WorldWideScience

Sample records for mesoporous tio2 films

  1. Pt Catalyst Supported within TiO2 Mesoporous Films for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Huang, Dekang; Zhang, Bingyan; Bai, Jie; Zhang, Yibo; Wittstock, Gunther; Wang, Mingkui; Shen, Yan

    2014-01-01

    In this study, dispersed Pt nanoparticles into mesoporous TiO 2 thin films are fabricated by a facile electrochemical deposition method as electro-catalysts for oxygen reduction reaction. The mesoporous TiO 2 thin films coated on the fluorine-doped tin oxide glass by screen printing allow a facile transport of reactants and products. The structural properties of the resulted Pt/TiO 2 electrode are evaluated by field emission scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements are performed to study the electrochemical properties of the Pt/TiO 2 electrode. Further study demonstrates the stability of the Pt catalyst supported within TiO 2 mesoporous films for the oxygen reduction reaction

  2. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  3. Preparation and optical properties of mesoporous TiO2 thin films by a two-step sol-gel technique

    International Nuclear Information System (INIS)

    Kartini, I.; Lu, G.Q.; Meredith, P.; Zhao, X.S.

    2002-01-01

    This paper concerns the preparation of mesoporous titania nanopowders and thin films for use in next generation photoelectrochemical solar cells. We have recently developed a novel method for preparing mesoporous TiO 2 powders using a Two-Step Sol-gel method (TSS). These materials have crystalline domains characteristic of anatase. The first step of the process involves the hydrolysis of titanium isopropoxide in a basic aqueous solution mediated by neutral surfactant. The solid product resulting from Step-1 is then treated in acidified ethanol solution containing a titanium precursor to yield anatase TiO 2 . The resultant powder exhibits a high surface area and large pore volume with uniform mesopores. Slurries made from the resultant powder of Steps 1 and 2 have been used to produce thin titania films on glass slides. The optical and structural properties of these films have been compared to the films made of a commercial titania (Degussa P25, BASF). We will discuss these properties with respect to the possible use of such mesoporous titania films as the wide band gap semiconductor in dye-sensitized nanocrystalline TiO 2 solar cells

  4. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; Wanninayake, Namal; Browning, James F.; Strzalka, Joseph; Kim, Doo Young; Rankin, Stephen E.

    2018-05-01

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible light absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.

  5. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  6. Mesoporous films of TiO2 as efficient photocatalysts for the purification of water

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Kalousek, Vít; Kolář, Michal; Jirkovský, Jaromír

    2011-01-01

    Roč. 10, č. 3 (2011), s. 419-424 ISSN 1474-905X R&D Projects: GA ČR GA104/08/0435; GA ČR GD203/08/H032; GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * mesoporous films * photocatalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.584, year: 2011

  7. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

    Science.gov (United States)

    Renault, Christophe; Nicole, Lionel; Sanchez, Clément; Costentin, Cyrille; Balland, Véronique; Limoges, Benoît

    2015-04-28

    In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the

  8. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c

    Science.gov (United States)

    Katsiaounis, Stavros; Tiflidis, Christina; Tsekoura, Christina; Topoglidis, Emmanuel

    2018-03-01

    In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commercially available benchmark nanotitania materials, namely P25 Degussa (P25-films) and Dyesol nanopaste (Dyesol films). Their properties, film deposition characteristics and their abilities to adsorb protein molecules in a stable and functional way were examined. We investigated whether it is possible, rather than preparing TiO2 films using multistep, lengthy and not always reproducible sol-gel procedures, to use commercially available nanotitania materials and produce reproducible films faster that exhibit all the properties that make TiO2 films ideal for protein immobilization. Although these materials are formulated primarily for dye-sensitized solar cell applications, in this study we found out that protein immobilization is facile and remarkably stable on all of them. We also investigated their electrochemical properties by using cyclic voltammetry and spectroelectrochemistry and found out that not only direct reduction of Fe(III)-heme to Fe(II)-heme of immobilized Cyt-c was possible on all films but that the adsorbed protein remained electroactive.

  9. Versatility of Evaporation-Induced Self-Assembly (EISA Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2014-03-01

    Full Text Available Evaporation-Induced Self-Assembly (EISA method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs, photocatalytic degradation of organics and splitting of water, and batteries.

  10. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhao Bote; Cai Rui; Jiang Simin; Sha Yujing; Shao Zongping

    2012-01-01

    There is increasing interest in flexible, safe, high-power thin-film lithium-ion batteries which can be applied to various modern devices. Although TiO 2 in rutile phase is highly attractive as an anode material of lithium-ion batteries for its high thermal stability and theoretical capacity of 336 mA h g −1 and low price, its inflexibility and sluggish lithium intercalation kinetics of bulk phase strongly limit its practical application for particular in thin-film electrode. Here we show a simple way to prepare highly flexible self-standing thin-film electrodes composed of mesoporous rutile TiO 2 /C nanofibers with low carbon content ( 2 in as-fabricated nanofibers. Big size (10 cm × 4 cm), flexible thin film is obtained after heat treatment under 10%H 2 –Ar at 900 °C for 3 h. After optimization, the diameter of fibers can reach as small as ∼110 nm, and the as-prepared rutile TiO 2 films show high initial electrochemical activity with the first discharge capacity as high as 388 mA h g −1 . What is more, very stable reversible capacities of ∼122, 92, and 70 mA h g −1 are achieved respectively at 1, 5 and 10 C rates with negligible decay rate within 100 cycling times.

  12. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  13. Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption

    Science.gov (United States)

    Hosseini, Soraya; Jahangirian, Hossein; Webster, Thomas J; Soltani, Salman Masoudi; Aroua, Mohamed Kheireddine

    2016-01-01

    Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol–gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV–visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm−2 at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm−2 from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal. PMID:27574426

  14. The Effects of Doping Copper and Mesoporous Structure on Photocatalytic Properties of TiO2

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available This paper describes a system for the synthesis of Cu-doped mesoporous TiO2 nanoparticles by a hydrothermal method at relatively low temperatures. The technique used is to dope the as-prepared mesoporous TiO2 system with copper. In this method, the copper species with the form of Cu1+, which was attributed to the reduction effect of dehydroxylation and evidenced by X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD, was well dispersed in the optimal concentration 1 wt.% Cu-doped mesoporous TiO2. In this as-prepared mesoporous TiO2 system, original particles with a size of approximately 20 nm are aggregated together to shapes of approximately 1100 nm, which resulted in the porous aggregate structure. More importantly, the enhancement of the photocatalytic activity was discussed as effects due to the formation of stable Cu(I and the mesoporous structure in the Cu-doped mesoporous TiO2. Among them, Cu-doped mesoporous TiO2 shows the highest degradation rate of methyl orange (MO. In addition, the effects of initial solution pH on degradation of MO had also been investigated. As a result, the optimum values of initial solution pH were found to be 3.

  15. Mesoporous layers of TiO2 as highly efficient photocatalysts for the purification of air

    Czech Academy of Sciences Publication Activity Database

    Kalousek, Vít; Tschirch, J.; Bahnemann, D.; Rathouský, Jiří

    2008-01-01

    Roč. 44, 4-5 (2008), s. 506-513 ISSN 0749-6036 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * mesoporous film * evaporation induced self-assembly Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.211, year: 2008

  16. Enhanced Efficiency of Dye-Sensitized Solar Cells with Mesoporous-Macroporous TiO2 Photoanode Obtained Using ZnO Template

    Science.gov (United States)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2017-06-01

    Improved light harvesting efficiency can be achieved by enhancing the optical properties of the titanium dioxide (TiO2) photoanode in dye-sensitized solar cells (DSSCs), leading to higher power conversion efficiency. By incorporating submicrometer cavities in TiO2 mesoporous film, using zinc oxide (ZnO) particles as a template, a bimodal pore size structure has been created, called a mesoporous-macroporous nanostructure. This photoanode structure consists of 20-nm TiO2 nanoparticles with two kinds of pores with size of 20 nm (mesopores) and 500 nm (macropores). Energy-dispersive x-ray spectroscopy and x-ray diffraction studies showed no trace of ZnO in the TiO2 after removal by TiCl4 treatment. Higher diffuse transmittance of this film compared with the standard transparent photoanode provides evidence of improved light scattering. When employed in a device, the incident-photon-to-current efficiency of ZnO-assisted devices showed enhancement at longer wavelengths, corresponding to the Mie light scattering effect with the macropores as scattering centers. This resulted in overall higher power conversion efficiency of the DSSC. In this work, a nonvolatile gel ionic liquid was used as the electrolyte to also demonstrate the benefit of this structure in combination with a viscous electrolyte and its promising application to prolong the stability of DSSCs.

  17. Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity

    International Nuclear Information System (INIS)

    Kumaresan, L.; Prabhu, A.; Palanichamy, M.; Murugesan, V.

    2011-01-01

    Research highlights: → Mesoporous TiO 2 synthesized using P123 as soft template in sol-gel method. → Nanoparticle aggregates are better for photocatalytic activity than free nanoparticles. → Particle to particle transport of electrons in the conduction band of aggregates are important factor. - Abstract: Mesoporous TiO 2 was synthesized using triblock copolymer as the structure directing template in ethanol/water, isopropanol/water or 1-butanol/water medium by sol-gel method. The presence of intense peak at low angle in the XRD patterns confirmed the orderly arrangement of mesopores in the material. Among the three different alcohols, ethanol had influenced better in controlling the particle size than others. The enhanced specific surface area also revealed the formation of mesopores. Aggregates of particles were clearly seen in the TEM images and the size of the particles was approximately 10 nm. The photocatalytic activity of mesoporous TiO 2 was evaluated using aqueous alachlor as a model pollutant. The activity of mesoporous TiO 2 synthesized in ethanol/water mole ratio of 50 was higher than other mesoporous TiO 2 and commercial TiO 2 (Degussa P-25). The transport of excited electrons from one particle to its neighboring nanoparticles of mesoporous TiO 2 is suggested to be the cause for enhanced photocatalytic activity.

  18. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  19. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  20. Influence of the Porosity of the TiO2 Film on the Performance of the Perovskite Solar Cell

    Directory of Open Access Journals (Sweden)

    Xiaodan Sun

    2017-01-01

    Full Text Available The structure of mesoporous TiO2 (mp-TiO2 films is crucial to the performance of mesoporous perovskite solar cells (PSCs. In this study, we fabricated highly porous mp-TiO2 films by doping polystyrene (PS spheres in TiO2 paste. The composition of the perovskite films was effectively improved by modifying the mass fraction of the PS spheres in the TiO2 paste. Due to the high porosity of the mp-TiO2 film, PbI2 and CH3NH3I could sufficiently infiltrate into the network of the mp-TiO2 film, which ensured a more complete transformation to CH3NH3PbI3. The surface morphology of the mp-TiO2 film and the photoelectric performance of the perovskite solar cells were investigated. The results showed that an increase in the porosity of the mp-TiO2 film resulted in an improvement in the performance of the PSCs. The best device with the optimized mass fraction of 1.0 wt% PS in TiO2 paste exhibited an efficiency of 12.69%, which is 25% higher than the efficiency of the PSCs without PS spheres.

  1. Soft-Template Synthesis of Mesoporous Anatase TiO2 Nanospheres and Its Enhanced Photoactivity

    Directory of Open Access Journals (Sweden)

    Xiaojia Li

    2017-11-01

    Full Text Available Highly crystalline mesoporous anatase TiO2 nanospheres with high surface area (higher than P25 and anatase TiO2 are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2% than Degussa P25. The rate constant of the mesoporous anatase TiO2 (0.024 min−1 reported here is 364% higher than that of P25 (0.0066 min−1, for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS scavengers indicated that mesoporous anatase TiO2 generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO2 arises from the following synergistic effects in the reported sample: (i high surface area; (ii improved crystallinity; (iii narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material; and (iv greater ROS generation under UV-light.

  2. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  3. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO_2-Functionalized Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; Nagpure, Suraj; Strzalka, Joseph

    2017-01-01

    Exploiting specific interactions with titania (TiO_2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO_2 has many potential advantages over bulk and mesoporous TiO_2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO_2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO_2 content (up to 636 mg TiO2/g). The adsorption isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO_2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO_2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO_2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.

  4. Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Jin Yi; Yang Xiaoling; Li Chunzhong

    2008-01-01

    Mesoporous TiO 2 /polypyrrole (PPy)-based nanocomposite for electrorheological fluid was synthesized through one-pot method. By exploiting the combination conductivity of PPy and high dielectric constant of TiO 2 , the ER fluid exhibited an enhanced effect. The shear stress was 3.3 times as high as that of mesoporous TiO 2 . Powder X-ray diffraction (XRD), TEM and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the as-made samples. Using a modified rotational viscometer, the electrorheological effect was measured. Dielectric spectra were also given to explain the mechanism

  5. Effect of the RE (RE = Eu, Er) doping on the structural and textural properties of mesoporous TiO2 thin films obtained by evaporation induced self-assembly method

    International Nuclear Information System (INIS)

    Borlaf, Mario; Caes, Sebastien; Dewalque, Jennifer; Colomer, María Teresa; Moreno, Rodrigo; Cloots, Rudi; Boschini, Frederic

    2014-01-01

    Polymeric sol–gel route has been used for the preparation of TiO 2 and RE 2 O 3– TiO 2 (RE = Eu, Er) mesoporous thin films by evaporation induced self-assembly method using Si (100) as a substrate. The influence of the relative humidity (RH) on the preparation of the film has been studied being necessary to work under 40% RH in order to obtain homogeneous and transparent thin films. The films were annealed at different temperatures until 900 °C/1 h and the anatase crystallization and its crystal size evolution were followed by low angle X-ray diffraction. Neither the anatase–rutile transition nor the formation of other compounds was observed in the studied temperature range. Ellipsoporosimetry studies demonstrated that the thickness of the thin films did not change after calcination at 500 °C, the porosity was constant until 700 °C, the pore size increased and the specific surface area decreased with temperature. Moreover, the effect of the doping with Er 3+ and Eu 3+ was studied and a clear inhibition of the crystal growth and the sintering process was detected (by transmission electron and atomic force microscopy) when the doped films are compared with the undoped ones. Finally, Eu 3+ and Er 3+ f–f transitions were detected by PL measurements. - Highlights: • Eu and Er–TiO 2 mesoporous films were prepared by evaporation induced self-assembly. • Influence of humidity on porosity and photoluminescent properties has been tested. • Influence of calcination on structural and textural properties has been also studied. • f–f transitions indicate that the thin films are active photoluminescent materials

  6. Evaluating the Critical Thickness of TiO 2 Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar; Comte, Pascal; Humphry-Baker, Robin; Kessler, Florian; Yi, Chenyi; Nazeeruddin, Md. Khaja; Grä tzel, Michael

    2013-01-01

    In this paper, a way of utilizing thin and conformal overlayer of titanium dioxide on an insulating mesoporous template as a photoanode for dye-sensitized solar cells is presented. Different thicknesses of TiO2 ranging from 1 to 15 nm are deposited on the surface of the template by atomic layer deposition. This systematic study helps unraveling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6-nm-thick TiO2 film on a 3-μm mesoporous insulating substrate is shown to transport 8 mA/cm 2 of photocurrent density along with ≈900 mV of open-circuit potential when using our standard donor-π-acceptor sensitizer and Co(bipyridine) redox mediator. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluating the Critical Thickness of TiO 2 Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2013-01-15

    In this paper, a way of utilizing thin and conformal overlayer of titanium dioxide on an insulating mesoporous template as a photoanode for dye-sensitized solar cells is presented. Different thicknesses of TiO2 ranging from 1 to 15 nm are deposited on the surface of the template by atomic layer deposition. This systematic study helps unraveling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6-nm-thick TiO2 film on a 3-μm mesoporous insulating substrate is shown to transport 8 mA/cm 2 of photocurrent density along with ≈900 mV of open-circuit potential when using our standard donor-π-acceptor sensitizer and Co(bipyridine) redox mediator. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Jitputti, Jaturong; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2008-01-01

    Mesoporous anatase TiO 2 nanopowder was synthesized by hydrothermal method at 130 deg. C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m 2 /g. Mesoporous anatase TiO 2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO 2 , nanofibers TiO 2 mesoporous TiO 2 , and commercial TiO 2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO 2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm 2 , the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm 2 , Voc of 0.704 V and ff of 0.649

  9. Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method

    International Nuclear Information System (INIS)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia

    2012-01-01

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO 2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV–Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO 2 films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO 2 films in air under illumination (440.6 μW/cm 2 ) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO 4 ). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS × 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS × 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  10. Conductometric sensor for ammonia and ethanol using gold nanoparticle-doped mesoporous TiO2

    International Nuclear Information System (INIS)

    Xiong, Wei; Liu, Huanhuan; Liu, Shantang

    2015-01-01

    We describe uniform and high-temperature-stable mesoporous TiO 2 beads functionalized with gold nanoparticles (AuNPs-TiO 2 ) for use in conductometric sensing of gases and organic vapors. The size of the interconnected main mesopores of the TiO 2 beads ranges from 8 to 15 nm, and the AuNPs have diameters between 8 and 10 nm. The mesoporous TiO 2 beads are formed during calcination while the structure-directing template agent is removed. Monodispersed AuNPs are formed by reduction in-situ and are placed inside the mesoporous TiO 2 framework. This prevents aggregation of the AuNPs even at 500 °C. The materials were characterized by UV–vis spectroscopy, scanning and transmission electron microscopy, nitrogen adsorption-desorption, and X-ray diffraction. Comb-type gold electrodes were then fabricated on an alumina substrate and are shown to display excellent properties in terms of sensing ammonia, ethanol, methanol or acetone. The sensitivity (defined as the ratio of resistivities under vapor and air) of a typical AuNPs(0.5 %)-TiO 2 gas sensor for ethanol reached up to 5.65 at above 600 ppm at 75 °C. Response time and recovery times (t 90  ≤ 20 s) are faster than (or comparable to) other metal-doped TiO 2 sensors, and working temperatures are much lower. An interesting observation was made in that the changes in the conductivity of the sensor change with temperature. The sensor prepared with AuNPs(0.5 %)-TiO 2 is of the p-type (in its response to ammonia gas) at 45 °C, but becomes n-type at 20 °C. Obviously, rather slight changes in temperature lead to a complete change in the direction of the conductometric signal change. This may provide a new aspect in terms of selective and highly sensitive detection of ammonia at ambient and slightly elevated temperatures. (author)

  11. Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Fargol Hasani Bijarbooneh

    2013-09-01

    Full Text Available One-dimensional (1D TiO2 nanostructures are very desirable for providing fascinating properties and features, such as high electron mobility, quantum confinement effects, and high specific surface area. Herein, 1D mesoporous TiO2 nanofibres were prepared using the electrospinning method to verify their potential for use as the photoelectrode of dye-sensitized solar cells (DSSCs. The 1D mesoporous nanofibres, 300 nm in diameter and 10-20 μm in length, were aggregated from anatase nanoparticles 20-30 nm in size. The employment of these novel 1D mesoporous nanofibres significantly improved dye loading and light scattering of the DSSC photoanode, and resulted in conversion cell efficiency of 8.14%, corresponding to an ∼35% enhancement over the Degussa P25 reference photoanode.

  12. Mesoporous silica films as catalyst support for microstructured reactors: preparation and characterization

    NARCIS (Netherlands)

    Muraza, O.; Kooyman, P.J.; Lafont, U.; Albouy, P.A.; Khimyak, T.; Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2008-01-01

    Mesoporous silica thin films with hexagonal and cubic mesostructure have been deposited by the evaporation induced self-assembly assisted sol–gel route on microchannels etched in a Pyrex® 7740 borosilicate glass substrate. Prior to the synthesis, a 50 nm TiO2 film has been deposited on the substrate

  13. Layer-by-Layer Formation of Block-Copolymer-Derived TiO2 for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Guldin, Stefan

    2011-12-15

    Morphology control on the 10 nm length scale in mesoporous TiO 2 films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results for very thin films, the shrinkage during the film manufacture typically prevents the build-up of sufficiently thick layers to enable optimum solar cell operation. Here, a study on the temporal evolution of block-copolymer-directed mesoporous TiO 2 films during annealing and calcination is presented. The in-situ investigation of the shrinkage process enables the establishment of a simple and fast protocol for the fabrication of thicker films. When used as photoanodes in solid-state dye-sensitized solar cells, the mesoporous networks exhibit significantly enhanced transport and collection rates compared to the state-of-the-art nanoparticle-based devices. As a consequence of the increased film thickness, power conversion efficiencies above 4% are reached. Fabrication of sufficiently thick mesoporous TiO 2 photoelectrodes with morphology control on the 10 nm length scale is essential for solid-state dye-sensitized solar cells (ss-DSC). This study of the temporal evolution of block-copolymer-directed mesoporous TiO 2 films during annealing and calcination enables the build-up of sufficiently thick films for high-performance ssDSC devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mesoporous anatase TiO_2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chu, Liang; Qin, Zhengfei; Zhang, Qiaoxia; Chen, Wei; Yang, Jian; Yang, Jianping; Li, Xing’ao

    2016-01-01

    Graphical abstract: The photoelectrodes of DSSCs consisted of mesoporous anatase TiO_2 microspheres with interconnected nanoparticles. The interconnected nanoparticles enhance dye-loading capacity and charge transport. - Highlights: • The mesoporous anatase TiO_2 microspheres were synthesized by a template-free, one-step fast solvothermal process. • The mesoporous anatase TiO_2 microspheres with interconnected nanoparticles have the advantages of large surface area and connected-structure for electron transfer. • The mesoporous anatase TiO_2 microspheres were further utilized as efficient photoelectrodes for dye-sensitized solar cells. - Abstract: Mesoporous anatase TiO_2 microspheres with interconnected nanostructures meet both large surface area and connected-structure for electron transfer as ideal nano/micromaterials for application in solar cells, energy storage, catalysis, water splitting and gas sensing. In this work, mesoporous anatase TiO_2 microspheres consisting of interconnected nanoparticles were synthesized by template-free, one-step fast solvothermal process, where urea was used as capping agent to control phase and promote oriented growth. The morphology was assembled by nucleation-growth-assembly-mechanism. The mesoporous anatase TiO_2 microspheres with interconnected nanoparticles were further utilized as efficient photoelectrodes of dye-sensitized solar cells (DSSCs), which were beneficial to capacity of dye loading and charge transfer. The power conversion efficiency (PCE) based on the optimized thickness of TiO_2 photoelectrodes was up to 7.13% under standard AM 1.5 G illumination (100 mW/cm"2).

  15. Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method

    International Nuclear Information System (INIS)

    Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides

    2014-01-01

    Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)

  16. Self-Assembly of TiO2/CdS Mesoporous Microspheres with Enhanced Photocatalytic Activity via Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Sujing Yu

    2014-01-01

    Full Text Available Self assembly of TiO2/CdS mesoporous microspheres was synthesized via hydrothermal method. The samples were characterized by X-ray powder diffraction (XRD, ultraviolet-visible diffuse reflectance spectroscopy (DRS, transmission electron microscopy (TEM, energy-dispersive spectroscopy analysis (EDS, high-resolution transmission electron microscopy (HRTEM, Brunauer-Emmett-Teller (BET, X-ray photoelectron spectroscopy (XPS, and photoluminescence spectra (PL. The as-synthesized TiO2/CdS mesoporous microspheres showed superior photocatalytic activity for the degradation of RhB under either visible light or simulated sunlight irradiation; the 10 wt% TiO2/CdS sample showed the best performance. Moreover, this catalyst showed improved stability, and the activity did not decrease significantly after four recycles. The heterojunction between TiO2 and CdS may be favorable for the transport of photoinduced electrons from CdS to TiO2. In addition, the mesoporous structure could increase the utilization of light energy and facilitate the diffusion of reactants and products during the photocatalytic reaction.

  17. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela; Lee, Jinwoo; Crossland, Edward J. W.; Warren, Scott C.; Orilall, M. Christopher; Guldin, Stefan; Hü ttner, Sven; Ducati, Catarina; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO

  18. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    Science.gov (United States)

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.

  19. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  20. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Chunfeng Lan

    2018-02-01

    Full Text Available We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc, short-circuit current (Jsc and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells.

  1. Yttrium deposition on mesoporous TiO2: textural design and UV ...

    Indian Academy of Sciences (India)

    The mesoporous yttrium-doped TiO2 substrates prepared in this research work operate ... bond lengths in the nanoparticles (0.192 and 0.196 nm).18. Additionally ...... Fisicoquímica de Materiales Mesoporosos' (UAM-I CA-31. Fisicoquímica de ...

  2. Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO 2

    KAUST Repository

    Nedelcu, Mihaela; Guldin, Stefan; Orilall, M. Christopher; Lee, Jinwoo; Hü ttner, Sven; Crossland, Edward J. W.; Warren, Scott C.; Ducati, Caterina; Laity, Pete R.; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2010-01-01

    We present a material and device based study on the fabrication of mesoporous TiO2 and its integration into dye-sensitized solar cells. Poly(isoprene-block-ethyleneoxide) (PI-b-PEO) copolymers were used as structure directing agents for the sol-gel based synthesis of nanoporous monolithic TiO2 which was subsequently ground down to small particles and processed into a paste. The TiO2 synthesis and the formation of tens of micrometre thick films from the paste is a scalable approach for the manufacture of dye sensitised solar cells (DSCs). In this study, we followed the self-assembly of the material through the various processing stages of DSC manufacture. Since this approach enables high annealing temperatures while maintaining porosity, excellent crystallinity was achieved. Internal TiO 2 structures ranging from the nanometre to micrometre scale combine a high internal surface area with the strong scattering of light, which results in high light absorption and an excellent full-sun power conversion efficiency of up to 6.4% in a robust, 3 μm thick dye-sensitized solar cell. © 2010 The Royal Society of Chemistry.

  3. Mesoporous titanium dioxide (TiO2) with hierarchically 3D dendrimeric architectures: formation mechanism and highly enhanced photocatalytic activity.

    Science.gov (United States)

    Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian

    2013-03-15

    Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  5. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    International Nuclear Information System (INIS)

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  6. Ultrafast Flame Annealing of TiO2 Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency.

    Science.gov (United States)

    Kim, Jung Kyu; Chai, Sung Uk; Cho, Yoonjun; Cai, Lili; Kim, Sung June; Park, Sangwook; Park, Jong Hyeok; Zheng, Xiaolin

    2017-11-01

    Mesoporous TiO 2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO 2 NP films for these solar cells are fabricated by annealing TiO 2 paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO 2 paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO 2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO 2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO 2 surface facilitates charge injection from the dye/perovskite to TiO 2 . Consequently, when the flame-annealed mesoporous TiO 2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO 2 films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  8. Electro-spray deposition of a mesoporous TiO2 charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells.

    Science.gov (United States)

    Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk

    2015-12-28

    The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.

  9. Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route

    International Nuclear Information System (INIS)

    Liu Shaoyou; Tang Qunli; Feng Qingge

    2011-01-01

    S/Cr doped mesoporous TiO 2 (S-TiO 2 , Cr-TiO 2 , S-Cr-TiO 2 ) were successfully synthesized via a simple, effective and environmental benign solid state reaction route. The low angle XRD patterns demonstrated that the resulting samples possess mesostructures. The further characterizations via N 2 adsorption-desorption and XPS showed that the typical S/Cr co-doped mesoporous TiO 2 (S-Cr-TiO 2 (5S-5Cr)) possesses mesopore with the high specific surface area of 118.4 m 2 /g and narrow pore size distribution, and both S and Cr have been incorporated into the lattice of TiO 2 with the amounts of 4.16% sulfur and 7.88% chromium, respectively. And Raman spectroscopy shows that the surface of S-Cr-TiO 2 (5S-5Cr) material possesses stretching vibrational peaks at ∼709, ∼793 cm -1 are assignable to the Ti-O-Cr, O-Cr (Ti)-OH bonds, respectively. Interestingly, the UV-vis displayed that the absorption regions of S/Cr doped mesoporous TiO 2 cover the visible light region. As for the series of S-Cr-TiO 2 samples, the absorption region even extends to near infrared region with strong adsorption. Moreover, compared with the pure titanium dioxide (P25-TiO 2 ), the photodegradation properties of bromocresol green (BCG) on the S/Cr doped mesoporous TiO 2 showed excellent photocatalytic properties under visible light irradiation. Within 50 min visible light irradiation, 82.6% of the initial BCG was degraded for the S-Cr-TiO 2 (6S-4Cr) photocatalyst.

  10. New Cu-based catalysts supported on TiO2 films for Ullmann SnAr-type C-O coupling reactions

    NARCIS (Netherlands)

    Benaskar, F.; Engels, V.; Rebrov, E.; Patil, N.G.; Meuldijk, J.; Thuene, P.C.; Magusin, P.C.M.M.; Mezari, B.; Hessel, V.; Hulshof, L.A.; Hensen, E.J.M.; Wheatley, A.E.H.; Schouten, J.C.

    2012-01-01

    New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for CO coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles,

  11. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  12. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    Science.gov (United States)

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  14. Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI 3-x Cl x into Mesoporous TiO 2 for Stable Hybrid Perovskite Solar Cells

    KAUST Repository

    Kim, Woochul

    2017-05-31

    Organic-inorganic hybrid perovskite solar cells (PSCs) have reached a power conversion efficiency of 22.1% in a short period (∼7 years), which has been obtainable in silicon-based solar cells for decades. The high power conversion efficiency and simple fabrication process render perovskite solar cells as potential future power generators, after overcoming the lack of long-term stability, for which the deposition of void-free and pore-filled perovskite films on mesoporous TiO2 layers is the key pursuit. In this research, we developed a sequential dip-spin coating method in which the perovskite solution can easily infiltrate the pores within the TiO2 nanoparticulate layer, and the resultant film has large crystalline grains without voids between them. As a result, a higher short circuit current is achieved owing to the large interfacial area of TiO2/perovskite, along with enhanced power conversion efficiency, compared to the conventional spin coating method. The as-made pore-filled and void-free perovskite film avoids intrinsic moisture and air and can effectively protect the diffusion of degradation factors into the perovskite film, which is advantageous for the long-term stability of PSCs.

  15. Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells.

    Science.gov (United States)

    Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun

    2016-04-28

    Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.

  16. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    Science.gov (United States)

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  17. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles.

    Science.gov (United States)

    Hong, Yayun; Zhan, Qiliang; Pu, Chenlu; Sheng, Qianying; Zhao, Hongli; Lan, Minbo

    2018-09-01

    In this work, hollow magnetic macro/mesoporous TiO 2 nanoparticles (denoted as Fe 3 O 4 @H-fTiO 2 ) were synthesized by a facile "hydrothermal etching assisted crystallization" route to improve the phosphopeptide enrichment efficiency. The porous nanostructure of TiO 2 shell and large hollow space endowed the Fe 3 O 4 @H-fTiO 2 with a high surface area (144.71 m 2 g -1 ) and a large pore volume (0.52 cm 3 g -1 ), which could provide more affinity sites for phosphopeptide enrichment. Besides, the large pore size of TiO 2 nanosheets and large hollow space could effectively prevent the "shadow effect", thereby facilitating the diffusion and release of phosphopeptides. Compared with the hollow magnetic mesoporous TiO 2 with small and deep pores (denoted as Fe 3 O 4 @H-mTiO 2 ) and solid magnetic macro/mesoporous TiO 2 , the Fe 3 O 4 @H-fTiO 2 nanoparticles showed a better selectivity (molar ratio of α-casein/BSA up to 1:10000) and a higher sensitivity (0.2 fmol/μL α-casein) for phosphopeptide enrichment. Furthermore, 1485 unique phosphopeptides derived from 660 phosphoproteins were identified from HeLa cell extracts after enrichment with Fe 3 O 4 @H-fTiO 2 nanoparticles, further demonstrating that the Fe 3 O 4 @H-fTiO 2 nanoparticles had a high-efficiency performance for phosphopeptide enrichment. Taken together, the Fe 3 O 4 @H-fTiO 2 nanoparticles will have unique advantages in phosphoproteomics analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Helal, Ahmed; Al-Sayari, S A; Robben, L; Bahnemann, D W

    2016-04-15

    Herein, we report the ease synthesis of mesoporous WO3-TiO2 nanocomposites at different WO3 contents (0-5wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO2 phase and monoclinic and triclinic of WO3 were formed. The mesoporous TiO2 exhibits large pore volumes of 0.267cm(3)g-1 and high surface areas of 180m(2)g(-1) but they become reduced to 0.221cm(3)g(-1) and 113m(2)g(-1), respectively upon WO3 incorporation, with tunable mesopore diameter in the range of 5-6.5nm. TEM images show WO3-TiO2 nanocomposites are quite uniform with 10-15nm of TiO2 and 5-10nm of WO3 sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO3-TiO2 nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO2 and commercial UV-100 photocatalyst, respectively. The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO3-TiO2 nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-01-01

    We investigated CdSe-sensitized TiO 2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO 2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO 2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( 2 –CdSe core–shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO 2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm −2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V oc = 485 mV, J sc = 4.26 mA cm −2 , ff=0.37). (paper)

  20. In situ investigation of dye adsorption on TiO2 films using a quartz crystal microbalance with a dissipation technique

    KAUST Repository

    Harms, Hauke A.

    2012-01-01

    Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO 2 films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured. © 2012 the Owner Societies.

  1. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    Science.gov (United States)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  2. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    Science.gov (United States)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  3. Visible-light photocatalytic activity of nitrided TiO2 thin films

    International Nuclear Information System (INIS)

    Camps, Enrique; Escobar-Alarcon, L.; Camacho-Lopez, Marco Antonio; Casados, Dora A. Solis

    2010-01-01

    TiO 2 thin films have been applied in UV-light photocatalysis. Nevertheless visible-light photocatalytic activity would make this material more attractive for applications. In this work we present results on the modification of titanium oxide (anatase) sol-gel thin films, via a nitriding process using a microwave plasma source. After the treatment in the nitrogen plasma, the nitrogen content in the TiO 2 films varied in the range from 14 up to 28 at%. The titanium oxide films and the nitrided ones were characterized by XPS, micro-Raman spectroscopy and UV-vis spectroscopy. Photocatalytic activity tests were done using a Methylene Blue dye solution, and as catalyst TiO 2 and nitrided TiO 2 films. The irradiation of films was carried out with a lamp with emission in the visible (without UV). The results showed that the nitrided TiO 2 films had photocatalytic activity, while the unnitrided films did not.

