WorldWideScience

Sample records for mesoporous sulfated titania

  1. Composite templates synthesis of mesoporous titania from industrial titanyl sulfate solution under external outfields

    International Nuclear Information System (INIS)

    Tian Congxue

    2008-01-01

    The precursors of mesoporous titania were synthesized via supra-molecular self-assembly route induced by composite templates (CTAB/P-123) from industrial titanyl sulfate solution under ultrasonic irradiation, microwave and hydrothermal condition. The hydrolysis and polycondensation rates of TiOSO 4 solution were controlled by adjusting the pH value at about 1.0. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by X-ray diffraction (XRD), N 2 isothermal adsorption-desorption, HRTEM and SAD. External outfields with enhancing polar action and soft hydrothermal condition were beneficial to prepare better mesoporous TiO 2 . Ultrasonic vibration promoted the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO 2 was synthesized with BET specific surface area of 190.6 m 2 g -1 , average pore diameter of 2.57 nm and crystal size of 13.65 nm. And ultrasonic irradiation, microwave and hydrothermal conditions were making for forming and stabilizing the mesoporous structure

  2. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    Directory of Open Access Journals (Sweden)

    Juan L Vivero-Escoto, Ya-Dong Chiang, Kevin C-W Wu and Yusuke Yamauchi

    2012-01-01

    Full Text Available This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  3. Synthesis of mesoporous titania by homogeneous hydrolysis of titania oxo-sulfate in the presence of cationic and anionic surfactants

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Houšková, Vendula; Murafa, Nataliya; Bakardjieva, Snejana

    2010-01-01

    Roč. 54, č. 4 (2010), s. 368-378 ISSN 0862-5468 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : surfactant * titania * mesoporous * photocatalyst Subject RIV: CA - Inorganic Chemistry Impact factor: 0.297, year: 2010

  4. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  5. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  6. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol

    International Nuclear Information System (INIS)

    Wang Yuhong; Gan Yunting; Whiting, Roger; Lu Guanzhong

    2009-01-01

    A new method has been developed for the preparation of sulfated titania (S-TiO 2 ) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO 2 /MCM-41 composites were found to vary markedly with the loading of TiO 2 . The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol. - Abstract: XRD profiles of the composites of S-TiO 2 /MCM-41 with different TiO 2 contents. The low angle peaks indicate the MCM-41-like structure retained and a TiO 2 phase appeared at high angle region. Display Omitted

  8. Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yingchun [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Faculty of Chemical and Life Sciences, Qujing Normal University, Qujing 655000 (China); Zhai Zhongbiao [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Kunming Metallurgy Research Institute, Kunming 650031 (China); He Jiao; Li Bin; Li Junjie [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Wang Jiaqiang, E-mail: jqwang@ynu.edu.cn [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China)

    2010-07-20

    Anatase mesoporous titania with novel morphologies were synthesized by using the skins of tomatoes, bulb onions, grapes, and garlic bulbs, respectively, as templates and used for the photodegradation of Gentian violet, methyl violet, xylenol orange, and Rhodamine B under UV light. The samples were characterized by a combination of various physicochemical techniques, such as X-ray diffraction, SEM, HRTEM, N{sub 2} adsorption/desorption, diffuse reflectance UV-Vis, and FT-IR. It was found that all of the synthesized mesoporous titania samples exhibited similar morphologies to those of the original templates. The photoactivity of P25 TiO{sub 2} for the four dyes is nearly the same while the mesoporous titania samples synthesized by using the four skins as templates exhibited varied photoactivities for the four dyes.

  9. Visible-Light Degradation of Dyes and Phenols over Mesoporous Titania Prepared by Using Anthocyanin from Red Radish as Template

    Directory of Open Access Journals (Sweden)

    Zhiying Yan

    2014-01-01

    Full Text Available Heterogeneous photocatalysis is able to operate effectively to eliminate organic compounds from wastewater in the presence of semiconductor photocatalyst and a light source. Although photosensitization of titania by organic dyes is one of the conventional ways for visible-light utilization of titania, previous studies have not yet addressed the use of natural food coloring agents as templates in the synthesis of mesostructured materials, let alone the simultaneous achievement of highly crystalline mesoscopic framework and visible-light photocatalytic activity. In this work, anthocyanin, a natural pigment from red radish was directly used as template in synthesis of highly crystalline mesoporous titania. The synthesized mesoporous titania samples were characterized by a combination of various physicochemical techniques, such as XRD, SEM, HRTEM, nitrogen adsorption/desorption, and diffuse reflectance UV-Vis. The prepared mesoporous titania photocatalyst exhibited significant activity under visible-light irradiation for the degradation of dyes and phenols due to its red shift of band-gap-absorption onset and visible-light response as a result of the incorporation of surface carbon species.

  10. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  11. Characterization of vanadium-doped mesoporous titania and its adsorption of gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Phan, Thuy-Duong; Song, Myoung Bock; Yun, Hyunran; Kim, Eui Jung; Oh, Eun-Suok [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of); Shin, Eun Woo, E-mail: ewshin@mail.ulsan.ac.kr [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2011-01-01

    A series of vanadium-doped mesoporous titania with different metal contents was synthesized in the study via a sol-gel process with the assistance of a dodecylamine surfactant. The existence of vanadium ions not only suppressed crystallization and sintering but also enhanced the porosity of the mesoporous TiO{sub 2}. Varying the vanadium concentration led to significant changes in the chemical oxidation state of each component. The presence of metal dopants significantly improved the removal efficiency of benzene and the doping the titania with 5 mol% vanadium removed the most benzene, regardless of the adsorption temperature. The adsorption behavior was elucidated by the specific surface area, the interactions between surface hydroxyl groups and the {pi}-electrons of benzene, and the formation of {sigma}-bonding and d-{pi}* back-donation between the adsorbent and organic compounds.

  12. Recyclable Aggregates of Mesoporous Titania Synthesized by Thermal Treatment of Amorphous or Peptized Precursors

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2018-03-01

    Full Text Available Recyclable aggregates of mesoporous titania with different anatase–rutile ratios have been prepared by thermal treatments of either amorphous or peptized precursors. These last two have been obtained by hydrolysis of either Ti(OC2H54 or of Ti(OC2H54 in mixture with 5 mol % Zr(OC3H74 at room temperature in the presence of NH4OH as a catalyzing agent. The anatase–rutile ratio, the recyclable aggregates of the nano-sized particles, the mesoporosity, the surface area and the crystallinity of the resulting crystallized products of titania can be controlled by the synthesis parameters including: concentration of ammonia catalyst, stirring time and concentration of the peptizing HNO3, drying method of peptized precursors, calcination temperature, and finally the ramp rate up to the titania crystallization temperature. A broad range of synthesis parameters control the crystal sizes of titania particles produced. This allows catalyst preparation with very different crystal size, surface area, anatase to rutile crystal ratio and various mesoporous structures. Drying by lyophilization of precursors reduce the aggregation of the primary particles giving micro-/macroporous structures.

