

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.; Lookman, T.


    Roč. 1, č. 6 (2017), s. 063601 E-ISSN 2475-9953 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-13797S Institutional support: RVO:68081723 Keywords : dislocations * mesoscale * bcc metals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  15. Dust Storm Prediction with the Auckland Mars Mesoscale Model GM4 (United States)

    Walter, C.; Austin, G. L.


    The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) has been used to study the annual variation of the weather in two study sites in order to find a correlation between local atmospheric conditions and the occurrence of local dust storms.

  16. Detection of mesoscale zones of atmospheric instabilities using remote sensing and weather forecasting model data (United States)

    Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.


    The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal

  17. Evolution of physical and biological characteristics of mesoscale eddy in north-central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos


    Eddies appear to be important to both the physical and biogeochemical dynamics of the Red Sea. Numerical simulations of physical dynamics and remote sensing studies of chlorophyll concentration and sea surface height in the Red Sea indicate their importance to the upper portions of the sea (Raitsos et al., 2013; Yao et al., 2014; Zhan et al., 2014). Despite their apparent importance, process studies of these eddies have been lacking. In March 2013 we began an extended observational study of the north-central Red Sea (NCRS) where anticyclonic eddies have been observed. The study began with a ship-based characterization of the eddy and was followed by a three-month observational time series using an autonomous glider equipped with a CTD, oxygen sensor, and optical sensors for chlorophyll, CDOM and optical backscatter. The ship-based study captured an initial snapshot of an anticyclonic eddy and it\\'s associated biological and bio-optical distributions. Initially, chlorophyll distributions tended to mirror the density distribution, with deeper isopycnals and chlorophyll maximum depth in the anticyclonic eddy center. The anticyclone eddy in March had an along basin diameter of 150 km, penetrated vertically less than 150 m and elevated near surface chlorophyll concentrations appeared along its outer boundary. The shallowing of the pycnocline of the outer boundaries of the anticyclone eddy on March may elevate nutrients into the lower euphotic zone, contributing to phytoplankton productivity and biomass within the eddy. This eddy contains most of the kinetic energy of the region with the maximum velocities up to 30 - 35 cm/s. The eddy appeared to interact with the coastal reefs where exchange particulate and dissolved matter may occur. The autonomous glider provided the spring-to-summer progression of the system with increasing stratification, shallowing of the subsurface chlorophyll maximum, and fluctuations in the position and intensity of the eddy. Our glider effort

  18. High-Resolution Specification of the Land and Ocean Surface for Improving Regional Mesoscale Model Predictions (United States)

    Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.


    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts

  19. Variability of mass-size relationships in tropical Mesoscale Convective Systems (United States)

    Fontaine, Emmanuel; Leroy, Delphine; Delanoë, Julien; Dupuy, Régis; Lilie, Lyle; Strapp, Walter; Protat, Alain; Schwarzenböeck, Alfons


    The mass of individual ice hydrometeors in Mesoscale Convective Systems (MCS) has been investigated in the past using different methods in order to retrieve power law type mass-size relationships m(D) with m = α D^β. This study focuses on the variability of mass-size relationships in different types of MCS. Three types of tropical MCS were sampled during different airborne campaigns: (i) continental MCS during the West African monsoon (Megha-Tropique 2010), (ii) oceanic MCS over the Indian Ocean (Megha-Tropique 2011), and (iii) coastal MCS during the North-Australian monsoon (HAIC-HIWC). Mass-size relationships of ice hydrometeors are derived from a combined analysis of particle images from 2D-array probes and associated reflectivity factors measured with a Doppler cloud radar (94GHz) on the same research aircraft. A theoretical study of numerous hydrometeor shapes simulated in 3D and arbitrarily projected on a 2D plan allowed to constrain the exponent β of the m(D) relationship as a function of the derived surface-diameter relationship S(D), which is likewise written as a power law. Since S(D) always can be determined for real data from 2D optical array probes or other particle imagers, the evolution of the m(D) exponent β can be calculated along the flight trajectory. Then the pre-factor α of m(D) is constrained from theoretical simulations of the radar reflectivity factor matching the measured reflectivity factor along the aircraft trajectory. Finally, the Condensed Water Content (CWC) is deduced from measured particle size distributions (PSD) and retrieved m(D) relationships along the flight trajectory. Solely for the HAIC-HIWC campaign (North Australian Monsoon) a bulk reference measurement (IKP instrument) of high CWC could be performed in order to compare with the above described CWC deduced from ice hydrometeor images and reflectivity factors. Both CWC are coherent. Mean profiles of m(D) coefficients, PSD, and CWC are calculated as a function of the

  20. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.

    Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  1. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  2. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence (United States)

    Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine


    Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.

  3. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin


    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project. Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  4. The South China Sea Mesoscale Eddy Experiment (S-MEE) and Its Primary Findings (United States)

    Zhang, Z.; Tian, J.; Zhao, W.; Qiu, B.


    South China Sea (SCS), the largest marginal sea in the northwestern Pacific, have strong eddy activities as revealed by both satellite and in situ observations. The 3D structures of the SCS mesoscale eddies and their lifecycles, including the generation and dissipation processes, are, however, still not well understood at present because of the lack of well-designed field observations. In order to address the above two scientific issues (3D structure and lifecycle of SCS mesoscale eddies), the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. During the S-MEE, a total of 5 distinct mesoscale eddies were observed to cross the mooring arrays, among which one anticyclonic and cyclonic eddy pair was fully captured by the mooring arrays. In addition to moored observations, we also conducted two transects across the center of the anticyclonic eddy and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE and concurrent satellite-derived observations, we constructed the full-depth 3D structure of the eddy pair and analyzed its generation and dissipation mechanisms. We found that the eddies extend from the surface to the sea bottom and display prominent tilted structures in the vertical. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the oceanic eddy dissipation.

  5. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman


    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  6. Testability of numerical systems

    International Nuclear Information System (INIS)

    Soulas, B.


    In order to face up to the growing complexity of systems, the authors undertook to define a new approach for the qualification of systems. This approach is based on the concept of Testability which, supported by system modelization, validation and verification methods and tools, would allow Integrated Qualification process, applied throughout the life-span of systems. The general principles of this approach are introduced in the general case of numerical systems; in particular, this presentation points out the difference between the specification activity and the modelization and validation activity. This approach is illustrated firstly by the study of a global system and then by case of communication protocol as the software point of view. Finally MODEL which support this approach is described. MODEL tool is a commercial tool providing modelization and validation techniques based on Petri Nets with triple extension: Predicate/Transition, Timed and Stochastic Petri Nets

  7. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008) (United States)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.


    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  8. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load (United States)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu


    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  9. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load (United States)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu


    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  10. Mesoscale simulations of shock compaction of a granular ceramic: effects of mesostructure and mixed-cell strength treatment (United States)

    Derrick, J. G.; LaJeunesse, J. W.; Davison, T. M.; Borg, J. P.; Collins, G. S.


    The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ‘stiction’ between grains on the shock response. An increase in the average number of contacts with other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show that this has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by using identical beds or by averaging results over multiple experiments.

  11. A Climatology of Derecho-Producing Mesoscale Convective Systems in the Central and Eastern United States, 1986-95. Part I: Temporal and Spatial Distribution. (United States)

    Bentley, Mace L.; Mote, Thomas L.


    In 1888, Iowa weather researcher Gustavus Hinrichs gave widespread convectively induced windstorms the name "derecho". Refinements to this definition have evolved after numerous investigations of these systems; however, to date, a derecho climatology has not been conducted.This investigation examines spatial and temporal aspects of derechos and their associated mesoscale convective systems that occurred from 1986 to 1995. The spatial distribution of derechos revealed four activity corridors during the summer, five during the spring, and two during the cool season. Evidence suggests that the primary warm season derecho corridor is located in the southern Great Plains. During the cool season, derecho activity was found to occur in the southeast states and along the Atlantic seaboard. Temporally, derechos are primarily late evening or overnight events during the warm season and are more evenly distributed throughout the day during the cool season.

  12. Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes (United States)


    contain several bowing segments. These multiple segments could occur at the same time and be located within the same bow, such as the serial derecho ...Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342. Fovell, R. G., 2002: Upstream influence of numerically...Se- vere Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.6. Johns, R. H., and W. D. Hirt, 1987: Derechos : Widespread con- vectively induced

  13. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software – Case study of Baraolt River, Romania (United States)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci


    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric

  14. The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency (United States)

    Clavner, Michal; Cotton, William R.; van den Heever, Susan C.; Saleeby, Stephen M.; Pierce, Jeffery R.


    Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States and elsewhere in the world. It is therefore of interest to understand how different aerosols serving as cloud condensation nuclei (CCN) may impact the total amount, rates and spatial distribution of precipitation produced by MCSs. In this study, different aerosol concentrations and their effects on precipitation produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that differed only in the initial concentration, spatial distribution, and chemical composition of aerosols. Aerosol fields were derived from the output of GEOS-Chem, a 3D chemical transport numerical model. Results from the RAMS simulations show that the total domain precipitation was not significantly affected by variations in aerosol concentrations, however, the pollution aerosols altered the precipitation characteristics. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier precipitation, and a smaller area with lighter precipitation. These differences arose as a result of aerosols enhancing precipitation in the convective region of the MCS while suppressing precipitation from the MCS's stratiform-anvil. In the convective region, several processes likely contributed to an increase of precipitation. First, owing to the very humid environment of this storm, the enhanced amount of cloud water available to be collected overwhelmed the reduction in precipitation efficiency associated with the aerosol-induced production of smaller droplets which led to a net increase in the conversion of cloud droplets to precipitation. Second, higher aerosol concentrations led to invigoration of convective updrafts which

  15. Meso-scale eddies and the impacts on variability of carbonate chemistry over deep coral reefs in the Florida Straits (United States)

    Jiang, M.; Pan, C.; Barbero, L.; Hu, C.; Reed, J.; Salisbury, J.; Wanninkhof, R. H.