  4. Electrochemical Behavior of TiO2 Nanoparticle Doped WO3 Thin Films

    Directory of Open Access Journals (Sweden)

    Suvarna R. Bathe

    2014-01-01

    Full Text Available Nanoparticle TiO2 doped WO3 thin films by pulsed spray pyrolysis technique have been studied on fluorine tin doped (FTO and glass substrate. XRD shows amorphous nature for undoped and anatase phase of TiO2 having (101 plane for nanoparticle TiO2 doped WO3 thin film. SEM shows microfibrous reticulated porous network for WO3 with 600 nm fiber diameter and nanocrystalline having size 40 nm for TiO2 nanoparticle doped WO3 thin film. TiO2 nanoparticle doped WO3 thin film shows ~95% reversibility due to may be attributed to nanocrystalline nature of the film, which helpful for charge insertion and deinsertion process. The diffusion coefficient for TiO2 nanoparticle doped WO3 film is less than undoped WO3.

  5. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.

  6. Mesoporous anatase TiO2/reduced graphene oxide nanocomposites: A simple template-free synthesis and their high photocatalytic performance

    International Nuclear Information System (INIS)

    Zhou, Qi; Zhong, Yong-Hui; Chen, Xing; Huang, Xing-Jiu; Wu, Yu-Cheng

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous TiO 2 nanoparticles with anatase phase were assembled on reduced graphene oxide via a template-free one-step hydrothermal method. • The TiO 2 /rGO nanocomposites have better adsorption capacity and photocatalytic degradation efficiency for dyes removal. • Improved dye adsorption and photogenerated charge separation are responsible for enhanced activity. - Abstract: Mesoporous anatase phase TiO 2 was assembled on reduced graphene oxide (rGO) using a template-free one-step hydrothermal process. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area. Morphology of TiO 2 was related to the content of graphene oxide. TiO 2 /rGO nanocomposites exhibited excellent photocatalytic activity for the photo-degradation of methyl orange. The degradation rate was 4.5 times greater than that of pure TiO 2 nanoparticles. This difference was attributed to the thin two-dimensional graphene sheet. The graphene sheet had a large surface area, high adsorption capacity, and acted as a good electron acceptor for the transfer of photo-generated electrons from the conduction band of TiO 2 . The enhanced surface adsorption characteristics and excellent charge transport separation were independent properties of the photocatalytic degradation process

  7. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Mohamed Azuwa Mohamad; Wan Norharyati Wan Salleh; Juhana Jaafar; Mohamad Saufi Rosmi; Zul Adlan Mohd Hir; Muhazri Abd Mutalib; Ahmad Fauzi Ismail; Tanemura, Masaki

    2017-01-01

    Highlights: • RCM as bio-template and in-situ carbon shell and interstitial carbon doping. • Photo-sensitizers by carbonaceous layer grafted onto the surface of TiO 2 . • Visible light response could be tailored depending on the annealing temperature. • Photocatalytic properties and charge carrier transfer mechanism was proposed. - Abstract: Regenerated cellulose membrane was used as bio-template nanoreactor for the formation of rutile TiO 2 mesoporous, as well as in-situ carbon dopant in acidified sol-gel system. The effects of calcination temperature on the physicochemical characteristic of core-shell nanostructured of bio-templated C-doped mesoporous TiO 2 are highlighted in this study. By varying the calcination temperature, the thickness of the carbon shell coating on TiO 2 , crystallinity, surface area, and optical properties could be tuned as confirmed by HRTEM, nitrogen adsorption/desorption measurement, XRD and UV–vis-NIR spectroscopy. The results suggested that increment in the calcination temperature would lead to the band gap narrowing from 2.95 to 2.80 eV and the thickness of carbon shell increased from 0.40 to 1.20 nm. The x-ray photoelectron spectroscopy showed that the visible light absorption capability was mainly due to the incorporation of carbon dopant at interstitial position in the TiO 2 to form O−Ti−C or Ti−O−C bond. In addition, the formation of the carbon core-shell nanostructured was due to carbonaceous layer grafted onto the surface of TiO 2 via Ti−O−C and Ti−OCO bonds. The result indicated that bio-templated C-doped core-shell mesoporous TiO 2 prepared at 300 °C exhibited the highest photocatalytic activity. It is worthy to note that, the calcination temperature provided a huge impact towards improving the physicochemical and photocatalytic properties of the prepared bio-templated C-doped core-shell mesoporous TiO 2 .

  8. Superhydrophilicity of TiO2 nano thin films

    International Nuclear Information System (INIS)

    Mohammadizadeh, M.R.; Ashkarran, A.A.

    2007-01-01

    Full text: Among the several oxide semiconductors, titanium dioxide has a more helpful role in our environmental purification due to its photocatalytic activity, photo-induced superhydrophilicity, and as a result of them non-toxicity, self cleaning, and antifogging effects. After the discovery of superhydrophilicity of titanium dioxide in 1997, several researches have been performed due to its nature and useful applications. The superhydrophilicity property of the surface allows water to spread completely across the surface rather than remains as droplets, thus making the surface antifog and easy-to-clean. The distinction of photo-induced catalytic and hydrophilicity properties of TiO 2 thin films has been accepted although, the origin of hydrophilicity property has not been recognized completely yet. TiO 2 thin films on soda lime glass were prepared by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550 C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166 nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O∼0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV/Vis. spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450 C calcination temperature, where the film is converted to a superhydrophilic surface after 10 minutes under 2mW/cm 2 UV irradiation. TiO 2 thin film on Si(111), Si(100), and quartz substrates needs less time to be converted to

  9. Low-temperature sputtering of crystalline TiO2 films

    International Nuclear Information System (INIS)

    Musil, J.; Herman, D.; Sicha, J.

    2006-01-01

    This article reports on the investigation of reactive magnetron sputtering of transparent, crystalline titanium dioxide films. The aim of this investigation is to determine a minimum substrate surface temperature T surf necessary to form crystalline TiO 2 films with anatase structure. Films were prepared by dc pulsed reactive magnetron sputtering using a dual magnetron operating in bipolar mode and equipped with Ti(99.5) and ceramic Ti 5 O 9 targets. The films were deposited on unheated glass substrates and their structure was characterized by x-ray diffraction and surface morphology by atomic force microscopy. Special attention is devoted to the measurement of T surf using thermostrips pasted to the glass substrate. It was found that (1) T surf is considerably higher (approximately by 100 deg. C or more) than the substrate temperature T s measured by the thermocouple incorporated into the substrate holder and (2) T surf strongly depends on the substrate-to-target distance d s-t , the magnetron target power loading, and the thermal conductivity of the target and its cooling. The main result of this study is the finding that (1) the crystallization of sputtered TiO 2 films depends not only on T surf but also on the total pressure p T of sputtering gas (Ar+O 2 ), partial pressure of oxygen p O 2 , the film deposition rate a D , and the film thickness h (2) crystalline TiO 2 films with well developed anatase structure can be formed at T surf =160 deg. C and low values of a D ≅5 nm/min (3) the crystalline structure of TiO 2 film gradually changes from (i) anatase through (ii) anatase+rutile mixture, and (iii) pure rutile to x-ray amorphous structure at T surf =160 deg. C and p T =0.75 Pa when p O 2 decreases and a D increases above 5 nm/min, and (4) crystallinity of the TiO 2 films decreases with decreasing h and T surf . Interrelationships between the structure of TiO 2 film, its roughness, T surf , and a D are discussed in detail. Trends of next development are

  10. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    Science.gov (United States)

    Xue, Min; Huang, Li; Wang, Jian-Qiang; Wang, Ying; Gao, Ling; Zhu, Jian-hua; Zou, Zhi-Gang

    2008-05-01

    A series of visible-light-driven mesoporous structured MnO2/TiO2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO2. The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO2/TiO2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.

  11. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    International Nuclear Information System (INIS)

    Xue Min; Huang Li; Wang Jianqiang; Wang Ying; Zou Zhigang; Gao Ling; Zhu Jianhua

    2008-01-01

    A series of visible-light-driven mesoporous structured MnO 2 /TiO 2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N 2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO 2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO 2 . The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO 2 /TiO 2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested

  12. TiO2 and SiC nanostructured films, organized CNT structures

    Indian Academy of Sciences (India)

    sized nanostructured TiO2 films through hydrolysis of titanium tetra-isopropoxide. (TTIP) [9 ... structured TiO2 as a photocatalyst is as follows [15]:. TiO2(ns) ... The deposited films were easily detached from the silica tube and subjected to. SEM.

  13. High-Performance Li-Ion Capacitor Based on an Activated Carbon Cathode and Well-Dispersed Ultrafine TiO2 Nanoparticles Embedded in Mesoporous Carbon Nanofibers Anode.

    Science.gov (United States)

    Yang, Cheng; Lan, Jin-Le; Liu, Wen-Xiao; Liu, Yuan; Yu, Yun-Hua; Yang, Xiao-Ping

    2017-06-07

    A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO 2 nanoparticles embedded in mesoporous carbon nanofibers (TiO 2 @PCNFs) anode was reported. A series of TiO 2 @PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO 2 nanoparticles and the mesoporous structure of the TiO 2 @PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg -1 at a power density of 75 W kg -1 . Meanwhile, even when the power density was increased to 5 kW kg -1 , the energy density can still maintain 27.5 Wh kg -1 . Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g -1 . The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO 2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.

  14. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions

    International Nuclear Information System (INIS)

    Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y.

    2006-01-01

    In the present study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO 2 /Ag films were obtained after calcining at a temperature of 500 o C. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. After 500 o C calcination, the microstructure of PS-TiO 2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO 2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO 2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h

  15. Production and Characterization of (004) Oriented Single Anatase TiO2 Films

    Science.gov (United States)

    Atay, Ferhunde; Akyuz, Idris; Cergel, Muge Soyleyici; Erdogan, Banu

    2018-02-01

    Highly (004) oriented anatase TiO2 films have been successfully obtained by an inexpensive ultrasonic spray pyrolysis technique at low substrate temperatures and without additional annealing. X-ray diffraction analysis, ultraviolet-visible spectroscopy and field emission scanning electron microscopy were used to analyze the structural, optical and surface properties of the films. By using the less reported TiCl4 solution, the optical band gap values falling into the visible region (between 2.70 eV and 2.92 eV) have been obtained for all films. Spectroscopic ellipsometry technique has been used to determine the dispersive refractive index and extinction coefficient of TiO2 films. Possible electrical conduction mechanisms in TiO2 films have been examined using temperature dependent conductivity measurements in the temperature range of 78-300 K. At room temperature, electrical resistivity values of TiO2 films change between 1.68 × 104 Ω cm and 5.88 × 104 Ω cm. Considering the analyzed parameters with respect to substrate temperature, this work refers to the properties of anatase TiO2 films that are strongly correlated to the growth direction, namely (004). As a result, (004) oriented anatase TiO2 films with appropriate optical band gap values are promising materials for technological applications, especially for photocatalysts.

  16. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  17. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes

    International Nuclear Information System (INIS)

    Casino, S.; Di Lupo, F.; Francia, C.; Tuel, A.; Bodoardo, S.; Gerbaldi, C.

    2014-01-01

    Highlights: • Mesoporous TiO 2 nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO 2 anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO 2 Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C 18 TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO 2 materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m 2 g −1 . Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy

  18. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  19. Structure and Properties of La2O3-TiO2 Nanocomposite Films for Biomedical Applications

    Science.gov (United States)

    Zhang, Lin; Sun, Zhi-Hua; Yu, Feng-Mei; Chen, Hong-Bin

    2011-01-01

    The hemocompatibility of La2O3-doped TiO2 films with different concentration prepared by radio frequency (RF) sputtering was studied. The microstructures and blood compatibility of TiO2 films were investigated by scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-visible optical absorption spectroscopy, respectively. With the increasing of the La2O3 concentrations, the TiO2 films become smooth, and the grain size becomes smaller. Meanwhile, the band gap of the samples increases from 2.85 to 3.3 eV with increasing of the La2O3 content in TiO2 films from 0 to 3.64%. La2O3-doped TiO2 films exhibit n-type semiconductor properties due to the existence of Ti2+ and Ti3+. The mechanism of hemocompatibility of TiO2 film doped with La2O3 was analyzed and discussed. PMID:22162671

  20. Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Docampo, Pablo

    2012-04-30

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO 2 films is presented, based on the triblock terpolymer poly(isoprene - b - styrene - b - ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solidstate dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2: High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Docampo, Pablo; Stefik, Morgan; Guldin, Stefan; Gunning, Robert; Yufa, Nataliya A.; Cai, Ning; Wang, Peng; Steiner, Ullrich; Wiesner, Ulrich; Snaith, Henry J.

    2012-01-01

    A new self-assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO 2 films is presented, based on the triblock terpolymer poly(isoprene - b - styrene - b - ethylene oxide). This new materials route allows the co-assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state-of-the-art nanoparticle-based photoanodes employed in solidstate dye-sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub-bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state-of-the-art organic dye, C220. As a consequence, the co-assembled mesoporous metal oxide system outperformed the conventional nanoparticle-based electrodes fabricated and tested under the same conditions, exhibiting solar power-conversion efficiencies of over 5%. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous TiO2 : an alternative material for PEM fuel cells catalyst support

    Energy Technology Data Exchange (ETDEWEB)

    Do, T.B. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Materials Science; Ruthkosky, M.; Cai, M. [General Motors, Warren, MI (United States). Research and Development Center

    2008-07-01

    This paper discussed the feasibility of using an alternative catalyst support material to replace carbon in proton exchange membrane (PEM) fuel cells. The alternative catalyst support material requires a high surface area with a large porosity but must have comparable conductivity with carbon. A mesoporous titanium oxide (TiO2) material produced by coprecipitation was introduced. The conductivity of the material is about one order of that of carbon. The 8 mole per cent Nb-doped TiO2 was formed and deposited on the surface of a nano polystyrene (PS) template via the hydrolysis of a co-solution of Ti(OC4H9)4 and Nb(OC2H5)5. The removal of PS by heat treatment produced porous structure of TiO2 with the appearance of 3 different pore types, notably open pore, ink-pot pores and closed pores. TiO2 formed from the rutile phase, allowing a lower activation temperature at 850 degrees C in a hydrogen atmosphere. The pore structures were retained after this heat treatment. The BET surface area was 116 m{sup 2}/g, porosity was 22 per cent and the average pore size was 159 angstrom. The conductivity improved considerably from almost non-conductive to one order of that of carbon.

  3. Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO2 Films

    NARCIS (Netherlands)

    Rafieian Boroujeni, Damon; Driessen, Rick Theodorus; Driessen, Rick T.; Ogieglo, Wojciech; Lammertink, Rob G.H.

    2015-01-01

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during

  4. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Lin, C.-K.; Chan, C.-C.; Chang, C.-C.; Tsay, C.-Y.

    2006-01-01

    TiO 2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO 3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO 3 as compared with the TiO 2 may restrict the practical application of WO 3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO 2 /WO 3 composite thin films was investigated. Precursors of sols TiO 2 and/or WO 3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO 2 , WO 3 , and composite TiO 2 /WO 3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 o C, nanocrystalline TiO 2 , TiO 2 /WO 3 , and WO 3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO 2 /WO 3 composite film exhibited improved electrochromic properties

  5. Synthesis of nanocrystalline TiO2 thin films by liquid phase ...

    Indian Academy of Sciences (India)

    WINTEC

    goes degradation efficiently in presence of TiO2 thin films by exposing its aqueous solution to .... Figure 6. Photodegradation of IGOR organic dye by a. bare TiO2 thin film and b. ... Meng L-J and Dos Santos M P 1993 Thin Solid Films 226 22.

  6. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    Science.gov (United States)

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

    Directory of Open Access Journals (Sweden)

    Matthias Roos

    2011-09-01

    Full Text Available Aiming at model systems with close-to-realistic transport properties, we have prepared and studied planar Au/TiO2 thin-film model catalysts consisting of a thin mesoporous TiO2 film of 200–400 nm thickness with Au nanoparticles, with a mean particle size of ~2 nm diameter, homogeneously distributed therein. The systems were prepared by spin-coating of a mesoporous TiO2 film from solutions of ethanolic titanium tetraisopropoxide and Pluronic P123 on planar Si(100 substrates, calcination at 350 °C and subsequent Au loading by a deposition–precipitation procedure, followed by a final calcination step for catalyst activation. The structural and chemical properties of these model systems were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption, inductively coupled plasma ionization spectroscopy (ICP–OES and X-ray photoelectron spectroscopy (XPS. The catalytic properties were evaluated through the oxidation of CO as a test reaction, and reactivities were measured directly above the film with a scanning mass spectrometer. We can demonstrate that the thin-film model catalysts closely resemble dispersed Au/TiO2 supported catalysts in their characteristic structural and catalytic properties, and hence can be considered as suitable for catalytic model studies. The linear increase of the catalytic activity with film thickness indicates that transport limitations inside the Au/TiO2 film catalyst are negligible, i.e., below the detection limit.

  8. Versatile preparation method for mesoporous TiO2 electrodes ...

    Indian Academy of Sciences (India)

    Unknown

    cyanate into CuI layer further enhanced the efficiency up to 2⋅75% under the irradiance .... an extremely easy way to dope films with virtually any .... to see the effect of ionic liquid on CuI, 1-ethyl-3-methyl- ... This analysis showed that TiO2 electrodes were polycrys- .... thin insulating layer of Al2O3 by using dip-coating meth-.

  9. TiO2 thin-films on polymer substrates and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Jae-Hun; Han, Yang-Su; Choy, Jin-Ho

    2006-01-01

    We have developed dip-coating process for TiO 2 -thin film on polymer substrates (acrylonitrile-butadiene-styrene polymer: ABS, polystyrene: PS). At first, a monodispersed and transparent TiO 2 nano-sol solution was prepared by the controlled hydrolysis of titanium iso-propoxide in the presence of acetylacetone and nitric acid catalyst at 80 deg. C. Powder X-ray diffraction patterns of the dried particles are indicative of crystalline TiO 2 with anatase-type structure. According to the XRD and transmission electron microscopy (TEM) studies, the mean particle size was estimated to be ca. 5 nm. The transparent thin films on ABS and PS substrates were fabricated by dip-coating process by changing the processing variables, such as the number of dip-coating and TiO 2 concentration in nano-sol solution. Scanning electron microscopic (SEM) analysis for the thin film samples reveals that the acetylacetone-modified TiO 2 nano-sol particles are effective for enhancing the interfacial adherence between films and polymeric substrates compared to the unmodified one. Photocatalytic degradation of methylene blue (MB) on the TiO 2 thin-films has also been systematically investigated

  10. The properties of transparent TiO2 films for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Sung-Ho Park

    2017-08-01

    Full Text Available In this data, the properties of transparent TiO2 film for Schottky photodetector are presented for the research article, entitled as “High-performing transparent photodetectors based on Schottky contacts” (Patel et al., 2017 [1]. The transparent photoelectric device was demonstrated by using various Schottky metals, such as Cu, Mo and Ni. This article mainly shows the optical transmittance of the Ni-transparent Schottky photodetector, analyzed by the energy dispersive spectroscopy and interfacial TEM images for transparency to observe the interface between NiO and TiO2 film. The observation and analyses clearly show that no pinhole formation in the TiO2 film by Ni diffusion. The rapid thermal process is an effective way to form the quality TiO2 film formation without degradation, such as pinholes (Qiu et al., 2015 [2]. This thermal process may apply to form functional metal oxide layers for solar cells and photodetectors.

  11. Enhanced electrochromic properties of TiO2 nanoporous film prepared based on an assistance of polyethylene glycol

    Science.gov (United States)

    Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai

    2017-01-01

    Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.

  12. Enhanced Optical and Electrical Properties of TiO_2 Buffered IGZO/TiO_2 Bi-Layered Films

    International Nuclear Information System (INIS)

    Moon, Hyun-Joo; Kim, Daeil

    2016-01-01

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO_2-deposited glass substrate to determine the effect of the thickness of a thin TiO_2 buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO_2 buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO_2 buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO_2 bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO_2 bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  13. Preparation of mesoporous CdS-containing TiO{sub 2} film and enhanced visible light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanmei; Wang, Renliang, E-mail: rlwang@tsmc.edu.cn; Zhang, Wenping; Ge, Haiyan; Wang, Xiaopeng; Li, Li

    2015-01-15

    Highlights: • Well-dispersed distribution of CdS nanoparticles inside of TiO{sub 2} mesoporous structures was fabricated. • The sensitization of CdS nanoparticles significantly extends the response of TiO{sub 2} mesoporous film in the visible region. • An improved visible light photocatalytic activity was observed by the CdS–MTF. - Abstract: Mesoporous TiO{sub 2} films containing CdS nanocrystals were successfully fabricated by a two-step process of successive ionic layer adsorption and reaction (SILAR) technique and a solvothermal method followed by annealing. The distribution of CdS nanoparticles in the inner structures of the TiO{sub 2} mesoporous films is confirmed by field emission scanning electron microscope. The CdS modification of the mesoporous films results in an increase in the visible light adsorption, and exhibits more excellent photocatalytic degradation of methyl orange (MO) under visible light irradiation.

  14. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  15. Preparation of mesoporous Ag-containing TiO{sub 2} heterojunction film and its photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. Y., E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Qiao, J. L. [Jilin Agricultural University, College of Horticulture (China); Cui, X. Y. [Mudanjiang Medical University, School of Public Health (China); Zhong, J. S. [Hangzhou Dianzi University, College of Materials and Environmental Engineering (China); Xu, Y. B.; Zhang, S. H.; Zhang, Q. H.; Chang, P.; Li, M.; Zhang, C.; Gao, S. M., E-mail: gaosm@ustc.edu [Ludong University, School of Chemistry and Materials Science (China)

    2015-03-15

    Mesoporous Ag/TiO{sub 2} heterojunction films (Ag-MTHF) with enhanced photocatalytic activity were synthesized by a three-step approach including an electrochemical anodization technique followed by successive ionic layer adsorption and reaction (SILAR) and solvothermal methods. The distribution of Ag nanoparticles on the inner structure of the mesoporous TiO{sub 2} film was confirmed by field emission scanning electron (FE-SEM) and transmission electron microscopes (TEM). The formation progress of the novel mesoporous Ag/TiO{sub 2} nanojunction film with Ag average diameter of 17 nm was illuminated. The formed nanojunction between Ag and TiO{sub 2} nanoparticles largely enhanced the photocatalytic degradation of methyl orangey (MO), and the corresponding mechanism was proposed.

  16. Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries

    Science.gov (United States)

    Zhang, Ruifang; Wang, Yuankun; Zhou, Han; Lang, Jinxin; Xu, Jingjing; Xiang, Yang; Ding, Shujiang

    2018-06-01

    Sodium-ion batteries, which have a similar electrochemical reaction mechanism to lithium-ion batteries, have been considered as one of the most potential lithium-ion battery alternatives due to the rich reserves of sodium. However, it is very hard to find appropriate electrode materials imputing the large radius of sodium-ion. TiO2 is particularly interesting as anodes for sodium-ion batteries due to their reasonable operation voltage, cost, and nontoxicity. To obtain a better electrochemical property, mesoporous TiO2 nanosheets (NSs)/reduced graphene oxide (rGO) composites have been synthesized via a scalable hydrothermal-solvothermal method with a subsequent calcination process. Benefitting from unique structure design, TiO2 NSs@rGO exhibits a superior cycle stability (90 mAh g‑1 after 10 000 cycles at a high current rate of 20 C) and satisfactory rate performance (97.3 mAh g‑1 at 25 C). To our knowledge, such ultra long cycle life has not previously been reported.

  17. Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance

    Science.gov (United States)

    Cai, Yong; Zhao, Bote; Wang, Jie; Shao, Zongping

    2014-05-01

    Mesoporous TiO2 microspheres, synthesized by a facile template-free solvothermal method and subsequent heat treatment, are exploited as the electrode for hybrid supercapacitors. The effects of the calcination temperature on the phase composition, particulate microstructure and morphology are characterized by XRD, Raman, FE-SEM and N2 adsorption/desorption measurements. Hybrid supercapacitors utilizing the as-prepared TiO2 mesoporous microspheres as the negative electrode and activated carbon (AC) as the positive electrode in a non-aqueous electrolyte are fabricated. The electrochemical performance of these hybrid supercapacitors is studied by galvanostatic charge-discharge and cyclic voltammetry (CV). The hybrid supercapacitor built from TiO2 microspheres calcined at 400 °C shows the best performance, delivering an energy density of 79.3 Wh kg-1 at a power density of 178.1 W kg-1. Even at a power density of 9.45 kW kg-1, an energy density of 31.5 Wh kg-1 is reached. These values are much higher than the AC-AC symmetric supercapacitor. In addition, the hybrid supercapacitor exhibits excellent cycling performance, retaining 98% of the initial energy density after 1000 cycles. Such outstanding electrochemical performance of the hybrid supercapacitor is attributed to the matched reaction kinetics between the two electrodes with different energy storage mechanisms.

  18. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  19. Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin

    Directory of Open Access Journals (Sweden)

    Emerson Henrique de Faria

    2007-12-01

    Full Text Available TiO2 films have various applications, among them solar cells and photodegradation of pollutants. In this study, we investigated TiO2 films functionalized with the organic dye cyanidin extracted from black mulberry (Morus nigra. The TiO2 was functionalized by the sol-gel method and the film was deposited on glass substrates by dip-coating. Our aim was to investigate the interaction between the semiconductor and the dye, as well as the influence of the velocity and number of deposits on the characteristics of the film. Using ultraviolet-visible spectroscopy, we observed a shift from the maximum absorption band at 545 nm for the dye’s ethanol solution to 595 nm for the film, indicating interaction of the cyanidin with the TiO2. The absorption spectra in the infrared region of the functionalized TiO2 particles showed bands characteristic of the oxide and indicated their interaction with the dye. Using profilometry and m-line techniques, we found that the films presented thicknesses in the order of 100 nm. A SEM analysis confirmed the high density of the films.

  20. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO2 nanopowders by a simple coprecipitation process without adding surfactant

    International Nuclear Information System (INIS)

    Yeh, Shang-Wei; Ko, Horng-Huey; Chiang, Hsiu-Mei; Chen, Yen-Ling; Lee, Jian-Hong; Wen, Chiu-Ming; Wang, Moo-Chin

    2014-01-01

    Highlights: • The TiO 2 precursor powder contained anatase and 19.5% NH 4 Cl. • Mesoporous anatase TiO 2 nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH 4 Cl and anatase TiO 2 . • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO 2 nanopowders using titanium tetrachloride (TiCl 4 ) and NH 4 OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO 2 nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH 4 Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO 2 only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO 2 coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO 2 was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH 4 Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m 2 /g and 0.392 cm 3 /g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively

  1. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    Science.gov (United States)

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Annealing of TiO2 Films Deposited on Si by Irradiating Nitrogen Ion Beams

    International Nuclear Information System (INIS)

    Yokota, Katsuhiro; Yano, Yoshinori; Miyashita, Fumiyoshi

    2006-01-01

    Thin TiO2 films were deposited on Si at a temperature of 600 deg. C by an ion beam assisted deposition (IBAD) method. The TiO2 films were annealed for 30 min in Ar at temperatures below 700 deg. C. The as-deposited TiO2 films had high permittivities such 200 εo and consisted of crystallites that were not preferentially oriented to the c-axis but had an expanded c-axis. On the annealed TiO2 films, permittivities became lower with increasing annealing temperature, and crystallites were oriented preferentially to the (110) plane

  3. TiO2 supported on rod-like mesoporous silica SBA-15: Preparation, characterization and photocatalytic behaviour

    International Nuclear Information System (INIS)

    Li, Yanjuan; Li, Nan; Tu, Jinchun; Li, Xiaotian; Wang, Beibei; Chi, Yue; Liu, Darui; Yang, Dianfan

    2011-01-01

    Highlights: ► Rod-like SBA-15 and normal SBA-15 were used to prepare TiO 2 /SBA-15 composites. ► TiO 2 /SBA-15 composites were studied as catalysts for methyl orange photodegradation. ► TiO 2 /Rod-SBA-15 exhibited higher photocatalytic activity than TiO 2 /Nor-SBA-15. ► The higher catalytic activity was a result of the controlled morphology of SBA-15. -- Abstract: TiO 2 nanoparticles have been successfully incorporated in the pores of mesoporous silica SBA-15 with different morphologies by a wet impregnation method. The composites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP) emission spectroscopy, transmission electron microscopy (TEM), N 2 -sorption and UV–Vis diffuse reflectance spectroscopy. The photodegradation of methyl orange (MO) was used to study their photocatalytic property. It is indicated that the morphology of SBA-15 had a great influence on the photocatalytic activity of the composites. When TiO 2 /SBA-15 composite was prepared by loading TiO 2 nanoparticles on uniform rod-like SBA-15 of 1 μm length, it showed higher photocatalytic degradation rate than that on less regular but much larger SBA-15 support. This difference was rationalized in terms of the homogeneously distributed and shorter channels of rod-like SBA-15, which favored mass transport and improved the efficient utilization of the pore surface.

  4. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  5. Structural and vibrational investigations of Nb-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Uyanga, E.; Gibaud, A.; Daniel, P.; Sangaa, D.; Sevjidsuren, G.; Altantsog, P.; Beuvier, T.; Lee, Chih Hao; Balagurov, A.M.

    2014-01-01

    Highlights: • We studied the evolutions of structure for TiO 2 thin film as changes with Nb doping and temperatures. • Up to 800 °C, the grain size of Nb 0.1 Ti 0.9 O 2 is smaller than for pure TiO 2 because doped Nb hinders the growth of the TiO 2 grains. • There was no formation of the rutile phase at high temperature. • Nb doped TiO 2 films have high electron densities at 400–700 °C. • Nb dope extends the absorbance spectra of TiO 2 which leads to the band gap reduce. - Abstract: Acid-catalyzed sol–gel and spin-coating methods were used to prepare Nb-doped TiO 2 thin film. In this work, we studied the effect of niobium doping on the structure, surface, and absorption properties of TiO 2 by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectometry (XRR), X-ray photoelectron spectroscopy (XPS), Raman, and UV–vis absorption spectroscopy at various annealing temperatures. EDX spectra show that the Nb:Ti atomic ratios of the niobium-doped titania films are in good agreement with the nominal values (5 and 10%). XPS results suggest that charge compensation is achieved by the formation of Ti vacancies. Specific niobium phases are not observed, thus confirming that niobium is well incorporated into the titania crystal lattice. Thin films are amorphous at room temperature and the formation of anatase phase appeared at an annealing temperature close to 400 °C. The rutile phase was not observed even at 900 °C (XRD and Raman spectroscopy). Grain sizes and electron densities increased when the temperature was raised. Nb-doped films have higher electron densities and lower grain sizes due to niobium doping. Grain size inhibition can be explained by lattice stress induced by the incorporation of larger Nb 5+ ions into the lattice. The band gap energy of indirect transition of the TiO 2 thin films was calculated to be about 3.03 eV. After niobium doping, it decreased to 2.40 eV

  6. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  7. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  8. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    Science.gov (United States)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  9. Visible photoenhanced current-voltage characteristics of Au : TiO2 nanocomposite thin films as photoanodes

    International Nuclear Information System (INIS)

    Naseri, N; Amiri, M; Moshfegh, A Z

    2010-01-01

    In this investigation, the effect of annealing temperature and concentration of gold nanoparticles on the photoelectrochemical properties of sol-gel deposited Au : TiO 2 nanocomposite thin films is studied. Various gold concentrations have been added to the TiO 2 thin films and their properties are compared. All the deposited samples are annealed at different temperatures. The optical density spectra of the films show the formation of gold nanoparticles in the films. The optical bandgap energy of the Au : TiO 2 films decreases with increasing Au concentration. The crystalline structure of the nanocomposite films is studied by x-ray diffractometry indicating the formation of gold nanocrystals in the anatase TiO 2 nanocrystalline thin films. X-ray photoelectron spectroscopy reveals that the presence of gold in the metallic state and the formation of TiO 2 are stoichiometric. The photoelectrochemical properties of the Au : TiO 2 samples are characterized using a compartment cell containing H 2 SO 4 and KOH as cathodic and anodic electrolytes, respectively. It is found that the addition of Au nanoparticles in TiO 2 films enhances the photoresponse of the layer and the addition of gold nanocrystals with an optimum value of 5 mol% resulted in the highest photoelectrochemical activity. Moreover, the photoresponse of the samples is also enhanced with an increase in the annealing temperature.

  10. The TiO2 Refraction Film for CsI Scintillator

    OpenAIRE

    C. C. Chen; C. W. Hun; C. J. Wang; C. Y. Chen; J. S. Lin; K. J. Huang

    2015-01-01

    Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. Wh...

  11. A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Pathan, Habib M.; Kim, Woo Young; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    A lot of methods are developed for the deposition of TiO 2 thin films; however, in each of these methods as-deposited films are amorphous and need further heat treatment at high temperature. In the present article, a chemical bath deposition (CBD) method was used for the preparation of TiO 2 thin films. We investigated nanocrystalline TiO 2 thin films using CBD at room temperature onto glass and ITO coated glass substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The chemically synthesized films were nanocrystalline and composed of crystal grains of 2-3 nm

  12. Layer-by-Layer Formation of Block-Copolymer-Derived TiO2 for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Guldin, Stefan; Docampo, Pablo; Stefik, Morgan; Kamita, Gen; Wiesner, Ulrich; Snaith, Henry J.; Steiner, Ullrich

    2011-01-01

    Morphology control on the 10 nm length scale in mesoporous TiO 2 films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results

  13. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi

    International Nuclear Information System (INIS)

    Tatlıdil, İlknur; Bacaksız, Emin; Buruk, Celal Kurtuluş; Breen, Chris; Sökmen, Münevver

    2012-01-01

    Highlights: ► Co or Fe doped TiO 2 thin films were prepared by sol–gel method. ► We obtained lower E g values for Fe-doped and Co-TiO 2 thin films. ► Doping greatly affected the size and shape of the TiO 2 nanoparticles. ► Photocatalytic killing effect of the doped TiO 2 thin films on C. albicans and A. niger was significantly higher than undoped TiO 2 thin film for short exposure periods. - Abstract: In this study, a short recent literature survey which concentrated on the usage of Fe 3+ or Co 2+ ion doped TiO 2 thin films and suspensions were summarized. Additionally, a sol–gel method was used for preparation of the 2% Co or Fe doped TiO 2 thin films. The surface of the prepared materials was characterised using scanning-electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis and band gap of the films were calculated from the transmission measurements that were taken over the range of 190 and 1100 nm. The E g value was 3.40 eV for the pure TiO 2 , 3.00 eV for the Fe-doped TiO 2 film and 3.25 eV for Co-TiO 2 thin film. Iron or cobalt doping at lower concentration produce more uniformed particles and doping greatly affected the size and shape of the TiO 2 nanoparticles. Photocatalytic killing effect of the 2% Co doped TiO 2 thin film on Candida albicans was significantly higher than Fe doped TiO 2 thin film for short and long exposure periods. Doped thin films were more effective on Aspergillus niger for short exposure periods.