  13. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  14. Silica sacrificial layer-assisted in-plane incorporation of Au nanoparticles into mesoporous titania thin films through different reduction methods.

    Science.gov (United States)

    Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W

    2013-06-28

    This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.

  15. Efficient adsorption concentration and photolysis of acetaldehyde on titania-mesoporous silica composite

    Science.gov (United States)

    Yamaguchi, Satoshi; Matsumoto, Akihiko

    2017-07-01

    Titania-mesoporous silica composite (TiO2/MCM) was prepared by hydrolysis of titaniumtetraisopropoxide (TTIP) with the presence of mesoporous silica MCM-41. The TiO2/MCM samples consisted of highly dispersed TiO2 on the surface of MCM-41. Dynamic adsorption and photocatalytic decomposition features for acetaldehyde (CH3CHO) were measured by flow method. The amount of CH3CHO decomposition on TiO2/MCM-41 increased with the TiO2 amount, suggesting that a large amount of CH3CHO was adsorbed on mesopores of MCM-41 of the TiO2/MCM and was efficiently decomposed on finely dispersed TiO2 surface by ultraviolet irradiation.

  16. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Directory of Open Access Journals (Sweden)

    A. C. Jones

    2016-03-01

    Full Text Available In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C. As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  17. Au and AuCu Nanoparticles Supported on SBA-15 Ordered Mesoporous Titania-Silica as Catalysts for Methylene Blue Photodegradation

    Directory of Open Access Journals (Sweden)

    Isabel Barroso-Martín

    2018-05-01

    Full Text Available The photocatalytic degradation of methylene blue (MB dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt % and AuCu (Au/Cu = 1, 2.0 wt %, and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3, in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view. Samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption-desorption at −196 °C, and X-ray photoelectron spectroscopy (XPS, so as to study their structural, optical, and chemical properties. All the prepared catalysts were found to be active in the test reaction. The bimetallic AuCu-based catalysts attained very high MB degradation values, in particular AuCu/SBA-15 titania-silica sample reached 100% of dye oxidation after the monitored reaction period (120 min.

  18. Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Choi, Seoyeong; Liu, Jingling; Kwon, Younguk

    2013-01-01

    We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a H 2 (1 torr) environment. Depending on the temperature used for the reaction with H2, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW cm -2 illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient TiO 2 mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made

  19. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-12-01

    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  20. Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania

    International Nuclear Information System (INIS)

    Tominaga, Yoichi; Endo, Masanori

    2013-01-01

    Composite polymer electrolytes were prepared consisting of amorphous polyether, Li salt and mesoporous inorganic filler, and we investigated their ion-conductive properties. We synthesized three types of filler, mesoporous silica, alumina and titania (MP-Si, Al, Ti), and characterized their structural and physicochemical properties using SEM, TEM, SAXS and BET surface area measurements. From these measurements, we confirmed that MP fillers have well-defined arrays of mesoporous and hexagonal structures. Dependence on the MP filler content of the glass transition temperature (T g ) revealed that the addition of filler to original polyether-salt electrolyte causes T g decrease, to due to the dissociation of aggregated ions such as triples or crystalline complex domains. The MP-Ti composites had the greatest ionic conductivity (1.4 × 10 −5 S/cm, 7.5 wt% at 30 °C) of all samples, and the values were more than double that of the original. The addition of MP-Ti also increased the lithium transference number, because the electrolyte/filler interface provided active sites that increase mobile Li ions and conducting paths so as to enhance the mobility

  1. TECHNIQUE FOR DETERMINATION OF SURFACE FRACTAL DIMENSION AND MORPHOLOGY OF MESOPOROUS TITANIA USING DYNAMIC FLOW ADSORPTION AND ITS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Silvester Tursiloadi

    2010-06-01

    Full Text Available A technique to determine the surface fractal dimension of mesoporous TiO­2 using a dynamic flow adsorption instrument is described. Fractal dimension is an additional technique to characterize surface morphology. Surface fractal dimension, a quantitative measurement of surface ruggedness, can be determined by adsorbing a homologous series of adsorbates onto an adsorbent sample of mesoporous TiO­2. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60 °C and the solvent was extracted.  Mesoporous TiO­2 consists of anatase nano-particles, about 5nm in diameter, have been obtained. After calcination at 600 °C, the average pore size of the extracted gel, about 20nm in diameter, and the pore volume, about 0.35cm3g-1, and the specific surface area, about 58 m2g-1. Using the N2 adsorption isotherm, the surface fractal dimension, DS, has been estimated according to the Frenkel-Halsey-Hill (FHH theory. The N2 adsorption isotherm for the as-extracted aerogel indicates the mesoporous structure. Two linear regions are found for the FHH plot of the as-extracted aerogel. The estimated surface fractal dimensions are about 2.49 and 2.68. Both of the DS  values indicate rather complex surface morphology. The TEM observation shows that there are amorphous and crystalline particles. Two values of DS may be attributed to these two kinds of particles. The two regions are in near length scales, and the smaller DS, DS =2.49, for the smaller region. This result indicates that there are two kinds of particles, probably amorphous and anatase particles as shown by the TEM observation.     Keywords: surface fractal dimensions, CO2 supercritically extraction, sol-gel, aerogel, titania

  2. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  3. Correction: Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability.

    Science.gov (United States)

    Frančič, N; Bellino, M G; Soler-Illia, G J A A; Lobnik, A

    2016-07-07

    Correction for 'Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability' by N. Frančičet al., Analyst, 2014, 139, 3127-3136.

  4. Copper supported on nanostructured mesoporous ceria-titania composites as catalysts for sustainable environmental protection: Effect of support composition

    Czech Academy of Sciences Publication Activity Database

    Issa, G. S.; Tsoncheva, T.; Mileva, A.; Dimitrov, M.D.; Kovacheva, D.; Henych, Jiří; Štengl, Václav

    2017-01-01

    Roč. 49, SI D (2017), s. 55-62 ISSN 0324-1130 Grant - others:AV ČR(CZ) BAS-17-13 Program:Bilaterální spolupráce Institutional support: RVO:61388980 Keywords : Mesoporous nanostructured ceria-titania doped with copper * template-assisted hydrothermal synthesis * ethyl acetate oxidation * methanol decomposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 0.238, year: 2016 http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Special_D_2017/BCC2017-49-SE-D-055-062.pdf

  5. Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2 coating on inner surface of fused silica capillary

    International Nuclear Information System (INIS)

    Okhlopkova, Lyudmila B.; Kerzhentsev, Michail A.; Tuzikov, Fedor V.; Larichev, Yurii V.; Ismagilov, Zinfer R.