    Abundant and diverse cold-water corals and associated fish communities can be found in the deep waters of the Florida Straits. Preliminary evidence suggests that corals in these deep coral habitats are living under sub-optimal conditions with the ambient aragonite saturation state (Ω) being only marginally above 1. Yet little is known regarding the temporal variability of carbonate chemistry parameters and their dynamic drivers in these critical habitats. In this presentation, we addressed this issue by using a recently developed circulation model and in situ data collected during two research cruises: the second Florida Shelf Edge Exploration Expedition (FloSEE2) in September 2011 and the second Gulf of Mexico East Coast Carbon Cruise (GOMECC2) in July 2012, both supported by NOAA. A numerical simulation was carried out for 2011-2012. In particular, we focused on two contrasting habitats: Pourtalès Terrace (200-450m) and Miami Terrace (270-600m) in the Florida Straits. The results suggest that there is strong weekly to seasonal variability in the bottom water properties including temperature, salinity, total CO2 and total alkalinity on the upper slope of the Straits. In particular, the minimum saturation state over Pourtalès Terrace can be as low as 1.5 whereas even at the top of Miami Terrace, Ω can be very close to 1. Further analysis suggests that the variability of water properties in the upper slope is largely driven by the large-scale transport, and upwelling of cold and CO2-rich deep waters due to meandering of Florida Current, and/or associated meso-scale eddies. In contrast, the water properties at the bottom of the slope are very stable but with much lower aragonite saturation state. The roles of local biochemical processes including the potentially elevated productivity and export driven by meso-scale eddies are yet to be explored. We further project that the aragonite saturation state in deep waters of the Florida Straits may be further decreased

  16. Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona (United States)

    García-Díez, Markel; Lauwaet, Dirk; Hooyberghs, Hans; Ballester, Joan; De Ridder, Koen; Rodó, Xavier


    As most of the population lives in urban environments, the simulation of the urban climate has become a key problem in the framework of the climate change impact assessment. However, the high computational power required by high-resolution (sub-kilometre) fully coupled land-atmosphere simulations using urban canopy parameterisations is a severe limitation. Here we present a study on the performance of UrbClim, an urban boundary layer model designed to be several orders of magnitude faster than a full-fledged mesoscale model. The simulations are evaluated with station data and land surface temperature observations from satellites, focusing on the urban heat island (UHI). To explore the advantages of using a simple model like UrbClim, the results are compared with a simulation carried out with a state-of-the-art mesoscale model, the Weather Research and Forecasting Model, which includes an urban canopy model. This comparison is performed with driving data from ERA-Interim reanalysis (70 km). In addition, the effect of using driving data from a higher-resolution forecast model (15 km) is explored in the case of UrbClim. The results show that the performance of reproducing the average UHI in the simple model is generally comparable to the one in the mesoscale model when driven with reanalysis data (70 km). However, the simple model needs higher-resolution data from the forecast model (15 km) to correctly reproduce the variability of the UHI at a daily scale, which is related to the wind speed. This lack of accuracy in reproducing the wind speed, especially the sea-breeze daily cycle, which is strong in Barcelona, also causes a warm bias in the reanalysis driven UrbClim run. We conclude that medium-complexity models as UrbClim are a suitable tool to simulate the urban climate, but that they are sensitive to the ability of the input data to represent the local wind regime. UrbClim is a well suited model for impact and adaptation studies at city scale without high

  17. How biophysical interactions associated with sub- and mesoscale structures and migration behavior affect planktonic larvae of the spiny lobster in the Juan Fernández Ridge: A modeling approach (United States)

    Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos


    The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching

  18. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars (United States)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.


    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  19. On the tradeoffs of programming language choice for numerical modelling in geoscience. A case study comparing modern Fortran, C++/Blitz++ and Python/NumPy. (United States)

    Jarecka, D.; Arabas, S.; Fijalkowski, M.; Gaynor, A.


    The language of choice for numerical modelling in geoscience has long been Fortran. A choice of a particular language and coding paradigm comes with different set of tradeoffs such as that between performance, ease of use (and ease of abuse), code clarity, maintainability and reusability, availability of open source compilers, debugging tools, adequate external libraries and parallelisation mechanisms. The availability of trained personnel and the scale and activeness of the developer community is of importance as well. We present a short comparison study aimed at identification and quantification of these tradeoffs for a particular example of an object oriented implementation of a parallel 2D-advection-equation solver in Python/NumPy, C++/Blitz++ and modern Fortran. The main angles of comparison will be complexity of implementation, performance of various compilers or interpreters and characterisation of the "added value" gained by a particular choice of the language. The choice of the numerical problem is dictated by the aim to make the comparison useful and meaningful to geoscientists. Python is chosen as a language that traditionally is associated with ease of use, elegant syntax but limited performance. C++ is chosen for its traditional association with high performance but even higher complexity and syntax obscurity. Fortran is included in the comparison for its widespread use in geoscience often attributed to its performance. We confront the validity of these traditional views. We point out how the usability of a particular language in geoscience depends on the characteristics of the language itself and the availability of pre-existing software libraries (e.g. NumPy, SciPy, PyNGL, PyNIO, MPI4Py for Python and Blitz++, Boost.Units, Boost.MPI for C++). Having in mind the limited complexity of the considered numerical problem, we present a tentative comparison of performance of the three implementations with different open source compilers including CPython and

  20. Numerical model simulations of boundary-layer dynamics during winter conditions

    DEFF Research Database (Denmark)

    Melas, D.; Persson, T.; Bruin, H. de


    forcing. Model results are evaluated against in-situ measurements performed during the WINTEX field campaign held in Sodankyla, Northern Finland in March 1997. The results show that the land-surface parameterization employed in the mesoscale model is not able to reproduce the magnitude of the daytime......A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs' approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic...... sensible heat fluxes and especially the pronounced maximum observed in the afternoon. Additional model simulations indicate that this drawback is to a large extent removed by the implementation of a shading factor in the original Deardorff scheme. The shading factor, as discussed in Gryning et al. (2001...

  1. Numerical Experimentation to Develop Design and Operational Parameters for Skimming Wells: A Case Study of the Chaj Doab of Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam


    Full Text Available In the present study, MODFLOW-MT3D groundwater model was employed to perform numerical experimentation to develop design and operational parameters for SW (Skimming Wells based on hydrogeology and groundwater salinity conditions of Chaj Doab, Punjab, Pakistan. Numerical experimentation resulted in: (i a 1-strainer SW with discharge of 14 l/s (litres per second and penetration of 30% resulted in more saltwater upconing at 8 hours/day well operation compared to that occurred at 4 hours/day operation; (ii a 1-strainer well with penetration of 30% and operation of 8 hours/day caused higher saltwater upconing at 14 l/s discharge compared to that at 9 l/s discharge; (iii a 4-strainer well with penetration of 30% and operation of 8 hours/day also caused more saltwater upconing at 14 l/s well discharge compared to that at 9 l/s discharge. Similar trend was found for a 8- strainer well; and (iv 1- or 4- or 8-strainer well with 30-60% penetration, 9-14 l/s discharge and 4-8 hours/day operation could provide pumped groundwater of salinity less than 1000 ppm. Considering hydro-chemical performance and costs of wells, a 4-strainer well with 30% penetration, 9- 14 l/s discharge and 4-8 hours/day operation is recommended to skim groundwater of salinity less than 1000 ppm in Chaj Doab of Punjab, Pakistan

  2. A Discussion on the Interpretation of the Darcy Equation in Case of Open-Cell Metal Foam Based on Numerical Simulations. (United States)

    De Schampheleire, Sven; De Kerpel, Kathleen; Ameel, Bernd; De Jaeger, Peter; Bagci, Ozer; De Paepe, Michel


    It is long known that for high-velocity fluid flow in porous media, the relation between the pressure drop and the superficial velocity is not linear. Indeed, the classical Darcy law for shear stress dominated flow needs to be extended with a quadratic term, resulting in the empirical Darcy-Forchheimer model. Another approach is to simulate the foam numerically through the volume averaging technique. This leads to a natural separation of the total drag force into the contribution of the shear forces and the contribution of the pressure forces. Both representations of the total drag lead to the same result. The physical correspondence between both approaches is investigated in this work. The contribution of the viscous and pressure forces on the total drag is investigated using direct numerical simulations. Special attention is paid to the dependency on the velocity of these forces. The separation of the drag into its constituent terms on experimental grounds and for the volume average approach is unified. It is shown that the common approach to identify the linear term with the viscous forces and the quadratic term with the pressure forces is not correct.

  3. An Evaluation of Mesoscale Model Based Model Output Statistics (MOS) During the 2002 Olympic and Paralympic Winter Games

    National Research Council Canada - National Science Library

    Hart, Kenneth


    The skill of a mesoscale model based Model Output Statistics (MOS) system that provided hourly forecasts for 18 sites over northern Utah during the 2002 Winter Olympic and Paralympic Games is evaluated...

  4. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction (United States)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary


    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  5. Kinetic-fluid coupling in the field of the atomic vapor laser isotopic separation: Numerical results in the case of a monospecies perfect gas

    International Nuclear Information System (INIS)

    Dellacherie, Stephane


    To describe the uranium gas expansion in the field of the Atomic Vapor Laser Isotopic Separation (AVLIS; SILVA in french) with a reasonable CPU time, we have to couple the resolution of the Boltzmann equation with the resolution of the Euler system. The resolution of the Euler system uses a kinetic scheme and the boundary condition at the kinetic-fluid interface - which defines the boundary between the Boltzmann area and the Euler area - is defined with the positive and negative half fluxes of the kinetic scheme. Moreover, in order to take into account the effect of the Knudsen layer through the resolution of the Euler system, we propose to use a Marshak condition to asymptoticaly match the Euler area with the uranium source. Numerical results show an excellent agreement between the results obtained with and without kinetic-fluid coupling

  6. Experimentally validated structural vibration frequencies’ prediction from frictional temperature signatures using numerical simulation: A case of laced cantilever beam-like structures

    Directory of Open Access Journals (Sweden)

    Stephen M Talai


    Full Text Available This article pertains to the prediction of structural vibration frequencies from frictional temperature evolution through numerical simulation. To achieve this, a finite element analysis was carried on AISI 304 steel cantilever beam-like structures coupled with a lacing wire using the commercial software ABAQUS/CAE. The coupled temperature–displacement transient analysis simulated the frictional thermal generation. Furthermore, an experimental analysis was carried out with infrared cameras capturing the interfacial thermal images while the beams were subjected to forced excitation, thus validating the finite element analysis results. The analysed vibration frequencies using a MATLAB fast Fourier transform algorithm confirmed the validity of its prediction from the frictional temperature time domain waveform. This finding has a great significance to the mechanical and aerospace engineering communities for the effective structural health monitoring of dynamic structures online using infrared thermography, thus reducing the downtime and maintenance cost, leading to increased efficiency.

  7. A numerical study of stress/strain response to oil development in reservoir rocks-a case study in Xingshugang area of Daqing Anticline

    International Nuclear Information System (INIS)

    Li Zian; Ma Teng; Yi Jin; Zhu Jiangjian; Lin Ge; Zhang Lu; Zhu Yan; Sun Yaliang; Zhu Jun


    Formation pressure and the underground stress field will be disturbed by high pressure injection and production activities during oilfield development. Such disturbance will induce the deformation of formation rock, sometimes causing formation to slip. As a result, production wells and/or injection wells will encounter sanding, casing deformation, or even casing shear problems. This article introduced a simulation study on formation pressure and the underground stress field variation during injection and production activities in the Xingshugang area of the Daqing Anticline, Songliao Basin, China. The relationships of injection pressure to formation pressure, underground stress field variation, and strain variation were investigated in this paper.

  8. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps

    Directory of Open Access Journals (Sweden)

    H. Y. Hussin


    Full Text Available The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10–50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps. The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.

  9. Thermal performance of a meso-scale liquid-fuel combustor

    International Nuclear Information System (INIS)

    Vijayan, V.; Gupta, A.K.