  14. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  15. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation

    International Nuclear Information System (INIS)

    Cecchinato, Francesca; Karlsson, Johan; Ferroni, Letizia; Gardin, Chiara; Galli, Silvia; Wennerberg, Ann; Zavan, Barbara; Andersson, Martin; Jimbo, Ryo

    2015-01-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO 2 ) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S dr ) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO 2 surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of osteopontin

  16. Antimicrobial and Barrier Properties of Bovine Gelatin Films Reinforced by Nano TiO2

    Directory of Open Access Journals (Sweden)

    R. Nassiri

    2013-11-01

    Full Text Available The effects of nano titanium dioxide incorporation were investigated on the water vaporpermeability, oxygen permeability, and antimicrobial properties of bovine gelatin films. The nano TiO2 (TiO2-N was homogenized by sonication and incorporated into bovine gelatin solutions at different concentrations(e.g. 1, 2, 3, and 5% w/w of dried gelatin. The permeability of the films to water vapor and oxygen wassignificantly decreased by incorporating of low concentration TiO2-N to gelatin solutions. TiO2-N gelatin filmsshowed an excellent antimicrobial activity against Staphylococcus aureus and Escherichia coli. Theseproperties suggest that TiO2-N has the potential as filler in gelatin-based films for using as an active packagingmaterials in pharmaceutical and food packaging industries.

  17. Influence of substrate temperature and silver-doping on the structural and optical properties of TiO_2 films

    International Nuclear Information System (INIS)

    Fischer, Dieter

    2016-01-01

    Evaporation of titanium together with activated oxygen is used to grow TiO_2 films and simultaneously with silver to grow Ag–TiO_2 films (5 at.% Ag) onto sapphire substrates at three different substrate temperatures: − 190, 30, and 200 °C. The obtained films were characterized by X-ray powder diffraction, Raman, X-ray photoelectron, ultraviolet–visible spectroscopy, and transmission electron microscope investigations. The properties of TiO_2 films varied with the substrate temperature. Amorphous, transparent TiO_2 films were grown at − 190 °C and opaque, polycrystalline films at 200 °C, respectively. Surprisingly, at room temperature black, amorphous TiO_2 films are obtained which transform at 350 °C into a mixture of the anatase and brookite polymorph. In the amorphous state of the TiO_2 films a predefined rutile arrangement is suggested by Raman investigations, and the contraction of the lattice constant c of anatase phases (tetragonal, space group I 4_1/amd) depending on the substrate temperature is experimentally observed. The silver-doped TiO_2 films deposited at − 190 and 30 °C contain Ag-particles with 2 nm in size inside the TiO_2 matrix, which after annealing segregate under increasing particle sizes. The silver-doping stabilizes the anatase polymorph and yields to reduced titanium species in the films especially during deposition at 30 °C. The Ag–TiO_2 films deposited at − 190 °C are transparent up to 350 °C. In the undoped as well as silver-doped TiO_2 films the rutile polymorph is directly formed at 200 °C as main phase. - Highlights: • At room temperature black, amorphous TiO_2 films are obtained. • A predefined rutile arrangement is suggested in amorphous TiO_2 films. • Annealed TiO_2 films crystallize to a mixture of the anatase and brookite polymorph. • In TiO_2 and Ag-doped TiO_2 films the rutile polymorph is directly formed at 200 °C. • Ag-doped TiO_2 films stabilize the anatase polymorph and reduced titanium

  18. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan

    2012-02-22

    Low-cost controllable solution-based processes for preparation of titanium oxide (TiO 2) thin films are highly desirable, because of many important applications of this oxide in catalytic decomposition of volatile organic compounds, advanced oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices, and general heterogeneous photocatalysis for fine chemicals etc. In this work, we develop a solution-based adsorptive self-assembly approach to fabricate anatase TiO 2 thin films on different glass substrates such as simple plane glass and patterned glass at variable compositions (normal soda lime glass or solar-grade borofloat glass). By tuning the number of process cycles (i.e., adsorption-then-heating) of TiO 2 colloidal suspension, we could facilely prepare large-area TiO 2 films at a desired thickness and with uniform crystallite morphology. Moreover, our as-prepared nanostructured TiO 2 thin films on glass substrates do not cause deterioration in optical transmission of glass; instead, they improve optical performance of commercial solar cells over a wide range of incident angles of light. Our as-prepared anatase TiO 2 thin films also display superhydrophilicity and excellent photocatalytic activity for self-cleaning application. For example, our investigation of photocatalytic degradation of methyl orange indicates that these thin films are indeed highly effective, in comparison to other commercial TiO 2 thin films under identical testing conditions. © 2012 American Chemical Society.

  19. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  20. Nano structured TiO2 thin films by polymeric precursor method

    International Nuclear Information System (INIS)

    Stroppa, Daniel Grando; Giraldi, Tania Regina; Leite, Edson Roberto; Varela, Jose Arana; Longo, Elson

    2008-01-01

    This work focuses in optimizing setup for obtaining TiO 2 thin films by polymeric precursor route due to its advantages on stoichiometric and morphological control. Precursor stoichiometry, synthesis pH, solids concentration and rotation speed at deposition were optimized evaluating thin films morphology and thickness. Thermogravimetry and NMR were applied for precursor's characterization and AFM, XRD and ellipsometry for thin films evaluation. Results showed successful attainment of homogeneous nanocrystalline anatase TiO 2 thin films with outstanding control over morphological characteristics, mean grain size of 17 nm, packing densities between 57 and 75%, estimated surface areas of 90 m 2 /g and monolayers thickness within 20 and 128 nm. (author)

  1. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  2. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Polymer Photovoltaic Cell Using TiO2/G-PEDOT Nanocomplex Film as Electrode

    Directory of Open Access Journals (Sweden)

    F. X. Xie

    2008-01-01

    Full Text Available Using TiO2/G-PEDOT (PEDOT/PSS doped with glycerol nanocomplex film as a substitute for metal electrode in organic photovoltaic cell is described. Indium tin oxide (ITO worked as cathode and TiO2/G-PEDOT nanocomplex works as anode. The thickness of TiO2 layer in nanocomplex greatly affects the act of this nonmetallic electrode of the device. To enhance its performance, this inverted organic photovoltaic cell uses another TiO2 layer as electron selective layer contacted to ITO coated glass substrates. All films made by solution processing techniques are coated on the transparent substrate (glass with a conducting film ITO. The efficiency of this solar cell is compared with the conventional device using Al as electrode.

  4. Preparation of TiO2 thin films from autoclaved sol containing needle-like anatase crystals

    International Nuclear Information System (INIS)

    Ge Lei; Xu Mingxia; Fang Haibo; Sun Ming

    2006-01-01

    A new inorganic sol-gel method was introduced in this paper to prepare TiO 2 thin films. The autoclaved sol with needle-like anatase crystals was synthesized using titanyl sulfate (TiOSO 4 ) and peroxide (H 2 O 2 ) as starting materials. The transparent anatase TiO 2 thin films were prepared on glass slides from the autoclaved sol by sol-gel dip-coating method. A wide range of techniques such as Fourier transform infrared transmission spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopes, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrum were applied to characterize the autoclaved sol and TiO 2 thin films. The results indicate that the autoclaved sol is flavescent, semitransparent and stable at room temperature. The anatase crystals of TiO 2 films connect together to form net-like structure after calcined and the films become uniform with increasing heating temperature. The surface of the TiO 2 films contain not only Ti and O elements, but also a small amount of N and Na elements diffused from substrates during heat treatment. The TiO 2 films are transparent and their maximal light transmittances exceed 80% under visible light region

  5. Efficiency enhancement in dye sensitized solar cells using dual function mesoporous silica as scatterer and back recombination inhibitor

    Science.gov (United States)

    Tanvi; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

    2016-08-01

    In the present work, we report the usage of mesoporous silica for improving light harvesting as well as for suppression of back recombination without affecting the extent of dye loading on TiO2 films. Synthesized mesoporous SiO2 was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer Emmett and Teller measurement, Scanning electron microscopy and Transmission electron microscopy. DSSCs were fabricated by incorporating different wt% of mesoporous SiO2 in TiO2 paste. An improvement of 50% was observed for devices fabricated using 0.75 wt% of mesoporous SiO2. The mechanism behind the improvement was investigated using electrochemical impedance spectroscopy and UV-Vis spectroscopy.

  6. Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Agnarsson, B.; Magnus, F.; Tryggvason, T.K.; Ingason, A.S.; Leosson, K.; Olafsson, S.; Gudmundsson, J.T.

    2013-01-01

    Thin TiO 2 films were grown on Si(001) substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Optical and structural properties of films were compared both before and after post-annealing using scanning electron microscopy, low angle X-ray reflection (XRR), grazing incidence X-ray diffractometry and spectroscopic ellipsometry. Both dcMS- and HiPIMS-grown films reveal polycrystalline rutile TiO 2 , even prior to post-annealing. The HiPIMS-grown films exhibit significantly larger grains compared to that of dcMC-grown films, approaching 100% of the film thickness for films grown at 700 °C. In addition, the XRR surface roughness of HiPIMS-grown films was significantly lower than that of dcMS-grown films over the whole temperature range 300–700 °C. Dispersion curves could only be obtained for the HiPIMS-grown films, which were shown to have a refractive index in the range of 2.7–2.85 at 500 nm. The results show that thin, rutile TiO 2 films, with high refractive index, can be obtained by HiPIMS at relatively low growth temperatures, without post-annealing. Furthermore, these films are smoother and show better optical characteristics than their dcMS-grown counterparts. - Highlights: • We demonstrate growth of rutile TiO 2 on Si (111) by high power impulse magnetron sputtering. • The films exhibit significantly larger grains than dc magnetron sputtered filmsTiO 2 films with high refractive index are obtained without post-growth annealing

  7. High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis

    Science.gov (United States)

    Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.

    2018-06-01

    Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.

  8. QCM gas sensor characterization of ALD-grown very thin TiO2 films

    Science.gov (United States)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.

    2018-03-01

    The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.

  9. Morphological study of electrophoretically deposited TiO2 film for DSSC application

    Science.gov (United States)

    Patel, Alkesh B.; Patel, K. D.; Soni, S. S.; Sonigara, K. K.

    2018-05-01

    In the immerging field of eco-friendly and low cost photovoltaic devices, dye sensitized solar cell (DSSC) [1] has been investigated as promising alternative to the conventional silicon-based solar cells. In the DSSC device, photoanode is crucial component that take charge of holding sensitizer on it and inject the electrons from the sensitizer to current collector. Nanoporous TiO2 is the most relevant candidate for the preparation of photoanode in DSSCs. Surface properties, morphology, porosity and thickness of TiO2 film as well as preparation technique determine the performance of device. In the present work we have report the study of an effect of nanoporous anatase titanium dioxide (TiO2) film thickness on DSSC performance. Photoanode TiO2 (P25) film was deposited on conducting substrate by electrophoresis technique (EPD) and film thickness was controlled during deposition by applying different current density for a constant time interval. Thickness and surface morphology of prepared films was studied by SEM and transmittance analysis. The same set of photoanode was utilized in DSSC devices using metal free organic dye sensitizer to evaluate the photovoltaic performance. Devices were characterized through Current-Voltage (I-V) characteristic, electrochemical impedance spectroscopy (EIS) and open circuit voltage decay curves. Dependency of device performance corresponding to TiO2 film thickness is investigated through the lifetime kinetics of electron charge transfer mechanism trough impedance fitting. It is concluded that appropriate thickness along with uniformity and porosity are required to align the dye molecules to respond efficiently the incident light photons.

  10. Magnetic and structural study of Cu-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Torres, C.E. Rodriguez; Golmar, F.; Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H.; Duhalde, S.

    2007-01-01

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO 2 thin films were grown by pulsed laser deposition technique on LaAlO 3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO 2 . The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO 2

  11. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Meng, Wen; Song, Li; Zhang, Yuxia

    2013-12-15

    Currently, synthetic colourants draw much attention as food additives. This paper investigated the simultaneous electrocatalytic oxidation of sunset yellow and tartrazine, two yellow colourants commonly present in food together, with a novel voltammetric sensor based on graphene and mesoporous TiO2 modified carbon paste electrode. Due to the high accumulation effect and great catalytic capability of graphene and mesoporous TiO2, the developed sensor exhibited well-defined and separate square wave voltammetric peaks (i.e., 272 mV) for sunset yellow tartrazine. The peak currents of sunset yellow and tartrazine increased linearly with their concentration in the ranges of 0.02-2.05 μM and 0.02-1.18 μM, respectively. And the detection limit was 6.0 and 8.0 nM for sunset yellow and tartrazine, respectively. This new sensor was applied to determine sunset yellow and tartrazine in several food sample extracts. Results suggested that the proposed sensor was sensitive, rapid and reliable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of chemisorbed surface species on the photocatalytic activity of TiO2 nanoparticulate films

    International Nuclear Information System (INIS)

    Cao Yaan; Yang Wensheng; Chen Yongmei; Du Hui; Yue, Polock

    2004-01-01

    TiO 2 sols prepared in acidic and basic medium were deposited into films by a spin coating method. Photodegradation experiments showed that photocatalytic activity of the films prepared from acidic sol was much higher than that from basic sol. It is identified that there are more chemisorbed species of CO 2 on the surface of the TiO 2 films from the basic sol than on the surface of the TiO 2 films from the acidic sol. The chemisorbed species of CO 2 reduce the concentration of active species such as hydroxyl group and bridging oxygen on surface of the TiO 2 film and contribute to the formation of surface electron traps in the band gap which are detrimental to charge separation, thus lowering the photocatalytic activity

  13. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO 2 films

    KAUST Repository

    Yang, Yong

    2012-03-01

    TiO 2-M-TiO 2 (M = W, Co and Ag) multilayer films have been deposited on glass substrates using reactive magnetron sputtering, then annealed in air for 2 h at 500°C. The structure, surface morphology and optical properties of the films have been studied using X-ray diffraction, Raman spectroscopy, atomic force microscopy and UV-vis spectroscopy. The TiO 2-W-TiO 2 and TiO 2-Co-TiO 2 films showed crystalline phases, whereas the TiO 2-Ag-TiO 2 films remained in the amorphous state. The crystallization temperature for the TiO 2-M-TiO 2 films decreased significantly compared with pure TiO 2 film deposited on quartz. Detailed analysis of the Raman spectra suggested that the crystallization of TiO 2-M-TiO 2 films was associated with the large structural deformation imposed by the oxidation of intermediate metal layers. Moreover, the optical band gap of the films narrowed due to the appearance of impurity levels as the metal ions migrated into the TiO 2 matrix. These results indicate that the insertion of intermediate metal layers provides a feasible access to improve the structural and optical properties of anatase TiO 2 films, leading to promising applications in the field of photocatalysis. © 2011 Elsevier B.V. All rights reserved.

  14. Enhanced photoelectrochemical properties of F-containing TiO2 sphere thin film induced by its novel hierarchical structure

    International Nuclear Information System (INIS)

    Dong Xiang; Tao Jie; Li Yingying; Zhu Hong

    2009-01-01

    The novel nanostructured F-containing TiO 2 (F-TiO 2 ) sphere was directly synthesized on the surface of Ti foil in the solution of NH 4 F and HCl by one-step hydrothermal approach under low-temperature condition. The samples were characterized respectively by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the F-TiO 2 sphere was hierarchical structure, which composed of porous octahedron crystals with one truncated cone, leading to a football-like morphology. XPS results indicated that F - anions were just physically adsorbed on the surface of TiO 2 microspheres. The studies on the optical properties of the F-TiO 2 were carried out by UV-vis light absorption spectrum. The surface fluorination of the spheres, the unique nanostructure induced accessible macropores or mesopores, and the increased light-harvesting abilities were crucial for the high photoelectrochemical activity of the synthesized F-TiO 2 sphere for water-splitting. The photocurrent density of the F-TiO 2 sphere thin film was more than two times than that of the P25 thin film. Meanwhile, a formation mechanism was briefly proposed. This approach could provide a facile method to synthesize F-TiO 2 microsphere with a special morphology and hierarchical structure in large scale.

  15. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  16. Characterization of ultra-thin TiO2 films grown on Mo(112)

    International Nuclear Information System (INIS)

    Kumar, D.; Chen, M.S.; Goodman, D.W.

    2006-01-01

    Ultra-thin TiO 2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO 2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO 2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p 3/2 peak at 455.75 eV observed for the Mo(112)-(8 x 2)-TiO x monolayer film can be assigned to Ti 3+ , consistent with our previous results obtained with high-resolution electron energy loss spectroscopy

  17. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Blanca Cervantes

    2016-07-01

    Full Text Available Cytotoxicity of titanium dioxide (TiO2 thin films on Chinese hamster ovary (CHO-K1 cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C toward the anatase to rutile phase transformation. The root-mean-square (RMS surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm. Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science.

  18. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    Science.gov (United States)

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  19. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  20. Ion beam modification of TiO2 films prepared by Cat-CVD for solar cell

    International Nuclear Information System (INIS)

    Narita, Tomoki; Iida, Tamio; Ogawa, Shunsuke; Mizuno, Kouichi; So, Jisung; Kondo, Akihiro; Yoshida, Norimitsu; Itoh, Takashi; Nonomura, Shuichi; Tanaka, Yasuhito

    2008-01-01

    The effects of nitrogen ion bombardment on TiO 2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO 2 film increased with irradiation time. The refractive index n of the TiO 2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 x 10 -2 to 1.2 x 10 -1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film

  1. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  2. Physics properties of TiO_2 films produced by dip-coating technique

    International Nuclear Information System (INIS)

    Teloeken, A.C.; Alves, A.K.; Berutti, F.A.; Tabarelli, A.; Bergmann, C.P.

    2014-01-01

    The use of titanium dioxide (TiO_2) as a photocatalyst to produce hydrogen has been of great interest because of their chemical stability, low cost and non-toxicity. TiO_2 occurs in three different crystal forms: rutile, anatase and brokita. Among these, the anatase phase generally exhibits the best photocatalytic behavior, while the rutile phase is the most stable. Among the various techniques of deposition, dip-coating technique produces films with good photocatalytic properties, using simple and inexpensive equipment. In this work TiO_2 films were obtained by dip-coating. The films were characterized using X-ray diffraction, scanning electron microscopy, profilometry, contact angle measurements and photocurrent. The microstructure and physical properties were evaluated in relation of the temperature and the addition of an additive. (author)

  3. Synthesis and photocatalytic properties of porous TiO2 films prepared by ODA/sol-gel method

    International Nuclear Information System (INIS)

    Zhang Wenjie; Bai Jiawei

    2012-01-01

    Porous TiO 2 films were deposited on SiO 2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO 2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO 2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m 2 /g was obtained for TiO 2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO 2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.

  4. Synthesis of TiO2-doped SiO2 composite films and its applications

    Indian Academy of Sciences (India)

    Wintec

    structure of the titanium oxide species in the TiO2-doped SiO2 composite films and the photocatalytic reactiv- ity in order to ... gaku D-max γA diffractometer with graphite mono- chromized ... FT–IR absorption spectra of TiO2-doped SiO2 com-.

  5. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    Hou Xinggang; Ma Jun; Liu Andong; Li Dejun; Huang Meidong; Deng Xiangyun

    2010-01-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  6. Photocatalytic sterilization of TiO2 films coated on Al fiber

    International Nuclear Information System (INIS)

    Luo Li; Miao Lei; Tanemura, Sakae; Tanemura, Masaki

    2008-01-01

    Photocatalytic TiO 2 films were coated on Al fiber by sol-gel dip-coating method, and then annealed. The crystal structure and morphology of the films were performed by XRD, TEM and SEM. Photocatalytic sterilization of the films was investigated in O 2 atmosphere through purifying the aqueous solution with facultative aerobe (Bacillus cereus), aerobe (Pseudomonas aeruginosa) and anaerobe (Staphylococcus aureus, Enterococcus faecalis and Escherichia coli). In the presence of O 2 , it benefits to generate O 2 · - and ·OH at the first stage of the photocatalytic reaction, while the excess O 2 restrains the anaerobe from reproducing and accelerates the reproducing for the aerobe at the second stage of reaction. As a result, it was found that the crystal of TiO 2 films is anatase phase and the films have excellent sterilization effect against facultative aerobe and anaerobe. Nevertheless, it only decreased the bioactivity against aerobe in a short time

  7. Raman spectra of TiO2 thin films deposited electrochemically and by spray pyrolysis

    International Nuclear Information System (INIS)

    Shishiyanu, S.; Vartic, V.; Shishiyanu, T.; Stratan, Gh.; Rusu, E.; Zarrelli, M.; Giordano, M.

    2013-01-01

    In this paper we present our experimental results concerning the fabrication of TiO 2 thin films by spray pyrolysis and electrochemical deposition method onto different substrates - Corning glass, Si and optical fibers. The surface morphology of the TiO 2 thin films have been investigated by Atomic Force Microscopy. Raman shift spectra measurements have been done for the optical characterization of the fabricated titania thin films. The post-growth rapid photothermal processing (RPP) at temperatures of 100-800 degrees Celsius for 1-3 min have been applied. Our experimental results prove that by the application of post-growth RPP is possible to essentially improve the crystallinity of the deposited TiO 2 films. (authors)

  8. Nanocrystalline TiO2 Composite Films for the Photodegradation of Formaldehyde and Oxytetracycline under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Min Wei

    2017-06-01

    Full Text Available In order to effectively photodegradate organic pollutants, ZnO composite and Co-B codoped TiO2 films were successfully deposited on glass substrates via a modified sol-gel method and a controllable dip-coating technique. Combining with UV–Vis diffuse reflectance spectroscopy (DRS and photoluminescence spectra (PL analyses, the multi-modification could not only extend the optical response of TiO2 to visible light region but also decrease the recombination rate of electron-hole pairs. XRD results revealed that the multi-modified TiO2 film had an anatase-brookite biphase heterostructure. FE-SEM results indicated that the multi-modified TiO2 film without cracks was composed of smaller round-like nanoparticles compared to pure TiO2. BET surface area results showed that the specific surface area of pure TiO2 and the multi-modified TiO2 sample was 47.8 and 115.8 m2/g, respectively. By degradation of formaldehyde and oxytetracycline, experimental results showed that the multi-modified TiO2 film had excellent photodegradation performance under visible light irradiation.

  9. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles

    International Nuclear Information System (INIS)

    Wang, Hui; Liang, Wei; Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing

    2016-01-01

    Highlights: • Highly transparent films of TiO 2 nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO 2 nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO 2 nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  10. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  11. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  12. Study on Gas Sensing Performance of TiO2 Screen Printed Thick Films

    Directory of Open Access Journals (Sweden)

    C. G. DIGHAVKAR

    2009-02-01

    Full Text Available Titanium dioxide (TiO2 thick films were prepared on alumina substrate by using screen printing technique. After preparation, the films were fired at temperature range 600 -1000 ºC for two hour. Morphological, compositional and structural properties of the film samples were performed by means of several techniques, including scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDS, X-ray diffraction techniques. We explore the various gases to study the sensing performance of the TiO2 thick films. The maximum response was reported to film fired at 800 0C for LPG gas at 350 0C operating temperature.

  13. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    International Nuclear Information System (INIS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-01-01

    Graphical abstract: ZnO nanorod array being prepared by an in situ method on the QCM coated with Au film via hydrothermal process and surface modification with coated TiO 2 by sol–gel methods to form a superhydrophobic TiO 2 /ZnO composite film the anatase TiO 2 /ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO 2 /ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules. - Highlights: • This work combines, for the first time, the advantage of the TiO 2 /ZnO composite film on photocatalysis and reversible super-hydrophobic and super-hydrophilic transition, and puts forward a solution to satisfy weatherability of quartz crystal microbalance in long-term application. • The anatase TiO 2 /ZnO nanorod composite film with pencil structure exhibit excellent super-hydrophobicity (water contact angle can reach 155°), no-sticking water properties and self-cleaning property under UV irradiation. • The photocatalysis and reversible super-hydrophobic and super-hydrophilic transition of the TiO 2 /ZnO nanorod composite film is stable in long-term application. - Abstract: The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO 2 /ZnO composite film is synthesized by surface modification with TiO 2 via sol–gel methods. Results show the anatase TiO 2 /ZnO nanorod

  14. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  15. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    Science.gov (United States)

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  16. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates.

    Science.gov (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P

    2017-07-01

    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  17. A low-cost procedure for the preparation of mesoporous layers of TiO2 efficient in the environmental clean-up

    Czech Academy of Sciences Publication Activity Database

    Rathouský, Jiří; Kalousek, Vít; Yarovyi, V.; Wark, M.; Jirkovský, Jaromír

    2010-01-01

    Roč. 216, 2-3 (2010), s. 126-132 ISSN 1010-6030 R&D Projects: GA ČR GA104/08/0435; GA ČR GD203/08/H032; GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * mesoporous layers * spray -coating Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.243, year: 2010

  18. Crystal Structure And Optical Properties Of TiO2 Thin Films Prepared By Reactive RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Goto S.

    2015-06-01

    Full Text Available In sputtering deposition process of TiO2, metal Ti or sintered TiO2 target is used as deposition source. In this study, we have compared the characteristic of target materials. When TiO2 target was used, stoichiometric TiO2 films was deposited under the Ar atmosphere containing 1.0% of oxygen. The highest sputtering rate under this atmosphere was 3.9nm/min at 3.4W/cm2. But, sintered TiO2 target is fragile and cannot endure higher density of input power than 3.4W/cm2. On the other hand, Ti target needs higher oxygen concentration (8% in sputtering gas atmosphere for obtaining rutile/anatase. Even though Ti target can be input twice power density of 7.9W/cm2, the highest deposition rate for Ti target was 1.4/nm, which was ~35% of the highest rate for TiO2 target. Then we have study out the composite target consisting of Ti plate and TiO2 chips. Using the composite target, stoichiometric TiO2 films were prepared in the rate of 9.6nm/min at 6.8 W/cm2 under the atmosphere of Ar/2.5%O2. Furthermore, we have found that the TiO2 films obtained from the composite target consisted of about 100% anatase, whereas TiO2 films obtained from other target have rutile dominant structure. The optical band gap energy of the film is determined by using the Tauc plot. The calculated band gap energies for the films deposited by Ti target and composite target were 2.95 and 3.24eV, which are equivalent to that of rutile and anatase structure, respectively.

  19. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  20. Correlation of Photocatalysis and Photoluminescence Effect in Relation to the Surface Properties of TiO2:Tb Thin Films

    Directory of Open Access Journals (Sweden)

    Damian Wojcieszak

    2013-01-01

    Full Text Available In this paper structural, optical, photoluminescence, and photocatalytic properties of TiO2 and TiO2:(2.6 at. % Tb thin films have been compared. Thin films were prepared by high-energy reactive magnetron sputtering process, which enables obtaining highly nanocrystalline rutile structure of deposited films. Crystallites sizes were 8.7 nm and 6.6 nm for TiO2 and TiO2:Tb, respectively. Surface of prepared thin films was homogenous with small roughness of ca. 7.2 and 2.1 nm in case of TiO2 and TiO2:Tb samples, respectively. Optical properties measurements have shown that the incorporation of Tb into TiO2 matrix has not changed significantly the thin films transparency. It also enables obtaining photoluminescence effect in wide range from 350 to 800 nm, what is unique phenomenon in case of TiO2 with rutile structure. Moreover, it has been found that the incorporation of 2.6 at. % of Tb has increased the photocatalytic activity more than two times as compared to undoped TiO2. Additionally, for the first time in the current state of the art, the relationship between photoluminescence effect, photocatalytic activity, and surface properties of TiO2:Tb thin films has been theoretically explained.

  1. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes junction for dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Hao

    2016-08-01

    Full Text Available The dye sensitized solar cell (DSSC, which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  2. Synthesis of photosensitive nanograined TiO2 thin films by SILAR method

    International Nuclear Information System (INIS)

    Patil, U.M.; Gurav, K.V.; Joo, Oh-Shim; Lokhande, C.D.

    2009-01-01

    Nanocrystalline TiO 2 thin films are deposited by simple successive ionic layer adsorption and reaction (SILAR) method on glass and fluorine-doped tin oxide (FTO)-coated glass substrate from aqueous solution. The as-deposited films are heat treated at 673 K for 2 h in air. The change in structural, morphological and optical properties are studied by means of X-ray diffraction (XRD), selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), transmission electron microscopy (TEM) and UV-vis-NIR spectrophotometer. The results show that the SILAR method allows the formation of anatase, nanocrystalline, and porous TiO 2 thin films. The heat-treated film showed conversion efficiency of 0.047% in photoelectrochemical cell with 1 M NaOH electrolyte.

  3. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  5. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO2 nanosheets array film photoelectrodes

    International Nuclear Information System (INIS)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong; Mu, Yannan; Su, Pengyu; Wang, Guangxia; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO 2 NSs) films were reported for the first time. The TiO 2 NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO 2 NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO 2 NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO 2 NSs was with photocurrent density of 6.12 mA cm −2 under an illumination of AM 1.5 G, indicating the TiO 2 NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO 2 nanosheets films were fabricated by a simple hydrothermal. • TiO 2 nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO 2 nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm −2

  6. One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Yang Xiaoling; Li Chunzhong

    2007-01-01

    A class of hybrid organic-inorganic composite for application in electrorheological (ER) fluid was prepared by using a simple one-pot method. Transmission electron microscopy (TEM) image shows that the synthesized material had a mesoporous structure. X-ray diffraction (XRD) further proves that the pore size is about 7.4 nm with an anatase TiO 2 framework. Fourier transform infrared (FT-IR) and nitrogen sorption curve reveal polyaniline (PANI) is doped in mesochannels. The ER behaviors of PANI/TiO 2 in silicone oil are invesigated with different doping degrees under different electric fields. The results obtained provide more insight into the role of proper doping in ER fluid

  7. Structural study of TiO2-based transparent conducting films

    International Nuclear Information System (INIS)

    Hitosugi, T.; Yamada, N.; Nakao, S.; Hatabayashi, K.; Shimada, T.; Hasegawa, T.

    2008-01-01

    We have investigated microscopic structures of sputter and pulsed laser deposited (PLD) anatase Nb-doped TiO 2 transparent conducting films, and discuss what causes the degradation of resistivity in sputter-deposited films. Cross-sectional transmission electron microscope and polarized optical microscope images show inhomogeneous intragrain structures and small grains of ∼10 μm in sputter-deposited films. From comparison with PLD films, these results suggest that homogeneous film growth is the important factor to obtain highly conducting sputter-deposited film

  8. Preparation, characterization and catalytic activity of mesoporous Ag2HPW12O40/SBA-15 and Ag2HPW12O40/TiO2 composites

    International Nuclear Information System (INIS)

    Holclajtner-Antunović, Ivanka; Bajuk-Bogdanović, Danica; Popa, Alexandru; Sasca, Viorel; Nedić Vasiljević, Bojana; Rakić, Aleksandra; Uskoković-Marković, Snežana

    2015-01-01

    The current study reports the synthesis and characterization of tungstophosphoric acid and its acid silver salt supported on mesoporous molecular sieve SBA-15 and TiO 2 . Because silver salts are partially insoluble, the SBA-15 and TiO 2 supported silver acid salts were prepared by two step sequential impregnations. The synthesized catalysts were characterized by various physicochemical methods such as Fourier transform infrared and Raman spectroscopy, differential thermal analysis, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and nitrogen physisorption at −196 °C. It is observed that both active phases keep their Keggin-type structure after being supported on the supports while their specific surface area is considerably increased by deposition on mesoporous substrates. The results also indicated that the synthesized catalysts retained the morphology specific for each of the supports, while their thermal stability is increased in comparison with their active phases. The catalytic activity of the prepared catalysts was probed for the vapor phase dehydration of ethanol at 300 °C. Results revealed that all the catalysts show considerably improved catalytic activity in comparison to the bulk active phases. - Highlights: • SBA-15 and TiO 2 supported Ag 2 HPW 12 O 40 and H 3 PW 12 O 40 were prepared. • Active phases are uniformly dispersed without changing morphology of the substrates. • Composites are more thermally stable than active phases. • Composites exhibit high catalytic activity for gas phase ethanol dehydration

  9. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    Science.gov (United States)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  10. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Cai Fengshi; Yuan Zhihao; Duan Yueqing; Bie Lijian

    2011-01-01

    TiO 2 -coated SnO 2 nanosheet (TiO 2 -SnO 2 NS) films about 300 nm in thickness were fabricated on fluorine-doped tin oxide glass by a two-step process with facile solution-grown approach and subsequent hydrolysis of TiCl 4 aqueous solution. The as-prepared TiO 2 -SnO 2 NSs were characterized by scanning electron microscopy and X-ray diffraction. The performances of the dye-sensitized solar cells (DSCs) with TiO 2 -SnO 2 NSs were analyzed by current-voltage measurements and electrochemical impedance spectroscopy. Experimental results show that the introduction of TiO 2 -SnO 2 NSs can provide an efficient electron transition channel along the SnO 2 nanosheets, increase the short current density, and finally improve the conversion efficiency for the DSCs from 4.52 to 5.71%.

  11. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  12. Polythiophene thin films electrochemically deposited on sol-gel based TiO2 for photovoltaic applications

    International Nuclear Information System (INIS)

    Valaski, R.; Yamamoto, N.A.D.; Canestraro, C.D.; Micaroni, L.; Mello, R.M.Q.; Quirino, W.G.; Legani, C.; Achete, C.A.; Roman, L.S.; Cremona, M.

    2010-01-01

    In this work, the influence of titanium dioxide (TiO 2 ) thin films on the efficiency of organic photovoltaic devices based on electrochemically synthesized polythiophene (PT) was investigated. TiO 2 films were produced by sol-gel methods with controlled thickness. The best TiO 2 annealing condition was determined through the investigation of the temperature influence on the electron charge mobility and resistivity in a range between 723 K and 923 K. The PT films were produced by chronoamperometric method in a 3-electrode cell under a controlled atmosphere. High quality PT films were produced onto 40 nm thick TiO 2 layer previously deposited onto fluorine doped tin oxide (FTO) substrate. The morphology of PT films grown on both substrates and its strong influence on the device performance and PT minimum thickness were also investigated. The maximum external quantum efficiency (IPCE) reached was 9% under monochromatic irradiation (λ = 610 nm; 1 W/m 2 ) that is three orders of magnitude higher than that presented by PT-homolayer devices with similar PT thickness. In addition, the open-circuit voltage (V oc ) was about 700 mV and the short-circuit current density (J sc ) was 0.03 A/m 2 (λ = 610 nm; 7 W/m 2 ). However, as for the PT-homolayer also the TiO 2 /PT based devices are characterized by antibatic response when illuminated through FTO. Finally, the Fill Factor (FF) of these devices is low (25%), indicating that the series resistance (R s ), which is strongly dependent of the PT thickness, is too large. This large R s value is compensated by TiO 2 /PT interface morphology and by FTO/TiO 2 and TiO 2 /PT interface phenomena producing preferential paths in which the internal electrical field is higher, improving the device efficiency.