    2012-01-01

    Nanoparticle-doped mesoporous titania coating was synthesized by incorporation of PdZn nanoparticles into TiO 2 sol followed by dip coating of the sol on inner surface of fused silica capillary. Monodispersed PdZn bimetallic colloidal particles with average particle diameters of approximately 2 nm have been prepared by an ethylene glycol reduction of ZnCl 2 and Pd(CH 3 COO) 2 in the presence of polyvinylpyrrolidone. The textural properties, surface structure, chemical composition, and morphology of the samples were investigated by means of N 2 sorption measurements, TEM, and X-ray diffraction. PdZn/TiO 2 coating has been further analyzed by quantitative analysis of the SAXS data in combination with the density contrast method, providing direct structural-dispersion information about the active component and support. Calcination conditions suitable for surfactant removal have been optimized to obtain PdZn/TiO 2 coatings with required metal particle size and composition. The high dispersion and chemical composition of the nanoparticles embedded in mesoporous titania coating have been retained with no modification after thermal treatment in vacuum at 300 °C. Results suggest how porous structure of the PdZn coating may be fine-tuned to improve the accessibility of the pores to reactants. The control of the pore size in the range of 4.9–6.8 nm of the mesoporous titania was achieved by adding co-surfactants, such as n-butanol.

  6. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    International Nuclear Information System (INIS)

    Lopez, Tessy; Ortiz, Emma; Meza, Doraliz; Basaldella, Elena; Bokhimi, Xim; Magana, Carlos; Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier

    2011-01-01

    Research highlights: → Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. → Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. → Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. → The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. → There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO 2 ). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N 2 adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO 2 tubes than in mesoporous silica matrix.

  7. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    International Nuclear Information System (INIS)

    Han, Guang; Müller, Werner E.G.; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-01-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist

  8. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guang [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Müller, Werner E.G.; Wang, Xiaohong [ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz (Germany); Lilja, Louise [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist.

  9. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tessy, E-mail: tessy3@prodigy.net.mx [Universidad Autonoma Metropolitana-Xochimilco. Departamento de Microbiologia. Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico D.F. Mexico (Mexico); Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118 (United States); Ortiz, Emma [Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Meza, Doraliz [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, Mexico D.F., C.P. 09340 (Mexico); Basaldella, Elena [CIC-CINDECA - Universidad Nacional de La Plata - Calle 47 No 257 - La Plata (Argentina); Bokhimi, Xim; Magana, Carlos [Instituto de fisica, UNAM. Circuito de la Investigacion s/n. C.U. Mexico D.F. 01000 (Mexico); Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier [Departamento de Quimica Inorganica, Universidad de Alicante. Apartado 99, E-03080 Alicante, Espana Spain (Spain)

    2011-04-15

    Research highlights: {yields} Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. {yields} Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. {yields} Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. {yields} The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. {yields} There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO{sub 2}). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO{sub 2} tubes than in mesoporous silica

  10. The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method

    Science.gov (United States)

    Liu, Chaohong; Wang, Xin

    2012-11-01

    In this paper, we prepared TiO2 nanostructures by a hydrothermal method and investigated the influence of the SO4^{2-} ion and the effect of long alkyl chains of sodium dodecyl sulfate on the crystal phases of TiO2 by experiments and theoretical calculations. The results indicate that the absorption of the H+HSO4 fragment on rutile (110) is more stable than that of the 2H+SO4 fragment and more favorable to the formation of anatase. The absorption and steric effects of sodium dodecyl sulfate on the surfaces of TiO2 grains also have an important influence on the formation of mixed crystals by changing the speed and the way of octahedral TiO6 units combining. Based on the above facts, we revised the original reaction scheme for crystalline titania formation by previous authors.

  11. Confined palladium colloids in mesoporous frameworks for carbon nanotube growth

    NARCIS (Netherlands)

    Berenguer-Murcia, A.; Rebrov, E.V.; Cabaj, M.; Wheatley, A.E.H.; Johnson, B.F.G.; Robertson, J.; Schouten, J.C.

    2009-01-01

    Palladium colloidal nanoparticles with an average size of approximately 2.4 nm have been incorporated into mesoporous inorganic thin films following a multistep approach. This involves the deposition of mesoporous titania thin films with a thickness of 200 nm by spin-coating on titanium plates with

  12. Preparation and optical properties of mesoporous TiO2 thin films by a two-step sol-gel technique

    International Nuclear Information System (INIS)

    Kartini, I.; Lu, G.Q.; Meredith, P.; Zhao, X.S.

    2002-01-01

    This paper concerns the preparation of mesoporous titania nanopowders and thin films for use in next generation photoelectrochemical solar cells. We have recently developed a novel method for preparing mesoporous TiO 2 powders using a Two-Step Sol-gel method (TSS). These materials have crystalline domains characteristic of anatase. The first step of the process involves the hydrolysis of titanium isopropoxide in a basic aqueous solution mediated by neutral surfactant. The solid product resulting from Step-1 is then treated in acidified ethanol solution containing a titanium precursor to yield anatase TiO 2 . The resultant powder exhibits a high surface area and large pore volume with uniform mesopores. Slurries made from the resultant powder of Steps 1 and 2 have been used to produce thin titania films on glass slides. The optical and structural properties of these films have been compared to the films made of a commercial titania (Degussa P25, BASF). We will discuss these properties with respect to the possible use of such mesoporous titania films as the wide band gap semiconductor in dye-sensitized nanocrystalline TiO 2 solar cells

  13. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  14. Investigation of Room Temperature Synthesis of Titanium Dioxide Nanoclusters Dispersed on Cubic MCM-48 Mesoporous Materials

    OpenAIRE

    Sridhar Budhi; Chia-Ming Wu; Dan Zhao; Ranjit T. Koodali

    2015-01-01

    Titania containing cubic MCM-48 mesoporous materials were synthesized successfully at room temperature by a modified Stöber method. The integrity of the cubic mesoporous phase was retained even at relatively high loadings of titania. The TiO2-MCM-48 materials were extensively characterized by a variety of physico-chemical techniques. The physico-chemical characterization indicate that Ti4+ ions can be substituted in framework tetrahedral positions. The relative amount of Ti4+ ions in tetrahe...