    Research highlights: → Demonstrated successful combustion of liquid fuel-air mixtures in a novel meso-scale combustor. → Flame quenching was eliminated using heat recirculation in a swiss roll type combustor that also extended the flammability limits. → Liquid fuel was rapidly vaporized with the use of hot narrow channel walls that eliminated the need of a fuel atomizer. → Maximum power density of the combustor was estimated to be about 8.5 GW/m3 and heat load in the range of 50-280W. → Overall efficiency of the combustor was estimated in the range of 12 to 20%. - Abstract: Combustion in small scale devices poses significant challenges due to the quenching of reactions from wall heat losses as well as the significantly reduced time available for mixing and combustion. In the case of liquid fuels there are additional challenges related to atomization, vaporization and mixing with the oxidant in the very short time-scale liquid-fuel combustor. The liquid fuel employed here is methanol with air as the oxidizer. The combustor was designed based on the heat recirculating concept wherein the incoming reactants are preheated by the combustion products through heat exchange occurring via combustor walls. The combustor was fabricated from Zirconium phosphate, a ceramic with very low thermal conductivity (0.8 W m -1 K -1 ). The combustor had rectangular shaped double spiral geometry with combustion chamber in the center of the spiral formed by inlet and exhaust channels. Methanol and air were introduced immediately upstream at inlet of the combustor. The preheated walls of the inlet channel also act as a pre-vaporizer for liquid fuel which vaporizes the liquid fuel and then mixes with air prior to the fuel-air mixture reaching the combustion chamber. Rapid pre-vaporization of the liquid fuel by the hot narrow channel walls eliminated the necessity for a fuel atomizer. Self-sustained combustion of methanol-air was achieved in a chamber volume as small as 32.6 mm 3

  10. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Harry Keo [Univ. of California, Davis, CA (United States)


    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed

  11. Gaps in nonsymmetric numerical semigroups

    International Nuclear Information System (INIS)

    Fel, Leonid G.; Aicardi, Francesca


    There exist two different types of gaps in the nonsymmetric numerical semigroups S(d 1 , . . . , d m ) finitely generated by a minimal set of positive integers {d 1 , . . . , d m }. We give the generating functions for the corresponding sets of gaps. Detailed description of both gap types is given for the 1st nontrivial case m = 3. (author)

  12. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg


    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  13. Validation and application of an urban turbulence parameterisation scheme for mesoscale atmospheric models


    Roulet, Yves-Alain F.; Clappier, Alain


    Growing population, extensive use (and abuse) of the natural resources, increasing pollutants emissions in the atmosphere: these are a few obstacles (and not the least) one has to face with nowadays to ensure the sustainability of our planet in general, and of the air quality in particular. In the case of air pollution, the processes that govern the transport and the chemical transformation of pollutants are highly complex and non-linear. The use of numerical models for simulating meteorologi...

  14. The role of subsidence in a weakly unstable marine boundary layer: a case study

    DEFF Research Database (Denmark)

    Mazzitelli, I. M.; Cassol, M.; Miglietta, M.M.


    constant, and does not exhibit the diurnal cycle characteristic of boundary layers over land. A case study, during summer, showing an anomalous development of the mixed layer under unstable and nearly neutral atmospheric conditions, is selected in the campaign. Subsidence is identified as the main physical...... mechanism causing the sudden decrease in the mixing layer height. This is quantified by comparing radiosounding profiles with data from numerical simulations of a mesoscale model, and a large-eddy simulation model. Subsidence not only affects the mixing layer height, but also the turbulent fluctuations...... within it. By analyzing wind and scalar spectra, the role of subsidence is further investigated and a more complete interpretation of the experimental results emerges....

  15. Mesoscale model parameterizations for radiation and turbulent fluxes at the lower boundary

    International Nuclear Information System (INIS)

    Somieski, F.


    A radiation parameterization scheme for use in mesoscale models with orography and clouds has been developed. Broadband parameterizations are presented for the solar and the terrestrial spectral ranges. They account for clear, turbid or cloudy atmospheres. The scheme is one-dimensional in the atmosphere, but the effects of mountains (inclination, shading, elevated horizon) are taken into account at the surface. In the terrestrial band, grey and black clouds are considered. Furthermore, the calculation of turbulent fluxes of sensible and latent heat and momentum at an inclined lower model boundary is described. Surface-layer similarity and the surface energy budget are used to evaluate the ground surface temperature. The total scheme is part of the mesoscale model MESOSCOP. (orig.) With 3 figs., 25 refs [de

  16. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. (United States)

    Ross, Michael B; Blaber, Martin G; Schatz, George C


    The a priori ability to design electromagnetic wave propagation is crucial for the development of novel metamaterials. Incorporating plasmonic building blocks is of particular interest due to their ability to confine visible light. Here we explore the use of anisotropy in nanoscale and mesoscale plasmonic array architectures to produce noble metal-based metamaterials with unusual optical properties. We find that the combination of nanoscale and mesoscale anisotropy leads to rich opportunities for metamaterials throughout the visible and near-infrared. The low volume fraction (metamaterials explored herein exhibit birefringence, a skin depth approaching that of pure metals for selected wavelengths, and directionally confined waves similar to those found in optical fibres. These data provide design principles with which the electromagnetic behaviour of plasmonic metamaterials can be tailored using high aspect ratio nanostructures that are accessible via a variety of synthesis and assembly methods.

  17. Individual nodeʼs contribution to the mesoscale of complex networks (United States)

    Klimm, Florian; Borge-Holthoefer, Javier; Wessel, Niels; Kurths, Jürgen; Zamora-López, Gorka


    The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains.

  18. The structure and dynamics of mesoscale systems influencing severe thunderstorm development during AVE/SESAME 1 (United States)

    Wilson, G. S.


    Relationships between meso-beta scale systems and thunderstorm formation were examined as part of the NASA atmospheric variability experiment/severe environmental storms and mesoscale experiment 1979. The McIdas program was employed for meso-beta scale analyses of atmospheric structure and dynamics in kinematic computations of the Abilene Triangle on a grid mesh of 100 km for station spacing of 275 km. Mesoscale short wave systems were detected imbedded and propagating cyclonically around upper-level vortex circulation and creating environmental conditions conducive to thunderstorm development. TIROS-N and GOES satellite data served to connect the systems with two convective storms which developed. The necessity to use spaceborne instrumentation carried on the Shuttle or on free-flying satellites for enhancing the data-base on storm development is noted.

  19. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.


    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  20. Implementation of spectrum analysis in mesoscale modeling for wind energy assessment studies

    DEFF Research Database (Denmark)

    Stathopoulos, C.; Barranger, N.; Larsén, Xiaoli Guo


    Spectral analysis of wind speed is a key parameter for the characterization of the physical processes generating the fields. Especially, the mesoscale power spectrum is an important measure of accuracy of wind forecasting and extreme wind estimation for modern wind farms, which are of the size....... This technique is initially applied to mesocale circulation within the Navarra region and at a second stage at higher resolution in an area encompassing CENER’s test Site in Alaiz mountain....

  1. Direct and Remote Effects of Topography and Orientation, and the Dynamics of Mesoscale Eddies (United States)


    TOPOGRAPHY AND ORIENTATION, AND THE DYNAMICS OF MESOSCALE EDDIES by Larry T. Gulliver September 2017 Thesis Advisor: Timour Radko Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DIRECT AND REMOTE EFFECTS OF TOPOGRAPHY AND ORIENTATION, AND THE DYNAMICS OF...upper half of the basin and the bottom topography , ii) Analysis of the system response to changes in the zonal and meridional seafloor slope and iii

  2. High-Operating-Temperature Direct Ink Writing of Mesoscale Eutectic Architectures. (United States)

    Boley, J William; Chaudhary, Kundan; Ober, Thomas J; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Hanson, Erik; Kulkarni, Ashish; Oh, Jaewon; Kim, Jinwoo; Aagesen, Larry K; Zhu, Alexander Y; Capasso, Federico; Thornton, Katsuyo; Braun, Paul V; Lewis, Jennifer A


    High-operating-temperature direct ink writing (HOT-DIW) of mesoscale architectures that are composed of eutectic silver chloride-potassium chloride. The molten ink undergoes directional solidification upon printing on a cold substrate. The lamellar spacing of the printed features can be varied between approximately 100 nm and 2 µm, enabling the manipulation of light in the visible and infrared range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin (United States)

    Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.


    The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.

  4. An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II - Vertical structure (United States)

    Mapes, Brian; Houze, Robert A., Jr.


    The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.

  5. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael


    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  6. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qinyi; Guest, Jeffrey R. [Center; Thimsen, Elijah


    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), and experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.

  7. Revised numerical wrapper for PIES code (United States)

    Raburn, Daniel; Reiman, Allan; Monticello, Donald


    A revised external numerical wrapper has been developed for the Princeton Iterative Equilibrium Solver (PIES code), which is capable of calculating 3D MHD equilibria with islands. The numerical wrapper has been demonstrated to greatly improve the rate of convergence in numerous cases corresponding to equilibria in the TFTR device where magnetic islands are present. The numerical wrapper makes use of a Jacobian-free Newton-Krylov solver along with adaptive preconditioning and a sophisticated subspace-restricted Levenberg-Marquardt backtracking algorithm. The details of the numerical wrapper and several sample results are presented.

  8. Simulation of Severe Local Storm by Mesoscale Model MM5 and Validation Using Data from Different Platforms

    Directory of Open Access Journals (Sweden)

    Prosenjit Chatterjee


    Full Text Available During premonsoon season (March to May convective developments in various forms are common phenomena over the Gangetic West Bengal, India. In the present work, simulation of wind squall on three different dates has been attempted with the help of mesoscale model MM5. The combination of various physical schemes in MM5 is taken as that found in a previous work done to simulate severe local storms over the Gangetic West Bengal. In the present study the model successfully simulates wind squall showing pressure rise, wind shift, wind surge, temperature drop, and heavy rainfall, in all cases. Convective cloud development and rainfall simulation by the model has been validated by the corresponding product from Doppler Weather Radar located at Kolkata and TRMM satellite product 3B42 (V6, respectively. It is found that the model is capable of capturing heavy rainfall pattern with up to three-hour time gap existing between simulation and observation of peak rainfall occurrence. In all simulations there is spatial as well as temporal shift from observation.

  9. Tight-binding model for materials at mesoscale

    Energy Technology Data Exchange (ETDEWEB)


    TBM3 is an open source package for computational simulations of quantum materials at multiple scales in length and time. The project originated to investigate the multiferroic behavior in transition-metal oxide heterostructures. The framework has also been designed to study emergent phemona in other quantum materials like 2-dimensional transition-metal dichalcogenides, graphene, topological insulators, and skyrmion in materials, etc. In the long term, we will enable the package for transport and time-resolved phenomena. TBM3 is currently a C++ based numerical tool package and framework for the design and construction of any kind of lattice structures with multi-orbital and spin degrees of freedom. The fortran based portion of the package will be added in the near future. The design of TBM3 is in a highly flexible and reusable framework and the tight-binding parameters can be modeled or informed by DFT calculations. It is currently GPU enabled and feature of CPU enabled MPI will be added in the future.