  13. Photoactive TiO2 Films Formation by Drain Coating for Endosulfan Degradation

    Directory of Open Access Journals (Sweden)

    Natalia Tapia-Orozco

    2013-01-01

    Full Text Available Heterogeneous photocatalysis is an advanced oxidation process in which a photoactive catalyst, such as TiO2, is attached to a support to produce free radical species known as reactive oxygen species (ROS that can be used to break down toxic organic compounds. In this study, the draining time, annealing temperature, and draining/annealing cycles for TiO2 films grown by the drain coating method were evaluated using a 23 factorial experimental design to determine the photoactivity of the films via endosulfan degradation. The TiO2 films prepared with a large number of draining/annealing cycles at high temperatures enhanced (P>0.05 endosulfan degradation and superoxide radical generation after 30 minutes of illumination with UV light. We demonstrated a negative correlation (R2=0.69; P>0.01 between endosulfan degradation and superoxide radical generation. The endosulfan degradation rates were the highest at 30 minutes with the F6 film. In addition, films prepared using conditions F1, F4, and F8 underwent an adsorption/desorption process. The kinetic reaction constants, Kapp (min−1, were 0.0101, 0.0080, 0.0055, 0.0048, and 0.0035 for F6, F2, F5, F3, and F1, respectively. The endosulfan metabolites alcohol, ether, and lactone were detected and quantified at varying levels in all photocatalytic assays.

  14. Formation of TiO2 domains in Poly (9-vinylcarbazole) thin film by hydrolysis-condensation of a metal alkoxide

    International Nuclear Information System (INIS)

    Barlier, V.; Bounor-Legare, V.; Alcouffe, P.; Boiteux, G.; Davenas, J.

    2007-01-01

    New organic-inorganic hybrid thin films based on Poly (9-vinylcarbazole) (P9VK) and Dioxide titanium (TiO 2 ) bulk-heterojunction were obtained by a hydrolysis-condensation (H-C) process of titanium (IV) isopropoxide in thin film. The TiO 2 distribution in the film was investigated by scanning electron microscopy. The results indicated that homogeneous TiO 2 particles around 100 nm were formed on the surface of the polymer thin film. Photoluminescence spectroscopy has been used to study the charge transfer efficiency in the photoactive layer and results were compared with a simplest elaboration route, the dispersion of TiO 2 anatase in a P9VK solution before spin coating. Results showed that TiO 2 elaborated by H-C exhibits a competitive quenching effect with TiO 2 anatase

  15. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    Science.gov (United States)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  16. Low-temperature preparation of rutile-type TiO2 thin films for optical coatings by aluminum doping

    Science.gov (United States)

    Ishii, Akihiro; Kobayashi, Kosei; Oikawa, Itaru; Kamegawa, Atsunori; Imura, Masaaki; Kanai, Toshimasa; Takamura, Hitoshi

    2017-08-01

    A rutile-type TiO2 thin film with a high refractive index (n), a low extinction coefficient (k) and small surface roughness (Ra) is required for use in a variety of optical coatings to improve the controllability of the reflection spectrum. In this study, Al-doped TiO2 thin films were prepared by pulsed laser deposition, and the effects of Al doping on their phases, optical properties, surface roughness and nanoscale microstructure, including Al distribution, were investigated. By doping 5 and 10 mol%Al, rutile-type TiO2 was successfully prepared under a PO2 of 0.5 Pa at 350-600 °C. The nanoscale phase separation in the Al-doped TiO2 thin films plays an important role in the formation of the rutile phase. The 10 mol%Al-doped rutile-type TiO2 thin film deposited at 350 °C showed excellent optical properties of n ≈ 3.05, k ≈ 0.01 (at λ = 400 nm) and negligible surface roughness, at Ra ≈ 0.8 nm. The advantages of the superior optical properties and small surface roughness of the 10 mol%Al-doped TiO2 thin film were confirmed by fabricating a ten-layered dielectric mirror.

  17. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  18. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  19. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    Science.gov (United States)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  20. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  1. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  2. Structural Properties of Nanoparticles TiO2/PVA Polymeric Films

    Directory of Open Access Journals (Sweden)

    Samara A. Madhloom

    2018-04-01

    Full Text Available In this research, X-ray diffraction of the powder (PVA polymer, titanium dioxide with two parti-cle sizes and (TiO2 (15.7 nm/PVA and TiO2 (45.7 nm/PVA films have been studied,the amount of polymer is (0.5 g and (0.01g from each particle sizes of nanoparticles will be used. Casting method is used to prepare homogeneous films on glass petri dishes. All parameters ac-counted for the X-ray diffraction; full width half maximum (FWHM, Miller indices (hkl, size of crystalline (D, Specific Surface Area (S and Dislocation Density (δ. The nature of the structural of materials and films will be investigated. The XRD pattern of PVA polymer has semi-crystalline nature and the titanium dioxide with two particle sizes have crystalline structure; ana-tase type. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVA polymer

  3. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    Science.gov (United States)

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  4. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications

    International Nuclear Information System (INIS)

    Caricato, A.P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D.

    2007-01-01

    The MAPLE technique has been used for the deposition of nanostructured titania (TiO 2 ) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO 2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO 2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al 2 O 3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO 2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO 2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too

  5. Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO{sub 2} film using liquid carbon dioxide-based coating

    Energy Technology Data Exchange (ETDEWEB)

    Nursanto, Eduardus Budi [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Park, Se Jin [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Jeon, Hyo Sang; Hwang, Yun Jeong [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Kim, Jaehoon, E-mail: jaehoonkim@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); Min, Byoung Koun, E-mail: bkmin@kist.re.kr [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Green School, Korea University, 145,Anam-ro, Seongbuk-gu, Seoul 136–713 (Korea, Republic of)

    2014-08-28

    We report the simultaneous deposition of two different metal precursors dissolved in liquid carbon dioxide (l-CO{sub 2}), aiming to the synthesis of ternary chalcopyrite (e.g. CuInS{sub 2}) nanoparticles on a mesoporous TiO{sub 2} film. The l-CO{sub 2}-based deposition of Cu and In precursors and subsequent reaction with a dilute H{sub 2}S gas resulted in Cu{sub x}In{sub y}S{sub z} nanoparticles uniformly deposited across the entire thickness of a mesoporous TiO{sub 2} film. Further heat treatment (air annealing and sulfurization) led to the formation of more stoichiometric CuInS{sub 2} nanoparticles. The formation of CuInS{sub 2} on TiO{sub 2} was confirmed by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The crystal growth of CuInS{sub 2} was also found to be controllable by adjusting the number of coating cycles of the l-CO{sub 2}-based deposition. - Highlights: • Simultaneous deposition of two different metal precursors dissolved in l-CO{sub 2}. • Uniform deposition of CuInS{sub 2} nanoparticles across mesoporous TiO{sub 2} film. • Highly crystalline CuInS{sub 2} formed on mesoporous TiO{sub 2} film. • Nearly stoichiometric ratio of Cu:In:S was obtained.

  6. Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications

    Directory of Open Access Journals (Sweden)

    Alexis Fischer

    2013-03-01

    Full Text Available TiO2 thin films were synthesized by sol-gel process: titanium tetraisopropoxide (TTIP was dissolved in isopropanol, and then hydrolyzed by adding a water/isopropanol mixture with a controlled hydrolysis ratio. The as prepared sol was deposited by “dip-coating” on a glass substrate with a controlled withdrawal speed. The obtained films were annealed at 350 and 500 °C (2 h. The morphological properties of the prepared films were analyzed by Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. The optical waveguiding properties of TiO2 films were investigated for both annealing temperature using m-lines spectroscopy. The refractive indices and the film thickness were determined from the measured effective indices. The results show that the synthesized planar waveguides are multimodes and demonstrate low propagation losses of 0.5 and 0.8 dB/cm for annealing temperature 350 and 500 °C, respectively.

  7. Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Jing; Zong Weizheng; Zhu Yongfa

    2011-01-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2 , the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2 . This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities. - Graphical abstract: The effect of PANI content on 2,4-DCP degradation with initial concentration of 50 mg/L, external potential=1.5 V. Inset: degradation rate constants of various PANI/TiO 2 films. Highlights: → Polyaniline/TiO 2 film was prepared using the sol-gel method followed by chemisorption. → Photoelectrocatalytic degradation rate of 2,4-dichlorophenol was enhanced by 57.5%. → The modification of Polyaniline to TiO 2 film caused a rapid charge separation. → Best degradation efficiency was acquired at 1.5 V with 1 nm thick PANI.

  8. Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2-TiO2 core-shell nanoparticle hybrid thin films

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Yu, Yang-Yen; Chen, Po-Kan; Yu, Hui-Huan

    2011-01-01

    In this study, poly(acrylic)/SiO 2 -TiO 2 core-shell nanoparticle hybrid thin films were successfully synthesized by microwave-assisted polymerization. The coupling agent 3-(trimethoxysilyl) propyl methacrylate (MSMA) was hydrolyzed with colloidal SiO 2 -TiO 2 core-shell nanoparticles, and then polymerized with two acrylic monomers and initiator to form a precursor solution. The results of this study showed that the spin-coated hybrid films had relatively good surface planarity, high thermal stability, a tunable refractive index (1.525 2 -TiO 2 core-shell nanoparticle hybrid thin films, for potential use in optical applications.

  9. Spin Speed and Duration Dependence of TiO2 Thin Films pH Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Muhammad AlHadi Zulkefle

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 thin films were applied as the sensing membrane of an extended-gate field-effect transistor (EGFET pH sensor. TiO2 thin films were deposited by spin coating method and the influences of the spin speed and spin duration on the pH sensing behavior of TiO2 thin films were investigated. The spin coated TiO2 thin films were connected to commercial metal-oxide-semiconductor field-effect transistor (MOSFET to form the extended gates and the MOSFET was integrated in a readout interfacing circuit to complete the EGFET pH sensor system. For the spin speed parameter investigation, the highest sensitivity was obtained for the sample spun at 3000 rpm at a fixed spinning time of 60 s, which was 60.3 mV/pH. The sensitivity was further improved to achieve 68 mV/pH with good linearity of 0.9943 when the spin time was 75 s at the speed of 3000 rpm.

  10. Preparation of TiO2/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors

    Science.gov (United States)

    Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe

    2015-12-01

    We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.

  11. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  12. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    Science.gov (United States)

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Direct access to mesoporous crystalline TiO2/carbon composites with large and uniform pores for use as anode materials in lithium ion batteries

    NARCIS (Netherlands)

    Lee, J.; Jung, Y.S.; Warren, S.C.; Kamperman, M.M.G.; Oh, S.M.; DiSalvo, F.J.; Wiesner, U.

    2011-01-01

    Mesoporous and highly crystalline TiO2 (anatase)/carbon composites with large (>5¿nm) and uniform pores were synthesized using PI-b-PEO block copolymers as structure directing agents. Pore sizes could be tuned by utilizing block copolymers with different molecular weights. The resulting

  14. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  15. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    Science.gov (United States)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  16. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    Science.gov (United States)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  17. Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system

    Science.gov (United States)

    Mazur, M.; Poniedziałek, A.; Kaczmarek, D.; Wojcieszak, D.; Domaradzki, J.; Gibson, D.

    2017-11-01

    In this work the properties of hafnium dioxide (HfO2), titanium dioxide (TiO2) and mixed HfO2-TiO2 thin films with various amount of titanium addition, deposited by magnetron sputtering were described. Structural, surface, optical and mechanical properties of deposited coatings were analyzed. Based on X-ray diffraction and Raman scattering measuremets it was observed that there was a significant influence of titanium concentration in mixed TiO2-HfO2 thin films on their microstructure. Increase of Ti content in prepared mixed oxides coatings caused, e.g. a decrease of average crystallite size and amorphisation of the coatings. As-deposited hafnia and titania thin films exhibited nanocrystalline structure of monoclinic phase and mixed anatase-rutile phase for HfO2 and TiO2 thin films, respectively. Atomic force microscopy investigations showed that the surface of deposited thin films was densely packed, crack-free and composed of visible grains. Surface roughness and the value of water contact angle decreased with the increase of Ti content in mixed oxides. Results of optical studies showed that all deposited thin films were well transparent in a visible light range. The effect of the change of material composition on the cut-off wavelength, refractive index and packing density was also investigated. Performed measurements of mechanical properties revealed that hardness and Young's elastic modulus of thin films were dependent on material composition. Hardness of thin films increased with an increase of Ti content in thin films, from 4.90 GPa to 13.7 GPa for HfO2 and TiO2, respectively. The results of the scratch resistance showed that thin films with proper material composition can be used as protective coatings in optical devices.

  18. Photo-induced hydrophilicity of TiO2-xNx thin films on PET plates

    International Nuclear Information System (INIS)

    Chou, H.-Y.; Lee, E.-K.; You, J.-W.; Yu, S.-S.

    2007-01-01

    TiO 2-x N x thin films were deposited on PET (polyethylene terephthalate) plates by sputtering a TiN target in a N 2 /O 2 plasma and without heating. X-ray photoemission spectroscopy (XPS) was used to investigate the N 1s, Ti 2p core levels and the nitrogen composition in the TiO 2-x N x films. The results indicate that Ti-O-N bonds are formed in the thin films. Two nitrogen states, substitution and interstitial nitrogen atoms, were attributed to peaks at 396 and 399 eV, respectively. It was observed that the nitrogen atoms occupy both the substitutive and interstitial sites in respective of the nitrogen content in the thin films. UV-VIS absorption spectroscopy of PET coated thin films shows a significant shift of the absorption edge to lower energy in the visible-light region. UV and visible-light irradiation are used to activate PET coated thin films for the development of hydrophilicity. The photo-induced surface wettability conversion reaction of the thin films has been investigated by means of water contact angle measurement. PET plates coated with TiO 2-x N x thin films are found to exhibit lower water contact angle than non-coated plates when the surface is illuminated with UV and visible light. The effects of nitrogen doping on photo-generated hydrophilicity of the thin films are investigated in this work

  19. Nanoimprinted distributed feedback lasers comprising TiO2 thin films

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Leung, Michael C.

    2013-01-01

    Design guidelines for optimizing the sensing performance of nanoimprinted second order distributed feedback dye lasers are presented. The guidelines are verified by experiments and simulations. The lasers, fabricated by UV-nanoimprint lithography into Pyrromethene doped Ormocomp thin films on glass......, have their sensor sensitivity enhanced by a factor of up to five via the evaporation of a titanium dioxide (TiO2) waveguiding layer. The influence of the TiO2 layer thickness on the device sensitivity is analyzed with a simple model that accurately predicts experimentally measured wavelength shifts...

  20. Effect of TiCl4 treatment on the refractive index of nanoporous TiO2 films

    Science.gov (United States)

    Lee, Jeeyoung; Lee, Myeongkyu

    2015-12-01

    We investigate the effect of TiCl4 treatment on the refractive index of a nanoporous TiO2 film. A nanoparticulate TiO2 film prepared on a glass substrate was immersed in a TiCl4 aqueous solution. The subsequent reaction of TiCl4 with H2O produces TiO2 and thus modifies the density and the refractive index of the film. With increasing TiCl4 concentration, the refractive index initially increased and then declined after being maximized (n = 2.02 at 633 nm) at 0.08 M concentration. A refractive index change as large as 0.45 could be obtained with the TiCl4 treatment, making it possible to achieve diffraction efficiency exceeding 80% in a diffraction grating-embedded TiO2 film. For high TiCl4 concentrations of 0.32 M and 0.64 M, the refractive index remained nearly unchanged. This was attributed to the limited permeability of high-viscosity TiCl4 solutions into the nanoporous films. The measured pore size distributions were in good agreement with the results of a diffraction analysis and refractive index measurement.

  1. Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ren, H.M.; Ding, Y.H.; Chang, F.H.; He, X.; Feng, J.Q.; Wang, C.F.; Jiang, Y.; Zhang, P.

    2012-01-01

    Highlights: ► Flexible TiO 2 /graphene electrode was prepared by a solvent evaporation technique. ► PVdF was used as substance to support the TiO 2 /graphene active materials. ► The flexible films can be employed as anode materials for Li-ion battery. - Abstract: Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO 2 ) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO 2 /graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.

  2. Undoped TiO2 and nitrogen-doped TiO2 thin films deposited by atomic layer deposition on planar and architectured surfaces for photovoltaic applications

    International Nuclear Information System (INIS)

    Tian, Liang; Soum-Glaude, Adurey; Volpi, Fabien; Salvo, Luc; Berthomé, Grégory; Coindeau, Stéphane; Mantoux, Arnaud; Boichot, Raphaël; Lay, Sabine; Brizé, Virginie; Blanquet, Elisabeth; Giusti, Gaël; Bellet, Daniel

    2015-01-01

    Undoped and nitrogen doped TiO 2 thin films were deposited by atomic layer deposition on planar substrates. Deposition on 3D-architecture substrates made of metallic foams was also investigated to propose architectured photovoltaic stack fabrication. All the films were deposited at 265 °C and nitrogen incorporation was achieved by using titanium isopropoxide, NH 3 and/or N 2 O as precursors. The maximum nitrogen incorporation level obtained in this study was 2.9 at. %, resulting in films exhibiting a resistivity of 115 Ω cm (+/−10 Ω cm) combined with an average total transmittance of 60% in the 400–1000 nm wavelength range. Eventually, TiO 2 thin films were deposited on the 3D metallic foam template

  3. Efficient adsorption concentration and photolysis of acetaldehyde on titania-mesoporous silica composite

    Science.gov (United States)

    Yamaguchi, Satoshi; Matsumoto, Akihiko

    2017-07-01

    Titania-mesoporous silica composite (TiO2/MCM) was prepared by hydrolysis of titaniumtetraisopropoxide (TTIP) with the presence of mesoporous silica MCM-41. The TiO2/MCM samples consisted of highly dispersed TiO2 on the surface of MCM-41. Dynamic adsorption and photocatalytic decomposition features for acetaldehyde (CH3CHO) were measured by flow method. The amount of CH3CHO decomposition on TiO2/MCM-41 increased with the TiO2 amount, suggesting that a large amount of CH3CHO was adsorbed on mesopores of MCM-41 of the TiO2/MCM and was efficiently decomposed on finely dispersed TiO2 surface by ultraviolet irradiation.

  4. Photocatalytic activity of Al2O3-doped TiO2 thin films activated with visible light on the bacteria Escherichia coli

    International Nuclear Information System (INIS)

    Barajas-Ledesma, E.; Garcia-Benjume, M.L.; Espitia-Cabrera, I.; Bravo-Patino, A.; Espinoza-Beltran, F.J.; Mostaghimi, J.; Contreras-Garcia, M.E.

    2010-01-01

    Al 2 O 3 -doped TiO 2 thin films were prepared by combining electrophoretic deposition (EPD) with sputtering. A Corning* glass was used as a substrate, in which a titanium film was deposited by sputtering. Then, a precursor sol was prepared with Ti(n-OBu) 4 and Al(s-OBu) 3 and used as the medium for EPD. Next, the thin films were sintered and, finally, characterised by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Several cultures of Escherichia coli, strain XL1-Blue, were prepared. Nine experiments were carried out. In three of them, an inoculum (a low amount of a product that contains bacteria) was prepared without a film; in the other six Al 2 O 3 -doped TiO 2 film-coated glass substrates were irradiated with visible light before they were introduced in the inoculum. The SEM and EDS results showed that TiO 2 -Al 2 O 3 films were obtained, covering all the glass substrate and with uniform size of particles forming them, and that the aluminium was distributed uniformly on the film. XRD results showed that rutile phase was obtained. By TEM, the structure of TiO 2 was demonstrated. Al 2 O 3 -doped TiO 2 thin films were successful at eliminating E. coli.

  5. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    Science.gov (United States)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  6. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    Science.gov (United States)

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  7. Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2- x- y C x N y nanoparticles toward visible-light driven photocatalytic activity

    Science.gov (United States)

    Liu, Shou-Heng; Syu, Han-Ren; Wu, Chung-Yi

    2014-12-01

    A one-step solvent evaporation-induced self-assembly (SEISA) process was demonstrated to prepare carbon and nitrogen co-doping mesoporous TiO2 nanoparticles (MesoTiO2- x- y C x N y - S) using an ionic liquid as carbon and nitrogen sources as well as mesoporous template. After the evaporation of different solvents (methanol, ethanol, and isopropanol) and subsequent calcinations at 773 K, the obtained MesoTiO2- x- y C x N y - S samples were systematically characterized by a variety of spectroscopic and analytical techniques, including small- and large-angle X-ray diffraction (XRD), Raman, transmission electron microscopy (TEM), N2 adsorption-desorption isotherms, Fourier transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies. The results indicate that the solvents play an essential role on the chemical microstructure, doping elemental states, and photocatalytic performance of catalysts. The MesoTiO2- x- y C x N y -I samples have the lowest band gap of ca. 2.75 eV and strongest absorbance of visible light in the range of 400-600 nm. Among the MesoTiO2- x- y C x N y - S photocatalysts, the MesoTiO2- x- y C x N y -M catalysts show superior photocatalytic activity of hydrogen generation in methanol aqueous solution under visible light irradiation as compared to MesoTiO2- x- y C x N y -E, MesoTiO2- x- y C x N y -I, and commercial Degussa TiO2. This result could be attributed to the moderate C,N co-doping amounts on their developed mesoporous texture (pore size = 8.0 nm) and high surface area (107 m2 g-1) of TiO2 (crystallite size = 9.9 nm) in the MesoTiO2- x- y C x N y -M catalysts.

  8. Structural Modification of Sol-Gel Synthesized V2O5 and TiO2 Thin Films with/without Erbium Doping

    Directory of Open Access Journals (Sweden)

    Fatma Pınar Gökdemir

    2014-01-01

    Full Text Available Comparative work of with/without erbium- (Er- doped vanadium pentoxide (V2O5 and titanium dioxide (TiO2 thin films were carried out via sol-gel technique by dissolving erbium (III nitrate pentahydrate (Er(NO33·5H2O in vanadium (V oxoisopropoxide (OV[OCH(CH32]3 and titanium (IV isopropoxide (Ti[OCH(CH32]4. Effect of Er doping was traced by Fourier transform IR (FTIR, thermogravimetric/differential thermal (TG/DTA, and photoluminescence measurements. UV-Vis transmission/absorption measurement indicated a blue shift upon Er doping in V2O5 film due to the softening of V=O bond while appearance of typical absorption peaks in Er-doped TiO2 film. Granule size of the films increased (reduced upon Er substitution on host material compared to undoped V2O5 and TiO2 films, respectively.

  9. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rachel L. Wilson

    2018-03-01

    Full Text Available Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes, at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  10. Preparation and characterization of bimetallic catalysts supported on mesoporous silica films

    NARCIS (Netherlands)

    Muraza, O.; Rebrov, E.V.; Khimyak, T.; Johnson, B.F.G.; Kooyman, P.J.; Lafont, U.; Albouy, P.A.; Croon, de M.H.J.M.; Schouten, J.C.

    2006-01-01

    Thin (300–1000 nm) mesoporous silica coatings with hexagonal and cubic mesostructure have been prepared on Pyrex® 7740 borosilicate glass substrates by the evaporation induced self assembly assisted sol-gel route. Prior to the synthesis, a 50 nm TiO2 layer has been deposited on the substate by

  11. Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings

    Directory of Open Access Journals (Sweden)

    Damian Wojcieszak

    2014-01-01

    Full Text Available Structural, optical, and photocatalytic properties of TiO2 and TiO2:Nd nanopowders and thin films composed of those materials have been compared. Titania nanoparticles with 1, 3, and 6 at. % of Nd-dopant were synthesized by sol-gel method. Additionally, thin films with the same material composition were prepared with the aid of spin-coating method. The analysis of structural investigations revealed that all as-prepared nanopowders were nanocrystalline and had TiO2-anatase structure. The average size of crystallites was ca. 4-5 nm and the correlation between the amount of neodymium and the size of TiO2 crystallites was observed. It was shown that the dopant content influenced the agglomeration of the nanoparticles. The results of photocatalytic decomposition of MO showed that doping with Nd (especially in the amount of 3 at. % increased self-cleaning activity of the prepared titania nanopowder. Similar effect was received in case of the thin films, but the decomposition rate was lower due to their smaller active surface area. However, the as-prepared TiO2:Nd photocatalyst in the form of thin films or nanopowders seems to be a very attractive material for various applications.

  12. An impact of the copper additive on photocatalytic and bactericidal properties of TiO2 thin films

    Directory of Open Access Journals (Sweden)

    Wojcieszak Damian

    2017-07-01

    Full Text Available The biological and photocatalytic activity of TiO2 and TiO2:Cu in relation to their structure, surface topography, wettability and optical properties of the thin films was investigated. Thin-film coatings were prepared by magnetron sputtering method in oxygen plasma with use of metallic targets (Ti and Ti-Cu. The results of structural studies revealed that addition of Cu into titania matrix (during the deposition process resulted in obtaining of an amorphous film, while in case of undoped TiO2, presence of nanocrystalline anatase (with crystallites size of 20 nm was found. Moreover, an addition of cooper had also an effect on surface diversification and decrease of its hydrophilicity. The roughness of TiO2:Cu film was 25 % lower (0.6 nm as-compared to titania (0.8 nm. These modifications of TiO2:Cu had an impact on the decrease of its photocatalytic activity, probably as a result of the active surface area decrease. Antibacterial and antifungal properties of the thin films against bacteria (Enterococcus hirae, Staphylococcus aureus, Bacillus subtilis, Escherichia coli and yeast (Candida albicans were also examined. For the purpose of this work the method dedicated for the evaluation of antimicrobial properties of thin films was developed. It was revealed that Cu-additive has a positive impact on neutralization of microorganisms.

  13. Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing

    International Nuclear Information System (INIS)

    Shao, Cong; Meng, Xiangdong; Jing, Pengtao; Sun, Mingye; Zhao, Jialong; Li, Haibo

    2013-01-01

    We demonstrated the enhancement of electron transfer from CdSe/ZnS core/shell quantum dots (QDs) to TiO 2 films via thermal annealing by means of steady-state and time-resolved photoluminescence (PL) spectroscopy. The significant decrease in PL intensities and lifetimes of the QDs on TiO 2 films was clearly observed after thermal annealing at temperature ranging from 100 °C to 300 °C. The obtained rates of electron transfer from CdSe core/shell QDs with red, yellow, and green emissions to TiO 2 films were significantly enhanced from several times to an order of magnitude (from ∼10 7 s −1 to ∼10 8 s −1 ). The improvement in efficiencies of electron transfer in the TiO 2 /CdSe QD systems was also confirmed. The enhancement could be considered to result from the thermal annealing reduced distance between CdSe QDs and TiO 2 films. The experimental results revealed that thermal annealing would play an important role on improving performances of QD based optoelectronic devices. -- Highlights: • Annealing-induced enhancement of electron transfer from CdSe to TiO 2 is reported. • CdSe QDs on TiO 2 and SiO 2 films are annealed at various temperatures. • Steady-state and time-resolved PL spectroscopy of CdSe QDs is studied. • The enhancement is related to the reduced distance between CdSe QDs and TiO 2

  14. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  15. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    Science.gov (United States)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  16. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility.

    Science.gov (United States)

    Liao, Yuzhen; Li, Linhua; Chen, Jiang; Yang, Ping; Zhao, Ansha; Sun, Hong; Huang, Nan

    2017-07-01

    Surfaces with dual functions that simultaneously exhibit good anticoagulant ability and endothelial cell (EC) compatibility are desirable for blood contact materials. However, these dual functions have rarely been achieved by inorganic materials. In this study, titanium dioxide (TiO 2 ) films were treated by sulphuric acid (H 2 SO 4 ) and ultraviolet (UV) irradiation successively (TiO 2 H 2 SO 4 -UV), resulting in good anticoagulant ability and EC compatibility simultaneously. We found that UV irradiation improved the anticoagulant ability of TiO 2 films significantly while enhancing EC compatibility, though not significantly. The enhanced anticoagulant ability could be related to the oxidation of surface-adsorbed hydrocarbons and increased hydrophilicity. The H 2 SO 4 treatment improved the anticoagulant ability of TiO 2 films slightly, while UV irradiation improved the anticoagulant ability strongly. The enhanced EC compatibility could be related to the increased surface roughness and positive charges on the surface of the TiO 2 films. Furthermore, the time-dependent degradation of the enhanced EC compatibility and anticoagulant ability of TiO 2 H 2 SO 4 -UV was observed. In summary, TiO 2 H 2 SO 4 -UV expressed both excellent anticoagulant ability and good EC compatibility at the same time, which could be desirable for blood contact materials. However, the compatibility of TiO 2 H 2 SO 4 -UV with smooth muscle cells (SMCs) and macrophages was also improved. More effort is still needed to selectively improve EC compatibility on TiO 2 films for better re-endothelialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. TiO2 thin film growth using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M.I.B.

    2001-01-01

    Full Text Available Titanium oxide (TiO2 thin films were obtained using the MOCVD method. In this report we discuss the properties of a film, produced using a ordinary deposition apparatus, as a function of the deposition time, with constant deposition temperature (90 °C, oxygen flow (7,0 L/min and substrate temperature (400 °C. The films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and visible and ultra-violet region spectroscopy (UV-Vis. The films deposited on Si (100 substrates showed the anatase polycrystalline phase, while the films grown on glass substrates showed no crystallinity. Film thickness increased with deposition time as expected, while the transmittance varied from 72 to 91% and the refractive index remained close to 2.6.

  18. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering

    International Nuclear Information System (INIS)

    Singh, Preetam; Kaur, Davinder

    2010-01-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  19. The radiation response of mesoporous nanocrystalline zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce{sup 3+}-stabilized nanocrystalline zirconia (Ce{sub 0.1}Zr{sub 0.9}O{sub 2}) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60–80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8–10 nm. Films stabilized with Ce{sup 3+} contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (10{sup 13} - 10{sup 14} cm{sup −2}) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 10{sup 16} cm{sup −2}) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132–180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD

  20. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film

    Science.gov (United States)

    Cho, Hsun-Wei; Liao, Kuo-Lun; Yang, Jih-Sheng; Wu, Jih-Jen

    2018-05-01

    Photoelectrochemical (PEC) performances of the anatase TiO2 films hydrothermally grown on the seeded fluorine-doped tin oxide (FTO) substrates are examined in this work. Structural characterizations of the TiO2 films were conducted using Raman scattering spectroscopy. Although there is no obvious rutile peak appearing, an asymmetrical peak centered at ∼399 cm-1 was observed in the Raman spectra of the TiO2 films deposited either on the low-temperature-formed seed layers or with low concentrations of Ti precursor. The asymmetrical Raman shift can be deconvoluted into the B1g mode of anatase and Eg mode of rutile TiO2 peaks centered at ∼399 cm-1 and ∼447 cm-1, respectively. Therefore, a minute quantity of rutile phase was inspected in the anatase film using Raman scattering spectroscopy. With the same light harvesting ability, we found that the PEC performance of the anatase TiO2 film was significantly enhanced as the minute quantity of rutile phase existing in the film. It is ascribed to the formation of the anatase/rutile heterojunction which is beneficial to the charge separation in the photoanode.

  1. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    OpenAIRE

    Bayram Kilic; Sunay Turkdogan; Aykut Astam; Oguz Can Ozer; Mansur Asgin; Hulya Cebeci; Deniz Urk; Selin Pravadili Mucur

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode...

  2. Aggregate formation of eosin-Y adsorbed on nanocrystalline TiO2 films

    Science.gov (United States)

    Yaguchi, Kaori; Furube, Akihiro; Katoh, Ryuzi

    2012-11-01

    We have studied the adsorption of eosin-Y on nanocrystalline TiO2 films with two different solvents namely acetonitrile (ACN) and ethanol (EtOH). A Langmuir-type adsorption isotherm was observed with ACN. In contrast, a Freundlich-type adsorption isotherm was observed with EtOH, suggesting that EtOH molecules co-adsorbed on TiO2 surface. Absorption spectra of the dye adsorbed films clearly show aggregate formation at high concentrations of dye in the solutions. From the analysis of the spectra, we conclude that head-to-tail type aggregates are observed with ACN, whereas various types of aggregates, including H-type and head-to-tail type aggregates, are observed with EtOH.

  3. Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2−x−yCxNy nanoparticles toward visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Shou-Heng; Syu, Han-Ren; Wu, Chung-Yi

    2014-01-01

    A one-step solvent evaporation-induced self-assembly (SEISA) process was demonstrated to prepare carbon and nitrogen co-doping mesoporous TiO 2 nanoparticles (MesoTiO 2−x−y C x N y -S) using an ionic liquid as carbon and nitrogen sources as well as mesoporous template. After the evaporation of different solvents (methanol, ethanol, and isopropanol) and subsequent calcinations at 773 K, the obtained MesoTiO 2−x−y C x N y -S samples were systematically characterized by a variety of spectroscopic and analytical techniques, including small- and large-angle X-ray diffraction (XRD), Raman, transmission electron microscopy (TEM), N 2 adsorption–desorption isotherms, Fourier transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies. The results indicate that the solvents play an essential role on the chemical microstructure, doping elemental states, and photocatalytic performance of catalysts. The MesoTiO 2−x−y C x N y -I samples have the lowest band gap of ca. 2.75 eV and strongest absorbance of visible light in the range of 400–600 nm. Among the MesoTiO 2−x−y C x N y -S photocatalysts, the MesoTiO 2−x−y C x N y -M catalysts show superior photocatalytic activity of hydrogen generation in methanol aqueous solution under visible light irradiation as compared to MesoTiO 2−x−y C x N y -E, MesoTiO 2−x−y C x N y -I, and commercial Degussa TiO 2 . This result could be attributed to the moderate C,N co-doping amounts on their developed mesoporous texture (pore size = 8.0 nm) and high surface area (107 m 2  g −1 ) of TiO 2 (crystallite size = 9.9 nm) in the MesoTiO 2−x−y C x N y -M catalysts

  4. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong; Ding, Yong; Li, Zhou; Song, Jinhui; Wang, Zhong Lin

    2009-01-01

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed

  5. Effect of N_2 flow rate on the properties of N doped TiO_2 films deposited by DC coupled RF magnetron sputtering

    International Nuclear Information System (INIS)

    Peng, Shou; Yang, Yong; Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang; Cao, Xin; Wang, Yun; Xu, Genbao

    2016-01-01

    N doped TiO_2 films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO_2 ceramic target. The influences of N_2 flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N_2 flow rate. As N_2 flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO_2 lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N_2 flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO_2 films were deposited by DC coupled RF magnetron reactive sputtering. • As N_2 flow rate increases, the crystallization of the deposited films degrades. • The higher N_2 flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  6. Sn4+-Doped TiO2 Nanorod Array Film with Enhanced Visible Light ...

    Indian Academy of Sciences (India)

    61

    specific surface area of flat film than nano-powder would lead to the decrease of its .... doped TiO2 NAFs were acquired with EDS spectrometer fitted on the microscopy. ... The morphologies of films were obtained by the SEM measurement.