  15. Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape

    Czech Academy of Sciences Publication Activity Database

    Klementová, Mariana; Motlochová, Monika; Boháček, Jaroslav; Kupčík, Jaroslav; Palatinus, Lukáš; Pližingrová, Eva; Szatmáry, L.; Šubrt, Jan

    2017-01-01

    Roč. 17, č. 12 (2017), s. 6762-6769 ISSN 1528-7483 R&D Projects: GA TA ČR(CZ) TH02020110; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 ; RVO:68378271 Keywords : metatitanic acid * titania * pseudomorph * titanyl sulfate dihydrate structure * morphology control * sorption * radionuclides Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Inorganic and nuclear chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 4.055, year: 2016

  16. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    Science.gov (United States)

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  17. High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation

    International Nuclear Information System (INIS)

    El-Sheikh, Said M.; Zhang, Geshan; El-Hosainy, Hamza M.; Ismail, Adel A.; O'Shea, Kevin E.; Falaras, Polycarpos; Kontos, Athanassios G.; Dionysiou, Dionysios D.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of tailor-designed C, N and S doped titania anatase–brookite nano-heterojunction photocatalyst. • Microcystin-LR was completely removed in the presence of doped sample under visible light. • The MC-LR degradation rate achieved by the doped sample was much better than that of un-doped sample under visible light. - Abstract: Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase–brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol–gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10 nm. N 2 isotherm measurements confirmed that both doped and undoped titania anatase–brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase–brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼100%) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light

  18. Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes.

    Science.gov (United States)

    Minar, Norma K; Docampo, Pablo; Fattakhova-Rohlfing, Dina; Bein, Thomas

    2015-05-20

    Incorporation of conjugated polymers into porous metal oxide networks is a challenging task, which is being pursued via many different approaches. We have developed the guided in situ polymerization of poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV) in porous titania films by means of surface functionalization. The controlled polymerization via the Gilch route was induced by an alkoxide base and by increasing the temperature. The selected and specially designed surface-functionalizing linker molecules mimic the monomer or its activated form, respectively. In this way, we drastically enhanced the amount of MEH-PPV incorporated into the porous titania phase compared to nonfunctionalized samples by a factor of 6. Additionally, photovoltaic measurements were performed. The devices show shunting or series resistance limitations, depending on the surface functionalization prior to in situ polymerization of MEH-PPV. We suggest that the reason for this behavior can be found in the orientation of the grown polymer chains with respect to the titania surface. Therefore, the geometry of the anchoring via the linker molecules is relevant for exploiting the full electronic potential of the conjugated polymer in the resulting hybrid composite. This observation will help to design future synthesis methods for new hybrid materials from conjugated polymers and n-type semiconductors to take full advantage of favorable electronic interactions between the two phases.

  19. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  20. Physicochemical characterization of functionalized-nanostructured-titania as a carrier of copper complexes for cancer treatment

    International Nuclear Information System (INIS)

    López, Tessy; Ortiz, Emma; Guevara, Patricia; Gómez, Esteban; Novaro, Octavio

    2014-01-01

    In the present paper we report the preparation and characterization of functionalized-TiO 2 (F-TiO 2 ) to obtain a biocompatible material to be used as carrier of alternative anticancer agents: copper acetate and copper acetylacetonate. The sol–gel procedure was used to prepare the fuctionalized titania material through hydrolysis and condensation of the titanium's butoxide. Sulfate, amine and phosphate ions served as functional groups which were anchored to the titania's surface. Mineral acids and gamma amine butyric acid were the precursors and they were added at the initial step of the synthesis. The copper complexes were loaded on titania and were also added to the reactor synthesis from the beginning. Infrared and ultraviolet–visible spectroscopies were the principal techniques used to the characterization of F-TiO 2 and copper complexes loaded on titania materials. Transmission Electronic Microscopy (TEM) was used to complement the characterization's studies. The biocompatibility of F-TiO 2 was evaluated by treating different cancer cell lines with increased concentration of this compound. The amine, the sulfate and the phosphate on the titania's surface, as well as the integral structures of the metal complexes on titania were well identified by infrared and ultraviolet–visible spectroscopies. The TEM photographs of Cu(acac) 2 /F-TiO 2 and Cu(Oac) 2 /F-TiO 2 materials showed the formation of nanoparticles, which have sizes ranging from 4 to 10 nm, with no morphology alterations in comparison with F-TiO 2 nanoparticles, suggesting that the presence of low quantities of copper do not affect the structure of the nanoparticles. The Energy Dispersive Spectroscopy (EDS) confirms the presence of copper on the titania's nanoparticles. The biological results indicate that there is more than 90% cell survival, thus suggesting that F-TiO 2 does not cause damage to the cells. Therefore, highly biocompatible titania was obtained by

  1. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  2. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd; Merzougui, Belabbes A.; Anjum, Dalaver H.; Hakeem, Abbas Saeed; Yamani, Zain Hassan; Bahnemann, Detlef W.

    2014-01-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found

  3. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  4. Physicochemical characterization of functionalized-nanostructured-titania as a carrier of copper complexes for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    López, Tessy [Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960 México D.F. (Mexico); Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans (United States); Ortiz, Emma, E-mail: emma170@hotmail.com [Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Guevara, Patricia [Neuroimmunology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Gómez, Esteban [Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery “MVS”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 México D.F. (Mexico); Novaro, Octavio [Institute of Physics-UNAM, Circuito de la Investigación Científica Ciudad Universitaria, CP 04510 México D.F. (Mexico)

    2014-07-01

    In the present paper we report the preparation and characterization of functionalized-TiO{sub 2} (F-TiO{sub 2}) to obtain a biocompatible material to be used as carrier of alternative anticancer agents: copper acetate and copper acetylacetonate. The sol–gel procedure was used to prepare the fuctionalized titania material through hydrolysis and condensation of the titanium's butoxide. Sulfate, amine and phosphate ions served as functional groups which were anchored to the titania's surface. Mineral acids and gamma amine butyric acid were the precursors and they were added at the initial step of the synthesis. The copper complexes were loaded on titania and were also added to the reactor synthesis from the beginning. Infrared and ultraviolet–visible spectroscopies were the principal techniques used to the characterization of F-TiO{sub 2} and copper complexes loaded on titania materials. Transmission Electronic Microscopy (TEM) was used to complement the characterization's studies. The biocompatibility of F-TiO{sub 2} was evaluated by treating different cancer cell lines with increased concentration of this compound. The amine, the sulfate and the phosphate on the titania's surface, as well as the integral structures of the metal complexes on titania were well identified by infrared and ultraviolet–visible spectroscopies. The TEM photographs of Cu(acac){sub 2}/F-TiO{sub 2} and Cu(Oac){sub 2}/F-TiO{sub 2} materials showed the formation of nanoparticles, which have sizes ranging from 4 to 10 nm, with no morphology alterations in comparison with F-TiO{sub 2} nanoparticles, suggesting that the presence of low quantities of copper do not affect the structure of the nanoparticles. The Energy Dispersive Spectroscopy (EDS) confirms the presence of copper on the titania's nanoparticles. The biological results indicate that there is more than 90% cell survival, thus suggesting that F-TiO{sub 2} does not cause damage to the cells. Therefore