  10. An Observing System Simulation Experiment (OSSE to Assess the Impact of Doppler Wind Lidar (DWL Measurements on the Numerical Simulation of a Tropical Cyclone

    Directory of Open Access Journals (Sweden)

    Lei Zhang


    Full Text Available The importance of wind observations has been recognized for many years. However, wind observations—especially three-dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL is proposed to measure three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is expected to improve the performance of the numerical weather prediction (NWP models. In order to examine the potential impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones, a set of observing simulation system experiments (OSSEs is performed using the advanced research version of the Weather Research and Forecasting (WRF model and its three-dimensional variational (3DVAR data assimilation system. Results indicate that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical cyclone track and intensity forecasts.

  11. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  12. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models: (United States)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.


    1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and

  13. Impregnation of Composite Materials: a Numerical Study (United States)

    Baché, Elliott; Dupleix-Couderc, Chloé; Arquis, Eric; Berdoyes, Isabelle


    Oxide ceramic matrix composites are currently being developed for aerospace applications such as the exhaust, where the parts are subject to moderately high temperatures (≈ 700 ∘C) and oxidation. These composite materials are normally formed by, among other steps, impregnating a ceramic fabric with a slurry of ceramic particles. This impregnation process can be complex, with voids possibly forming in the fabric depending on the process parameters and material properties. Unwanted voids or macroporosity within the fabric can decrease the mechanical properties of the parts. In order to design an efficient manufacturing process able to impregnate the fabric well, numerical simulations may be used to design the process as well as the slurry. In this context, a tool is created for modeling different processes. Thétis, which solves the Navier-Stokes-Darcy-Brinkman equation using finite volumes, is expanded to take into account capillary pressures on the mesoscale. This formulation allows for more representativity than for Darcy's law (homogeneous preform) simulations while avoiding the prohibitive simulation times of a full discretization for the composing fibers at the representative elementary volume scale. The resulting tool is first used to investigate the effect of varying the slurry parameters on impregnation evolution. Two different processes, open bath impregnation and wet lay-up, are then studied with emphasis on varying their input parameters (e.g. inlet velocity).

  14. Processes forcing the suspended sediments distribution in a wide, shallow and microtidal estuary: a numerical case study for the Río de la Plata (United States)

    Simionato, Claudia; Moreira, Diego


    The impact of the diverse mechanisms driving the suspended sediments distribution in the wide, shallow and microtidal Río de la Plata (RdP) estuary and the adjacent shelf is studied by means of a set of process-oriented numerical simulations. With that aim, a regional application of the hydro-sedimentological Model for Applications at Regional Scale (MARS) is implemented, tested and run under diverse conditions. Even the simulations are idealized, they reproduce both qualitatively and quantitatively well the main features of the suspended sediments observed distribution, particularly the mean values of concentration and its gradients: perpendicular to the estuary axis at the upper and intermediate RdP and parallel to the estuary axis at its outer part. Even though naturally the diameter of the sediments that deposit decays with the distance to the sources (with sands and silts dominating in the upper estuary and fine silts and clays over the Barra del Indio), model results show that the large width and the geometry of the estuary play an important role in the sedimentation process. The widening and deepening, and the associated significant reduction of the currents speed that occurs after (i) the confluence of the tributaries and (ii) downstream the Barra del Indio Shoal, favors sediments deposition downstream those areas. Even though tides are of small amplitude in the study area, they have a significant impact on the lateral mixing and the re-suspension of bottom sediments; this last augments the concentration of fine sediments in the layers close to the bottom but their energy is not enough to rise them up to the surface. The model reproduces the increment in the concentration of fine sediments observed in the areas where tidal dissipation energy by bottom friction maximizes (over the southern coast of the RdP and around Punta Piedras and Punta Rasa), but shows that tides alone cannot account for the observed maxima. Winds (which can be quite large over this

  15. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene


    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  16. Status of numerical relativity

    Indian Academy of Sciences (India)

    Keywords. Numerical relativity; gravitational waves; black hole; neutron star. Abstract. I describe the current status of numerical relativity from my personal point of view. Here, I focus mainly on explaining the numerical implementations necessary for simulating general relativistic phenomena such as the merger of compact ...

  17. High resolution numerical simulation (WRF V3) of an extreme rainy event over the Guadeloupe archipelago: Case of 3-5 january 2011. (United States)

    Bernard, Didier C.; Cécé, Raphaël; Dorville, Jean-François


    During the dry season, the Guadeloupe archipelago may be affected by extreme rainy disturbances which may induce floods in a very short time. C. Brévignon (2003) considered a heavy rain event for rainfall upper 100 mm per day (out of mountainous areas) for this tropical region. During a cold front passage (3-5 January 2011), torrential rainfalls caused floods, major damages, landslides and five deaths. This phenomenon has put into question the current warning system based on large scale numerical models. This low-resolution forecasting (around 50-km scale) has been unsuitable for small tropical island like Guadeloupe (1600 km2). The most affected area was the middle of Grande-Terre island which is the main flat island of the archipelago (area of 587 km2, peak at 136 m). It is the most populated sector of Guadeloupe. In this area, observed rainfall have reached to 100-160 mm in 24 hours (this amount is equivalent to two months of rain for January (C. Brévignon, 2003)), in less 2 hours drainage systems have been saturated, and five people died in a ravine. Since two years, the atmospheric model WRF ARW V3 (Skamarock et al., 2008) has been used to modeling meteorological variables fields observed over the Guadeloupe archipelago at high resolution 1-km scale (Cécé et al., 2011). The model error estimators show that meteorological variables seem to be properly simulated for standard types of weather: undisturbed, strong or weak trade winds. These simulations indicate that for synoptic winds weak to moderate, a small island like Grande-Terre is able to generate inland convergence zones during daytime. In this presentation, we apply this high resolution model to simulate this extreme rainy disturbance of 3-5 January 2011. The evolution of modeling meteorological variable fields is analyzed in the most affected area of Grande-Terre (city of Les Abymes). The main goal is to examine local quasi-stationary updraft systems and highlight their convective mechanisms. The

  18. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations: Long-Lived Mesoscale Convective Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Houze, Robert A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Leung, L. Ruby [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Feng, Zhe [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA


    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating the longest-lived MCSs and their subsequent interactions. The simulations show that MCSs systematically form over the Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. Systems reaching 9 h or more in lifetime exhibit feedback to the environment conditions through diabatic heating in the MCS stratiform regions. As a result, the parent synoptic-scale wave is strengthened as a divergent perturbation develops over the MCS at high levels, while a cyclonic circulation perturbation develops in the midlevels of the trough, where the vertical gradient of heating in the MCS region is maximized. The quasi-balanced mesoscale vortex helps to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region, so that the MCS can draw in air that increases the evaporative cooling that helps maintain the MCS. At lower levels the south-southeasterly jet of warm moist air from the Gulf is enhanced in the presence of the synoptic-scale wave. That moisture supply is essential to the continued redevelopment of the MCS.

  19. Numerical modelling approach for mine backfill

    Indian Academy of Sciences (India)

    ... of mine backfill material needs special attention as the numerical model must behave realistically and in accordance with the site conditions. This paper discusses a numerical modelling strategy for modelling mine backfill material. Themodelling strategy is studied using a case study mine from Canadian mining industry.

  20. Redefining the magic square on numerical characters (United States)

    Nasution, M. K. M.; Sawaluddin


    As a number system, the magic square is different from the others. Characteristic depends not only on size but also depends on numerical character in computation. This paper has redefined the term of magic square formally, by exposing the inductive general characteristics of cases to numerical ordering of numbers.

  1. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server


    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  2. A Numerical Case Study of the Implications of Secondary Circulations to the Interpretation of Eddy-Covariance Measurements Over Small Lakes (United States)

    Kenny, William T.; Bohrer, Gil; Morin, Timothy H.; Vogel, Chris S.; Matheny, Ashley M.; Desai, Ankur R.


    We use a large-eddy simulation (LES) to study the airflow patterns associated with a small inland lake surrounded by a forest of height one-tenth the radius of the lake. We combine LES results with scalar dispersion simulations to model potential biases in eddy-covariance measurements due to the heterogeneity of surface fluxes and vertical advection. The lake-to-forest transition can induce a non-zero vertical velocity component, affecting the interpretation of flux measurements. Significant horizontal gradients of mean CO2 concentration are generated by the forest carbon sink and lake carbon source, which are transported by local roughness-induced circulation. We simulate six hypothetical locations for flux towers along a downwind gradient at various heights, and calculate at each location the effects of both the average vertical advection and average turbulent-flux divergence of CO2. We compare our model results with an analytical footprint model to find that the footprint predicted by the analytical model is inaccurate due to the complexities of advection for our test case. Similar small lakes surrounded by forests are likely affected by these phenomena as well. We recommend specialized levelling of sonic anemometers to reduce the effects of non-zero wind components. Flux towers over small water bodies should be constructed at a distance 0.5-0.67 times the diameter of the lake to provide ample separation from the areas affected by the rotor effect of the upwind forest/lake transition and the updraft at the downwind edge. Finally, we also suggest the filtering of wind directions based on the Higgins ratio.

  3. Recent improvements in mesoscale characterization of the western Mediterranean Sea: synergy between satellite altimetry and other observational approaches

    Directory of Open Access Journals (Sweden)

    Ananda Pascual


    Full Text Available Satellite altimetry is a key component of the global observing system and plays a major role in the study of the mesoscale processes that drive most of the ocean circulation variability at middle and high latitudes. However, satellite altimetry alone provides only surface information at a limited spatio-temporal resolution. To address these limitations and to better describe the mesoscale three-dimensional variability, it is necessary to complement altimetry data with additional remote and in situ measurements. This study provides an update of the recent advances in the study of the mesoscale variability using a combination of altimetry and other independent observations, with an emphasis on the results obtained for the western Mediterranean Sea. The circulation in this area is complex because of the presence of multiple interacting scales, including basin-scale, sub-basin–scale and mesoscale structures. Thus, characterizing these processes requires high-resolution observations and multi-sensor approaches. Accordingly, multi-platform experiments and analyses have been designed and undertaken in the different sub-basins of the western Mediterranean Sea. These studies have demonstrated the advantages of synergetic approaches that use a combination of observation techniques and are able to resolve different spatio-temporal scales with the aim of better understanding mesoscale dynamics.

  4. Numerical Analysis of Storm Surge and Seiche at Tokyo Bay caused by the 2 Similar Typhoons, Typhoon Phanphon and Vongfong in 2014 (United States)

    Iwamoto, T.; Takagawa, T.