  7. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m respectively, according to four point probe. Keywords: TiO2, Diode laser, XRD, SEM

  8. Preparation of Oleyl Phosphate-Modified TiO2/Poly(methyl methacrylate Hybrid Thin Films for Investigation of Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Masato Fujita

    2015-01-01

    Full Text Available TiO2 nanoparticles (NPs modified with oleyl phosphate were synthesized through stable Ti–O–P bonds and were utilized to prepare poly(methyl methacrylate- (PMMA- based hybrid thin films via the ex situ route for investigation of their optical properties. After surface modification of TiO2 NPs with oleyl phosphate, IR and 13C CP/MAS NMR spectroscopy showed the presence of oleyl groups. The solid-state 31P MAS NMR spectrum of the product revealed that the signal due to oleyl phosphate (OP shifted upon reaction, indicating formation of covalent Ti–O–P bonds. The modified TiO2 NPs could be homogeneously dispersed in toluene, and the median size was 16.1 nm, which is likely to be sufficient to suppress Rayleigh scattering effectively. The TEM images of TiO2/PMMA hybrid thin films also showed a homogeneous dispersion of TiO2 NPs, and they exhibited excellent optical transparency even though the TiO2 content was 20 vol%. The refractive indices of the OP-modified TiO2/PMMA hybrid thin films changed higher with increases in TiO2 volume fraction, and the hybrid thin film with 20 vol% of TiO2 showed the highest refractive index (n = 1.86.

  9. Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior

    International Nuclear Information System (INIS)

    Chatzikyriakou, Dafni; Krins, Natacha; Gilbert, Bernard; Colson, Pierre; Dewalque, Jennifer; Denayer, Jessica; Cloots, Rudi; Henrist, Catherine

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous films exhibit better electrochemical kinetics compared to the dense films. • Mesoporous films exhibit better reversibility compared to the dense films. • Li + cations disrupt WO 3 network in a reversible way in the mesoporous film. • Li + irreversibly intercalate in the voids of crystallites in the dense film. - Abstract: The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin films are significantly influenced by their structural and surface characteristics. In this study, we prepared two types of amorphous films via the sol-gel technique: one dense and one mesoporous in order to compare their response upon lithium intercalation and de-intercalation. According to chronoamperometric measurements, Li + intercalates/de-intercalates faster in the mesoporous film (24s/6s) than in the dense film (48s/10s). The electrochemical measurements (cyclic voltammetry and chronoamperometry) also showed worse reversibility for the dense film compared to the mesoporous film, giving rise to important Li + trapping and remaining coloration of the film. Raman analysis showed that the mesoporous film provides more accessible and various W-O surface bonds for Li + intercalation. On the contrary, in the first electrochemical insertion and de-insertion in the dense film, Li + selectively reacts with a few surface W-O bonds and preferentially intercalates into pre-existing crystallites to form stable irreversible Li x WO 3 bronze

  10. Synthesis, characterization and application of Co doped TiO2 multilayer thin films

    Science.gov (United States)

    Khan, M. I.

    2018-06-01

    To use the visible portion of solar light, 2% cobalt doped TiO2 (Co: TiO2) multilayer thin films having 1, 2, 3 and 4 stacked layers have been deposited on FTO substrates using spray pyrolysis technique. XRD results show that 1 and 2 layers of films have anatase phase. Brookite phase has been appeared at the 3 and 4 layered films. The average grain size of 1, 2, 3 and 4 layers of films are 14.4, 23.5, 29.7 and 33.6 nm respectively. UV-Vis results show that 4th layer film has high absorption in the visible region. The calculated Eg of 1, 2, 3 and 4 layers is 3.54, 3.42, 3.30 and 3.03 eV respectively. The calculated average sheet resistivity of 1, 2, 3 and 4 layers of films is 7.68 × 104, 4.54 × 104, 8.85 × 103 and 7.95 × 102 (ohm-m) respectively, according to four point probe technique. Solar simulator results show that highest solar conversion efficiency (5.6%) has been obtained by using 3 stacked layers photoanode. This new structure in the form of stack layers provides a way to improve the efficiency of optoelectronic devices.

  11. Reflection Enhancement Using TiO2/SiO2 Bilayer Films Prepared by Cost-Effective Sol-gel Method

    Directory of Open Access Journals (Sweden)

    R. Ajay Kumar

    2017-04-01

    Full Text Available Multilayer dielectric thin film structure has been demanded for its application in optoelectronic devices such as optical waveguides, vertical cavity surface-emitting devices, biosensors etc. In this paper, we present the fabrication and characterization of bilayer thin films of TiO2/SiO2 using sol-gel spin coating method. Ellipsometer measurement showed refractive index values 1.46, 2.1 corresponding to the SiO2 and TiO2 films respectively. The FTIR transmittance peaks observed at ~970 cm-1, ~1100 cm-1 and ~1400 cm-1 are attributed to the Ti-O-Si, Si-O-Si and Ti-O-Ti bonds respectively. Maximum reflectance is observed from two bilayer film structure which can be further optimized to get the high reflection to a broad wavelength range.

  12. Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Caricato, A.P.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Tunno, T.; Valerini, D.

    2007-01-01

    We report morphological and optical properties of a colloidal TiO 2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO 2 nanoparticle thin films

  13. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  14. TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance

    Directory of Open Access Journals (Sweden)

    Matus Zelny

    2018-01-01

    Full Text Available Transfer of semiconductor thin films on transparent and or flexible substrates is a highly desirable process to enable photonic, catalytic, and sensing technologies. A promising approach to fabricate nanostructured TiO2 films on transparent substrates is self-ordering by anodizing of thin metal films on fluorine-doped tin oxide (FTO. Here, we report pulsed direct current (DC magnetron sputtering for the deposition of titanium thin films on conductive glass substrates at temperatures ranging from room temperature to 450 °C. We describe in detail the influence that deposition temperature has on mechanical, adhesion and microstructural properties of titanium film, as well as on the corresponding TiO2 nanotube array obtained after anodization and annealing. Finally, we measure the photoelectrochemical water splitting activity of different TiO2 nanotube samples showing that the film deposited at 150 °C has much higher activity correlating well with the lower crystallite size and the higher degree of self-organization observed in comparison with the nanotubes obtained at different temperatures. Importantly, the film showing higher water splitting activity does not have the best adhesion on glass substrate, highlighting an important trade-off for future optimization.

  15. Origin of visible-light sensitivity in N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2007-01-01

    We report on visible-light sensitivity in N-doped TiO 2 (TiO 2 :N) films that were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined by X-ray photoelectron spectroscopy measurements. From transmission electron microscopic observations and optical absorption measurements, yellow-colored TiO 2 :N samples showed an enhanced granular structure and strong absorption in the visible-light region. Photoelectron spectroscopy in air measurements showed a noticeable decrease in ionization energy of TiO 2 by the N doping. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. The pronounced 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing of TiO 2 by mixing with the O 2p valence band. Therefore, this localized intraband is probably one origin of visible-light sensitivity in TiO 2 :N

  16. Fabrication and application of mesoporous TiO{sub 2} film coated on Al wire by sol-gel method with EISA

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linkang; Lu, Jianjun, E-mail: lujianjunktz@tyut.edu.cn

    2017-04-30

    Highlights: • Successfully fabricated mesoporous TiO{sub 2} thin film on Al wire by sol-gel method with EISA. • Ni supported on this film and exhibits good methanation performance. • Investigate the decomposition temperature of template agent F127 in TiO{sub 2} precursor system. - Abstract: Mesoporous TiO{sub 2} film on Al wire was fabricated by sol-gel method with evaporation induced self assembly (EISA) process using F127 as templating agent in the mixed solution of ethanol and Tetra-n-butyl Titanate. The Ni/TiO{sub 2} film catalyst supported on Al wire was prepared by impregnation and the catalytic performance on methanation was carried out in a titanium alloy micro-reactor tube. It was shown that anatase mesoporous TiO{sub 2} film was prepared in this conditions (1 g F127,calcined at 400 °C and aged for 24 h), which has specific surface area of 127 m{sup 2} g{sup −1} and narrow pore size distribution of 5.3 nm. Low calcined temperature (300 °C) cannot transfer film to anatase and decompose F127 completely. Ni/TiO{sub 2} film on Al wire catalyst was proved to be active in CO methanation reaction. And the CO conversion reaches 99% and CH{sub 4} selectivity close is to 80% when the reaction temperature is higher 360 °C.

  17. Photocatalytic decomposition of diclofenac potassium using silver-modified TiO2 thin films

    International Nuclear Information System (INIS)

    Cavalheiro, A.A.; Bruno, J.C.; Saeki, M.J.; Valente, J.P.S.; Florentino, A.O.

    2008-01-01

    The effects of silver insertion on the TiO 2 photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO 2 thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO 2 anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg C W -1 when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material

  18. Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma Liang; Liu Min; Peng Tianyou; Fan Ke; Lu Lanlan; Dai Ke

    2009-01-01

    A meso-macroporous TiO 2 film electrode was fabricated by using mesoporous TiO 2 (m-TiO 2 ) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO 2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption-desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO 2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO 2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO 2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

  19. Photocatalytic H 2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO 2 nanocrystal photocatalyst

    Science.gov (United States)

    Sreethawong, Thammanoon; Junbua, Chompoonuch; Chavadej, Sumaeth

    Sensitized photocatalytic production of hydrogen from water splitting is investigated under visible light irradiation over mesoporous-assembled titanium dioxide (TiO 2) nanocrystal photocatalysts, without and with Pt loading. The photocatalysts are synthesized by a sol-gel process with the aid of a structure-directing surfactant and are characterized by N 2 adsorption-desorption analysis, X-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray analysis. The dependence of hydrogen production on the type of TiO 2 photocatalyst (synthesized mesoporous-assembled and commercial non-mesoporous-assembled TiO 2 without and with Pt loading), the calcination temperature of the synthesized photocatalyst, the sensitizer (Eosin Y) concentration, the electron donor (diethanolamine) concentration, the photocatalyst dosage and the initial solution pH is systematically studied. The results show that in the presence of the Eosin Y sensitizer, the Pt-loaded mesoporous-assembled TiO 2 synthesized by a single-step sol-gel process and calcined at 500 °C exhibits the highest photocatalytic activity for hydrogen production from a 30 vol.% diethanolamine aqueous solution with dissolved 2 mM Eosin Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic activity for hydrogen production are 3.33 g dm -3 and 11.5, respectively.

  20. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  1. Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    Directory of Open Access Journals (Sweden)

    Osękowska Małgorzata

    2015-09-01

    Full Text Available In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro of thin films. Morphological changes of mouse fibroblasts (L929 cell line after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

  2. Multi-modal TiO2-LaFeO3 composite films with high photocatalytic activity and hydrophilicity

    International Nuclear Information System (INIS)

    Gao Kun; Li Shudan

    2012-01-01

    In this paper, a series of multi-modal TiO 2 -LaFeO 3 composite films have been successfully synthesized through a two-step method. The resultant films were characterized in detail by several testing techniques, such as X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence spectrum (PL), surface photovoltage spectroscopy (SPS) and water contact angle measurements. The photocatalytic activity of different films was evaluated for degrading Methylene Blue (MB) aqueous solution. Hydrophilicity of the obtained TiO 2 -LaFeO 3 composite films was also investigated. The results show that TL film and LT film exhibited superior photocatalytic activity and hydrophilicity.

  3. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    Science.gov (United States)

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique

    Directory of Open Access Journals (Sweden)

    Stephen Lourduraj

    2017-08-01

    Full Text Available Thin films of iron (Fe-doped titanium dioxide (Fe:TiO2 were prepared by sol–gel spin coating technique and further calcined at 450∘C. The structural and optical properties of Fe-doped TiO2 thin films were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet–visible spectroscopy (UV–vis and atomic force microscopic (AFM techniques. The XRD results confirm the nanostructured TiO2 thin films having crystalline nature with anatase phase. The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity. The SEM investigations of Fe-doped TiO2 films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature. AFM analysis establishes that the uniformity of the TiO2 thin film with average roughness values. The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO2 film with iron (Fe decrease with increase in iron content. These important requirements for the Fe:TiO2 films are to be used as window layers in solar cells.

  5. Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces

    International Nuclear Information System (INIS)

    Kasai, J.; Nakao, S.; Yamada, N.; Hitosugi, T.; Moriyama, M.; Goshonoo, K.; Hoang, N. L. H.; Hasegawa, T.

    2010-01-01

    Anatase Nb-doped TiO 2 transparent conducting oxide has been formed on GaN(0001) surfaces using a sputtering method. Amorphous films deposited at room temperature were annealed at a substrate temperature of 500 deg. C in vacuum to form single-phase anatase films. Films with a thickness of 170 nm exhibited a resistivity of 8x10 -4 Ω cm with absorptance less than 5% at a wavelength of 460 nm. Furthermore, the refractive index of the Nb-doped TiO 2 was well matched to that of GaN. These findings indicate that Nb-doped TiO 2 is a promising material for use as transparent electrodes in GaN-based light emitting diodes (LEDs), particularly since reflection at the electrode/GaN boundary can be suppressed, enhancing the external quantum efficiency of blue LEDs.

  6. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    Science.gov (United States)

    Khan, M. I.; Ali, Asghar

    TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.

  7. Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Hongwei Tian

    2017-05-01

    Full Text Available Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT and mesoporous TiO2/RGO (MTG, the ternary mesoporous TiO2/RGO/Ag (MTGA nanocomposite exhibited superior photocatalytic performance for the degradation of methylene blue (MB under visible light, and the degradation rate reached 0.017 min−1, which was 3.4-times higher than that of MTG. What is more, the degradation rate of MTGA nanocomposite after three cycle times is 91.2%, and the composition is unchanged. In addition, we found that the OH•, h+ and especially O2•− contribute to the high photocatalytic activity of MTGA for MB degradation. It is proposed that Ag nanoparticles can form the local surface plasmon resonance (LSPR to absorb the visible light and distract the electrons into MT, and RGO can accept the electrons from MT to accelerate the separation efficiency of photogenerated carriers. The establishment of MTGA ternary nanocomposite makes the three components act synergistically to enhance the photocatalytic performance.

  8. Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique

    Science.gov (United States)

    Lahiri, Rini; Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Chinnamuthu, P.; Mondal, Aniruddha

    2017-09-01

    Undoped and Erbium-doped TiO2 thin films (Er:TiO2 TFs) were fabricated on the n-type Si substrate using physical vapour deposition technique. Field emission scanning electron microscope showed the morphological change in the structure of Er:TiO2 TF as compared to undoped sample. Energy dispersive X-ray spectroscopy (EDX) confirmed the Er doping in the TiO2 thin film (TF). The XRD and Raman spectrum showed the presence of anatase phase TiO2 and Er2O3 in the Er:TiO2 TF. The Raman scattering depicted additional number of vibrational modes for Er:TiO2 TF due to the presence of Er as compared to the undoped TiO2 TF. The UV-Vis absorption measurement showed that Er:TiO2 TF had approximately 1.2 times more absorption over the undoped TiO2 TF in the range of 300-400 nm. The main band transition, i.e., the transition between the oxygen (2p) state and the Ti (3d) state was obtained at 3.0 eV for undoped TiO2 and at 3.2 eV for Er:TiO2 TF, respectively. The photo responsivity measurement was done on both the detectors, where Er:TiO2 TF detector showed better detectivity ( D *), noise equivalent power and temporal response as compared to undoped detector under ultra-violet illumination.

  9. Ageing-induced enhancement of open porosity of mesoporous silica films studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Oshima, Nagayasu; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi

    2006-01-01

    We show that ageing of the silica sol in a closed vessel enhanced the open porosity of calcined mesoporous silica film studied by positron. Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was used to estimate the mesopore size. 2-dimensional PALS (2D-PALS) and ortho-positronium time-of-flight (Ps-TOF) were used to evaluate the open porosity, interconnectivity and tortuosity of mesopores in the silica films. Results revealed that little change in pore size but significant enhancement of open porosity and/or pore interconnectivity occurred in the silica film deposited after the precursor solution aged for a relative longer time

  10. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  11. Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method

    Science.gov (United States)

    Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.

    2015-04-01

    The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.

  12. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    Science.gov (United States)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  13. Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property

    International Nuclear Information System (INIS)

    Li, Xiaozhou; Wang, Lin; Pei, Yuxin; Jiang, Jinqiang

    2014-01-01

    Ultraviolet (UV) B is hazardous to human, plants and animals. With the rapid growth of ozone holes over the earth, the exploration of optical materials that can cut off harmful UV radiation is important. In this work, fusiform TiO 2 nanoparticles were synthesized by a hydrothermal synthesis method. The thin films assembled with TiO 2 nanoparticles and oppositely charged polyelectrolytes were fabricated via a layer-by-layer assembly method. The fabrication of poly(ethylene imine) (PEI)/TiO 2 multilayer films was verified by ultraviolet–visible spectra measurements, scanning electron microscopy and atomic force microscopy. The as-prepared PEI/TiO 2 multilayer films can effectively absorb harmful UVB light and filter off visible light. Most importantly, the PEI/TiO 2 films can be deposited directly on various kinds of hydrophilic substrates such as quartz, glass, silicon and hydrophobic substrates such as polystyrene, polypropylene, polyethylene and polymethyl methacrylate when the hydrophilic substrates were modified to obtain a hydrophilic surface. - Highlights: • PEI/TiO 2 films were fabricated via a layer-by-layer self-assembly method. • The films could effectively absorb harmful UVB light and filter off visible light. • The films could deposit directly on either hydrophilic or hydrophobic substrates

  14. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  15. Studies of LPCVD and anodised TiO2 thin films and their photoelectrocatalytic photochemical properties for destruction of organic effluents

    International Nuclear Information System (INIS)

    Tian, F.

    2001-01-01

    TiO 2 thin films prepared by CVD and anodisation methods and their applications for the photoelectrocatalytic and photocatalytic destruction of organic effluents are described in this thesis. The theoretical background of CVD, photoelectrocatalysis (PEC) and photocatalysis (PC) is introduced in Chapter 1. This chapter also contains an intensive literature review about TiO 2 thin film preparation, mainly by CVD, and about PEC and PC destruction of organic effluents by TiO 2 thin films. The experimental methods, which include CVD reactors, PEC cells and film characterisation and chemical analysis, are described in Chapter 2. The results for TiO 2 films deposited by LPCVD on SnO 2 coated glass using either TTIP or TTB precursors in the presence of O 2 , with or without water as a reagent, are discussed in Chapter 3 for a small CVD reactor and Chapter 4 for a large reactor. The effects of precursor, water and annealing on the crystal structure of the films have been investigated and compared. It was found that phase transition temperatures for changes from amorphous to anatase and anatase to rutile with TTIP were higher than those obtained with TTB. Water also had an effect by decreasing the temperature for depositing crystalline films. The other kind of TiO 2 films prepared by anodisation of titanium mesh was studied and the results are presented in Chapter 5. PEC or PC destruction of MPA, RDX and 4-CP have been studied using TiO 2 thin film anodes in small and large PEC reactors which are described in Chapter 6 and Chapter 7, respectively. PC destruction rates of organics are found to be improved significantly with an applied potential; i.e. by a PEC process. The effects of film properties, such as film crystallinity, thickness and film type on the PEC and PC efficiencies have been investigated. It was found that the different behaviour of films in PEC processes probably was due to surface effects rather than internal electric field differences. The extent of PEC and

  16. Organized Mesoporous TiO2 Films Stabilized by Phosphorus: Application for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Procházka, Jan; Zukal, Arnošt; Yum, J. H.; Kavan, Ladislav; Graetzel, M.

    2010-01-01

    Roč. 157, č. 1 (2010), H99-H103 ISSN 0013-4651 R&D Projects: GA MŠk LC510; GA MŠk OC09048; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : annealing * anodes * mesoporous materials * dyes Subject RIV: CG - Electrochemistry Impact factor: 2.420, year: 2010

  17. Characterization of TiO2 Thin Films on Glass Substrate Growth Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Agus Santoso; Tjipto Sujitno; Sayono

    2002-01-01

    It has been fabricated and characterization a TiO 2 thin films deposited on glass substrate using DC sputtering technique. Fabrication of TiO 2 thin films were carried out at electrode voltage 4 kV, sputtering current 5 mA, vacuum pressure 5 x 10 -4 torr, deposition time 150 minutes, and temperature of the substrate were varied from 150 -350 o C, while as a gas sputter was argon. The results was tested their micro structure using SEM, and crystal structure using XRD and found that the crystal structure of TiO 2 powder before deposited on glass substrate was rutile and anatase with orientation (110) and (200) for anatase and (100) and (111) rutile structure. While the crystal structure which deposited at temperature 150 o C and deposition time 2.5 hours was anatase with orientation (001) and (200). (author)

  18. Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates

    Science.gov (United States)

    Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.

    2018-05-01

    TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.

  19. Preparation of Porous F-WO3/TiO2 Films with Visible-Light Photocatalytic Activity by Microarc Oxidation

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yeh

    2012-01-01

    Full Text Available Porous F-WO3/TiO2 (mTiO2 films are prepared on titanium sheet substrates using microarc oxidation (MAO technique. The X-ray diffraction patterns show that visible-light (Vis enabling mTiO2 films with a very high content of anatase TiO2 and high loading of WO3 are successfully synthesized at a low applied voltage of 300 V using electrolyte contenting NaF and Na2WO4 without subsequent heat treatment. The cross-sectional transmission electron microscopy micrograph reveals that the mTiO2 films feature porous networks connected by many micron pores. The diffused reflection spectrum displays broad absorbance across the UV-Vis regions and a significant red shift in the band gap energy (∼2.23 eV for the mTiO2 film. Owing to the high specific surface area from the porous microstructure, the mTiO2 film shows a 61% and 50% rate increase in the photocatalytic dye degradation, as compared with the N,C-codoped TiO2 films under UV and Vis irradiation, respectively.

  20. Hydrogen-bonding effects on film structure and photoelectrochemical properties of porphyrin and fullerene composites on nanostructured TiO 2 electrodes

    NARCIS (Netherlands)

    Kira, Aiko; Tanaka, Masanobu; Umeyama, Tomokazu; Matano, Yoshihiro; Yoshimoto, Naoki; Zhang, Yi; Ye, Shen; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2007-01-01

    Hydrogen-bonding effects on film structures and photophysical, photoelectrochemical, and photovoltaic properties have been examined in mixed films of porphyrin and fullerene composites with and without hydrogen bonding on nanostructured TiO2 electrodes. The nanostructured TiO2 electrodes modified

  1. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    Science.gov (United States)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  2. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  3. CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank

    2017-10-04

    Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.

  4. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  5. Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO{sub 2} thin films for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Ahn, Sung Hoon; Seo, Jin Ah; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of)

    2012-07-15

    A poly(vinyl chloride) (PVC) main chain was grafted with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) containing a quaternary amine group using atom transfer radical polymerization. The successful synthesis of a PVC-g-PDMAEMA graft copolymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, and transmission electron microscopy. The PVC-g-PDMAEMA graft copolymer was used as a structure-directing agent (SDA) for the fabrication of a mesoporous thin film containing a titanium dioxide (TiO{sub 2}) layer. To control the porosity of the resultant inorganic layer, the ratio of SDA to TTIP as well as the concentration of the sol-gel was varied. The structure and porosity of the mesoporous film were characterized by XRD and SEM analysis. The mesoporous TiO{sub 2} film fabricated on the FTO surface was used as a photoanode for the dye-sensitized solar cell (DSSC). DSSC performance was the greatest when using TiO{sub 2} film with a higher porosity and lower interfacial resistance. The highest energy conversion efficiency reached 3.2 % at 100 mW/cm{sup 2}, which was one of the highest reported values for a quasi-solid-state DSSC with 600-nm-thick TiO{sub 2} film.

  6. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NARCIS (Netherlands)

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to

  7. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction

    International Nuclear Information System (INIS)

    Xu Qin; Zhu Junjie; Hu Xiaoya

    2007-01-01

    Ordered mesoporous polyaniline film has been fabricated by electrodepositing from the hexagonal lyotropic liquid crystalline (LCC). Horseradish peroxidase (HRP), as a symbol biomolecule, was successfully immobilized on the film to construct a new kind of hydrogen peroxide biosensor. The biosensor combined the advantages of the good conductivity of polyaniline and the higher surface area of the ordered mesoporous film. Polyaniline could be served as a wire to relay electron between HRP and the electrode. The high surface area of the film supplied more sites for HRP immobilization, therefore increased the catalytic activity of the biosensor. The ordered mesoporous character of the film increased the rate of mass transport, which resulted in the improvement of sensor response and linearity. The biosensor displayed excellent electrocatalytic response to the detection of H 2 O 2 in a concentration range from 1.0 μM to 2.0 mM with a detection limit of 0.63 μM. Good reproducibility, stability, high precision, wide linearity and low detection limit were assessed for the biosensor

  8. Raman scattering and x-ray diffractometry studies of epitaxial TiO2 and VO2 thin films and multilayers on α-Al2O3(11 bar 20)

    International Nuclear Information System (INIS)

    Foster, C.M.; Chiarello, R.P.; Chang, H.L.M.; You, H.; Zhang, T.J.; Frase, H.; Parker, J.C.; Lam, D.J.

    1993-01-01

    Epitaxial thin films of TiO 2 and VO 2 single layers and TiO 2 /VO 2 multilayers were grown on (11 bar 20) sapphire (α-Al 2 O 3 ) substrates using the metalorganic chemical vapor deposition technique and were characterized using Raman scattering and four x-ray diffractometry. X-ray diffraction results indicate that the films are high quality single crystal material with well defined growth plane and small in-plane and out-of-plane mosaic. Single-layer films are shown to obey the Raman selection rules of TiO 2 and VO 2 single crystals. The close adherence to the Raman selection rules indicates the high degree of orientation of the films, both parallel and perpendicular to the growth plane. Selection rule spectra of two and three layer TiO 2 /VO 2 multilayers are dominated by the VO 2 layers with only minimal signature of the TiO 2 layers. Due to the low band gap of semiconducting vanadium dioxide, we attribute the strong signature of the VO 2 layers to resonant enhancement of the VO 2 Raman component accompanied with absorption of the both the incident and scattered laser light from the TiO 2 layers

  9. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  10. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    International Nuclear Information System (INIS)

    Yu Binyu; Guo Qiuquan; Yang Jun; Leung, Kar Man; Lau, Woon Ming

    2011-01-01

    TiO 2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO 2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO 2 and Ag-TiO 2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO 2 and TiO 2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO 2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag 0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm -2 and in the dark respectively. The synthesized Ag-TiO 2 thin films showed enhanced bactericidal activities compared to the neat TiO 2 nanofilm both in the dark and under UV illumination.

  11. Nanocrystalline Pt-doped TiO2 thin films prepared by spray pyrolysis ...

    Indian Academy of Sciences (India)

    Administrator

    Spray pyrolysis techniques; TiO2 thin films; hydrogen gas response. 1. Introduction ... tion is necessary during the production, storage and use of hydrogen. It is also ..... ient, and 'green': it may be used to large scale industrial application for ...

  12. In situ modification of cell-culture scaffolds by photocatalysis of visible-light-responsive TiO2 film

    Science.gov (United States)

    Kono, Sho; Furusawa, Kohei; Kurotobi, Atsushi; Hattori, Kohei; Yamamoto, Hideaki; Hirano-Iwata, Ayumi; Tanii, Takashi

    2018-02-01

    We propose a novel process to modify the cell affinity of scaffolds in a cell-culture environment using the photocatalytic activity of visible-light (VL)-responsive TiO2. The proposed process is the improved version of our previous demonstration in which ultraviolet (UV)-responsive TiO2 was utilized. In that demonstration, we showed that cell-repellent molecules on TiO2 were decomposed and replaced with cell-permissive molecules upon UV exposure in the medium where cells are being cultured. However, UV irradiation involves taking the risk of inducing damage to the cells. In this work, a TiO2 film was sputter-deposited on a quartz coverslip at 640 °C without O2 gas injection to create a rutile structure containing oxygen defects, which is known to exhibit photocatalytic activity upon VL exposure. We show that the cell adhesion site and migration area can be controlled with the photocatalytic activity of the VL-responsive TiO2 film, while the cellular oxidative stress is reduced markedly by the substitution of VL for UV.

  13. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation.

    Science.gov (United States)

    Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin

    2018-05-10

    A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.

  14. Fine control of the amount of preferential <001> orientation in DC magnetron sputtered nanocrystalline TiO2 films

    International Nuclear Information System (INIS)

    Stefanov, B; Granqvist, C G; Österlund, L

    2014-01-01

    Different crystal facets of anatase TiO 2 are known to have different chemical reactivity; in particular the {001} facets which truncates the bi-tetrahedral anatase morphology are reported to be more reactive than the usually dominant {101} facets. Anatase TiO 2 thin films were deposited by reactive DC magnetron sputtering in Ar/O 2 atmosphere and were characterized using Rietveld refined grazing incidence X-ray diffraction, atomic force microscopy and UV/Vis spectroscopy. By varying the partial O2 pressure in the deposition chamber, the degree of orientation of the grains in the film could be systematically varied with preferred <001> orientation changing from random upto 39% as determined by March-Dollase method. The orientation of the films is shown to correlate with their reactivity, as measured by photo-degradation of methylene blue in water solutions. The results have implications for fabrication of purposefully chemically reactive thin TiO 2 films prepared by sputtering methods

  15. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx

  16. Elaboration of TiO2 films by PECVD for use in photocatalysis

    International Nuclear Information System (INIS)

    Di Lalla, N; Lasorsa, C; Pineda Ramos, P

    2012-01-01

    We present the first results in the production of films of titanium dioxide (TiO 2 ) deposited by Plasma enhanced chemical vapor deposition (PECVD). The films are destined for use in photocatalysis for water treatment. The deposits were made on glass from titanium isopropoxide as precursor (Ti[OCH(CH 3 ) 2 ]4) and a controlled flow of O 2 . The films were grown at room temperature and 300 o C to compare properties. The characterization of the deposits was performed using scanning electron microscopy, UV-visible transmittance and infrared absorbance. The deposits were obtained with very good adhesion to substrates showing energy values of band gap of 2.83 eV

  17. Preparation of Porous F-WO3/TiO2 Films with Visible-Light Photocatalytic Activity by Microarc Oxidation

    OpenAIRE

    Yeh, Chung-Wei; Wu, Kee-Rong; Hung, Chung-Hsuang; Chang, Hao-Cheng; Hsu, Chuan-Jen

    2012-01-01

    Porous F-WO3/TiO2 (mTiO2) films are prepared on titanium sheet substrates using microarc oxidation (MAO) technique. The X-ray diffraction patterns show that visible-light (Vis) enabling mTiO2 films with a very high content of anatase TiO2 and high loading of WO3 are successfully synthesized at a low applied voltage of 300 V using electrolyte contenting NaF and Na2WO4 without subsequent heat treatment. The cross-sectional transmission electron microscopy micrograph reveals that the mTiO2 films...

  18. Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Wei Yaowei; Liu Hao; Sheng Ouyang; Liu Zhichao; Chen Songlin; Yang Liming

    2011-01-01

    Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO 2 /Al 2 O 3 films at 110 deg. C and 280 deg. C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm Φ samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO 2 /Al 2 O 3 films, the LIDTs were 6.73±0.47 J/cm 2 and 6.5±0.46 J/cm 2 at 110 deg. C on fused silica and BK7 substrates, respectively. The LIDTs at 110 deg. C are notably better than 280 deg. C.

  19. Tensile properties of latex paint films with TiO2 pigment

    Science.gov (United States)

    Hagan, Eric W. S.; Charalambides, Maria N.; Young, Christina T.; Learner, Thomas J. S.; Hackney, Stephen

    2009-05-01

    The tensile properties of latex paint films containing TiO2 pigment were studied with respect to temperature, strain-rate and moisture content. The purpose of performing these experiments was to assist museums in defining safe conditions for modern paintings held in collections. The glass transition temperature of latex paint binders is in close proximity to ambient temperature, resulting in high strain-rate dependence in typical exposure environments. Time dependence of modulus and failure strain is discussed in the context of time-temperature superposition, which was used to extend the experimental time scale. Nonlinear viscoelastic material models are also presented, which incorporate a Prony series with the Ogden or Neo-Hookean hyperelastic function for different TiO2 concentrations.

  20. Existence, release, and antibacterial actions of silver nanoparticles on Ag–PIII TiO2 films with different nanotopographies

    Directory of Open Access Journals (Sweden)

    Li J

    2014-07-01

    Full Text Available Jinhua Li, Yuqin Qiao, Hongqin Zhu, Fanhao Meng, Xuanyong Liu State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Nanotopographical TiO2 films (including nanorod, nanotip, and nanowire topographies were successfully fabricated on the metallic Ti surface via hydrothermal treatment and then underwent Ag plasma immersion ion implantation to incorporate Ag with TiO2. The surface morphology, phase component, and chemical composition before and after Ag–PIII were characterized. In view of the potential clinical applications, both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were used to estimate their antimicrobial effect. The nanostructured TiO2 films on a Ti surface exhibit a better bacteriostatic effect on both microbes compared to the pristine Ti. The nanotopographies of the TiO2 films affect the nucleation, growth, and distribution of Ag nanoparticles in the films during Ag–PIII process. The Ag nanoparticles are completely embedded into the nanorod film while partially exposed out of the nanotip and nanowire films, which account for the significant differences in the release behaviors of Ag ions in vitro. However, no significant difference exists in their antimicrobial activity against both microbes. The antimicrobial actions of the Ag@TiO2 system described here consist of two methods – the contact-killing action and the release-killing action. Nevertheless, based on the observed results, the contact-killing action should be regarded as the main method to destroy microbes for all the Ag plasma-modified TiO2 nanofilms. This study provides insight to optimize the surface design of Ti-based implants to acquire more effective antimicrobial surfaces to meet clinical applications. Keywords: silver, nanoparticles, titania, nanostructure, antibacterial, plasma

  1. Nanoscale self-recovery of resistive switching in Ar+ irradiated TiO2-x films

    Science.gov (United States)

    Barman, A.; Saini, C. P.; Sarkar, P. K.; Das, D.; Dhar, S.; Singh, M.; Sinha, A. K.; Kanjilal, D.; Gupta, M.; Phase, D. M.; Kanjilal, A.

    2017-11-01

    Nanoscale evidence of self-recovery in resistive switching (RS) behavior was found in TiO2-x film by conductive atomic force microscopy when exposed to Ar+-ions above a threshold fluence of 1  ×  1016 ions cm-2. This revealed an evolution and gradual disappearance of bipolar RS-loops, followed by reappearance with increasing number of voltage sweep. This was discussed in the realm of oxygen vacancy (OV) driven formation, dissolution and reformation of conducting filaments. The presence of OVs in ion-beam irradiated TiO2-x films was evidenced by decreasing trend of work function in scanning-Kelvin probe microscopy, and was further verified by x-ray absorption near edge spectroscopy at Ti and O-K edges.