  5. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    Science.gov (United States)

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  6. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    International Nuclear Information System (INIS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-01-01

    Highlights: • A novel mesoporous ZrO_2/SO_4"2"− has been prepared via a facile one-pot EISA strategy. • The M-ZrO_2/SO_4"2"− exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO_2/SO_4"2"− exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO_2/SO_4"2"−) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N_2-physisorption and TEM characterization techniques indicated that M-ZrO_2/SO_4"2"− possessed distinct mesostructure with big specific surface area (133.5 m"2 g"−"1), large pore volume (0.18 cm"3 g"−"1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N_2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO_4"2"−, improved the textural properties of prepared materials. In addition, the NH_3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO_2/SO_4"2"− even evacuated at 400 °C. Furthermore, the M-ZrO_2/SO_4"2"− was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  7. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China); Chou, Lingjun, E-mail: ljchou@licp.cas.cn [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2017-07-31

    Highlights: • A novel mesoporous ZrO{sub 2}/SO{sub 4}{sup 2−} has been prepared via a facile one-pot EISA strategy. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO{sub 2}/SO{sub 4}{sup 2−}) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N{sub 2}-physisorption and TEM characterization techniques indicated that M-ZrO{sub 2}/SO{sub 4}{sup 2−} possessed distinct mesostructure with big specific surface area (133.5 m{sup 2} g{sup −1}), large pore volume (0.18 cm{sup 3} g{sup −1}) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N{sub 2}-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO{sub 4}{sup 2−}, improved the textural properties of prepared materials. In addition, the NH{sub 3}-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO{sub 2}/SO{sub 4}{sup 2−} even evacuated at 400 °C. Furthermore, the M-ZrO{sub 2}/SO{sub 4}{sup 2−} was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  8. Mesoporous TiO2 powders as host matrices for iron nanoparticles. Effect of the preparation procedure and doping with Hf

    Czech Academy of Sciences Publication Activity Database

    Dimitrov, M.; Ivanova, R.; Velinov, N.; Henych, Jiří; Slušná, Michaela; Štengl, Václav; Tolasz, Jakub; Mitov, I.; Tsoncheva, T.

    2016-01-01

    Roč. 7, JUL (2016), s. 56-63 ISSN 2352-507X Institutional support: RVO:61388980 Keywords : Mesoporous titania * Hafnium doping * Iron modification * Ethyl acetate oxidation * Methanol decomposition Subject RIV: CA - Inorganic Chemistry

  9. Preparation and properties of titania based ionogels synthesized using ionic liquid 1-ethyl-3-methyl imidazolium thiocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Y.L.; Tripathi, A.K.; Shalu; Singh, V.K.; Balo, L.; Gupta, H.; Singh, S.K.; Singh, R.K., E-mail: rajendrasingh.bhu@gmail.com

    2017-06-15

    Highlights: • Synthesis of titania based ionogels using non-aqueous sol-gel process. • Ionogels are found to be mesoporous structure with uniform pore size distribution. • Ionic liquid extracted TiO{sub 2} matrix reveals the anatase phase of TiO{sub 2}. • Properties of ionic liquid are found to change in TiO{sub 2} matrix. - Abstract: Present study reports the synthesis of titania (TiO{sub 2}) based ionogels using ionic liquid (IL) 1-ethyl-3-methyl imidazolium thiocyanate ([EMIM][SCN]) by non-aqueous sol-gel process. Ionogels are characterized using N{sub 2} adsorption-desorption, TGA, DSC, SEM, TEM, XRD, and FTIR. N{sub 2}-sorption results show that TiO{sub 2} matrices have meso-pores with uniform pore size distribution. Thermal studies reveal that thermal stability of confined IL decreases while the glass transition temperature (T{sub g}) is found to increase. XRD patterns show that IL containing TiO{sub 2} matrices exhibit amorphous (weak crystalline peaks) nature however after extraction of IL from ionogel, it shows the crystalline (anatase) phase of TiO{sub 2} which has also been found from SAED pattern. SEM micrographs reveal that as the amount of IL is increased, TiO{sub 2} particles are found to agglomerate. FTIR results indicate that the vibrational frequencies of confined IL are found to shift due to interaction of IL molecules with titania pore wall surface.

  10. Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide

    KAUST Repository

    Qamar, Mohd

    2014-07-01

    Synthesis of mesoporous nanocrystalline iron-doped titania following the sol-gel method is presented in this work. Samples with various molar ratios (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10 and 20%) of Fe to Ti were prepared. The particle size was found to be in the range of ∼12 nm while mesopores were approximately near to ∼5.5 nm. The effect of Fe as doping element on titania properties, such as crystallite size, surface area, pore size, pore volume and d-spacing was investigated. Moreover, distribution of Fe in TiO2 matrix was determined by elemental mapping whereas change in absorption properties was evaluated by diffuse reflectance spectroscopy. It was observed that as the Fe content was increased, a partial phase transformation from anatase to rutile and pseudorutile took place. Effect of ultraviolet, ultraviolet-visible and visible radiations on the photocatalytic activity of these catalysts was studied by removal of Methyl Orange as model pollutant. As results, it was found that the photocatalytic activity of such catalysts depends strongly on Fe amount and type of radiation. © 2013 Elsevier B.V.

  11. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  12. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst.

    Science.gov (United States)

    Wei, Weiqi; Wu, Shubin

    2017-10-01

    Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl 2 ·RH 2 O) and sulfated titania catalyst (SO 4 2- /TiO 2 ) were investigated in this study. The results showed the introduction of sulfate into the TiO 2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl 2 ·RH 2 O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl 2 ·RH 2 O hydrate and SO 4 2- /TiO 2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    International Nuclear Information System (INIS)

    Gu, Zhengrong; Wang, Sicheng; Weng, Weizong; Chen, Xiao; Cao, Liehu; Wei, Jie; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  14. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhengrong [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); The Department of Orthopaedics, Jing' an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing' An Branch), 200040 (China); Wang, Sicheng [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Department of Orthopaedics, Zhongye Hospital, Shanghai 200941 (China); Weng, Weizong; Chen, Xiao; Cao, Liehu [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Wei, Jie [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Shin, Jung-Woog [Department of Biomedical Engineering, Inje University, Gimhae, 621749 (Korea, Republic of); Su, Jiacan, E-mail: jiacansu@sina.com [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-06-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  15. Controlled synthesis of ordered mesoporous TiO{sub 2}-supported on activated carbon and pore-pore synergistic photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Zeng, Mengxiong