    A long period damped oscillation, or seiche, sometimes happens inside a harbor after passing typhoon. For some cases, a maximum sea level is observed due to the superposition of astronomical tide and seiche rather than a peak of storm surge. Hence to clarify seiche factors for reducing disaster potential is important, a long-period seiche with a fundamental period of 5.46 hours in Tokyo Bay (Konishi, 2008) was investigated through numerical simulations and analyses. We examined the case of Typhoon Phanphon and Vongfong in 2014 (Hereafter Case P and V). The intensity and moving velocity were similar and the best-tracks were an arc-shaped, typical one approaching to Tokyo Bay. The track of Case V was about 1.5 degree higher latitude than that of Case P, only Typhoon Phanphon caused significant seiche.Firstly, numerical simulations for the 2 storm surges at Tokyo Bay were conducted by Regional Ocean Modeling System (ROMS) and Meso-Scale Model Grid Point Values (MSM-GPV). MSM-GPV gave the 10m wind speed and Sea Level Pressure (SLP), especially the Mean Error (ME) and Root Mean Squire Error (RMSE) of SLP were low compared to the 12 JMA observation points data (Case P: ME -0.303hPa, RMSE 1.87hPa, Case V: ME -0.285hPa, RMSE 0.74hPa). The computational results showed that the maximum of storm surge was underestimated but the difference was less than 20cm at 5 observation points in Tokyo Bay(Fig.1, 2).Then, power spectrals, coherences and phase differences of storm surges at the 5 observation points were obtained by spectral analysis of observed and simulated waveforms. For Case P, the phase-difference between the bay mouth and innermost part of Tokyo Bay was little, and coherence was almost 1(Fig.3, 4). However, for Case V, coherence was small around the fundamental period of 5.46 hours. Furthermore, Empirical Orthogonal Function (EOF) analysis of storm surge, SLP and sea surface stress were conducted. The contributions of EOF1 were above 90% for the all variables, the

  5. Development of a 1D canopy module to couple mesoscale meteorogical model with building energy model (United States)

    Mauree, Dasaraden; Kohler, Manon; Blond, Nadège; Clappier, Alain


    The actual global warming, highlighted by the scientific community, is due to the greenhouse gases emissions resulting from our energy consumption. This energy is mainly produced in cities (about 70% of the total energy use). Around 36% of this energy are used in buildings (residential/tertiary) and this accounts for about 20% of the greenhouse gases emissions. Moreover, the world population is more and more concentrated in urban areas, 50% of the actual world population already lives in cities and this ratio is expected to reach 70% by 2050. With the obviously increasing responsibility of cities in climate change in the future, it is of great importance to go toward more sustainable cities that would reduce the energy consumption in urban areas. The energy use inside buildings is driven by two factors: (1) the level of comfort wished by the inhabitants and (2) the urban climate. On the other hand, the urban climate is influenced by the presence of buildings. Indeed, artificial surfaces of urban areas modify the energy budget of the Earth's surface and furthermore, heat is released into the atmosphere due to the energy used by buildings. Modifications at the building scale (micro-scale) can thus have an influence on the climate of the urban areas and surroundings (meso-scale), and vice and versa. During the last decades, meso-scale models have been developed to simulate the atmospheric conditions for domain of 100-1000km wide with a resolution of few kilometers. Due to their low resolution, the effects of small obstacles (such as buildings, trees, ...) near the ground are not reproduced properly and parameterizations have been developed to represent such effects in meso-scale models. On the other side, micro-scale models have a higher resolution (around 1 meter) and consequently can better simulate the impact of obstacles on the atmospheric heat flux exchanges with the earth surface. However, only a smaller domain (less than 1km) can be simulated for the same

  6. Structural and numerical modeling of fluid flow and evolving stress fields at a transtensional stepover: A Miocene Andean porphyry copper system as a case study. (United States)

    Nuñez, R. C.; Griffith, W. A.; Mitchell, T. M.; Marquardt, C.; Iturrieta, P. C.; Cembrano, J. M.


    Obliquely convergent subduction orogens show both margin-parallel and margin-oblique fault systems that are spatially and temporally associated with ore deposits and geothermal systems within the volcanic arc. Fault orientation and mechanical interaction among different fault systems influence the stress field in these arrangements, thus playing a first order control on the regional to local-scale fluid migration paths as documented by the spatial distribution of fault-vein arrays. Our selected case study is a Miocene porphyry copper-type system that crops out in the precordillera of the Maule region along the Teno river Valley (ca. 35°S). Several regional to local faults were recognized in the field: (1) Two first-order, N-striking subvertical dextral faults overlapping at a right stepover; (2) Second-order, N60°E-striking steeply-dipping, dextral-normal faults located at the stepover, and (3) N40°-60°W striking subvertical, sinistral faults crossing the stepover zone. The regional and local scale geology is characterized by volcano-sedimentary rocks (Upper Eocene- Lower Miocene), intruded by Miocene granodioritic plutons (U-Pb zircon age of 18.2 ± 0.11 Ma) and coeval dikes. We implement a 2D boundary element displacement discontinuity method (BEM) model to test the mechanical feasibility of kinematic model of the structural development of the porphyry copper-type system in the stepover between N-striking faults. The model yields the stress field within the stepover region and shows slip and potential opening distribution along the N-striking master faults under a regionally imposed stress field. The model shows that σ1 rotates clockwise where the main faults approach each other, becoming EW when they overlap. This, in turn leads to the generation of both NE- and NW-striking faults within the stepover area. Model results are consistent with the structural and kinematic data collected in the field attesting for enhanced permeability and fluid flow transport

  7. A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. (United States)

    Dupin, M M; Halliday, I; Care, C M


    While blood at the macroscopic scale is frequently treated as a continuum by techniques such as computational fluid dynamics, its mesoscale behaviour is not so well investigated or understood. At this scale, the deformability of each cell within the plasma is important and cannot be ignored. However there is currently a lack of efficient computational techniques able to simulate a large number of deformable particles such as blood cells. This paper addresses this problem and demonstrates the applicability of the authors' recent multi-component lattice Boltzmann method for the simulation of a large number of mutually immiscible liquid species [Dupin MM, Halliday I, Care CM. Multi-component lattice boltzmann equation for mesoscale blood flow. J Phys A: Math Gen 2003;36:8517-34]. In here, biological cells are treated as immiscible, deformable, and relatively viscous drops (compared to the surrounding fluid). The validation of the model is based on the work of Goldsmith on the flow of solid particles, deformable particles and red blood cells [Goldsmith HL, Marlow JC. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J Colloid Interf Sci 1979;71:383-407]. We demonstrate, in particular, that the model recovers Goldsmith's observations on the flow properties of red blood cells and also the experimental observations of Frank on the flow of solid beads [Frank M, Anderson D, Weeks ER, Morris JF. Particle migration in pressure-driven flow of a brownian suspension. J Fluid Mech 2003;493:363-78]. The current article is the first validation of our new lattice Boltzmann model for a large number of deformable particles in this context and demonstrates that the method provides a new, and effective, approach for the modeling of mesoscale blood flow.

  8. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System (United States)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.


    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  9. Characterization of Mesoscale Convective Systems by Means of Composite Radar Reflectivity Data (United States)

    Geerts, Bart


    A mesoscale convective system (MCS) is broadly defined as a cloud and precipitation system of mesoscale dimensions (often too large for most aircraft to circumnavigate) with deep-convective activity concentrated in at least part of the MCS, or present during part of its evolution. A large areal fraction of MCSs is stratiform in nature, yet estimates from MCSs over the Great Plains, the Southeast, and tropical waters indicate that at least half of the precipitation is of convective origin. The presence of localized convection is important, because within convective towers cloud particles and hydrometeors are carried upward towards the cloud top. Ice crystals then move over more stratiform regions, either laterally, or through in situ settling over decaying and spreading convection. These ice crystals then grow to precipitation-size particles in mid- to upper tropospheric mesoscale updrafts. The convective portion of a MCS is often a more or less continuous line of thunderstorms, and may be either short-lived or long-lived. Geerts (1997) presents a preliminary climatology of MCSs in the southeastern USA, using just one year of composite digital radar reflectivity data. In this study MCSs are identified and characterized by means of visual inspection of animated images. A total of 398 MCSs were identified. In the warm season MCSs were found to be about twice as frequent as in the cold season. The average lifetime and maximum length of MCSs are 9 hours, and 350 km, respectively, but some MCSs are much larger and more persistent. In the summer months small and short-lived MCSs are relatively more common, whereas in winter larger and longer-lived systems occur more frequently. MCSs occur more commonly in the afternoon, in phase with thunderstorm activity, but the amplitude of the diurnal cycle is small compared to that of observed thunderstorms. It is estimated that in the Southeast more than half of all precipitation and severe weather results from MCSs.

  10. MFIX documentation numerical technique

    Energy Technology Data Exchange (ETDEWEB)

    Syamlal, M.


    MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose hydrodynamic model for describing chemical reactions and heat transfer in dense or dilute fluid-solids flows, which typically occur in energy conversion and chemical processing reactors. The calculations give time-dependent information on pressure, temperature, composition, and velocity distributions in the reactors. The theoretical basis of the calculations is described in the MFIX Theory Guide. Installation of the code, setting up of a run, and post-processing of results are described in MFIX User`s manual. Work was started in April 1996 to increase the execution speed and accuracy of the code, which has resulted in MFIX 2.0. To improve the speed of the code the old algorithm was replaced by a more implicit algorithm. In different test cases conducted the new version runs 3 to 30 times faster than the old version. To increase the accuracy of the computations, second order accurate discretization schemes were included in MFIX 2.0. Bubbling fluidized bed simulations conducted with a second order scheme show that the predicted bubble shape is rounded, unlike the (unphysical) pointed shape predicted by the first order upwind scheme. This report describes the numerical technique used in MFIX 2.0.

  11. Numerical experiments on galaxy clustering

    International Nuclear Information System (INIS)

    Miller, R.H.


    A study of the way observable clustering depends on expansion history is reported. Observable shapes that result from evolving otherwise identical systems are intercompared to show differences due to different expansion histories. Four cases are compared: nonexpanding, Omega 1, and two open universes with 0.10 and 0.03 as final values of Omega. There is remarkably little diffrence in observable forms for the expanding cases. The 0.03 universe expanded by a factor 500 during the experiment. This study is an example of the way numerical experiments can be used in studies of galaxy clustering

  12. Mesoscale patterns in the floristic composition of forests in the central Western Ghats of Karnataka, India


    Ramesh, B. R.; Venugopal, P. D.; Pélissier, Raphaël; Patil, S. V.; Swaminath, M. H.; Couteron, Pierre


    We describe the mesoscale floristic patterns in the central Western Ghats of Karnataka, India, through combined analysis of woody species abundance and stand structure data from a network of ninety-six 1-ha sampling plots spread across 22,000 km2. A total of 61,906 individuals (>= 10 cm gbh) comprising 400 plant species from 254 genera and 75 families were recorded. Euphorbiaceae, Rubiaceae, Lauraceae and Moraceae families constituted 23.5 percent of the total number of species encountered. T...

  13. Towards high resolution mapping of 3-D mesoscale dynamics from observations


    Buongiorno Nardelli, B.; Guinehut, S.; Pascual, A.; Drillet, Y.; Ruiz, S.; Mulet, S.


    The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data) was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estim...

  14. An evaluation of high-resolution interferometer soundings and their use in mesoscale analyses (United States)

    Bradshaw, John T.; Fuelberg, Henry E.


    An examination is made of temperature and dewpoint soundings obtained by an airborne prototype of the High-resolution Interferometer Sounder (HIS) on two flight days, to ascertain their error characteristics and their utility in mesoscale analyses. Crude estimates of Bowen ratio were obtained from HIS data using a mixing-line approach; the HIS retrievals indicated that areas of thunderstorm formation were the regions of greatest instability. HIS soundings were also able to detect some of the landscape variability and temperature and humidity fluctuations present.