  2. Chromium doped TiO2 sputtered thin films synthesis, physical investigations and applications

    CERN Document Server

    Hajjaji, Anouar; Gaidi, Mounir; Bessais, Brahim; El Khakani, My Ali

    2014-01-01

    This book presents co-sputtered processes ways to produce chrome doped TiO2 thin films onto various substrates such as quartz, silicon and porous silicon. Emphasis is given on the link between the experimental preparation and physical characterization in terms of Cr content. Moreover, the structural, optical and optoelectronic investigations are emphasized throughout. The book explores the potencial applications of devices based on Cr doped TiO2 thin films as gas sensors and in photocatalysis and in the photovoltaic industry. Also, this book provides extensive leads into research literature, and each chapter contains details which aim to develop awareness of the subject and the methods used. The content presented here will be useful for graduate students as well as researchers in materials science, physics, chemistry and engineering.

  3. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    Science.gov (United States)

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  4. Influence of Pore Size on the Optical and Electrical Properties of Screen Printed TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Dinfa Luka Domtau

    2016-01-01

    Full Text Available Influence of pore size on the optical and electrical properties of TiO2 thin films was studied. TiO2 thin films with different weight percentages (wt% of carbon black were deposited by screen printing method on fluorine doped tin oxide (FTO coated on glass substrate. Carbon black decomposed on annealing and artificial pores were created in the films. All the films were 3.2 µm thick as measured by a surface profiler. UV-VIS-NIR spectrophotometer was used to study transmittance and reflectance spectra of the films in the photon wavelength of 300–900 nm while absorbance was studied in the range of 350–900 nm. Band gaps and refractive index of the films were studied using the spectra. Reflectance, absorbance, and refractive index were found to increase with concentrations of carbon black. There was no significant variation in band gaps of films with change in carbon black concentrations. Transmittance reduced as the concentration of carbon black in TiO2 increased (i.e., increase in pore size. Currents and voltages (I-V characteristics of the films were measured by a 4-point probe. Resistivity (ρ and conductivity (σ of the films were computed from the I-V values. It was observed that resistivity increased with carbon black concentrations while conductivity decreased as the pore size of the films increased.

  5. The effect of bulk/surface defects ratio change on the photocatalysis of TiO_2 nanosheet film

    International Nuclear Information System (INIS)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-01-01

    Highlights: • The defect behaviors of TiO_2 nanosheet array films were studied by positron annihilation spectroscopy. • Different bulk/surface defect ratios were realized by annealing at different temperature. • It was concluded that bulk defects are mainly Ti"3"+ vacancy defects. • The separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio. - Abstract: The photocatalysis behavior of TiO_2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti"3"+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO_2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  6. Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering

    Science.gov (United States)

    Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka

    2018-06-01

    Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.

  7. Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination

    International Nuclear Information System (INIS)

    Elghniji, Kais; Atyaoui, Atef; Livraghi, Stefano; Bousselmi, Latifa; Giamello, Elio; Ksibi, Mohamed

    2012-01-01

    Graphical abstract: Schematic diagram illustrating the charge transfer from excited TiO 2 to the different states of Fe 3+ ions; C B and V B refer to the energy levels of the conduction and valence bands of TiO 2 , respectively. Highlights: ► In this study we examine the Iron as catalyst precursor to synthesize the Fe 3+ doped TiO 2 nanoparticles. ► The Fe 3+ doped TiO 2 catalysts show the presence of a mixed phase of anatase. ► The iron is completely absent in the XRD pattern of the doped iron TiO 2 powder. ► The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . ► Fe 3+ doping can efficiently separate the photo-generated electrons and holes. - Abstract: Undoped TiO 2 and Fe 3+ doped (0.1, 0.3, 0.6 and 1 wt.%) TiO 2 nanoparticles have been synthesized by the acid-catalyzed sol–gel method. Iron cations are introduced in the initial solution, before gelification, what promotes their lattice localization. The Fe 3+ doped TiO 2 films have been fabricated using a dip-coating technique. The effect of iron content on the crystalline structure, phase transformation and grain growth were determined by X-ray diffraction (XRD), Raman spectroscopy, UV–visible diffused reflectance spectroscopy (DRS) and Electron paramagnetic resonance (EPR) spectroscopy. It has demonstrated that all catalysts are composed of mixed-phase crystals of anatase and brookite with anatase as dominant phase. The crystallinity of the brookite and anatase phases decreased with increasing the iron content. The analysis of EPR result further confirms that Fe 3+ ion are successfully doped in the TiO 2 lattice by substituting Ti 4+ . It was demonstrated that Fe 3+ ion in the TiO 2 films plays a role as the intermediate for the efficient separation of photogenerated hole–electron pairs and increases the photocurrent response of the film under UV light irradiation. The maximum photocurrent is obtained on the Fe 3+ doped TiO

  8. Fabrication of mesoporus TiO_2 from TiOSO_4 from leached ilmenite

    International Nuclear Information System (INIS)

    Wahyuningsih S; Ramelan AH; Rinawati L; Munifa RMI; Saputri LNMZ; Hanif QA; Pranata HP; Ismoyo YA

    2016-01-01

    The fabrication of mesoporous TiO_2 from TiOSO_4 precursor through roasted process, leaching, and homogeneous hydrolysis of ilmenite had been done. Analysis of X-ray Diffraction (XRD) showed the characteristics of ilmenite, hematite and rutile. After roasting the mineral ilmenite with the addition of Na_2S at a temperature of 800°C the XRD characterization showed peaks characteristic for hematite, TiO_2 anatase, TiO_2 rutile, Na_2SO_4, NaFeS_2, and NaFeO_2. Leaching processes of roasted ilmenite which maintained with an addition of strong acid H_2SO_4 6; 7.2; 9; 12, and 18 N were obtained TiOSO_4 filtrate. The results indicated that the more concentration of H_2SO_4 the more solubility of ilmenite, where optimum solubility was achieved when H_2SO_4 concentration was 12 N. The fabrication of mesoporous TiO_2 from TiOSO_4 was conducted with homogeneous hydrolysis method used urea and surfactant template F-127. XRD characterization results indicated the dominant peak of TiO_2 anatase. Crystallite size of 3.2 nm was obtained and the results of Scanning Electron Microscopy (SEM) showed that the presence of urea and surfactant be able to arrange porosity. (author)

  9. CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties

    International Nuclear Information System (INIS)

    Prabakar, K; Minkyu, S; Inyoung, S; Heeje, K

    2010-01-01

    Cadmium selenide (CdSe) quantum dots (QDs) with different particle sizes have been used as an inorganic co-sensitizer in addition to organic dye for large band gap mesoporous TiO 2 dye sensitized solar cells. The QDs co-sensitized solar cells exhibited overall highest conversion efficiency of 3.65% at 1 sun irradiation for 3.3 nm particle size corresponding to a visible light absorption wavelength of 528 nm. The photovoltaic characteristics of CdSe QDs co-sensitized cells depend on the particle sizes rather than broad spectral light absorption as compared with CdSe QDs alone sensitized and standard dye-sensitized solar cells. Correlation between CdSe QDs adsorption on mesoporous TiO 2 surfaces and photoelectron injection into TiO 2 has been demonstrated. (fast track communication)

  10. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  11. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  12. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  13. Effect of Oxygen Partial Pressure on the Electrical and Optical Properties of DC Magnetron Sputtered Amorphous TiO2 Films

    OpenAIRE

    Chandra Sekhar, M.; Kondaiah, P.; Radha Krishna, B.; Uthanna, S.

    2013-01-01

    Titanium dioxide (TiO2) thin films were deposited on p-Si (100) and Corning glass substrates held at room temperature by DC magnetron sputtering at different oxygen partial pressures in the range 9 × 10−3–9 × 10−2 Pa. The influence of oxygen partial pressure on the structural, electrical, and optical properties of the deposited films was systematically studied. XPS studies confirmed that the film formed at an oxygen partial pressure of 6×10−2 Pa was nearly stoichiometric. TiO2 films formed at...

  14. Self-organized nanocrack networks: a pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO2

    Science.gov (United States)

    Henkel, B.; Vahl, A.; Aktas, O. C.; Strunskus, T.; Faupel, F.

    2018-01-01

    Sputter deposited photocatalytic thin films offer high adherence and mechanical stability, but typically are outperformed in their photocatalytic properties by colloidal TiO2 nanostructures, which in turn typically suffer from problematic removal. Here we report on thermally controlled nanocrack formation as a feasible and batch applicable approach to enhance the photocatalytic performance of well adhering, reactively sputtered TiO2 thin films. Networks of nanoscopic cracks were induced into tailored columnar TiO2 thin films by thermal annealing. These deep trenches are separating small bundles of TiO2 columns, adding their flanks to the overall catalytically active surface area. The variation of thin film thickness reveals a critical layer thickness for initial nanocrack network formation, which was found to be about 400 nm in case of TiO2. The columnar morphology of the as deposited TiO2 layer with weak bonds between respective columns and with strong bonds to the substrate is of crucial importance for the formation of nanocrack networks. A beneficial effect of nanocracking on the photocatalytic performance was experimentally observed. It was correlated by a simple geometric model for explaining the positive impact of the crack induced enlargement of active surface area on photocatalytic efficiency. The presented method of nanocrack network formation is principally not limited to TiO2 and is therefore seen as a promising candidate for utilizing increased surface area by controlled crack formation in ceramic thin films in general.

  15. Growth of TiO2 Thin Film on Various Substrates using RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2011-01-01

    The conductivity of Titanium Dioxide (TiO 2 ) thin film fabricated using Radio Frequency (RF) Magnetron Sputtering on Silicon (Si), Indium doped--Tin Oxide (ITO) and microscope glass (M) substrates is presented in this paper. The dependant of thin film thickness and type of substrate been discussed. TiO 2 was deposited using Ti target in Ar+O 2 (45:10) mixture at 250 W for 45, 60, 75, 90, 105 and 120 minute. Resultant thickness varies from 295 nm to 724 nm with deposition rate 6.4 nm/min. On the other hand, resistivity, Rs value for ITO substrate is between 5.72x10 -7 to 1.54x10 -6 Ω.m, Si substrate range is between 3.52x10 -6 to 1.76x10 -5 Ω.m and M substrate range is between 99 to 332 Ω.m. The value of resistivity increases with the thickness of the thin film.

  16. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    Science.gov (United States)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  17. The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film

    Science.gov (United States)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-07-01

    The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  18. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties

    International Nuclear Information System (INIS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Rodríguez, Carmen Serra

    2017-01-01

    Research into the design of new biopolymers/polymer functionalized with nanoparticles is of tremendous interest to the medical sector, particularly with regard to blood-contacting devices. In this present study, a steady blood compatible and active antibacterial coating was fabricated by the grafting of titanium dioxide (TiO 2 )/polyvinylpyyrolidone (PVP) onto a polyvinyl chloride (PVC) film surface via the direct-current glow discharge plasma method. To enhance the chemical interaction between TiO 2 /PVP and PVC, the surfaces of the PVC films were functionalized by different plasmas (air, argon, and oxygen) before coating. In this study, the plasma parameters were varied, such as treatment time of about 5–20 min for a constant power of 100 W, potential 300 V, and a constant gas pressure of 2 Pa for air, argon, and oxygen gas environment. Then, the different plasma treatments on the PVC films, TiO 2 /PVP were grafted using a simple dip-coating method. In addition, the TiO 2 /PVP-grafted PVC films were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and x-ray photo electron spectroscopy. Importantly, TiO 2 /PVP is grafted onto the PVC surface due to the plasma-based retained functionality and demonstrates adhesive efficiency, which was observed by XPS. The bio-stability of the TiO 2 /PVP-modified PVC film was evaluated by in vitro platelet activation analysis and protein adsorption analysis. Then, the antibacterial properties were evaluated by the agar diffusion method against Escherichia coli . The result reveals that the grafting of TiO 2 /PVP was slightly higher for the 15 min oxygen plasma-functionalized PVC, which significantly decreases the platelet adhesion and protein adsorption. Moreover, the antibacterial properties of the 15 min oxygen plasma-functionalized PVC with TiO 2 /PVP-grafted film is also greatly improved compared with an air- and argon

  19. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    Science.gov (United States)

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  20. Synthesis of nanocrystalline TiO 2 thin films by liquid phase ...

    Indian Academy of Sciences (India)

    A transparent, high purity titanium dioxide thin film composed of densely packed nanometer sized grains has been successfully deposited on a glass substrate at 30°C from an aqueous solution of TiO2–HF with the addition of boric acid as a scavenger by liquid phase deposition technique. From X-ray diffraction ...

  1. Surface Modification of Aerosol-Assisted CVD Produced TiO2 Thin Film for Dye Sensitised Solar Cell

    Directory of Open Access Journals (Sweden)

    SuPei Lim

    2014-01-01

    Full Text Available We report a simple and convenient method for the preparation of Ag/TiO2 thin films supported on indium tin oxide, which was achieved by sonochemical deposition of Ag+ on aerosol-assisted chemical vapour deposited TiO2 thin films. Posttreatment was performed on the film by immersion in HCl. The as-prepared composite film was characterised by X-ray diffraction, ultraviolet-visible absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. The photoelectrochemical measurements and J-V characterisation showed approximately fivefold increase in photocurrent density generation and approximately sevenfold enhancement in dye sensitiser solar cell (DSSC conversion efficiency, which was achieved after modification of the TiO2 film with HCl posttreatment and Ag particle deposition. The improved photocurrent density of 933.30 μA/cm2, as well as DSSC power conversion efficiency of 3.63% with high stability, is an indication that the as-synthesised thin film is a potential candidate for solar energy conversion applications.

  2. Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Choi, Seoyeong; Liu, Jingling; Kwon, Younguk

    2013-01-01

    We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a H 2 (1 torr) environment. Depending on the temperature used for the reaction with H2, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW cm -2 illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient TiO 2 mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made

  3. High-Quality Fe-doped TiO2 films with Superior Visible-Light Performance

    DEFF Research Database (Denmark)

    Su, Ren; Bechstein, Ralf; Kibsgaard, Jakob

    2012-01-01

    We report on high-quality polycrystalline Fe-doped TiO2 (Fe–TiO2) porous films synthesized via one-step electrochemical oxidation. We demonstrate that delicate properties such as the impurity concentration and the microstructure that strongly influence the performance of the material for photovol...

  4. Contribution of thickness dependent void fraction and TiSixOy interlayer to the optical properties of amorphous TiO2 thin films

    International Nuclear Information System (INIS)

    Zhang, Fan; Zhang, Rong-Jun; Zheng, Yu-Xiang; Xu, Zi-Jie; Zhang, Dong-Xu; Wang, Zi-Yi; Yu, Xiang; Chen, Liang-Yao

    2013-01-01

    The optical properties of TiO 2 thin films prepared by electron beam evaporation were studied by spectroscopic ellipsometry and analyzed quantitatively using effective medium approximation theory and an effective series capacitance model. The refractive indices of TiO 2 are essentially constant and approach to those of bulk TiO 2 for films thicker than 40 nm, but drop sharply with a decrease in thickness from 40 to 5.5 nm. This phenomenon can be interpreted quantitatively by the thickness dependence of the void fraction and interfacial oxide region. The optical band gaps calculated from Tauc law increase with an increase of film thickness, and can be attributed to the contribution of disorder effect. - Highlights: • Amorphous TiO 2 thin films fabricated on Si substrate by electron beam evaporation • The refractive index and band gap are obtained from spectroscopic ellipsometry. • The refractive index decreases with decreasing film thickness. • Effective medium approximation theory and effective series capacitance model introduced • A band gap increases gradually with an increase in film thickness

  5. Initial deposition and electron paramagnetic resonance defects characterization of TiO2 films prepared using successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Wu Yiyong; Shi Yaping; Xu Xianbin; Sun Chengyue

    2012-01-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO 2 ) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO 2 film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 Å/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: ► TiO 2 films are deposited on glass at 25 °C by successive ionic layer adsorption and reaction method with a rate of 4.6 Å/cycle. ► The films nucleate in an island mode initially but grow in a layer mode afterwards. ► The SILAR TiO 2 films nucleation period is five cycles. ► Electron paramagnetic resonance spectroscopy shows that TiO 2 films paramagnetic defects are attributed to oxygen vacancies. ► They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  6. Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Department; Matsuoka, Fumiaki [Department; Suh, Hyo Seon [Institute; Materials; Beaucage, Peter A. [Department; Xiong, Shisheng [Institute; Materials; Smilgies, Detlef-M. [Cornell; Tan, Kwan Wee [Department; School; Werner, Jörg G. [Department; Nealey, Paul F. [Institute; Materials; Wiesner, Ulrich B. [Department

    2017-12-19

    Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. In situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.

  7. Evaluate humidity sensing properties of novel TiO2–WO3 composite material

    International Nuclear Information System (INIS)

    Lin, Wang-De; Lai, De-Sheng; Chen, Min-Hung; Wu, Ren-Jang; Chen, Fu-Chou

    2013-01-01

    Graphical abstract: TiO 2 –WO 3 (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO 2 –WO 3 composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO 2 –WO 3 composite material was prepared using a different proportion of TiO 2 and WO 3 to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N 2 adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO 2 –WO 3 sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO 2 –WO 3 thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO 2 –WO 3 composite for fabricating high performance humidity sensors

  8. Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites

    Science.gov (United States)

    Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.

  9. Thickness Dependent Optical Properties of Sol-gel based MgF2TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Siddarth Krishnaraja Achar

    2018-04-01

    Full Text Available MgF2TiO2 thin films were prepared by cost effective solgel technique onto glass substrates and optical parameters were determined by envelope technique. Thin films were characterized by optical transmission spectroscopy in the spectral range 290 – 1000 nm. The refractive index, extinction coefficient, Optical thickness and band gap dependency on thickness were evaluated. Thickness dependency of thin films showed direct allowed transition with band gap of 3.66 to 3.73 eV.

  10. Titanium dioxide (TIO2) thin film and plasma properties in RF magnetron sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2013-01-01

    Lately, titanium dioxide (TiO 2 ) films with anatase crystalline property received numerous attentions as unique material properties. There are wide applications of TiO 2 thin film such as for photocatalytic application in solar cell. In the present study, radio frequency (RF) magnetron sputtering technique has been used to produce high dense, homogeneously controllable film layer at low deposition temperature using titanium (Ti) target. The diameter of the Ti target is 3 inch with fixed discharge power of 400W. Magnetron sputtering plasma has been produced in high purity 99.99% Argon (Ar) and 99.99% Oxygen (O 2 ) environment pressure ranging from 5 to 20 mTorr. The TiO2 were growth on silicon and glass substrates. Substrate temperature during deposition was kept constant at 400°C. The distance between target and substrate holder was maintain at 14 cm with rotation of 10 rotation-per-minutes. Our X-ray diffraction result, shows anatase crystalline successfully formed with characterization peaks of plane (101) at 2θ = 25.28°, plane (202) at 2θ = 48.05° and plane (211) at 2θ = 55.06°. In addition, it is our interest to study the plasma properties and optical spectrum of Ti, Ti+ , O- , ArM and Ar+ in the chamber during the deposition process. Result of emission line intensities, electron density and temperature from optical spectroscope and Langmuir probe will be discuss further during the workshop. This works were supported by Graduate Incentive Scheme of Universiti Tun Hussein Onn Malaysia (UTHM) and Fundamental Research Grant Scheme of Ministry of Higher Education, Malaysia. (author)

  11. Transparent TiO2 nanowire networks via wet corrosion of Ti thin films for dye-sensitized solar cells

    Science.gov (United States)

    Shin, Eunhye; Jin, Saera; Hong, Jongin

    2017-09-01

    Transparent TiO2 nanowire networks were prepared by corrosion of Ti thin films on F-doped SnO2 glass substrates in an alkaline (potassium hydroxide: KOH) solution. The formation of the porous TiO2 nanostructures from the Ti thin films was thoroughly investigated. Dye-sensitized solar cells with a photoanode of 1.2-μm-thick nanowire networks exhibit an average optical transmittance of 40% in the visible light region and a power conversion efficiency of 1.0% under one sun illumination.

  12. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    Science.gov (United States)

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance

    International Nuclear Information System (INIS)

    Dhawale, D.S.; Lokhande, C.D.

    2011-01-01

    Highlights: → Low temperature synthesis of mesoporous ZnO thin films by CBD method with urea containing bath. → Wurtzite crystal structure of mesoporous ZnO has been confirmed from the XRD study. → SEM images reveal the formation of hydrophobic mesoporous ZnO thin films. → Maximum LPG response of 52% has been achieved with high stability. - Abstract: In the present work, we report base free chemical bath deposition (CBD) of mesoporous zinc oxide (ZnO) thin films from urea containing bath for liquefied petroleum gas (LPG) sensor application. Mesoporous morphology with average pore size ∼2 μm and wurtzite crystal structure are confirmed from scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The surface of ZnO is hydrophobic with water contact angle 128 ± 1 o . Optical study reveals the presence of direct bad gap with energy 3.24 eV. The gas sensing study reveals the mesoporous ZnO is highly selective towards LPG as compared with CO 2 and maximum LPG response of 52% is achieved upon the exposure of 3900 ppm LPG at 573 K as well as good reproducibility and short response/recovery times.

  14. Easy and General Synthesis of Large-Sized Mesoporous Rare-Earth Oxide Thin Films by 'Micelle Assembly'.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Dai, Pengcheng; Yamauchi, Yusuke

    2015-12-01

    Large-sized (ca. 40 nm) mesoporous Er2O3 thin films are synthesized by using a triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) as a pore directing agent. Each block makes different contributions and the molar ratio of PVP/Er(3+) is crucial to guide the resultant mesoporous structure. An easy and general method is proposed and used to prepare a series of mesoporous rare-earth oxide (Sm2O3, Dy2O3, Tb2O3, Ho2O3, Yb2O3, and Lu2O3) thin films with potential uses in electronics and optical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    Science.gov (United States)

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  16. Tuning Structure and Properties of Graded Triblock Terpolymer-Based Mesoporous and Hybrid Films

    KAUST Repository

    Phillip, William A.

    2011-07-13

    Despite considerable efforts toward fabricating ordered, water-permeable, mesoporous films from block copolymers, fine control over pore dimensions, structural characteristics, and mechanical behavior of graded structures remains a major challenge. To this end, we describe the fabrication and performance characteristics of graded mesoporous and hybrid films derived from the newly synthesized triblock terpolymer, poly(isoprene-b-styrene-b-4-vinylpyridine). A unique morphology, unachievable in diblock copolymer systems, with enhanced mechanical integrity is evidenced. The film structure comprises a thin selective layer containing vertically aligned and nearly monodisperse mesopores at a density of more than 1014 per m2 above a graded macroporous layer. Hybridization via homopolymer blending enables tuning of pore size within the range of 16 to 30 nm. Solvent flow and solute separation experiments demonstrate that the terpolymer films have permeabilities comparable to commercial membranes, are stimuli-responsive, and contain pores with a nearly monodisperse diameter. These results suggest that moving to multiblock polymers and their hybrids may open new paths to produce high-performance graded membranes for filtration, separations, nanofluidics, catalysis, and drug delivery. © 2011 American Chemical Society.

  17. Defect controlled tuning of the ratio of ultraviolet to visible light emission in TiO2 thin films

    International Nuclear Information System (INIS)

    Mondal, S.; Basak, D.

    2016-01-01

    The photoluminescence (PL) of sol–gel TiO 2 thin film has been found to be largely dependent on the post-deposition processing such as annealing at 500 °C in air, vacuum and ultraviolet (UV) light curing at room temperature. A detailed analysis of room temperature PL spectra shows that the UV/VIS PL peak intensity ratio is maximum for the film which has been annealed at 500 °C in air. X-ray photoelectron spectroscopy confirms the presence of Ti 3+ type of point defects. The visible emission is deconvoluted to green and orange emissions. Analyses of the present experimental results indicate that V O and/or Ti 3+ causes the green emission and OH and/or excess O 2 adsorption on TiO 2 surface probably causes the orange emission. The time correlated single photon counting spectroscopy data of the UV PL indicates higher number defects in vacuum annealed and UV cured films as compared to the air annealed film. Correlation of the results altogether allows us to conclude that the surface defects those causing the visible emission are smaller in number in the air annealed film. The present results may be useful for tuning the relative PL intensities of UV, green and orange emissions. - Highlights: • Sol–gel TiO 2 films were treated both in air, vacuum at 500 °C and under UV light (room temperature). • UV/VIS PL intensity ratio is maximum for air annealed and minimum for UV cured films. • Both green and orange emission predominantly controls the visible emission of TiO 2 . • The visible emission exhibit a clear correlation with Ti 3+  defects on the surface.

  18. Intense and stable surface-enhanced Raman scattering from Ag@mesoporous SiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yongjin; Wang, Xiaolong; Chen, Dong; Jiang, Tao, E-mail: jiangtao@nbu.edu.cn; Zhao, Ziqi; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn

    2016-09-15

    A surface-enhanced Raman scattering (SERS) film consisting of mesoporous silica (MSiO{sub 2}) coated Ag nanoparticles (NPs) was achieved. The as-prepared hybrid NPs were uniform in size and formed large amount of aggregates in the film. “Hot spots” were supposed to appear in the MSiO{sub 2} shells with an average size as small as 15 nm. Such a novel core–shell structure therefore induced the enhancement of SERS intensity compared to the film of bare Ag NPs and polymer film of Ag-CMC. The homogeneity and stability of SERS signals from the Ag@MSiO{sub 2} film were also tested. A relative standard deviation of SERS intensity lower than 20% from Raman mapping and a stable SERS signal with excitation power of 100 mW were observed, which were both better than the other two films. Moreover, the obtained Ag@MSiO{sub 2} film was applied to detect thiram pesticides and a detection limit as low as 1×10{sup −8} M was reached, which indicates the advantages of the Ag@MSiO{sub 2} film in biosensor.

  19. Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films: From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells

    Directory of Open Access Journals (Sweden)

    D. A. Duarte

    2014-01-01

    Full Text Available In this paper, nitrogen-doped TiO2 thin films were deposited by DC reactive sputtering at different doping levels for the development of dye-sensitized solar cells. The mechanism of film growth during the sputtering process and the effect of the nitrogen doping on the structural, optical, morphological, chemical, and electronic properties of the TiO2 were investigated by numerical modeling and experimental methods. The influence of the nitrogen doping on the working principle of the prototypes was investigated by current-voltage relations measured under illuminated and dark conditions. The results indicate that, during the film deposition, the control of the oxidation processes of the nitride layers plays a fundamental role for an effective incorporation of substitutional nitrogen in the film structure and cells built with nitrogen-doped TiO2 have higher short-circuit photocurrent in relation to that obtained with conventional DSSCs. On the other hand, DSSCs built with nondoped TiO2 have higher open-circuit voltage. These experimental observations indicate that the incorporation of nitrogen in the TiO2 lattice increases simultaneously the processes of generation and destruction of electric current.

  20. Surface characterization of poly(methylmethacrylate) based nanocomposite thin films containing Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Lewis, S.; Haynes, V.; Wheeler-Jones, R.; Sly, J.; Perks, R.M.; Piccirillo, L.

    2010-01-01

    Poly(methylmethacrylate) (PMMA) based nanocomposite electron beam resists have been demonstrated by spin coating techniques. When TiO 2 and Al 2 O 3 nanoparticles were directly dispersed into the PMMA polymer matrix, the resulting nanocomposites produced poor quality films with surface roughnesses of 322 and 402 nm respectively. To improve the surface of the resists, the oxide nanoparticles were encapsulated in toluene and methanol. Using the zeta potential parameter, it was found that the stabilities of the toluene/oxide nanoparticle suspensions were 7.7 mV and 19.4 mV respectively, meaning that the suspension was not stable. However, when the TiO 2 and Al 2 O 3 nanoparticles were encapsulated in methanol the zeta potential parameter was 31.9 mV and 39.2 mV respectively. Therefore, the nanoparticle suspension was stable. This method improved the surface roughness of PMMA based nanocomposite thin films by a factor of 6.6 and 6.4, when TiO 2 and Al 2 O 3 were suspended in methanol before being dispersed into the PMMA polymer.

  1. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2–Cu2O thin films

    International Nuclear Information System (INIS)

    Aytug, Tolga; Paranthaman, Parans M; Simpson, John T; Christen, David K; Bogorin, Daniela F; Mathis, John E

    2014-01-01

    By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO 2 –Cu 2 O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie–Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ∼172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO 2 , the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required. (papers)

  2. Preparation and properties of TiO2 films by complexing agent-assisted sol-gel method. Yuki haiishi wo mochiita sol gel ho ni yoru TiO2 usumaku no sakusei to seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishide, T [Nissan Motor Co. Ltd., Tokyo (Japan); Mizukami, F [National Chemical Laboratory for Industry, Tsukuba (Japan)

    1992-09-01

    In order to control optical properties of TiO2 thin films, the TiO2 films were prepared by the sol-gel method using glycols or their ether derivatives as organic ligands to study the effect of the organic ligands on the refractive indices and crystal phases. Samples were prepared as follows: Organic ligand was added into the ethanol solution of Ti(O-iso-pr) 4, and aqueous nitric acid solution was added after reflux, and sol obtained by subsequent reflux was applied on soda lime glass or silicon wafer substrates, which were baked at 400 to 900 centigrade. Three kinds of ligand such as 2-(2-methoxyethoxy) ethanol were used. Measured items are the film thickness, thermal characteristics, crystal phase and refractive indices of thin films. The key points are as follows: In case of TiO2 thin films on the soda lime glass substrate, the changing pattern of refractive indices by temperature changes with the kind of ligand used and further the peak strength of anatase changes with the kind of ligand used. In case of silicon wafer substrates, the peak strength of anatase and rutile changes with the kind of ligand. The refractive indices and crystal phase can be controlled by properly using the ligand. 7 refs., 11 figs.

  3. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  4. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    OpenAIRE

    Jiaoping Cai; Zexiang Chen; Jun Li; Yan Wang; Dong Xiang; Jijun Zhang; Hai Li

    2015-01-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon ...

  5. Characteristics of TiO_2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    International Nuclear Information System (INIS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-01-01

    In this study, titanium dioxide (TiO_2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO_2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO_2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  6. Analyses of surface coloration on TiO2 film irradiated with excimer laser

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Qian, H.X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2 . Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2 . The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters

  7. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods

    International Nuclear Information System (INIS)

    Medina-Valtierra, Jorge; Garcia-Servin, Josafat; Frausto-Reyes, Claudio; Calixto, Sergio

    2006-01-01

    Anatase thin films ( 2 were prepared by sol-gel method. TiO 2 -anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO 2 was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones

  8. In-situ co-doping of sputter-deposited TiO2:WN films for the development of photoanodes intended for visible-light electro-photocatalytic degradation of emerging pollutants

    Science.gov (United States)

    Delegan, N.; Pandiyan, R.; Komtchou, S.; Dirany, A.; Drogui, P.; El Khakani, M. A.

    2018-05-01

    We report on the magnetron sputtering deposition of in-situ codoped TiO2:WN films intended for electro-photocatalytic (EPC) applications under solar irradiation. By varying the RF-magnetron sputtering deposition parameters, we were able to tune the in-situ incorporation of both N and W dopants in the TiO2 films over a wide concentration range (i.e., 0-9 at. % for N and 0-3 at. % for W). X-ray photoelectron spectroscopy analysis revealed that both dopants are mostly of a substitutional nature. The analysis of the UV-Vis transmission spectra of the films confirmed that the optical bandgap of both TiO2:N and TiO2:WN films can be significantly narrowed (from 3.2 eV for undoped-TiO2 down to ˜2.3 eV for the doped ones) by tuning their dopant concentrations. We were thus able to pinpoint an optimal window for both dopants (N and W) where the TiO2:WN films exhibit the narrowest bandgap. Moreover, the optimal codoping conditions greatly reduce the recombination defect state density compared to the monodoped TiO2:N films. These electronically passivated TiO2:WN films are shown to be highly effective for the EPC degradation of atrazine (pesticide pollutant) under sunlight irradiation (93% atrazine degraded after only 30 min of EPC treatment). Indeed, the optimally codoped TiO2:WN photoanodes were found to be more efficient than both the undoped-TiO2 and equally photosensitized TiO2:N photoanodes (by ˜70% and ˜25%, respectively) under AM1.5 irradiation.

  9. Improved performance of dye-sensitized solar cell based on TiO_2 photoanode with FTO glass and film both treated by TiCl_4

    International Nuclear Information System (INIS)

    Li, Jinlun; Zhang, Haiyan; Wang, Wenguang; Qian, Yannan; Li, Zhenghui

    2016-01-01

    The dye-sensitized solar cell (DSSC) based on TiO_2 photoanode with FTO glass and TiO_2 film co-treated by TiCl_4 were fabricated. The effects of TiCl_4 treatment on the photovoltaic performance of the DSSCs were investigated. TiCl_4 treatment of the FTO glass resulted in the formation of a compact TiO_2 thin layer on its surface, which could increase the electron collection efficiency. Meanwhile, TiCl_4 treatment of the TiO_2 film could fill gaps between nanoparticles in the TiO_2 film, leading to better electron transfer. These advantages make the DSSC exhibit a highest conversion efficiency of 3.34% under a simulated solar irradiation with an intensity of 100 mW/cm"2 (1 sun), increased by 38% compared with that of the untreated DSSC.

  10. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.

  11. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  12. Strategies to prepare TiO2 thin films, doped with transition metal ions, that exhibit specific physicochemical properties to support osteoblast cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Dhayal, Marshal; Kapoor, Renu; Sistla, Pavana Goury; Pandey, Ravi Ranjan; Kar, Satabisha; Saini, Krishan Kumar; Pande, Gopal

    2014-01-01

    Metal ion doped titanium oxide (TiO 2 ) thin films, as bioactive coatings on metal or other implantable materials, can be used as surfaces for studying the cell biological properties of osteogenic and other cell types. Bulk crystallite phase distribution and surface carbon–oxygen constitution of thin films, play an important role in determining the biological responses of cells that come in their contact. Here we present a strategy to control the polarity of atomic interactions between the dopant metal and TiO 2 molecules and obtain surfaces with smaller crystallite phases and optimal surface carbon–oxygen composition to support the maximum proliferation and adhesion of osteoblast cells. Our results suggest that surfaces, in which atomic interactions between the dopant metals and TiO 2 were less polar, could support better adhesion, spreading and proliferation of cells. - Highlights: • Electrochemical properties of dopants control the nature of TiO 2 thin films. • A model explains the correlation of dopant properties and behaviour of TiO 2 films. • Dopants with less polar interaction with TiO 2 exhibit better biological activity

  13. Suppressing the Photocatalytic Activity of TiO2 Nanoparticles by Extremely Thin Al2O3 Films Grown by Gas-Phase Deposition at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2 pigment powders by extremely thin aluminum oxide (Al2O3 films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development.