    2015-01-15

    Ordered mesoporous titania/activated carbon (OMTAC) were prepared by the template technique with the aid of an ultrasonic method. To explore the relationship between the structure and properties of OMTAC, the ultrasonic-sol-gel technique was applied to synthesize titania dioxide/activated carbon (USTAC). The obtained material structure was characterized by X-ray diffraction (XRD), nitrogen adsorption – desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV diffuse reflectance (DRS) and Photoluminescence (PL) emission spectra. OMTAC photocatalytic performance was evaluated by means of acid red B (ARB) degradation. The pore-pore synergistic amplification mechanism of photocatalysis was proposed and the effects of catalytic conditions on synergistic amplification were explored. The results show that compared to OMT, OMTAC has a small particle size, low electron-hole recombination rate and high surface areas, due to the hindering effect of activated carbon on crystalline grain growth and an ordered mesoporous structure of titania. OMTAC has higher catalytic activity than USTAC, OMT and P25, due to pore-pore synergistic amplification effect of photocatalysis. The OMT content is strongly affected OMTAC photocatalytic activity, and OMTAC-3 (loading 3 times of OMT on AC) has the highest photocatalytic activity due to high hydroxyl concentration, surface area and low electron-hole recombination rate. When ARB is degraded by OMTAC-3, the optimum catalytic conditions are a catalyst concentration of 1 g/L, an ARB concentration of 15 mg/L and a pH of 5. - Graphical abstract: We investigate the influence of mesoporous titania content upon the photocatalytic performance of OMTAC in acid red B degradation. - Highlights: • OMTAC were fabricated by a template technique with the aid of an ultrasonic method. • OMTAC show high photoactivity for acid red B (ARB) degradation. • OMTAC also show pore-pore synergistic photocatalytic

  16. Effect of urea on the photoactivity of titania powder prepared by sol-gel method

    International Nuclear Information System (INIS)

    Cheng Ping; Deng Changsheng; Gu Mingyuan; Dai Xiaming

    2008-01-01

    The synthesis of nanocrystalline titania powders from the hydrolysis of Ti(OBu n ) 4 in the presence of urea was investigated. DRS results showed that a redshift occurred in the absorption edge of titania with increasing the content of urea. XRD results indicated that urea showed a retarding effect on the transformation of titania from anatase to rutile. Moreover, the addition of urea resulted in a higher Brunauer-Emmett-Teller (BET) surface area as well as a larger average pore size of TiO 2 nanoparticles. The average pore size of urea/TiO 2 gels calcined at 500 deg. C increased with the increase of urea content, while the specific surface area increased with the amount of urea to reach a maximum at 10% and then decreased with further increase of the amount of urea. The maximal specific surface area of 64.4 m 2 g -1 was obtained for 10% urea/TiO 2 gels calcined at 500 deg. C, which showed an average particle size of 15 nm and pore size distribution in the range of mesopores centered at 5.8 nm. The photocatalytic experiments exhibited that titania nanoparticles prepared in the presence of urea could effectively photodegrade methyl orange under visible light irradiation due to the redshift of the absorption edge. The maximum photoactivity was achieved when the content of urea was 10%, which was attributed to the higher specific surface area

  17. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    Science.gov (United States)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-02-01

    A set of model skeletal isomerization catalysts — sulfated zirconia nanoparticles of controlled thickness anchored on different supports — was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where xlayers as zirconium hydroxide undergoes sulfation followed by thermal treatment.

  18. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; Wanninayake, Namal; Browning, James F.; Strzalka, Joseph; Kim, Doo Young; Rankin, Stephen E.

    2018-05-01

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible light absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.

  19. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    Science.gov (United States)

    Xue, Min; Huang, Li; Wang, Jian-Qiang; Wang, Ying; Gao, Ling; Zhu, Jian-hua; Zou, Zhi-Gang

    2008-05-01

    A series of visible-light-driven mesoporous structured MnO2/TiO2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO2. The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO2/TiO2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.

  20. The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size

    International Nuclear Information System (INIS)

    Xue Min; Huang Li; Wang Jianqiang; Wang Ying; Zou Zhigang; Gao Ling; Zhu Jianhua

    2008-01-01

    A series of visible-light-driven mesoporous structured MnO 2 /TiO 2 nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N 2 adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2 nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO 2 anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO 2 . The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO 2 /TiO 2 over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested

  1. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  2. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  3. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  4. Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion

    Czech Academy of Sciences Publication Activity Database

    Szeifert, J. M.; Feckl, J. M.; Fattakhova-Rohlfing, D.; Liu, Y.; Kalousek, Vít; Rathouský, Jiří; Bein, T.

    2010-01-01

    Roč. 132, č. 36 (2010), s. 12605-12611 ISSN 0002-7863 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanocrystals * mesoporous structures * TiCl4 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.019, year: 2010

  5. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Abdul, Momen [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  6. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells

    Science.gov (United States)

    Liu, Ting-Chien; Wu, Chih-Chung; Huang, Chih-Hsiang; Chen, Chih-Ming

    2016-12-01

    Ethyl cellulose (EC) was added to a titania (TiO2) paste from 2 wt.% to 18 wt.% as a binder/dispersant, and its effects on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The TiO2 mesoporous film constructed on the photoanode exhibited a dense and network structure composed of well-interconnected TiO2 nanoparticles when using a proper amount of EC (10 wt.%). Excessive and deficient addition of EC resulted in aggregation of TiO2 nanoparticles and formation of pores, respectively, in the TiO2 film. The power conversion efficiency (PCE) of DSSC showed a strong dependence on the EC content and the highest PCE of 7.53% with the highest short-circuit current density ( J SC) of 12.7 mA/cm2 was achieved when the content of EC was 10 wt.%. The incident photon-to-current conversion efficiency (IPCE) results indicated that the TiO2 mesoporous film fabricated using a proper EC addition was beneficial for electron generation (also confirmed by dye desorption experiments) and electron transport, and, therefore, improved the photovoltaic performance of DSSCs.