  15. Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.


    A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

  16. Do mesoscale faults in a young fold belt indicate regional or local stress? (United States)

    Kokado, Akihiro; Yamaji, Atsushi; Sato, Katsushi


    The result of paleostress analyses of mesoscale faults is usually thought of as evidence of a regional stress. On the other hand, the recent advancement of the trishear modeling has enabled us to predict the deformation field around fault-propagation folds without the difficulty of assuming paleo mechanical properties of rocks and sediments. We combined the analysis of observed mesoscale faults and the trishear modeling to understand the significance of regional and local stresses for the formation of mesoscale faults. To this end, we conducted the 2D trishear inverse modeling with a curved thrust fault to predict the subsurface structure and strain field of an anticline, which has a more or less horizontal axis and shows a map-scale plane strain perpendicular to the axis, in the active fold belt of Niigata region, central Japan. The anticline is thought to have been formed by fault-propagation folding under WNW-ESE regional compression. Based on the attitudes of strata and the positions of key tephra beds in Lower Pleistocene soft sediments cropping out at the surface, we obtained (1) a fault-propagation fold with the fault tip at a depth of ca. 4 km as the optimal subsurface structure, and (2) the temporal variation of deformation field during the folding. We assumed that mesoscale faults were activated along the direction of maximum shear strain on the faults to test whether the fault-slip data collected at the surface were consistent with the deformation in some stage(s) of folding. The Wallace-Bott hypothesis was used to estimate the consistence of faults with the regional stress. As a result, the folding and the regional stress explained 27 and 33 of 45 observed faults, respectively, with the 11 faults being consistent with the both. Both the folding and regional one were inconsistent with the remaining 17 faults, which could be explained by transfer faulting and/or the gravitational spreading of the growing anticline. The lesson we learnt from this work was

  17. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar


    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  18. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie


    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  19. Observed 3D Structure, Generation, and Dissipation of Mesoscale Eddies in the South China Sea (United States)

    Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.


    South China Sea (SCS), the largest marginal sea in the western Pacific, is abundant with strong mesoscale eddies as revealed by both satellite and in situ observations. The 3D structure, generation and dissipation mechanisms of the SCS mesoscale eddies, however, are still not well understood at present due to the lack of well-designed and comprehensive field observations. In order to address the above scientific issues, the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. In addition to moored observations, we also conducted two transects across the center of one anticyclonic eddy (AE) and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE, we obtained the full-depth 3D structures of one AE and one cyclonic eddy (CE) and revealed their generation and dissipation mechanisms. For the first time we found that the eddies in the northern SCS extend from the surface to the sea bottom and display prominent tilted structures in the vertical. The AE was suggested to be shed from the Kuroshio current, which intruded into the SCS through Luzon Strait in winter. For the CE, its generation was associated with the barotropic instability of the Kuroshio current. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the eddy dissipation. The findings in this study, not only provides new insights into the 3D structure of oceanic eddies, but also contributes to

  20. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries (United States)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min


    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact. PMID:24418812

  1. A numerical study of orographic forcing on TC Dina (2002) in South West Indian Ocean


    S. Jolivet; S. Jolivet; F. Chane-Ming; D. Barbary; F. Roux


    International audience; Using the French non-hydrostatic mesoscale numerical model Méso-NH, intense tropical cyclone (TC) Dina (2002) is simulated to investigate the forcing caused by the steep orography of Réunion island (20.8° S, 55.5° E) in the southwest Indian Ocean. The model initialised by a bogus vortex derived from Doppler radar observations reproduces quite well the dynamical characteristics of TC Dina approaching the island and provides some clues on the orographic influence on the ...

  2. The atmospheric boundary layer evening transitions: an observational and numerical study from two different datasets (United States)

    Sastre, Mariano; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio; Ander Arrillaga, Jon


    In this work we study the temporal evolution of the Atmospheric Boundary Layer (ABL) along the transition period from a diurnal typical convection to a nocturnal more frequently stable situation. This period is known as late afternoon or evening transition, depending on the specific definitions employed by different authors [1]. In order to obtain a proper characterization, we try to learn whether or not the behaviour of these transitional boundary layers is strongly dependent on local conditions. To do so, two sets of evening transitions are studied from data collected at two different experimental sites. These locations correspond to research facilities named CIBA (Spain) and CRA (France), which are the places where atmospheric field campaigns have been conducted during the last years, such as CIBA2008 and BLLAST 2011, respectively. In order to get comparable situations, we focus especially on transitions with weak synoptic forcing, and consider daily astronomical sunset as a reference time. A statistical analysis on main parameters related to the transition is carried out for both locations, and the average behaviour is shown as well as extreme values according to the timing. A similar pattern in the qualitative evolution of many variables is found. Nevertheless, several relevant differences in the progress of key variables are obtained too. Moisture, both from the soil and the air, is thought to have great relevance in explaining many of the differences found between the two sites. Some case studies are explored, focusing on the role played by the atmospheric turbulence. Complementary, numerical experiments are also performed using the Weather Research and Forecast (WRF) mesoscale model, in order to test the role of humidity, by artificially varying it in some of the simulations. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10931-10960.

  3. Simultaneous characterization of mesoscale and convective-scale tropical rainfall extremes and their dynamical and thermodynamic modes of change (United States)

    Fildier, B.; Parishani, H.; Collins, W. D.


    The Superparameterized Community Atmosphere Model (SPCAM) is used to identify the dynamical and organizational properties of tropical extreme rainfall events on two scales. We compare the mesoscales resolved by General Circulation Models (GCMs) and the convective scales resolved by Cloud-Resolving Models (CRMs) to reassess and extend on previous results from GCMs and CRMs in radiative-convective equilibrium. We first show that the improved representation of subgridscale dynamics in SPCAM allows for a close agreement with the 7%/K Clausius-Clapeyron rate of increase in mesoscale extremes rainfall rates. Three contributions to changes in extremes are quantified and appear consistent in sign and relative magnitude with previous results. On mesoscales, the thermodynamic contribution (5.8%/K) and the contribution from mass flux increases (2%/K) enhance precipitation rates, while the upward displacement of the mass flux profile (-1.1%/K) offsets this increase. Convective-scale extremes behave similarly except that changes in mass flux are negligible due to a balance between greater numbers of strong updrafts and downdrafts and lesser numbers of weak updrafts. Extremes defined on these two scales behave as two independent sets of rainfall events, with different dynamics, geometries, and responses to climate change. In particular, dynamic changes in mesoscale extremes appear primarily sensitive to changes in the large-scale mass flux, while the intensity of convective-scale extremes is not. In particular, the increases in mesoscale mass flux directly contribute to the intensification of mesoscale extreme rain, but do not seem to affect the increase in convective-scale rainfall intensities. These results motivate the need for better understanding the role of the large-scale forcing on the formation and intensification of heavy convective rainfall.

  4. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George


    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  5. On Sums of Numerical Series and Fourier Series (United States)

    Pavao, H. Germano; de Oliveira, E. Capelas


    We discuss a class of trigonometric functions whose corresponding Fourier series, on a conveniently chosen interval, can be used to calculate several numerical series. Particular cases are presented and two recent results involving numerical series are recovered. (Contains 1 note.)

  6. NORSEWIND – Mesoscale model derived Wind Atlases for the Irish Sea, the North Sea and the Baltic Sea


    Berge, Erik; Hasager, Charlotte Bay; Bredesen, Rolv Erlend; Hahmann, Andrea N.; Byrkjedal, Oyvind; Pena Diaz, Alfredo; Kravik, Reiar; Harstveit, Knut; Costa, Paolo; Oldroyd, Andy


    As a part of the EU Framework 7 R&D Program NORSEWInD, Wind Atlases for the Irish Sea, the North Sea and the Baltic Sea have been developed and made public available. In the present study the development of the offshore Wind Atlases is focused on the use of mesoscale model data since the access to measurements and satellite data have been limited. Mesoscale model runs were carried out for focus areas with high spatial model resolution (2 km) and the entire Wind Atlas domain with coarser r...

  7. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Mente, Tobias


    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  8. The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias (United States)

    Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.


    Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.

  9. Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite (United States)

    Yuan, Yuan; Zhou, Chu-wei


    For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.

  10. Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations (United States)

    Lohse, Christian; Bassett, Danielle S.; Lim, Kelvin O.; Carlson, Jean M.


    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. PMID:25275860

  11. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi


    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  12. Resolving meso-scale seabed variability using reflection measurements from an autonomous underwater vehicle. (United States)

    Holland, Charles W; Nielsen, Peter L; Dettmer, Jan; Dosso, Stan


    Seabed geoacoustic variability is driven by geological processes that occur over a wide spectrum of space-time scales. While the acoustics community has some understanding of horizontal fine-scale geoacoustic variability, less than O(10(0)) m, and large-scale variability, greater than O(10(3)) m, there is a paucity of data resolving the geoacoustic meso-scale O(10(0)-10(3)) m. Measurements of the meso-scale along an ostensibly "benign" portion of the outer shelf reveal three classes of variability. The first class was expected and is due to horizontal variability of layer thicknesses: this was the only class that could be directly tied to seismic reflection data. The second class is due to rapid changes in layer properties and/or boundaries, occurring over scales of meters to hundreds of meters. The third class was observed as rapid variations of the angle/frequency dependent reflection coefficient within a single observation and is suggestive of variability at scales of meter or less. Though generally assumed to be negligible in acoustic modeling, the second and third classes are indicative of strong horizontal geoacoustic variability within a given layer. The observations give early insight into possible effects of horizontal geoacoustic variability on long-range acoustic propagation and reverberation. © 2012 Acoustical Society of America

  13. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations (United States)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin


    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  14. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures (United States)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh


    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  15. Mesoscale Modeling of Shock Wave Propagation and Dynamic Failure in Metallic Systems (United States)

    Dongare, Avinash


    The response of materials under conditions of thermomechanical extremes is very complex and involves damage creation and propagation, phase transformation, heat generation and transfer, etc. A principal challenge in predictive modeling of failure behavior is presented by the gap between the atomistic description of micromechanisms of the relevant processes and the macoscale response in continuum simulations/experiments. This difficulty can be approached through the development of a robust mesoscopic computational model that retains the relevant physics and is capable of representing the material behavior at time- and length-scales intermediate between the atomistic or continuum levels. Mesoscale models typically reduce a group of atoms by a mesoparticle system with much smaller number of collective degrees of freedom, and hence are often difficult to apply for problems such as heat transfer, phase transformation, and dissipation of mechanical energy during wave propagation. To achieve this goal, a novel mesoscopic model is being developed based on the idea of coarse-graining with the energetics defined for the particles based on interatomic potentials used in molecular dynamics (MD) simulations. The coarse-grained molecular dynamics simulations (CGMD) allows larger size systems and improved time-steps for simulations and thus able to extend the capabilities of MD simulations to model materials behavior at mesoscales. The successful application of the CGMD method is demonstrated by prediction of the phase-transformation, heat generation and wave-propagation behavior under the conditions of shock loading, as would be predicted using MD simulations.