  14. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  15. CdSxSe1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film

    International Nuclear Information System (INIS)

    Li, Zhen; Yu, Libo; Liu, Yingbo; Sun, Shuqing

    2014-01-01

    Nanostructured TiO 2 translucent films with different architectures including TiO 2 nanotube (NT), TiO 2 nanowire (NW), and TiO 2 nanowire/nanotube (NW/NT) have been produced by second electrochemical oxidization of TiO 2 NT with diameter around 90–110 nm via modulation of applied voltage. These TiO 2 architectures are sensitized with CdS x Se 1−x alloyed quantum dots (QDs) in sizes of around 3–5 nm aiming to tune the response of the photoelectrochemical properties in the visible region. One-step hydrothermal method facilitates the deposition of CdS x Se 1−x QDs onto TiO 2 films. These CdS x Se 1−x QDs exhibit a tunable range of light absorption with changing the feed molar ratio of S:Se in precursor solution, and inject electrons into TiO 2 films upon excitation with visible light, enabling their application as photosensitizers in sensitized solar cells. Power conversion efficiency (PCE) of 2.00, 1.72, and 1.06 % are achieved with CdS x Se 1−x (obtained with S:Se = 0:4) alloyed QDs sensitized solar cells based on TiO 2 NW/NT, TiO 2 NW, and TiO 2 NT architectures, respectively. The significant enhancement of power conversion efficiency obtained with the CdS x Se 1−x /TiO 2 NW/NT solar cell can be attributed to the extended absorption of light region tuned by CdS x Se 1−x alloyed QDs and enlarged deposition of QDs and efficient electrons transport provided by TiO 2 NW/NT architecture

  16. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Xinghua Zhu

    2017-12-01

    Full Text Available Titanium dioxide (TiO2 films have been prepared by DC reaction magnetron sputtering technique on different substrates (glass, SiO2, platinum electrode-Pt, Silicon-Si. X-ray diffraction (XRD patterns showed that all TiO2 films were grown along the preferred orientation of (110 plane. Samples on Si and Pt substrates are almost monophasic rutile, however, samples on glass and SiO2 substrates accompanied by a weak anatase structure. Atomic force microscopy (AFM images revealed uniform grain distribution except for films on Pt substrates. Photoluminescence (PL spectra showed obvious intrinsic emission band, but films on glass was accompanied by a distinct defect luminescence region. Raman spectroscopy suggested that all samples moved to high wavenumbers and films on glass moved obviously.

  17. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  18. ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode

    Indian Academy of Sciences (India)

    Abstract. Electrical analysis of Al/p-Si Schottky diode with titanium dioxide (TiO2) thin film was performed at ..... This work was partially supported by The Management Unit of Scientific Research Project of Bozok University and Hitit. University.

  19. Studies on the performance of TiO2 thin films as protective layer to chlorophyll in Ocimum tenuiflorum L from UV radiation

    International Nuclear Information System (INIS)

    Malliga, P.; Selvi, B. Karunai; Pandiarajan, J.; Prithivikumaran, N.; Neyvasagam, K.

    2015-01-01

    Thin films of TiO 2 were prepared on glass substrates using sol-gel dip coating technique. The films with 10 coatings were prepared and annealed at temperatures 350°C, 450°C and 550°C for 1 hour in muffle furnace. The annealed films were characterized by X – Ray diffraction (XRD), UV – Visible, AFM, Field Effect Scanning Electron Microscopy (FESEM) and EDAX studies. Chlorophyll has many health benefits due to its structural similarity to human blood and its good chelating ability. It has antimutagenic and anticarcinogenic properties. UV light impairs photosynthesis and reduces size, productivity, and quality in many of the crop plant species. Increased exposure of UV light reduces chlorophyll contents a, b and total content in plants. Titanium Dioxide (TiO 2 ) is a wide band gap semiconductor and efficient light harvester. TiO 2 has strong UltraViolet (UV) light absorbing capability. Here, we have studied the performance of TiO 2 thin films as a protective layer to the chlorophyll contents present in medicinal plant, tulsi (Ocimum tenuiflorum L) from UV radiation. The study reveals that crystallite size increases, transmittance decreases and chlorophyll contents increases with increase in annealing temperature. This study showed that TiO 2 thin films are good absorber of UV light and protect the chlorophyll contents a, b and total content in medicinal plants

  20. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  1. Novel Synthesis of the TiO2(B) Multilayer Templated Films

    Czech Academy of Sciences Publication Activity Database

    Procházka, Jan; Kavan, Ladislav; Zukalová, Markéta; Frank, Otakar; Kalbáč, Martin; Zukal, Arnošt; Klementová, Mariana; Carbone, D.; Graetzel, M.

    2009-01-01

    Roč. 21, č. 8 (2009), s. 1457-1464 ISSN 0897-4756 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : TiO2(B) * synthesis * films Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.368, year: 2009

  2. Experimental and simulation study of growth of TiO2 films on different substrates and its applications

    Science.gov (United States)

    Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.

    2018-04-01

    Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.

  3. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties

    Science.gov (United States)

    Li, Cuiling; Dag, Ömer; Dao, Thang Duy; Nagao, Tadaaki; Sakamoto, Yasuhiro; Kimura, Tatsuo; Terasaki, Osamu; Yamauchi, Yusuke

    2015-03-01

    Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles.

  4. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    Science.gov (United States)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  5. Tailoring optical properties of TiO2-Cr co-sputtered films using swift heavy ions

    Science.gov (United States)

    Gupta, Ratnesh; Sen, Sagar; Phase, D. M.; Avasthi, D. K.; Gupta, Ajay

    2018-05-01

    Effect of 100 MeV Au7+ ion irradiation on structure and optical properties of Cr-doped TiO2 films has been studied using X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, UV-Visible spectroscopy, X-ray reflectivity, and atomic force microscopy. X-ray reflectivity measurement implied that film thickness reduces as a function of ion fluence while surface roughness increases. The variation in surface roughness is well correlated with AFM results. Ion irradiation decreases the band gap energy of the film. Swift heavy ion irradiation enhances the oxygen vacancies in the film, and the extra electrons in the vacancies act as donor-like states. In valence band spectrum, there is a shift in the Ti3d peak towards lower energies and the shift is equivalent to the band gap energy obtained from UV spectrum. Evidence for band bending is also provided by the corresponding Ti XPS peak which exhibits a shift towards lower energy due to the downward band bending. X-ray absorption studies on O Kand Cr L3,2 edges clearly indicate that swift heavy ion irradiation induces formation of Cr-clusters in TiO2 matrix.

  6. Effect of Aging Time and Film Thickness on the Photoelectrochemical Properties of TiO2 Sol-Gel Photoanodes

    Directory of Open Access Journals (Sweden)

    D. Regonini

    2014-01-01

    Full Text Available This work has focused on the investigation of a non-aqueous based sol-gel process to produce TiO2 based photoelectrodes for solar water splitting. In particular, the effect of the aging time of the sol and TiO2 film thickness on the photoelectrochemical properties of the photoanodes has been investigated. In order to achieve optimal performances (i.e., photocurrent density up to 570 µA/cm2 and IPCE of 26% at 300 nm, the sol needs to be aged for 3 to 6 h, before being dip-coated to produce the photoanodes. The importance of the aging time can also be appreciated from the optical properties of the TiO2 films; the absorbance threshold of the sol-gel aged for 3–6 h is slightly shifted towards longer wavelenghts in comparison to 0 h aging. Aging is necessary to build up a well-interconnected sol-gel network which finally leads to a photoelectrode with optimized light absorption and electron collection properties. This is also confirmed by the higher IPCE signal of aged photoelectrodes, especially below 340 nm. Among thicknesses considered, there is no apparent significant difference in the photoresponse (photocurrent density and IPCE of the TiO2 sol-gel films.

  7. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    Science.gov (United States)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  8. Effects of pre-strain applied at a polyethylene terephthalate substrate before the coating of TiO2 film on the coating film quality and optical performance

    International Nuclear Information System (INIS)

    Li, Tse-Chang; Wu, Bo-Hsiung; Lin, Jen-Fin

    2011-01-01

    A mold was designed to create various strains in polyethylene terephthalate (PET) substrates before the deposition of TiO 2 film to simulate deposition process on a cylindrical drum. The residual stress of the PET substrate with TiO 2 film significantly increased with increasing strain, decreasing the radius of curvature. Compared to the as-received PET substrate, there was a noticeable increase in the surface roughness in the PET/TiO 2 specimens when a large strain was applied. The formation of voids or cavities in the TiO 2 layer significantly increased the roughness of the specimen. The mean cavity size and depth increased with increasing strain. For strains ≤ 4%, the specimen's hardness and Young's modulus factored by the voids/cavities increased with increasing surface roughness. The optical absorption increased with increasing surface roughness before becoming asymptotic to a constant value. The strain applied to the PET substrate before TiO 2 deposition greatly affects the optical reflection, transmittance, and absorption.

  9. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO 2 films

    KAUST Repository

    Yang, Yong; Zhang, Qiang; Zhang, Bei; Mi, Wenbo; Chen, Long; Li, Lin; Zhao, Chao; Diallo, Elhadj; Zhang, Xixiang

    2012-01-01

    TiO 2-M-TiO 2 (M = W, Co and Ag) multilayer films have been deposited on glass substrates using reactive magnetron sputtering, then annealed in air for 2 h at 500°C. The structure, surface morphology and optical properties of the films have been

  10. Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor

    Science.gov (United States)

    Yadav, B. C.; Verma, Nidhi; Singh, Satyendra

    2012-09-01

    Present paper reports the synthesis of SnO2-TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2-TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.

  11. A practical demonstration of water disinfection using TiO2 films and sunlight.

    Science.gov (United States)

    Gelover, Silvia; Gómez, Luis A; Reyes, Karina; Teresa Leal, Ma

    2006-10-01

    The scope of this study is the assessment of the efficiency of solar disinfection by heterogeneous photocatalysis with sol-gel immobilized (titanium dioxide) TiO2 films over glass cylinders. The solar disinfection process known as SODIS was considered as a reference. Spring water naturally polluted with coliform bacteria was exposed to sunlight in plastic bottles with and without TiO2 over simple solar collectors and the disinfection effectiveness was measured. Total and fecal coliforms quantification was performed by means of the chromogenic substrate method in order to obtain the efficiency of each disinfection treatment. The disinfection with TiO2 was more efficient than the SODIS process, inactivating total coliforms as well as fecal coliforms. On a sunny day (more than 1000 W m(-2) irradiance), it took the disinfection with immobilized TiO2 15 min of irradiation to inactivate the fecal coliforms to make them undetectable. For inactivation of total coliforms, 30 min was required, so that in less than half the time it takes SODIS, the treated water complies with the microbial standards for drinking water in Mexico. Another important part of this study has been to determine the bacterial regrowth in water after the disinfection processes were tested. After SODIS, bacterial regrowth of coliforms was observed. In contrast, when using the TiO2 catalyst, coliforms regrowth was not detected, neither for total nor for fecal coliforms. The disinfection process using TiO2 kept treated water free of coliforms at least for seven days after sun irradiation. This demonstration opens the possibility of application of this simple method in rural areas of developing countries.

  12. An efficient visible and UV-light-activated B–N-codoped TiO2 photocatalytic film for solar depollution prepared via a green method

    International Nuclear Information System (INIS)

    Xu Qingchi; Zhang Yan; He Ziming; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2012-01-01

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO 2 porous film prepared via a “green” and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B–N-codoped TiO 2 film (p-3B–N–TiO 2 ) is 3 times higher than that of porous N-doped TiO 2 (p-N–TiO 2 ) film, while its UV photocatalytic activity is almost double that of p-N–TiO 2 film and comparable to that of porous TiO 2 . The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti 3+ recombination centers.

  13. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  14. Phase transformations in sputter-deposited W-doped TiO2 films during annealing in air

    International Nuclear Information System (INIS)

    Saladukhin, I. A.; Abadias, G.

    2013-01-01

    Pure and tungsten-doped TiO 2 films are characterized as amorphous in the as-deposited state by XRD. A crystallization of titanium dioxide occurs during their annealing in air. Depending on the tungsten and nitrogen doping level, anatase or rutile phase formation is observed. Both of these phases are thermally stable in all interval of the temperatures used during annealing. Phase composition and lattice parameter analysis indicates on the formation of substitutional Ti 1 -xW x O 2 films. N-doped Ti 0 .75W 0 .25O 2 film is more resistant against high-temperature oxidation as compared to Ti 0 .74W 0 .26O 2 film and, especially, as compared to Ti 0 .60W 0 .40O 2 film. (authors)

  15. Structure, Morphology and Optical Properties of TiO2 Films Formed by Anodizing in a Mixed Solution of Citric Acid and Sulfamic Acid

    Science.gov (United States)

    Choudhary, R. K.; Sarkar, P.; Biswas, A.; Mishra, P.; Abraham, G. J.; Sastry, P. U.; Kain, V.

    2017-08-01

    TiO2 films of 50-180 nm thickness were formed at room temperature by anodization of titanium metal in a mixture of citric acid and sulfamic acid in the potential range of 5-30 V. The films so obtained were characterized for their crystal structure, surface morphology, chemical composition and optical properties. Grazing incidence x-ray diffraction and micro-laser Raman spectroscopy measurements of the anodic films confirmed the formation of brookite phase of TiO2 at anodizing potentials of 15, 20, 25 and 30 V and amorphous structure at 5 and 10 V. Field emission scanning electron microscopy revealed non-porous microstructure of the films. Spectroscopic ellipsometry measurements evaluated the band gap of TiO2 at around 3.3 eV, whereas the refractive index of the films was found to be in the range of 2-2.35, in the visible range of spectrum.

  16. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    Science.gov (United States)

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  17. Effects of LP-MOCVD prepared TiO2 thin films on the in vitro behavior of gingival fibroblasts

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Popescu, Simona; Ciofrangeanu, Cristina M.; Gleizes, Alain N.

    2011-01-01

    We report on the in vitro response of human gingival fibroblasts (HGF-1 cell line) to various thin films of titanium dioxide (TiO 2 ) deposited on titanium (Ti) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The aim was to study the influence of film structural parameters on the cell behavior comparatively with a native-oxide covered titanium specimen, this objective being topical and interesting for materials applications in implantology. HGF-1 cells were cultured on three LP-MOCVD prepared thin films of TiO 2 differentiated by their thickness, roughness, transversal morphology, allotropic composition and wettability, and on a native-oxide covered Ti substrate. Besides traditional tests of cell viability and morphology, the biocompatibility of these materials was evaluated by fibronectin immunostaining, assessment of cell proliferation status and the zymographic evaluation of gelatinolytic activities specific to matrix metalloproteinases secreted by cells grown in contact with studied specimens. The analyzed surfaces proved to influence fibronectin fibril assembly, cell proliferation and capacity to degrade extracellular matrix without considerably affecting cell viability and morphology. The MOCVD of TiO 2 proved effective in positively modifying titanium surface for medical applications. Surface properties playing a crucial role for cell behavior were the wettability and, secondarily, the roughness, HGF-1 cells preferring a moderately rough and wettable TiO 2 coating.

  18. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  19. Surface nanostructuring of TiO2 thin films by ion beam irradiation

    International Nuclear Information System (INIS)

    Romero-Gomez, P.; Palmero, A.; Yubero, F.; Vinnichenko, M.; Kolitsch, A.; Gonzalez-Elipe, A.R.

    2009-01-01

    This work reports a procedure to modify the surface nanostructure of TiO 2 anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N + ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S + ) and lighter (B + ) ions under similar conditions

  20. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  1. Structural and electrical characteristics of ZrO2-TiO2 thin films by sol-gel method

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsing; Tseng, Ching-Fang; Lai, Chun-Hung; Tung, Hsin-Han; Lin, Shih-Yao

    2010-01-01

    In this paper, we investigated electrical properties and microstructures of ZrTiO 4 (ZrO 2 -TiO 2 ) thin films prepared by the sol-gel method on ITO substrates at different annealing temperatures. All films exhibited ZrTiO 4 (1 1 1) and (1 0 1) orientations perpendicular to the substrate surface, and the grain size increased with increase in the annealing temperature. A low leakage current density of 2.06 x 10 -6 A/cm 2 was obtained for the prepared films. Considering the primary memory switching behavior of ZrTiO 4 , ReRAM based on ZrTiO 4 shows promise for future nonvolatile memory applications.

  2. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Almasi, Hadi; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-11-05

    In this study, ternary potato starch (PS) bionanocomposite films containing two types of nanoparticles, sodium montmorillonite (MMT), one-dimensional (1D) clay platelets, (3 and 5wt%) and TiO2, three-dimensional (3D) nanospheres, (0.5, 1 and 2wt%), are prepared using solvent casting method. X-ray diffraction (XRD) test confirms the completely exfoliated structure formed in the PS-MMT nanocomposites containing 3 and 5% MMT. The success of the formation of new hydrogen bonds between the hydroxyl groups of starch and nanofillers is confirmed by Fourier transform infrared (FTIR) spectroscopy. Tensile strength (TS), elongation at break (EB), glass transition temperature (Tg), and melting point (Tm) of the films are also enhanced after MMT and TiO2 incorporation. The water vapor permeability (WVP) and the visible, UVA, UVB and UVC lights transmittance decreases upon TiO2 and MMT content increasing. Generally, a synergistic effect is observed between MMT and TiO2 at lower concentrations of MMT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. SURFACE MODIFICATION OF SEMICONDUCTOR THIN FILM OF TiO2 ON GRAPHITE SUBSTRATE BY Cu-ELECTRODEPOSITION

    Directory of Open Access Journals (Sweden)

    Fitria Rahmawati

    2010-06-01

    Full Text Available Surface modification of graphite/TiO2 has been done by mean of Cu electrodeposition. This research aims to study the effect of Cu electrodeposition on photocatalytic enhancing of TiO2. Electrodeposition has been done using CuSO4 0,4 M as the electrolyte at controlled current. The XRD pattern of modified TiO2 thin film on graphite substrate exhibited new peaks at 2θ= 43-44o and 2θ= 50-51o that have been identified as Cu with crystal cubic system, face-centered crystal lattice and crystallite size of 26-30 nm. CTABr still remains in the material as impurities. Meanwhile, based on morphological analysis, Cu particles are dissipated in the pore of thin film. Graphite/TiO2/Cu has higher photoconversion efficiency than graphite/TiO2.   Keywords: semiconductor, graphite/TiO2, Cu electrodeposition

  4. Thin TiO2 films deposited by implantation and sputtering in RF inductively coupled plasmas

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2012-01-01

    The achievement of titanium dioxide (TiO 2 ) thin films in the rutile crystalline phase is reported. The samples result from the implantation of oxygen ions of Ti in argon/oxygen plasma generated by inductively coupled RF at a commercial 13.56 MHz frequency. Simultaneously, a sputtering process is conducted on the titanium target in order to produce TiO 2 thin films in the anatase phase over silicon and glass substrates. Both implantation and sputtering processes shared the same 500 W plasma with the target, polarized between 0 and -3 kV. The substrates were placed between 2 and 3 cm from the target, this distance being found to be determinant of the TiO 2 deposition rate. The rutile phase in the target was obtained at temperatures in the order of 680 degrees C and the anatase (unbiased) one at about 300 degrees C without any auxiliary heating. The crystalline phases were characterized by x ray diffraction and Raman spectroscopy. The morphology and average roughness were established by means of scanning electronic and atomic force microscopy, whereas the reaction products generated during the oxidation process were analyzed by mass spectrometry. Finally, the stoichiometric composition was measured by means of X-ray photoelectron spectroscopy.

  5. Photocatalytic and photoelectrochemical properties of sol–gel TiO2 films of controlled thickness and porosity

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Baudyš, M.; Zlámal, M.; Krýsová, Hana; Morozová, Magdalena; Klusoň, Petr

    2014-01-01

    Roč. 230, JUL 2014 (2014), s. 2-7 ISSN 0920-5861 Institutional support: RVO:61388955 ; RVO:67985858 Keywords : TiO2 film * Sol-gel * Thickness Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  6. Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation

    International Nuclear Information System (INIS)

    Tachikawa, Takashi

    2012-01-01

    We demonstrate control of the carrier density of single phase anatase TiO 2 thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO 2 samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

  7. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Gao, Bin; Wang, Tao; Yao, ZhengJun

    2017-08-01

    Monitoring of humidity is of utmost importance as it is essential part of almost every process in our life. Many commercial humidity sensors based on metal oxide semiconductors are available in the market, but there is still need to synthesize low-cost, fast and highly sensitive humidity sensors with no interference from background environment. The aim of this work was to fabricate the ordered mesoporous un-doped and Co-doped TiO2 (0.1-5 mol% Co) and to analyze its humidity sensing properties at room temperatures. The ordered mesoporous powders with high specific surface area (SSA) were prepared by multicomponent self-assembly procedure and then spray-coated onto the sensor substrates with interdigitated gold electrodes. The sensors exhibited excellent stability and reproducible resistance change under various relative humidity percentages (9-90% RH) with negligible effect of background environment. For instance, the response to 90% RH at room temperature was about five orders of magnitude (∼1.39 × 105) and the response time (Tres) was ∼24 s. The reaction/recovery times of the sensors were compared with commercial humidity sensor to show that the reaction times in this work are not given by the surface reaction of water vapor on the sensor surfaces, rather these are mainly influenced by the experimental setup. The sensor response increased up to 3 mol% Co-contents and then decreased for 5 mol% Co-contents. Based on the experimental results, the surface reaction of humidity is discussed related to specific surface area, average grain size and cobalt contents to understand the humidity sensing mechanism.

  8. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  9. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  10. Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique

    International Nuclear Information System (INIS)

    Mohanty, P.; Kabiraj, D.; Mandal, R.K.; Kulriya, P.K.; Sinha, A.S.K.; Rath, Chandana

    2014-01-01

    TiO 2 thin films deposited by electron beam evaporation technique annealed in either O 2 or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O 2 atmosphere. While the pristine film shows a super-paramagnetic behavior, both O 2 and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford’s backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O 2 annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O 2 annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O 2 annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO 2 film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]). - Highlights: • TiO 2 films were deposited by e-beam evaporation technique and post annealed under O 2 /Ar at 500 °C. • The pristine film shows SPM behavior where as O 2 and Ar annealed films demonstrate RTFM. • The presence of magnetic impurities has been discarded by various characterization techniques. • The magnetic moment is found to be higher in O 2 annealed film than the Ar annealed one. • The higher M s in O 2 annealed film is attributed to oxygen vacancies as well as crystallinity

  11. Formation of textured microstructure by mist deposition of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Qin, Gang; Watanabe, Akira

    2013-01-01

    Unique and various textured TiO 2 films have been easily fabricated by mist deposition method on silicon and glass substrates with mild preparation conditions. Two kinds of TiO 2 nanoparticle with different shape, size, and crystal form were used as starting material, which resulted in a simple preparation process under low temperature and ordinary pressure. It was easy to control the thickness, morphology, and roughness of textured TiO 2 film by adjusting the mist deposition conditions such as deposition time, temperature, and the shape and size of nanoparticles. The optical properties of textured TiO 2 films before and after spin coating of Ag nanoparticles were investigated. The angular dependence of the reflectance was obviously reduced by textured TiO 2 surface and such effect was enhanced by Ag nanoparticles coating. A broad plasmon band of Ag grains was observed in the absorption spectrum of the textured Ag nanoparticle-coated TiO 2 film

  12. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  13. On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates

    International Nuclear Information System (INIS)

    Cueto, Luisa F.; Sanchez, Enrique; Torres-Martinez, Leticia M.; Hirata, Gustavo A.

    2005-01-01

    This article reports the optical and morphological properties of dip-coated TiO 2 and ZrO 2 thin films on soda-lime glass substrates by metal-organic decomposition (MOD) of titanium IV and zirconium IV acetylacetonates respectively. Thermogravimetric and differential thermal analysis (DTA-TG) were performed on the precursor powders, indicating pure TiO 2 anatase and tetragonal ZrO 2 phase formation. Phase crystallization processes took place in the range of 300-500 deg. C for anatase and of 410-500 deg. C for ZrO 2 . Fourier Transform Infrared Spectroscopy (FT-IR) was used to confirm precursor bidentate ligand formation with keno-enolic equilibrium character. Deposited films were heated at different temperatures, and their structural, optical and morphological properties were studied by grazing-incidence X-ray Diffraction (GIXRD) and X-Ray Photoelectron Spectroscopy (XPS), Ultraviolet Visible Spectroscopy (UV-Vis), and Atomic Force Microscopy (AFM) respectively. Film thinning and crystalline phase formation were enhanced with increasing temperature upon chelate decomposition. The optimum annealing temperature for both pure anatase TiO 2 and tetragonal ZrO 2 thin films was found to be 500 deg. C since solid volume fraction increased with temperature and film refractive index values approached those of pure anatase and tetragonal zirconia. Conditions for clean stoichiometric film formation with an average roughness value of 2 nm are discussed in terms of material binding energies indicated by XPS analyses, refractive index and solid volume fraction obtained indirectly by UV-Vis spectra, and crystalline peak identification provided by GIXRD

  14. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    Science.gov (United States)

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  15. Love Wave Ultraviolet Photodetector Fabricated on a TiO2/ST-Cut Quartz Structure

    Directory of Open Access Journals (Sweden)

    Walter Water

    2014-01-01

    Full Text Available A TiO2 thin film deposited on a 90° rotated 42°45′ ST-cut quartz substrate was applied to fabricate a Love wave ultraviolet photodetector. TiO2 thin films were grown by radio frequency magnetron sputtering. The crystalline structure and surface morphology of TiO2 thin films were examined using X-ray diffraction, scanning electron microscope, and atomic force microscope. The effect of TiO2 thin film thickness on the phase velocity, electromechanical coupling coefficient, temperature coefficient of frequency, and sensitivity of ultraviolet of devices was investigated. TiO2 thin film increases the electromechanical coupling coefficient but decreases the temperature coefficient of frequency for Love wave propagation on the 90° rotated 42°45′ ST-cut quartz. For Love wave ultraviolet photodetector application, the maximum insertion loss shift and phase shift are 2.81 dB and 3.55 degree at the 1.35-μm-thick TiO2 film.

  16. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  17. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    Science.gov (United States)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  18. Study of optical and electrical properties of water-soluble conjugated poly(3-hexylthiophene) on different grain-sized mesoporous TiO2 layers

    International Nuclear Information System (INIS)

    Thalluri, Gopala Krishna V.V.; Bolsée, Jean-Christophe; Madapati, Saipriya; Vanderzande, Dirk; Manca, Jean V.

    2014-01-01

    Solid-state hybrid solar cells are promising candidates for future low-cost photovoltaic energy generation that are based on polymer/metal oxide donor/acceptor heterojunctions. However, a critical drawback of hybrid solar cells is the usage of toxic and environmental unfriendly organic solvents in the phase of preparation. In terms of environmental impact, “green” and safer materials are required towards processing of eco-friendly hybrid solar cells. In this work, during processing phase of eco-friendly hybrid solar cells, aqueous-soluble conjugated poly(3-hexylthiophene) material is used as photo-active and hole transporting layer and TiO 2 layer as electron accepting layer. Optical, topographical and morphological characterizations on different grain-sized TiO 2 layers with polymer films are studied. The influence of eco-friendly hybrid solar cell electrical properties in combination with different grain-sized TiO 2 layers measured under N 2 and ambient conditions are discussed. It is important to understand these properties for further optimizations. - Highlights: • Morphological properties of different grain-sized TiO 2 layers. • Optical properties with and without water-soluble poly(3-hexylthiophene) on TiO 2 layers. • Electrical measurements. • Eco-friendly hybrid solar cells

  19. Synergistic effects for the TiO2/RuO2/Pt photodissociation of water

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, G; Harriman, A; Williams, D

    1983-07-01

    Compressed discs of naked TiO2 or TiO2 coated with a thin film of a noble metal (e.g. Pt) do not photodissociate water upon illumination with UV light, but small amounts of H2 are generated if the TiO2 has been reduced in a stream of H2 at 600 C. Discs prepared from mixtures of TiO2/RuO2 facilitate the UV photodissociation of water into H2 and O2 although the yields are very low. When a thin (about 9 nm) film of Pt is applied to the TiO2/RuO2 discs, the yields of H2 and O2 observed upon irradiation with UV light are improved drastically. 25 references.

  20. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  1. The properties of metal contacts on TiO2 thin films produced by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Brus V. V.

    2010-10-01

    Full Text Available The article deals with research on volt-ampere characteristics of metal contacts (Al, Cr, In, Mo, Ti on titanium dioxide thin films and influence of annealing in vacuum on their electric properties. Volt-ampere characteristics measurements were taken by three-probe method. There was established that indium contact on TiO2 thin films possessed sharply defined ohmic properties.

  2. Effective Removal of Congo Red by Triarrhena Biochar Loading with TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Yu

    2018-01-01

    Full Text Available A composite of pyrolytic Triarrhena biochar loading with TiO2 nanoparticles has been synthesized by the sol-gel method. The composite shows a well-developed hollow mesoporous and macropore structure as characterized by XRD, BET, and SEM. When used as an absorbent to remove Congo red from aqueous solution, it was found that as-prepared composite performed better absorption capacity than single biochar or TiO2. The results suggest that biochar loading with TiO2 could be promisingly implemented as an environmentally friendly and inexpensive adsorbent for Congo red removal from wastewater.

  3. Composite templates synthesis of mesoporous titania from industrial titanyl sulfate solution under external outfields

    International Nuclear Information System (INIS)

    Tian Congxue

    2008-01-01

    The precursors of mesoporous titania were synthesized via supra-molecular self-assembly route induced by composite templates (CTAB/P-123) from industrial titanyl sulfate solution under ultrasonic irradiation, microwave and hydrothermal condition. The hydrolysis and polycondensation rates of TiOSO 4 solution were controlled by adjusting the pH value at about 1.0. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by X-ray diffraction (XRD), N 2 isothermal adsorption-desorption, HRTEM and SAD. External outfields with enhancing polar action and soft hydrothermal condition were beneficial to prepare better mesoporous TiO 2 . Ultrasonic vibration promoted the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO 2 was synthesized with BET specific surface area of 190.6 m 2 g -1 , average pore diameter of 2.57 nm and crystal size of 13.65 nm. And ultrasonic irradiation, microwave and hydrothermal conditions were making for forming and stabilizing the mesoporous structure

  4. Excellent performance of Pt-C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon

    Science.gov (United States)

    Wu, Xinbing; Zhuang, Wei; Lu, Linghong; Li, Licheng; Zhu, Jiahua; Mu, Liwen; Li, Wei; Zhu, Yudan; Lu, Xiaohua

    2017-12-01

    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support.

  5. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  6. Aerosol deposition of Ba0.8Sr0.2TiO3 thin films

    Directory of Open Access Journals (Sweden)

    Branković Zorica

    2009-01-01

    Full Text Available In this work we optimized conditions for aerosol deposition of homogeneous, nanograined, smooth Ba0.8Sr0.2TiO3 thin films. Investigation involved optimization of deposition parameters, namely deposition time and temperature for different substrates. Solutions were prepared from titanium isopropoxide, strontium acetate and barium acetate. Films were deposited on Si (1 0 0 or Si covered by platinum (Pt (1 1 1 /Ti/SiO2/Si. Investigation showed that the best films were obtained at substrate temperature of 85ºC. After deposition films were slowly heated up to 650ºC, annealed for 30 min, and slowly cooled. Grain size of BST films deposited on Si substrate were in the range 40-70 nm, depending on deposition conditions, while the same films deposited on Pt substrates showed mean grain size in the range 35-50 nm. Films deposited under optimal conditions were very homogeneous, crackfree, and smooth with rms roughness lower than 4 nm for both substrates.

  7. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  8. Radiation response of cubic mesoporous silicate and borosilicate thin films

    Science.gov (United States)

    Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio

    2018-01-01

    The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree

  9. Preparation of Nanoporous TiO2 Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsiue-Hsyan Wang

    2011-01-01

    Full Text Available Nano-porous TiO2 thin films have been widely used as the working electrodes in dye-sensitized solar cells (DSSCs. In this work, the phase-pure anatase TiO2 (a-TiO2 and rutile TiO2 (r-TiO2 have been prepared using hydrothermal processes. The investigation of photo-to-electron conversion efficiency of DSSCs fabricated from mixed-TiO2 with a-TiO2 and r-TiO2 ratio of 80 : 20 (A8R2 was performed and compared to that from commercial TiO2 (DP-25. The results showed higher efficiency of DSSC for A8R2 cells with same dependence of cell efficiency on the film thickness for both A8R2 and DP-25 cells. The best efficiency obtained in this work is 5.2% from A8R2 cell with TiO2 film thickness of 12.0 μm. The correlation between the TiO2 films thickness and photoelectron chemical properties of DSSCs fabricated from A8R2 and DP-25 was compared and discussed.

  10. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  11. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    International Nuclear Information System (INIS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-01-01

    TiO 2 -diatomite photocatalysts were prepared by sol–gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption–desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO 2 , the anatase-to-rutile phase transition temperature of TiO 2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H 3 PO 4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si–O–Ti bond, increase the binding strength between TiO 2 and diatomite, restrain crystal growth of loaded TiO 2 , and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO 2 -diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO 2 -diatomite pretreated by phosphoric acid.

  12. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    Science.gov (United States)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  13. Reflectance spectroscopy from TiO2 particles embedded in polyurethane

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Johansen, Villads Egede

    2013-01-01

    This paper presents the results of a physical simulation carried out using TiO2-Polyurethane composite coating on bright aluminium surface to understand the light scattering effect for designing white surfaces. Polyurethane matrix is selected due to the matching refractive index (1.7) with Al2O3...... layer on anodized aluminium surfaces. Three different TiO2 particle distributions were dispersed in polyurethane and spin coated onto high gloss and caustic etched aluminium substrates. Reflectance spectra of TiO2-polyurethane films of various concentrations were analysed using an integrating sphere....... The results show that the TiO2-polyurethane coatings have a high diffuse reflectance as a result of multiple scattering from TiO2 particles. Diffuse reflectance spectra of TiO2 containing films vary weakly with particle concentration and reach a steady state value at a concentration of 0.75 wt.%. Using...