  7. 外场作用下由工业TiOSO4液合成介孔二氧化钛%Synthesis of Mesoporous TiO2 from Industrial TiOSO4 Solution under Potential Outfield

    Institute of Scientific and Technical Information of China (English)

    田从学; 张昭; 沈俊; 罗妮

    2007-01-01

    The precursors of mesoporous titania were synthesized via composite templates route from industrial TiOSO4 solution under ultrasonic, microwave and hydrothermal field effect. The rate of hydrolysis and condensation of TiOSO4 solution was controlled by adjusting the pH value of the reacting system. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by XRD, N2 isothermal adsorption and desorption method, particle size distribution, SEM, TEM, SAD and XPS. External field with enhancing polar action and soft hydrothermal condition is adaptive to prepare better mesoporous titania. Ultrasonic vibration promotes the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO2 was synthesized with BET surface area 146.6 m2/g,average pore diameter 2.57 nm and crystal size 13.65 nm. Ultrasonic, microwave irradiations and hydrothermal condition are better than conventional method in forming mesopore and stabilizing the structure.%以工业硫酸氧钛为钛源,采用复合模板合成路线,分别于超声,微波和水热外场作用下合成了介孔二氧化钛前驱体.通过调节反应体系的pH值来控制TiOSO4液的水解和缩聚速率.煅烧脱除模板后得到锐钛型的介孔二氧化钛.产物采用XRD,氮等温吸附脱附,粒度分布,SEM,TEM,SAD和X射线能谱分析(XPS)等技术进行了表征.结果表明:具有强极化作用和温和水热环境的外场利于制备结构更佳的介孔二氧化钛;超声振动利于介观结构的形成.在微波辐照下,所制得介孔二氧化钛的比表面积为146.6 m2/g,平均孔径2.57 nm,晶粒尺寸13.65 nm.超声、微波和水热较常规合成方法更利于形成和稳定介孔结构.

  8. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    International Nuclear Information System (INIS)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-01-01

    A set of model skeletal isomerization catalysts - sulfated zirconia nanoparticles of controlled thickness anchored on different supports - was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where x<0.5, are formed on the support surface. Its structure looks like half-period shifted counterdirected chains built-up by zirconium atoms linked by triangle pyramids of sulfate groups. Considering catalytic data of skeletal n-butane isomerisation at 150 deg. C, one can suggest that these species behave as the active component of sulfated zirconia. They are formed in subsurface layers as zirconium hydroxide undergoes sulfation followed by thermal treatment

  9. Fabrication of homogeneous titania/MWNT composite materials

    International Nuclear Information System (INIS)

    Korbely, Barbara; Nemeth, Zoltan; Reti, Balazs; Seo, Jin Won; Magrez, Arnaud; Forro, Laszlo; Hernadi, Klara

    2011-01-01

    Highlights: → Homogenous titania coverage on MWNT surface in a controllable way. → Various titanium alkoxy precursors are suitable for layer formation. → Acetone and ethanol are the best to promote interaction between MWNT and titania. -- Abstract: MWNT/titania nanocomposites were prepared by an impregnation method and subsequent heat treatment at 400 o C. Precursor compounds such as titanium (IV) propoxide and titanium (IV) ethoxide were used to cover the surface of CNTs under solution conditions. Electron microscopy and X-ray diffraction techniques were carried out to characterize the as-prepared titania layers.

  10. Low temperature N,N-dimethylformamide-assisted synthesis and characterization of anatase-rutile biphasic nanostructured titania

    Energy Technology Data Exchange (ETDEWEB)

    Estruga, M; Domenech, X; Ayllon, J A [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, E-08193 Bellaterra (Spain); Domingo, C [Institut de Ciencia dels Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Spain)], E-mail: joseantonio.ayllon@uab.es, E-mail: mestruga@qf.uab.cat

    2009-03-25

    Anatase and rutile biphasic nanostructured titania (TiO{sub 2}) has been synthesized via hydrolysis of titanium tetraisopropoxide in an aqueous solution of hydrobromic acid (HBr) and N,N-dimethylformamide (DMF) at 80 deg. C for 16 h. The presence of DMF, which was partially hydrolyzed during the process, determined the formation of a biphasic material. Powder x-ray diffraction showed the presence of both anatase and rutile titania phases in a ratio of approx. 1:1. Transmission electron microscope analysis showed that rutile was present as radial flower-like nanorods, which were surrounded by anatase spherical nanoparticles of 5 nm diameter. Low temperature nitrogen adsorption-desorption analysis showed the characteristic hysteresis loop of a mesoporous material. Specific surface area reached a value of 120 m{sup 2} g{sup -1} and the average pore diameter was 50 A. X-ray photoelectron spectroscopic analysis revealed that interstitial nitrogen was incorporated (0.35 at.%) during the annealing process. According to ultraviolet (UV)-visible diffuse reflectance spectroscope characterization, the N-doping caused a bandgap reduction from 3.0 to 2.9 eV. Photocatalytic activity of the material was tested for the degradation of methylene blue, methyl orange and 4-nitrophenol under near-UV and visible light radiation.

  11. Development of highly porous crystalline titania photocatalysts

    Science.gov (United States)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal

  12. Series-Interconnected Plastic Dye-Sensitized Solar Cells Prepared by Low- Temperature Binder-Free Titania Paste

    Directory of Open Access Journals (Sweden)

    Erlyta Septa Rosa

    2014-10-01

    Full Text Available The aim of this research is to study dye-sensitized solar cells (DSSC. This was implemented on a flexible polyethylene terephthalate (PET substrate using a mixture of transparent and scattered mesoporous anatase-titania as the electron transport layer for the photoelectrode. This mixture of anatase titania performed a dual function of light scattering and efficient dye absorption. In this study, a porous nano-TiO2 film was prepared on indium tin oxide (ITO coated polyethylene terephthalate (PET by using a binder-free titania paste; on it, a DSSC was fabricated. The paste which contained a mixture of TiO2 nanoparticles, acid chloride, and ethanol was printed on two patterns of 1x6 cm2 active areas followed by sintered at 120 ºC to form TiO2 films. A commercial dye, N719, was adsorbed on the surface of TiO2 films and assembled to two platinized conductive plastic patterns to form a counter electrode and thus a sandwich-type dye cell. Finally, a solution of KI/I2 electrolytes was injected into the cell in which a couple of sandwich-type dye cells with an active area of 6 cm2 for each cell were series interconnected with a z-type interconnection between the photoelectrode of one cell and the counter electrode of another cell. The cell performance was characterized by employing simulated solar light at an intensity of 50 mW/cm2. The results showed interconnected cells generating a short-circuit photocurrent density of 2.34 mA/cm2, an open-circuit voltage of 1.10 volt, and overall 0.172% power conversion efficiency.