  16. Two decades of mesoscale phenomena on either side of the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    Javier Delgado


    Full Text Available Mesoscale circulation patterns in the adjacent basins of the Strait of Gibraltar were investigated by means of altimetry data. In the Gulf of Cádiz, the pattern is relatively stable with two gyres: a cyclonic gyre close to the southern Iberian coast and an anticyclonic one on the western side of the Strait of Gibraltar. Both structures are located in the right place to convey the surface circulation towards the Strait and feed the Atlantic inflow. In the Alboran Sea, our results confirm that the western anticyclonic gyre is the most stable feature observed, while the eastern cyclonic gyre is subject to great variability. The mesoscale structures fluctuate at seasonal and interannual frequencies, but they may also undergo great changes in a very short time scale. A simple correlation analysis suggests that changes in the upstream Gulf of Cádiz basin may be transmitted through the Strait of Gibraltar to the Alboran Sea with a time delay of around one week.

  17. Estimating the Spatiotemporal Constraints and Uncertainties in a Mesoscale Inversion of Methane Emissions During SENEX (United States)

    Bousserez, N.; Henze, D. K.; Liu, Z.; Brioude, J. F.; Cui, Y.


    Our ability to properly interpret trace gas source inversions and to accurately assess their uncertainty is often hindered by, on one hand, the absence of a robust theoretical and computational framework to define the observational constraints, and, on the other hand, the necessity to rely on simplistic assumptions for the probability distributions in order to accommodate the high-dimensionality of the problems (e.g., Gaussian distributions for the prior emissions). In this study, we apply a novel dimension reduction technique to a mesoscale inversion of methane sources from shale production during the Southeast Nexus of Climate Change and Air Quality (SENEX) field campaign (June-July, 2013) that allows us to rigorously characterize the spatiotemporal emission patterns that are independently and most constrained by the observations. This information allows us to define an optimal reduced basis set of emissions, which is then incorporated into a Markov-Chain-Monte-Carlo (MCMC) sampling method. The latter approach enables to relax the Gaussian assumption for the prior distribution and to fully sample the posterior distribution of the estimated methane fluxes. Several prior distribution scenarios that are more representative of the true prior uncertainties in the methane fluxes over shale production facilities (e.g., log-normal, multi-modal) are tested in order to provide a better characterization of errors in the posterior fluxes arising from the simplified Gaussian framework generally adopted in mesoscale inversions.

  18. Observing the oceanic mesoscale processes with satellite altimetry: the state of the art and outlook (United States)

    Fu, L.-L.


    Satellite altimetry has enabled the study of global oceanic mesoscale variability with increasing accuracy and resolution for the past three decades. The combination of the series of precision missions beginning with TOPEX/Poseidon and the series of missions beginning with ERS-1 has created a data record of sea surface height measurement from at least two simultaneously operating altimeters. This 19-year record has fundamentally expanded our knowledge about the dynamics of ocean circulation, in particular at the mesoscale. The progress made to date from the data record will be briefly reviewed, with emphasis on the remaining open questions. Spectral analysis of the existing altimeter data suggests that the spatial resolution is about 150 km in wavelength in space-time gridded data, and about 70-100 km in along-track data. The unresolved short scales, however, have important roles in the energy balance of ocean dynamics as well as the transport and dissipation of many properties of the ocean such as heat and dissolved chemicals. The prospect of the technique of radar interferometry for making high-resolution wide-swath measurement of sea surface height will be discussed with an update on the development of the SWOT (Surface Water and Ocean Topography) Mission, which is being jointly developed by NASA and CNES with contributions from the Canadian Space Agency. SWOT is being designed for applications in both oceanography and land surface hydrology and setting a standard for the next-generation altimetry missions.

  19. Sensitivity analysis of numerical solutions for environmental fluid problems

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu; Motoyama, Yasunori


    In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)

  20. Numerical Modelling of Streams

    DEFF Research Database (Denmark)

    Vestergaard, Kristian

    In recent years there has been a sharp increase in the use of numerical water quality models. Numeric water quality modeling can be divided into three steps: Hydrodynamic modeling for the determination of stream flow and water levels. Modelling of transport and dispersion of a conservative...

  1. Status of numerical relativity

    Indian Academy of Sciences (India)

    Abstract. I describe the current status of numerical relativity from my personal point of view. Here, I focus mainly on explaining the numerical implementations necessary for simulating general relativistic phenomena such as the merger of compact binaries and stellar collapse, emphasizing the well-developed current status of ...

  2. Status of numerical relativity

    Indian Academy of Sciences (India)

    I describe the current status of numerical relativity from my personal point of view. Here, I focus mainly on explaining the numerical implementations necessary for simulating general relativistic phenomena such as the merger of compact binaries and stellar collapse, emphasizing the well-developed current status of such ...

  3. The impact of monsoon winds and mesoscale eddies on thermohaline structures and circulation patterns in the northern South China Sea (United States)

    Zhao, Ruixiang; Zhu, Xiao-Hua; Guo, Xinyu


    We deployed 5 pressure-recording inverted echo sounders (PIES) along a section in the northern South China Sea (NSCS), and estimated well the distributions of temperature, salinity and velocity across the section. Applying the empirical orthogonal function (EOF) method, we found that variability of the estimates is dominated by two modes: one named the seasonal mode affecting strongly on the hydrographic distribution with explained variability of temperature/salinity by 62.9/72.2%; the other named the eddy mode, corresponding to the arrival of mesoscale eddies, affecting strongly on the circulation pattern with explained variability of velocity by 63.2%. Temporal variation of the seasonal mode is highly correlated with the monsoon winds southeast of Vietnam, suggesting a nonlocal forcing mechanism. Case studies looking at the structures and evolutions of three captured eddies, whose impacts were well quantified by the eddy mode. The monsoon (eddies) significantly affects temperature, salinity and velocity shallower than 635 m (860 m), 160 m (150 m) and 1055 m (920 m), respectively. The monsoon (eddies) can induce maximum temperature, salinity and velocity anomalies up to -1.6 to 2.1 °C (-2.5 to 2.2 °C), -0.11 to 0.14 psu (-0.13 to 0.27 psu) and -0.31 to 0.46 m/s (-0.40 to 0.38 m/s), respectively. Mean volume transport (VT) across the section is 1.0 Sv (1 Sv= 1 ×106 m3 s-1, positive to the northeast). Seasonal VT (with eddy impacts removed) is -4.6 Sv, 11.4 Sv, -5.1 Sv and -4.1 Sv for spring, summer, autumn and winter, respectively.

  4. Mesoscale convective systems and nocturnal rainfall over the West African Sahel: role of the Inter-tropical front (United States)

    Vizy, Edward K.; Cook, Kerry H.


    A convection-permitting regional model simulation for August 2006 and observations are evaluated to better understand the diurnal cycle of precipitation over the Sahel. In particular, reasons for a nocturnal rainfall maximum over parts of the Sahel during the height of the West African monsoon are investigated. A relationship between mesoscale convective system (MCS) activity and inter-tropical front (ITF)/dryline dynamics is revealed. Over 90% of the Sahel nocturnal rainfall derives from propagating MCSs that have been associated with topography in earlier studies. In contrast, in this case study, 70-90% of the nocturnal rainfall over the southern Sahel (11°N-14°N) west of 15°E is associated with MCSs that originate less than 1000 km upstream (to the north and east) in the afternoon, in a region largely devoid of significant orography. This MCS development occurs in association with the Sahel ITF, combined with atmospheric pre-conditioning. Daytime surface heating generates turbulent mixing that promotes planetary boundary layer (PBL) growth accompanied by a low-level reversal in the meridional flow. This enhances wind convergence in the low-level moist layer within 2°-3° of latitude of the equatorward side of the ITF. MCSs tend to form when this vertical mixing extends to the level of free convection and is accompanied by a mid-tropospheric African easterly wave disturbance to the east. This synoptic disturbance enhances the vertical wind shear and atmospheric instability over the genesis location. These results are found to be robust across the region.

  5. Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [McGill Univ., Montreal, QC (Canada


    This the final report for the DE-SC0007096 - Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales - PI: Pavlos Kollias. The final report outline the main findings of the research conducted using the aforementioned award in the area of cloud research from the cloud scale (10-100 m) to the mesoscale (20-50 km).

  6. Numerical studies in geophysics (United States)

    Hier Majumder, Catherine Anne


    This thesis focuses on the use of modern numerical techniques in the geo- and environmental sciences. Four topics are discussed in this thesis: finite Prandtl number convection, wavelet analysis, inverse methods and data assimilation, and nuclear waste tank mixing. The finite Prandtl number convection studies examine how convection behavior changes as Prandtl numbers are increased to as high as 2 x 104, on the order of Prandtl numbers expected in very hot magmas or mushy ice diapirs. I found that there are significant differences in the convection style between finite Prandtl number convection and the infinite Prandtl number approximation even for Prandtl numbers on the order of 104. This indicates that the infinite Prandtl convection approximation might not accurately model behavior in fluids with large, but finite Prandtl numbers. The section on inverse methods and data assimilation used the technique of four dimensional variational data assimilation (4D-VAR) developed by meteorologists to integrate observations into forecasts. It was useful in studying the predictability and dependence on initial conditions of finite Prandtl simulations. This technique promises to be useful in a wide range of geological and geophysical fields, including mantle convection, hydrogeology, and sedimentology. Wavelet analysis was used to help image and scrutinize at small-scales both temperature and vorticity fields from convection simulations and the geoid. It was found to be extremely helpful in both cases. It allowed us to separate the information in the data into various spatial scales without losing the locations of the signals in space. This proved to be essential in understanding the processes producing the total signal in the datasets. The nuclear waste study showed that techniques developed in geology and geophysics can be used to solve scientific problems in other fields. I applied state-of-the-art techniques currently employed in geochemistry, sedimentology, and mantle

  7. Numerical distance protection

    CERN Document Server

    Ziegler, Gerhard


    Distance protection provides the basis for network protection in transmission systems and meshed distribution systems. This book covers the fundamentals of distance protection and the special features of numerical technology. The emphasis is placed on the application of numerical distance relays in distribution and transmission systems.This book is aimed at students and engineers who wish to familiarise themselves with the subject of power system protection, as well as the experienced user, entering the area of numerical distance protection. Furthermore it serves as a reference guide for s

  8. Numerical problems in physics

    CERN Document Server

    Singh, Devraj


    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  9. The response of a simulated Mesoscale Convective System to increased aerosol pollution (United States)

    Clavner, Michal

    This work focuses on the impacts of aerosols on the total precipitation amount, rates and spatial distribution of precipitation produced by a Mesoscale Convective System (MCS), as well as the characteristics of a derecho event. Past studies have shown that the impacts on MCS-produced precipitation to changes in aerosol concentration are strongly dependent on environmental conditions, primarily humidity and environmental wind shear. Changes in aerosol concentrations were found to alter MCS-precipitation production directly by modifying precipitation processes and indirectly by affecting the efficiency of the storm's self-propagation. Observational and numerical studies have been conducted that have examined the dynamics responsible for the generation of widespread convectively-induced windstorms, primarily focusing on environmental conditions and the MCS features that generate a derecho event. While the sensitivity of the formation of bow-echoes, the radar signature associated with derecho events, to changes in microphysics has been examined, a study on a derecho-producing MCS characteristics to aerosol concentrations has not. In this study different aerosol concentrations and their effects on precipitation and a derecho produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS. The MCS was simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that varied in their initial aerosol concentration, distribution and hygroscopicity as determined by their emission sources. The first simulation contained aerosols from only natural sources and the second with aerosols sourced from both natural and anthropogenic emissions The third simulation contained the same aerosol distribution as in the second simulation, however multiplied by a factor of 5 in order to represent a highly polluted scenario. In all three of the

  10. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.