  14. The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering

    International Nuclear Information System (INIS)

    Liu Baoshun; Zhao Xiujian; Zhao Qingnan; Li Chunling; He Xin

    2005-01-01

    The TiO 2 films were prepared on slide substrates by dc reactive magnetron sputtering at different oxygen partial pressure, and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Fourier transform infrared spectrometry (FT-IR). The degradation of methyl orange aqueous solutions was used to evaluate the photocatalytic activity. The results show that all films show crystalline anatase structure irrespective of oxygen partial pressure. The surface oxygen element exists in three forms, the first one is TiO 2 , the second one is OH - and the last one is physical absorbed water. The films deposited at oxygen partial pressure of 0.035 and 0.040 mTorr present better photocatalytic activity, which shows clear tendency to increase with oxygen partial pressure. Such photocatalytic activity results are considered to correlate with the crystalline structure, grain sizes and the OH - concentration

  15. Observation of Significant enhancement in the efficiency of a DSSC by InN nanoparticles over TiO 2-nanoparticle films

    Science.gov (United States)

    Wang, Tsai-Te; Raghunath, P.; Lu, Yun-Fang; Liu, Yu-Chang; Chiou, Chwei-Huawn; Lin, M. C.

    2011-06-01

    We have studied the effect of InN deposited over TiO2 nanoparticle (NP) films on the performance of dye-sensitized solar cells (DSSCs) using N3 dye with I/I3- electrolyte. A 10-20% increase in efficiency was observed for InN deposited, N3 sensitized 5-8.5 μm thick TiO2 films as compared to similar non-treated films. The deposition of InN was carried out in the temperature range of 573-723 K organometallic chemical vapor deposition (OMCVD). Spectral shifts and DFT calculations with a model anchoring group (R‧COOH) both suggest binding of the N3 dye directly to both InN and the InN/TiO2 sites.

  16. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  17. Novel Flexible Transparent Conductive Films with Enhanced Chemical and Electromechanical Sustainability: TiO2 Nanosheet-Ag Nanowire Hybrid.

    Science.gov (United States)

    Sohn, Hiesang; Kim, Seyun; Shin, Weonho; Lee, Jong Min; Lee, Hyangsook; Yun, Dong-Jin; Moon, Kyoung-Seok; Han, In Taek; Kwak, Chan; Hwang, Seong-Ju

    2018-01-24

    Flexible transparent conductive films (TCFs) of TiO 2 nanosheet (TiO 2 NS) and silver nanowire (Ag NW) network hybrid were prepared through a simple and scalable solution-based process. The as-formed TiO 2 NS-Ag NW hybrid TCF shows a high optical transmittance (TT: 97% (90.2% including plastic substrate)) and low sheet resistance (R s : 40 Ω/sq). In addition, the TiO 2 NS-Ag NW hybrid TCF exhibits a long-time chemical/aging and electromechanical stability. As for the chemical/aging stability, the hybrid TCF of Ag NW and TiO 2 NS reveals a retained initial conductivity (ΔR s /R s 4000%) or RuO 2 NS-Ag NW hybrid (ΔR s /R s > 200%). As corroborated by the density functional theory simulation, the superb chemical stability of TiO 2 NS-Ag NW hybrid is attributable to the unique role of TiO 2 NS as a barrier, which prevents Ag NW's chemical corrosion via the attenuated adsorption of sulfidation molecules (H 2 S) on TiO 2 NS. With respect to the electromechanical stability, in contrast to Ag NWs (ΔR/R 0 ∼ 152.9%), our hybrid TCF shows a limited increment of fractional resistivity (ΔR/R 0 ∼ 14.4%) after 200 000 cycles of the 1R bending test (strain: 6.7%) owing to mechanically welded Ag NW networks by TiO 2 NS. Overall, our unique hybrid of TiO 2 NS and Ag NW exhibits excellent electrical/optical properties and reliable chemical/electromechanical stabilities.

  18. Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films: From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells

    OpenAIRE

    Duarte, D. A.; Massi, M.; da Silva Sobrinho, A. S.

    2014-01-01

    In this paper, nitrogen-doped TiO2 thin films were deposited by DC reactive sputtering at different doping levels for the development of dye-sensitized solar cells. The mechanism of film growth during the sputtering process and the effect of the nitrogen doping on the structural, optical, morphological, chemical, and electronic properties of the TiO2 were investigated by numerical modeling and experimental methods. The influence of the nitrogen doping on the working principle of the prototype...

  19. Sol-gel-derived mesoporous silica films with low dielectric constants

    Energy Technology Data Exchange (ETDEWEB)

    Seraji, S.; Wu, Yun; Forbess, M.; Limmer, S.J.; Chou, T.; Cao, Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2000-11-16

    Mesoporous silica films with low dielectric constants and possibly closed pores have been achieved with a multiple step sol-gel processing technique. Crack-free films with approximately 50% porosity and 0.9 {mu}m thicknesses were obtained, a tape-test revealing good adhesion between films and substrates or metal electrodes. Dielectric constants remained virtually unchanged after aging at room temperature at 56% humidity over 6 days. (orig.)

  20. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation.

    Science.gov (United States)

    Mendiola-Alvarez, Sandra Yadira; Hernández-Ramírez, Ma Aracely; Guzmán-Mar, Jorge Luis; Garza-Tovar, Lorena Leticia; Hinojosa-Reyes, Laura

    2018-05-24

    Mesoporous phosphorous-doped TiO 2 (TP) with different wt% of P (0.5, 1.0, and 1.5) was synthetized by microwave-assisted sol-gel method. The obtained materials were characterized by XRD with cell parameters refinement approach, Raman, BET-specific surface area analysis, SEM, ICP-OES, UV-Vis with diffuse reflectance, photoluminescence, FTIR, and XPS. The photocatalytic activity under visible light was evaluated on the degradation of sulfamethazine (SMTZ) at pH 8. The characterization of the phosphorous materials (TP) showed that incorporation of P in the lattice of TiO 2 stabilizes the anatase crystalline phase, even increasing the annealing temperature. The mesoporous P-doped materials showed higher surface area and lower average crystallite size, band gap, and particle size; besides, more intense bands attributed to O-H bond were observed by FTIR analysis compared with bare TiO 2 . The P was substitutionally incorporated in the TiO 2 lattice network as P 5+ replacing Ti 4+ to form Ti-O-P bonds and additionally present as PO 4 3-  on the TiO 2 surface. All these characteristics explain the observed superior photocatalytic activity on degradation (100%) and mineralization (32%) of SMTZ under visible radiation by TP catalysts, especially for P-doped TiO 2 1.0 wt% calcined at 450 °C (TP1.0-450). Ammonium, nitrate, and sulfate ions released during the photocatalytic degradation were quantified by ion chromatography; the nitrogen and sulfur mass balance evidenced the partial mineralization of this recalcitrant molecule.

  1. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating

    International Nuclear Information System (INIS)

    Ben Naceur, J.; Mechiakh, R.; Bousbih, F.; Chtourou, R.

    2011-01-01

    Titanium dioxide (TiO 2 ) thin films doping of various iron ion (Fe 3+ ) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO 2 thin films comprised only the anatase TiO 2 , but the crystallinity decreased when the Fe 3+ content increased from 0% to 20%. During the Fe 3+ addition to 20%, the phase of TiO 2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E g ) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe 3+ content.

  2. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  3. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  4. Symbiotic organism search algorithm for simulation of J- V characteristics and optimizing internal parameters of DSSC developed using electrospun TiO2 nanofibers

    Science.gov (United States)

    Vinoth, S.; Kanimozhi, G.; Kumar, Harish; Srinadhu, E. S.; Satyanarayana, N.

    2017-12-01

    In the present investigation, the recently developed, simple, robust, and powerful metaheuristic symbiotic organism search (SOS) algorithm was used for simulation of J- V characteristics and optimizing the internal parameters of the dye-sensitized solar cells (DSSCs) fabricated using electrospun 1-D mesoporous TiO2 nanofibers as photoanode. The efficiency ( η = 5.80 %) of the DSSC made up of TiO2 nanofibers as photoanode is found to be ˜ 21.59% higher compared to the efficiency ( η = 4.77 %) of the DSSC made up of TiO2 nanoparticles as photoanode. The observed high efficiency can be attributed to high dye loading as well as high electron transport in the mesoporous 1-D TiO2 nanofibers. Further, the validity and advantage of SOS algorithm are verified by simulating J- V characteristics of DSSC with Lambert-W function.

  5. Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells

    International Nuclear Information System (INIS)

    Bao, Sha; Wu, Jihuai; He, Xin; Tu, Yongguang; Wang, Shibo; Huang, Miaoliang; Lan, Zhang

    2017-01-01

    Highlights: •Large grain and mesoporous Zn 2 SnO 4 are synthesized by a facile hydrothermal method. •Perovskite device with Zn 2 SnO 4 electron transport layer get efficiency of 17.21%. •While the device with TiO 2 electron transport layer obtain an efficiency of 14.83%. •Superior photovoltaic performance stems from the intrinsic characteristics of Zn 2 SnO 4 . -- Abstract: Electron transport layer with higher carrier mobility and suitable band gap structure plays a significant role in determining the photovoltaic performance of perovskite solar cells (PSCs). Here, we report a synthesis of high crystalline zinc stannate (Zn 2 SnO 4 ) by a facile hydrothermal method. The as-synthesized Zn 2 SnO 4 possesses particle size of 20 nm, large surface area, mesoporous hierarchical structure, and can be used as a promising electron-transport materials to replace the conventional mesoporous TiO 2 material. A perovskite solar cell with structure of FTO/blocking layer/Zn 2 SnO 4 /CH 3 NH 3 PbI 3 /Spiro-OMeOTAD/Au is fabricated, and the preparation condition is optimized. The champion device based on Zn 2 SnO 4 electron transport material achieves a power conversion efficiency of 17.21%, while the device based on TiO 2 electron transport material gets an efficiency of 14.83% under the same experimental conditions. The results render Zn 2 SnO 4 an effective candidate as electron transport material for high performance perovskite solar cells and other devices.

  6. Atomic force microscopy study of TiO2 sol-gel films thermally treated under NH3 atmosphere

    International Nuclear Information System (INIS)

    Trapalis, C.; Todorova, N.; Anastasescu, M.; Anastasescu, C.; Stoica, M.; Gartner, M.; Zaharescu, M.; Stoica, T.

    2009-01-01

    Multilayered TiO 2 films were obtained by sol-gel and dipping deposition on quartz substrate followed by thermal treatment under NH 3 atmosphere. In an attempt to understand the close relationship between microstructural characteristics and the synthesis parameters, a systematic research of the structure and the morphology of NH 3 modified TiO 2 sol-gel films by XRD and Atomic Force Microscopy is reported. The surface morphology has been evaluated in terms of grains size, fractal dimension and surface roughness. For each surface, it was found a self-similar behavior (with mean fractal dimension in the range of 2.67-3.00) related to an optimum morphology favorable to maintain a nano-size distribution of the grains. The root mean square (RMS) roughness of the samples was found to be in the range of 0.72-6.02 nm.

  7. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun

    2017-07-01

    The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.

  8. TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation

    International Nuclear Information System (INIS)

    Kopanati, Gayathri N; Madras, Giridhar; Ramamurthy, Praveen C

    2016-01-01

    Barrier materials are important for improving the stability and lifetimes of organic electronic devices. A simple technique for improving the barrier properties of polymer films was considered in this work by using TiO 2 nanoparticles in the interlayer to be incorporated in the polymer film. TiO 2 was synthesized by the solution combustion technique, was further functionalized using stearic acid or octadecylamine to induce hydrophobicity and enhance processing of the composite interlayer. The grafting of these compounds on to TiO 2 was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and thermo-gravimetric analysis. The functionalized and neat TiO 2 were blended with poly (vinyl alcohol-ethylene) (EVOH) and were melt compressed between Surlyn films. The resulting nanocomposite films were tested for their transparency and barrier properties using UV–visible spectroscopy and calcium degradation test, respectively. Further, the effectiveness of these barrier films in encapsulating organic devices was determined from accelerated aging tests. Therefore, the synthesized barrier films with neat and functionalized TiO 2 in the interlayers proved to be effective as moisture barrier composite films. (paper)

  9. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Damon Rafieian

    2015-09-01

    Full Text Available We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2, obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  10. Co3O4/TiO2 films obtained by laser ablation and sol-gel for the reaction of oxygen liberation in alkaline medium

    International Nuclear Information System (INIS)

    Perez A, J.; Fernandez V, S. M.; Escobar A, L.; Jimenez B, J.

    2008-01-01

    The laser ablation technique known as Pulsed Laser Deposition (PLD) is used for obtaining thin films of TiO 2 /SnO 2 , which was later modified with Co 3 O 4 by PLD or by sol-gel technique. The films were characterized by X-ray diffraction, ultraviolet Vis and Raman spectroscopies, scanning electron microscopy and energy analysis of the dispersed X-rays produced by Auger decay. The anatase phase with particles of nano metric size was obtained by depositing the titanium dioxide in argon atmosphere. The Co 3 O 4 films obtained by PLD on the TiO 2 showed the same morphology. The electrocatalytic activity of the films that were used as photo anodes for the reaction of oxygen liberation was carried out in the darkness, with environment light and the light emitted by a xenon lamp. The current density was higher for films of Co 3 O 4 /TiO 2 /SnO 2 obtained by PLD that for cobalt dioxide of mixed valence obtained by sol-gel. (Author)

  11. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  12. Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser

    International Nuclear Information System (INIS)

    Wang Bin; Dai Gang; Zhang Hongchao; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    In order to study the long-pulsed laser induced damage performance of optical thin films, damage experiments of TiO 2 /SiO 2 films irradiated by a laser with 1 ms pulse duration and 1064 nm wavelength are performed. In the experiments, the damage threshold of the thin films is measured. The damages are observed to occur in isolated spots, which enlighten the inducement of the defects and impurities originated in the films. The threshold goes down when the laser spot size decreases. But there exists a minimum threshold, which cannot be further reduced by decreasing the laser spot size. Optical microscopy reveals a cone-shaped cavity in the film substrate. Changes of the damaged sizes in film components with laser fluence are also investigated. The results show that the damage efficiency increases with the laser fluence before the shielding effects start to act.

  13. Photocorrosion Mechanism of TiO2-Coated Photoanodes

    Directory of Open Access Journals (Sweden)

    Arjen Didden

    2015-01-01

    Full Text Available Atomic layer deposition was used to coat CdS photoanodes with 7 nm thick TiO2 films to protect them from photocorrosion during photoelectrochemical water splitting. Photoelectrochemical measurements indicate that the TiO2 coating does not provide full protection against photocorrosion. The degradation of the film initiates from small pinholes and shows oscillatory behavior that can be explained by an Avrami-type model for photocorrosion that is halfway between 2D and 3D etching. XPS analysis of corroded films indicates that a thin layer of CdS remains present on the surface of the corroded photoanode that is more resilient towards photocorrosion.

  14. Crystalline TiO2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    International Nuclear Information System (INIS)

    Zhao Yuancong; Tu Qiufen; Wang Jin; Huang Qiongjian; Huang Nan

    2010-01-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  15. Crystalline TiO 2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    Science.gov (United States)

    Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan

    2010-12-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  16. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  17. Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Pradhan, Swati S.; Sahoo, Sambita; Pradhan, S.K.

    2010-01-01

    TiO 2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O 2 plasma. The TiO 2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 o C to 800 o C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 o C. The film annealed at 400 o C showed higher hardness than the film annealed at 600 o C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 o C to 800 o C, as revealed by a decrease in water CA from 87 o to 50 o . Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.

  18. The effect of aeration and solar intensity power on photocatalytic degradation of textile industrial wastewater using TiO2 thin film

    International Nuclear Information System (INIS)

    Abu Kassim, N.F.; Ku Hamid, K.H.; Azizan, A.

    2006-01-01

    Solar photo catalytic degradation of the textile industry wastewater using TiO 2 thin films was studied. This experiment was performed to investigate the effect of aeration and solar intensity power on decreasing of Chemical Oxygen Demand (COD). A serpentine flow photo catalytic reactor was developed for this purpose. TiO 2 thin films photo catalyst supported on the stainless steel 304 substrates were prepared using sol-gel dip coating method. The results of thin films were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffractometer (XRD). XRD result showed that the prepared thin films gave the anatase crystallite formation whilst SEM demonstrated the macro pores were formed. Finally, the aeration and solar intensity power factors are considered to be responsible for the photo catalytic degradation. (Author)

  19. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light

    Directory of Open Access Journals (Sweden)

    Ting-Wei Liao

    2018-01-01

    Full Text Available In this study, we applied cluster beam deposition (CBD as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML equivalents. Scanning Electron Microscopy (SEM images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML and aggregate at higher coverage (8 ML. A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 × 10−6 over a period of 93 h. These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.

  20. Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO 2 crystallisation

    KAUST Repository

    Guldin, Stefan; Hü ttner, Sven; Tiwana, Priti; Orilall, M. Christopher; Ü lgü t, Burak; Stefik, Morgan; Docampo, Pablo; Kolle, Matthias; Divitini, Giorgio; Ducati, Caterina; Redfern, Simon A. T.; Snaith, Henry J.; Wiesner, Ulrich; Eder, Dominik; Steiner, Ullrich

    2011-01-01

    Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). This study demonstrates the benefits of high temperature synthesised mesoporous titania for the performance of solid-state DSCs. In contrast

  1. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    Science.gov (United States)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  2. Electrodeposition of flake-like Cu_2O on vertically aligned two-dimensional TiO_2 nanosheet array films for enhanced photoelectrochemical properties

    International Nuclear Information System (INIS)

    Yang, Lei; Zhang, Miao; Zhu, Kerong; Lv, Jianguo; He, Gang; Sun, Zhaoqi

    2017-01-01

    Highlights: • Flake-like Cu_2O/TNS with exposed {001} facets constructed p-n heterostructure. • The TNS arrays were used as starting substrates for Cu_2O growth. • The Cu_2O/TNS prepared at −0.4 V exhibits the best photoelectrochemical property. - Abstract: A novel Cu_2O/TNS composite structure of single crystal TiO_2 nanosheet (TNS) arrays decorated with flake-like Cu_2O were synthesized by a facile hydrothermal reaction followed by the electrodeposition process. The effects of deposition potential on the microstructure, morphology, and optical property of the thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis spectrophotometer. When the deposition potential is higher than −0.4 V, peaks corresponding to Cu appear, meanwhile, flake-like Cu_2O become agglomerating, and transform into dense Cu_2O particles. Additionally, photoelectrochemical experiments indicate that the films deposited at −0.4 V show the lowest resistivity and highest exciton separation efficiency. This enhanced photoelectrochemical properties can be explained by synergistic effect of p-type flake-like Cu_2O and n-type TiO_2 heterojunctions combined with two-dimensional TiO_2 nanosheet with exposed highly reactive {001} facets.

  3. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  4. Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yu Qiaozhen; Wang Mang; Chen Hongzheng; Dai Zhengwei

    2011-01-01

    Highlights: → We fabricate PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure composite fiber films by electrospinning, calcinations and in situ polymerization. → PANI/TiO 2 composite fiber film exhibits high photocatalytic activity for the degradation of dye MB. → The photocatalytic activity and reusability of PANI/TiO 2 composite fiber film were lower than those of pure TiO 2 fiber film. - Abstract: TiO 2 /PANI composite fiber films were fabricated by electrospinning, calcinations and in situ polymerization. The morphology and structure of the resulting composites were analyzed by scanning electron micrograph, transmission electron micrograph, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that this composite fiber film has a PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure. The surface morphology of this hierarchical nano/microstructure was related to the structure of TiO 2 nano/microfiber film, the time and temperature of in situ polymerization. Its photocatalytic property on methylene blue (MB) was studied, and the results showed that TiO 2 /PANI composite fiber film with this hierarchical nano/microstructure exhibited high photocatalytic activity for the degradation of MB under natural light. But both its photocatalytic activity and reusability were lower than those of pure TiO 2 fiber film. To improve the stability and reusability of TiO 2 /PANI composite fiber film, a direct chemical bonding of PANI chains onto TiO 2 surface, such as, the surface-initiated graft polymerization, is a useful method.

  5. Tunable pores in mesoporous silica films studied using a pulsed slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Oshima, Nagayasu; Kinomura, Atsushi; Suzuki, Ryoichi; Kobayashi, Yoshinori

    2007-01-01

    Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was applied to study mesoporous silica films, synthesized using amphiphilic PEO-PPO-PEO triblock copolymers as structure-directing agents. The pore size depends on the loading of different templates. Larger pores were formed in silica films templated by copolymers with higher molecular-weights. Using 2-dimensional PALS, open porosity of silica films was also found to be influenced by the molecular-weight as well as the ratio of hydrophobic PPO moiety of the templates

  6. Effect of sol-age on the surface and optical properties of sol-gel derived mesoporous zirconia thin films

    Directory of Open Access Journals (Sweden)

    Manish Kumar

    2011-06-01

    Full Text Available Mesoporous ZrO2 thin films have been deposited by a modified sol-gel dip coating technique using HCl as catalyst. Effects of sol-age on the surface and on the optical properties are studied. Transmission electron micrographs of the films reveal the pore dimensions in mesoporous regime. A strong correlation in surface topography with sol-age has been observed where increase in sol-age induces a systematic enhancement in the value of root mean square roughness of the films. Optical study shows that deposited films have high transmittance and an enhancement of 5.6 times in porosity in films prepared with sol-age of 10 days with respect to that of 1 day. Band gap estimation by Tauc's plots of films is observed to 5.74 eV, which shows invariance with the sol-age.

  7. Optimization of time on CF_4/O_2 etchant for inductive couple plasma reactive ion etching of TiO_2 thin film

    International Nuclear Information System (INIS)

    Adzhri, R.; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md.; Hashim, U.; Ayub, R. M.

    2016-01-01

    In this work, we investigate the optimum etching of titanium dioxide (TiO_2) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF_4/O_2 gases as plasma etchant with ratio of 3:1, three samples of TiO_2 thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF_4 gases with plasma enhancement by O_2 gas able to break the oxide bond of TiO_2 and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  8. Growth of a sea urchin-like rutile TiO2 hierarchical microsphere film on Ti foil for a quasi-solid-state dye-sensitized solar cell.

    Science.gov (United States)

    Ri, Jin Hyok; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2017-11-30

    A sea urchin-like rutile TiO 2 microsphere (RMS) film was fabricated on Ti foil via a hydrothermal process. The resulting rutile TiO 2 hierarchical microspheres with a diameter of 5-6 μm are composed of nanorods with a diameter of ∼200 nm and a length of 1-2 μm. The sea urchin-like hierarchical structure leads to the Ti foil-based RMS film possessing much better light-scattering capability in the visible region than the bare Ti foil. By using it as an underlayer of a nanosized anatase TiO 2 film (bTPP3) derived from a commercially available paste (TPP3), the corresponding bilayer Ti foil-based quasi-solid-state dye-sensitized solar cell (DSSC) only gives a conversion efficiency of 4.05%, much lower than the single bTPP3 film-based one on Ti foil (5.97%). By spin-coating a diluted TPP3 paste (sTPP3) on the RMS film prior to scraping the bTPP3 film, the resulting RMS/sTPP3/bTPP3 film-based DSSC achieves a significantly enhanced efficiency (7.27%). The electrochemical impedance spectra (EIS) show that the RMS/sTPP3/bTPP3 film possesses better electron transport capability and longer electron lifetime than the bTPP3 film. This work not only provides the first example of directly growing rutile TiO 2 hierarchically structured microsphere film on Ti foil suitable for replacing the rigid, heavy and expensive transparent conductive oxide (TCO) glass substrate to serve as a light-scattering underlayer of Ti foil-based quasi-solid-state DSSCs, but also paves a new route to develop Ti foil-based flexible DSSCs with high efficiency, low cost and a wide application field through optimizing the composition and structure of the photoanode.

  9. TiO2-Containing Carbon Derived from a Metal-Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization.

    Science.gov (United States)

    Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-09-13

    A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.

  10. Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis

    International Nuclear Information System (INIS)

    Contreras-García, M.E.; García-Benjume, M. Lorena; Macías-Andrés, Víctor I.; Barajas-Ledesma, E.; Medina-Flores, A.; Espitia-Cabrera, M.I.

    2014-01-01

    Graphical abstract: - Highlights: • Nanostructured TiO 2 -CeO 2 films are successfully synthesized by combining of sputtering and electrophoresis methods. • Synergic effect of CeO 2 on TiO 2 band gap was demonstrated, CeO 2 diminishes it from 3.125 to 2.74. • Morphologic characterization of the nanoconjugate TiO 2 -CeO 2 films by different microscopy techniques. - Abstract: The TiO 2 -CeO 2 photocatalytic system in films is proposed here, in order to obtain photocatalytic systems that can be excited by solar light. The films were obtained through the electrophoretic deposition (EPD) of TiO 2 -CeO 2 gel on sputtered Ti Corning glass substrates. The synergic effect of CeO 2 in TiO 2 films was analyzed as a function of the optical band gap reduction at different concentrations (1, 5, 10, and 15 mol%). The effect of two thermal treatments was also evaluated. The lowest band gap value was obtained for the sample with 5 mol% ceria that was thermally treated at 700 °C. The nanostructured films were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The nanocomposites were formed by TiO 2 and CeO 2 nanoparticles in the anatase and fluorite type phases, respectively

  11. Effect of deposition temperature of TiO2 on the piezoelectric property of PbTiO3 film grown by PbO gas phase reaction sputtering

    International Nuclear Information System (INIS)

    Kim, Jiyoon; Kim, Yunseok; Park, Moonkyu; No, Kwangsoo; Hong, Seungbum; Buehlmann, Simon; Kim, Yong Kwan

    2010-01-01

    A 17 nm thick PbTiO 3 (PTO) films were fabricated via PbO gas phase reaction with TiO 2 starting layer in a sputtering chamber. The influence of deposition temperature of TiO 2 on the piezoelectric properties of PTO thin films was investigated. The remnant piezoresponse of PTO films nonlinearly increased as a function of TiO 2 deposition temperature, which is correlated with the increase in average grain diameter of PTO film. As grain size increases, the restriction on remnant piezoresponse imposed by the grain boundary via coupling between local strain and polarization becomes less pronounced, which results in the increase in remnant piezoresponse. Furthermore, we found that the vertical shift in piezoresponse hysteresis loops is closely related to the residual stress state. A strong correlation between the negative vertical shift and the residual tensile stress reveals that residual stress on the resulting PTO film contributed to the asymmetric piezoelectric property.

  12. Synthesis of a large-sized mesoporous phosphosilicate thin film through evaporation-induced polymeric micelle assembly.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Suzuki, Norihiro; Jiang, Xiangfen; Ohki, Shinobu; Deguchi, Kenzo; Suzuki, Madoka; Arai, Satoshi; Yamauchi, Yusuke

    2015-01-01

    A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) was used as a soft template to synthesize large-sized mesoporous phosphosilicate thin films. The kinetically frozen PS core stabilizes the micelles. The strong interaction of the inorganic precursors with the P2VP shell enables the fabrication of highly robust walls of phosphosilicate and the PEO helps orderly packing of the micelles during solvent evaporation. The molar ratio of phosphoric acid and tetraethyl orthosilicate is crucial to achieve the final mesostructure. The insertion of phosphorus species into the siloxane network is studied by (29) Si and (31) P MAS NMR spectra. The mesoporous phosphosilicate films exhibit steady cell adhesion properties and show great promise as excellent materials in bone-growth engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Total oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by ''operando'' Drift

    International Nuclear Information System (INIS)

    Hosseini, M.; Siffert, St.; Cousin, R.; Aboukais, A.; Hadj-Sadok, Z.; Bao-Lian, Su

    2009-01-01

    Catalytic performances of nano-structured meso-porous TiO 2 -ZrO 2 mixed oxides impregnated by Pd and/or Au were studied in toluene total oxidation in a fixed bed micro-reactor and with 'operando' DRIFT. Meso-porous TiO 2 -ZrO 2 mixed oxides with various Ti:Zr mole ratio of 80/20, 50/50 and 20/80, high surface areas were synthesised using a mixture of zirconium prop-oxide and titanium iso-prop-oxide as Zr and Ti sources and also CTMABr as surfactant. The new supports are impregnated by 0.5 or 1.5 wt% of palladium and 1 wt% of gold using impregnation and Deposition-Precipitation methods. The catalytic activity for the nano-structured meso-porous TiO 2 -ZrO 2 mixed oxides varies depending on the molar ratio of Ti:Zr and also for all series of the studied catalysts impregnated by Pd and/or Au, when the gold is loaded firstly the activity in toluene complete oxidation is higher than when Pd was deposited firstly (PdAu/TZ ≥ 1.5Pd/TZ ≥ AuPd/TZ ≥ Pd/TZ ≥ Au/TZ ≥ TZ). The highest activity of PdAu/TZ (80/20) can be related to the higher acid sites density of the support and also to the presence of a synergetic effect between palladium and gold. 'Operando' DRIFT allowed following the VOCs oxidation but also suggesting an interaction between the adsorbed molecule and the catalyst which decreases when the activity for oxidation reaction increases. (authors)

  14. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    Science.gov (United States)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. beverage industry.

  15. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2

  17. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination

    International Nuclear Information System (INIS)

    Zhang, Haiyan; Wang, Wenguang; Liu, Hui; Wang, Rong; Chen, Yiming; Wang, Zhiwei

    2014-01-01

    Graphical abstract: - Highlights: • DSSC based on TiO 2 film with 8 printing layers showed the highest efficiency. • The photoelectric conversion efficiency of the DSSC increased from 5.52% to 6.49% by graphene combination. • A mechanism for the enhanced performance of the DSSC was proposed. - Abstract: Dye-sensitized solar cells based on TiO 2 films with different printing layers (6-10) were fabricated by screen printing method. The prepared samples were characterized by scanning electron microscopy, X-ray diffraction and UV–vis absorption spectroscopy. The effects of thickness on the photoelectric conversion performance of the as-fabricated DSSCs were investigated. An optimum photoelectric conversion efficiency of 5.52% was obtained in a DSSC with 8 printing layers. Furthermore, after a moderate amount of graphene was combined with TiO 2 , the photoelectric conversion efficiency of the DSSC based on graphene/TiO 2 composite film rose from 5.52% to 6.49%, with an increase of η by 17.6%. The results indicated that graphene not only enhances the transport of electrons from the film to the fluorine doped tin oxide substrates and reduces the charge recombination rate, but also reduces the electrolyte–electrode interfacial resistance, clearly increasing the photoelectric conversion efficiency

  18. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2014-09-01

    Full Text Available An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor’s output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  19. Completely oriented anatase TiO2 nanoarrays: topotactic growth and orientation-related efficient photocatalysis

    Science.gov (United States)

    Yang, Jingling; Wu, Qili; He, Shiman; Yan, Jing; Shi, Jianying; Chen, Jian; Wu, Mingmei; Yang, Xianfeng

    2015-08-01

    A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001} facets on the anatase nanoarrays with super-hydrophilicity.A TiO2 film has been facilely grown on a Ti foil via a general and simple acid vapor oxidation (AVO) strategy. Based on detailed characterization by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we found that the TiO2 film was composed of anatase nanoarrays highly oriented along their direction, resulting in a large exposed {001} top surface on the film. The growth mechanism based on a topotactic transformation was proposed according to a careful study of time-dependent experimental results. Resulting from the evaluation of photocatalytic performance compared with a commercial TiO2 photocatalyst (Degussa P25), the as-prepared oriented anatase TiO2 film showed higher efficiency for degradation of atrazine and acid orange II (AOII). The performance of photocatalysis is highly relevant to the preferential orientation. The efficient photocatalysis could be attributed to the highly reactive {001

  20. Incorporation of Kojic Acid-Azo Dyes on TiO2 Thin Films for Dye Sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Carolynne Zie Wei Sie

    2017-01-01

    Full Text Available Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs. A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54% in the series.

  1. Effective Carbon Dioxide Photoreduction over Metals (Fe-, Co-, Ni-, and Cu- Incorporated TiO2/Basalt Fiber Films

    Directory of Open Access Journals (Sweden)

    Jeong Yeon Do

    2016-01-01

    Full Text Available Mineralogical basalt fibers as a complementary adsorbent were introduced to improve the adsorption of CO2 over the surfaces of photocatalysts. TiO2 photocatalysts (M-TiO2 incorporated with 5.0 mol.% 3d-transition metals (Fe, Co, Ni, and Cu were prepared using a solvothermal method and mixed with basalt fibers for applications to CO2 photoreduction. The resulting 5.0 mol.% M-TiO2 powders were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence, Brunauer, Emmett, and Teller surface area, and CO2-temperature-programmed desorption. A paste composed of two materials was coated and fixed on a Pyrex plate by a thermal treatment. The 5.0 mol.% M-TiO2/basalt fiber films increased the adsorption of CO2 significantly, indicating superior photocatalytic behavior compared to pure TiO2 and basalt fiber films, and produced 158~360 μmol gcat-1 L−1 CH4 gases after an 8 h reaction. In particular, the best performance was observed over the 5.0 mol.% Co-TiO2/basalt fiber film. These results were attributed to the effective CO2 gas adsorption and inhibition of photogenerated electron-hole pair recombination.

  2. Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles

    Science.gov (United States)

    Jarka, Paweł; Tański, Tomasz; Matysiak, Wiktor; Krzemiński, Łukasz; Hajduk, Barbara; Bilewicz, Marcin

    2017-12-01

    The aim of submitted paper is to present influence of manufacturing parameters on optical properties and surface morphology of composite materials with a polymer matrix reinforced by TiO2 and SiO2 and Bi2O3 nanoparticles. The novelty proposed by the authors is the use of TiO2 and SiO2 and Bi2O3 nanoparticles simultaneously in polymeric matrix. This allows using the combined effect of nanoparticles to a result composite material. The thin films of composite material were prepared by using spin-coating method with various spinning rates from solutions of different concentration of nanoparticles. In order to prepare the spinning solution polymer, Poly(methyl methacrylate) (PMMA) was used as a matrix. The reinforcing phase was the mixture of the nanoparticles of SiO2, TiO2 and B2O3. In order to identify the surface morphology of using thin films and arrangement of the reinforcing phase Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) were used. In order to study the optical properties of the obtained thin films, the thin films of composites was subjected to an ellipsometry analysis. The measurements of absorbance of the obtained materials, from which the value of the band gap width was specified, were carried out using the UV/VIS spectroscopy. The optical properties of obtain composite thin films depend not only on the individual components used, but also on the morphology and the interfacial characteristics. Controlling the participation of three kinds of nanoparticles of different sizes and optical parameters allows to obtaining the most optimal optical properties of nanocomposites and also controlling the deposition parameters allows to obtaining the most optimal surface morphology of nanocomposites.

  3. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window.

    Science.gov (United States)

    Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping

    2018-05-03

    Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.

  4. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    Science.gov (United States)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  5. Ambiguous Role of Growth-Induced Defects on the Semiconductor-to-Metal Characteristics in Epitaxial VO2/TiO2 Thin Films.

    Science.gov (United States)

    Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John

    2018-04-25

    Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.

  6. Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan

    2017-10-01

    Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

  7. The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu

    2005-01-01

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO 2 ) and titania (TiO 2 )