    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  11. The role of mesoscale meteorology in modulating the (222)Rn concentrations in Huelva (Spain)--impact of phosphogypsum piles. (United States)

    Hernández-Ceballos, M A; Vargas, A; Arnold, D; Bolívar, J P


    The combined analysis of (222)Rn activity concentrations and mesoscale meteorological conditions at Huelva city (Spain) was addressed in this study to understand the potential impact of phosphogypsum piles on the (222)Rn activity concentrations registered at this area. Hourly mean data from April 2012 to February 2013 registered at two sampling sites (Huelva city and in the background station of El Arenosillo, located 27 km to the south-east) have been used in the study. The results of the present study showed a large difference in mean radon concentrations between the two stations during the sampling period, 6.3 ± 0.4 Bq m(-3) at Huelva and 3.0 ± 0.2 Bq m(-3) at El Arenosillo. The analysis has demonstrated that hourly (222)Rn concentrations at Huelva city above 22 Bq m(-3), with nocturnal peaks up to 50 Bq/m(3), mainly coincided with the occurrence of a pure sea-land breeze cycle. Mesoscale circulations in this region are mainly characterized by two patterns of sea-land breeze, pure and non-pure, with the phosphosypsum piles directly upstream (south) of the city during the afternoon on pure sea-breeze days. The difference between mean (222)Rn activity concentrations at Huelva city were 9.9 ± 1.5 Bq m(-3) for the pure pattern and 3.3 ± 0.5 Bq m(-3) for the non-pure pattern, while in the background station concentrations were 3.9 ± 0.4 Bq m(-3) and 2.8 ± 0.4 Bq m(-3) respectively. Considering these large differences, a detailed analysis of composites and case studies of representative sea-land breeze cycles of both types and their impact on (222)Rn activity concentration was performed. The results suggested that the presence of the phosphogypsum piles was necessary in order to justify the high (222)Rn activity concentrations observed at Huelva compared with the background station in the afternoons on pure sea breeze days (1.5-2.0 Bq m(-3)). On the other hand, large night time differences between the two sites on these days were

  12. A link between low-frequency mesoscale eddy variability around Madagascar and the large-scale Indian Ocean variability

    NARCIS (Netherlands)

    Palastanga, V.; van Leeuwen, P.J.; de Ruijter, W.P.M.


    A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993– 2003. The SSH-fields in the Mozambique Channel and east of

  13. On micro to mesoscale homogenization of electrical properties for damaged laminated composites (and their potential applications in electrical tomography)

    KAUST Repository

    Selvakumaran, Lakshmi


    Efficient and optimal use of composites in structures requires tools to monitor and capture the complex degradation that can occur within the laminates over time. Structural health monitoring (SHM) techniques uses sensors/actuators on the structure to progressively monitor the health of the structure with minimal manual intervention. Electrical tomography (ET) is a SHM technique that uses voltage measurements from the surface of the laminate to reconstruct a conductivity map of the structure. Since damage has been shown to modify the conductivity of the laminate, the conductivity map can provide an indirect measure of the damage within the material. Studies have shown the capability of ET to identify macroscale damage due to impact. But, little has been done to quantitatively assess damage using ET. In this work, we present a theoretical framework to link degradation mechanisms occuring at the microscale to the conductivity at the mesoscale through damage indicators. The mesoscale damage indicators are then shown to be intrinsic to the ply. Next, we use the knowledge obtained through mesoscale homogenization to study the detectability of transverse cracks. Last, we show how the mesoscale homogenization participates in regularization of the inverse problem and in the quantitative assessment of the reconstructed conductivity map. This is as such the first step towards turning ET into a viable quantitative health monitoring technique.

  14. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick-slip motion (United States)

    Kokorian, Jaap; Merlijn van Spengen, W.


    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  15. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    NARCIS (Netherlands)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.


    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations

  16. Atmospheric CO2 modeling at the regional scale: an intercomparison of 5 meso-scale atmospheric models

    NARCIS (Netherlands)

    Sarrat, C.; Noilhan, J.; Dolman, A.J.; Gerbig, C.; Ahmadov, R.; Tolk, L.F.; Meesters, A.G.C.A.; Hutjes, R.W.A.; Maat, ter H.W.; Pérez-Landa, G.; Donier, S.


    Atmospheric CO2 modeling in interaction with the surface fluxes, at the regional scale is developed within the frame of the European project CarboEurope-IP and its Regional Experiment component. In this context, five meso-scale meteorological models participate in an intercomparison exercise. Using

  17. NORSEWIND – Mesoscale model derived Wind Atlases for the Irish Sea, the North Sea and the Baltic Sea

    DEFF Research Database (Denmark)

    Berge, Erik; Hasager, Charlotte Bay; Bredesen, Rolv Erlend

    Offshore Wind Atlases based on the meso-scale model WRF are presented and validated in this paper. The Work has been part of the EU-funded project NORSEWIND (Northern Seas Wind Index Database). Validations show that annual average wind speeds and wind-roses at hub-height (100m) are well represented...

  18. Meteorological predictions for Mars 2020 Exploration Rover high-priority landing sites throug MRAMS Mesoscale Modeling (United States)

    Pla-García, Jorge; Rafkin, Scot C. R.


    The Mars Regional Atmospheric Modeling System (MRAMS) is used to predict meteorological conditions that are likely to be encountered by the Mars 2020 Exploration Rover at several proposed landing sites during entry, descent, and landing (EDL). The meteorology during the EDL window at most of the sites is dynamic. The intense heating of the lower atmosphere drives intense thermals and mesoscale thermal circulations. Moderate mean winds, wind shear, turbulence, and vertical air currents associated with convection are present and potentially hazardous to EDL [1]. Nine areas with specific high-priority landing ellipses of the 2020 Rover, are investigated: NE Syrtis, Nili Fossae, Nili Fossae Carbonates, Jezero Crater Delta, Holden Crater, McLaughlin Crater, Southwest Melas Basin, Mawrth Vallis and East Margaritifer Chloride. MRAMS was applied to the landing site regions using nested grids with a spacing of 330 meters on the innermost grid that is centered over each landing site. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' atmospheric thermal circulations at the mesoscale and smaller with realistic, high-resolution surface properties [2, 3]. Horizontal wind speeds, both vertical profiles and vertical cross-sections wind speeds, are studied. For some landing sites simulations, two example configurations -including and not including Hellas basin in the mother domain- were generated, in order to study how the basin affects the innermost grids circulations. Afternoon circulations at all sites pose some risk entry, descent, and landing. Most of the atmospheric hazards are not evident in current observational data and general circulation model simulations and can only be ascertained through mesoscale modeling of the region. Decide where to go first and then design a system that can tolerate the environment would greatly minimize risk. References: [1] Rafkin, S. C. R., and T. I. Michaels (2003), J. Geophys. Res., 108(E12

  19. A mesoscale model study of atmospheric circulations for the northern hemisphere summer on Mars (United States)

    Tyler, Daniel, Jr.

    The Penn-State/NCAR MM5 mesoscale model was adapted for mesoscale simulations of the Martian atmosphere (the OSU MMM5). The NASA Ames Mars GCM provides initial and boundary conditions. High-resolution maps for albedo, thermal inertia and topography were developed from Mars Global Surveyor (MGS) data; these baseline maps are processed to appropriate resolutions for use in the GCM and the mesoscale model. The OSU MMM5 is validated in Chapter 2 by comparing with surface meteorology observed at the Viking Lander 1 (VL1) and Mars Pathfinder (MPF) landing sites. How the diurnal cycle of surface pressure (the surface pressure tide) is affected by boundaries, domain/nest choices and the resolution of surface properties (topography, albedo and thermal inertia) is examined. Chapter 2 additionally shows the influence of regional slope flows in the diurnal surface pressure cycle for certain locations on Mars. Building on the methods of Chapter 2, Chapter 3 describes the northern midsummer polar circulation and the circulations (both large and small scale) that influence it. Improvements to the model for these studies include: the topographical gradient is now considered when computing surface insolation, and the thermal inertia maps and model initialization are improved for high latitudes; this yields a realistic simulation of surface temperatures for the North Pole Residual Cap (NPRC) and the surrounding region. The midsummer polar circulation is vigorous, with abundant and dynamically important transient eddies. The preferred locations of transients varies significantly during this study, between L s = 120 and L s = 150. At L s = 120 transient circulations are seen primarily along the NPRC margin, consistently producing strong flow over the residual cap (~15 m/s). By L s = 135, transient eddies form a "storm track" between the northern slopes of Tharsis and the NPRC. By L s = 150, the circulation is becoming strong and winter-like. These transient eddies may be important in

  20. Conquering the Mesoscale of Africa's Landscapes: deciphering the Genomic Record of Individuating Landforms with Geoecodynamics (United States)

    Cotterill, Fenton P. D.


    In the framework of Earth System Science, landscapes are the templates structuring the biosphere: the membranes interfacing between exosphere and geosphere. The hosts of earth surface processes, in their dynamics and complexity, landscapes hold a pivotal position in the evolving earth system - not least in their archives of Earth history. Their landforms document impacts of formative events originating in extra-terrestrial, geological and climatic processes. Nevertheless, major challenges to reconstruct dynamics at this interface between geosphere and exosphere hamper research efforts. Events at the mesoscale over evolutionary timescales are an important reason for why the academic schools of mega- versus process geomorphology persist (see Summerfield MA 2005. Trans. Inst. Brit Geogr NS, 30, 402-415). Austere limits on what their respective methods can reveal in mesoscale phenomena face several problems (besides costs of sampling and analyses). One, surviving landforms often lack the requisite minerals (e.g. of volcanic events). Second, the spatial resolution of orthodox methods (e.g. thermochronology) cannot resolve mesoscale patterns. Third, the surface dating tools with superb spatial precision have finitee temporal limits (Luminescence-Dating and Cosmogenic Isotopes). Fourth, and by no means least, the cumulative impact of earth surface processes has overwritten and/or eroded physical evidence of earlier formative events. (This problem is exemplified in tropical landscapes where deep, pervasive bioturbation is the dominant earth surface process!) The cumulative outcome of these inherent turnovers of landscapes has shaped the inherent emptiness of the Rock Record, which sets absolute limits on its archives (Ager D 1993. The Nature of the Stratigraphical Record; Miall AD 2015. in: Strata and Time: Probing the Gaps in Our Understanding. Geological Society, London, Special Publications, 404, These limitations on mesoscale