  13. Hydrogen peroxide route to Sn-doped titania photocatalysts

    Directory of Open Access Journals (Sweden)

    Štengl Václav

    2012-10-01

    Full Text Available Abstract Background The work aims at improving photocatalytic activity of titania under Vis light irradiation using modification by Sn ions and an original, simple synthesis method. Tin-doped titania catalysts were prepared by thermal hydrolysis of aqueous solutions of titanium peroxo-complexes in the presence of SnCl4 or SnCl2 using an original, proprietary "one pot" synthesis not employing organic solvents, metallo-organic precursors, autoclave aging nor post-synthesis calcination. The products were characterized in details by powder diffraction, XPS, UV–vis, IR, and Raman spectroscopies, electron microscopy and surface area and porosity measurements Results The presence of tin in synthesis mixtures favors the formation of rutile and brookite at the expense of anatase, decreases the particle size of all formed titania polymorphs, and extends light absorption of titania to visible light region >400 nm by both red shift of the absorption edge and introduction of new chromophores. The photocatalytic activity of titania under UV irradiation and >400 nm light was tested by decomposition kinetics of Orange II dye in aqueous solution Conclusions Doping by Sn improves titania photoactivity under UV light and affords considerable photoactivity under >400 nm light due to increased specific surface area and a phase heterogeneity of the Sn-doped titania powders.

  14. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenliang; Wei, Wenrui; Wang, Litong [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, Ruoyu, E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-12-01

    Graphical abstract: Schematic of the formation process of HTS. - Highlights: • Amino modified porous PS-DVB microspheres were used as templates to coat TiO{sub 2.} • The coating of TiO{sub 2} was conducted under regular changing atmospheric pressure. • The PS-DVB@TiO{sub 2} was calcinated first under nitrogen and then under air to get HTS. • The resultant products were provided with high surface area and excellent photocatalytic activity under UV irradiation. - Abstract: Hollow titania microspheres (HTS) were fabricated via a sol–gel process by coating the hydrolysis product of titanium tetrabutoxide (TBOT) onto the amino (–NH{sub 2}) modified porous polystyrene cross-linked divinyl benzene (PS-DVB) microspheres under changing atmospheric pressure, followed by calcination in nitrogen and air atmosphere. Particularly, the atmospheric pressure was continuously and regularly changed during the formation process of PS-DVB@TiO{sub 2} microspheres. Then the TiO{sub 2} particles were absorbed into the pores and onto the surface of PS-DVB as well. The resultant HTS (around 2 μm in diameter) featured a high specific surface area (84.37 m{sup 2}/g), anatase crystal and stable hollow microsphere structure, which led to high photocatalysis activity. The photocatalytic degradation of malachite green (MG) organic dye solution was conducted under ultraviolet (UV) light irradiation, which showed a high photocatalytic ability (81% of MG was degraded after UV irradiation for 88 min). Therefore, it could be potentially applied for the treatment of wastewater contaminated by organic pollutants.

  15. Preparation and characterization of titania based nanowires

    International Nuclear Information System (INIS)

    Stengl, Vaclav; Bakardjieva, Snejana; Murafa, Natalie; Vecernikova, Eva; Subrt, Jan; Balek, Vladimir

    2007-01-01

    A new method for preparation of titania nanowires with diameter around 10 nm and length up to 2-3 μm is described. The precursor was prepared from sodium titanate by adding ethylene glycole (EG) and heating at temperature of 198 deg. C for 6 h under reflux. The sodium titanate glycolate formed by this way aggregated into 1D nanostructures and was subsequently transformed into titania glycolate during a chemical treatment with 98% sulfuric acid. Titania nanowires with variable amount of anatase and rutile were prepared by heating to temperatures in the range 350-1000 deg. C. The precursor as well as titania based samples were characterized by X-ray diffraction, Infrared spectroscopy, Scanning electron microscopy, High resolution transmission microscopy, Thermogravimetry, Differential thermal analysis, Evolved gas analysis and Emanation thermal analysis. The nitrogen adsorption/desorption was used for surface area and porosity determination. The photoactivity of the prepared titania samples was assessed by the photocatalytic decomposition of 4-chlorophenol in an aqueous slurry under UV irradiation of 365 nm wavelength

  16. Effect of silica/titania ratio on enhanced photooxidation of industrial hazardous materials by microwave treated mesoporous SBA-15/TiO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Akansha; Mishra, Amit; Sharma, Manisha; Singh, Satnam; Basu, Soumen, E-mail: soumen.basu@thapar.edu [Thapar University, School of Chemistry and Biochemistry (India)

    2016-07-15

    In this study microwave assisted technique has been adopted for the synthesis of different weight ratios of TiO{sub 2} dispersed on Santa barbara amorphous-15 (SBA-15) support. Morphological study revealed TiO{sub 2} particles (4–10 nm) uniformly distributed on SBA-15 while increases in SBA-15 content results in higher specific surface area (524–237 m{sup 2}/g). The diffraction intensity of 101 plane of anatase polymorph was seen increasing with increase in TiO{sub 2} ratio. All the photocatalysts were having a mesoporous nature and follow the Langmuir IV isotherm, SBA-15 posses the highest pore volume (0.93 cm{sup 3} g{sup −1}) which consistently decreased with TiO{sub 2} content and was lowest (0.50 cm{sup 3} g{sup −1}) in case of 5 wt% of TiO{sub 2} followed by P25 (0.45 cm{sup 3} g{sup −1}) while pore diameter increased after TiO{sub 2} incorporation due to pore strain. The photocatalytic activity of the nanocomposites were analysed for the photodegradation of alizarin dye and pentachlorophenol under UV light irradiation. The reaction kinetics suggested the highest efficiency (98 % for alizarin and 94 % for PCP) of 5 wt% TiO{sub 2} compared to other photocatalysts, these nanocomposites were reused for several cycles, which is most important for heterogeneous photocatalytic degradation reaction.Graphical abstractThis study demonstrates the synthesis of silica embedded TiO{sub 2} nanocomposites by microwave assisted technique and their catalytic influence on degradation of organic dyes and pollutants. Higher loading of titania (SBA-15/TiO{sub 2}, 1:5) results better catalytic performance than commercial nano TiO{sub 2} (P25).

  17. Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode

    International Nuclear Information System (INIS)

    Zhao, Junchang; Wu, Jihuai; Zheng, Ming; Huo, Jinghao; Tu, Yongguang

    2015-01-01

    Highlights: • A colloid of graphene/titania is prepared, and thus a graphene/titania film is made. • The film shows high porosity, large surface area and small transfer resistance. • The cell with graphene/titania photoanode obtains a conversion efficiency of 7.52%. • Which is increased by 18% compared to the cell with pristine titania electrode. - Abstract: A mixed colloid of graphene and titania is synthesized by a one-step hydrothermal reaction, thus a graphene/titania film photoanode is prepared. The graphene/titania film shows high porosity and large specific surface area, which favors a full adsorption of sensitized dye. On the other hand, the graphene/titania electrode has smaller charge transfer resistance than the pristine titania electrode, which replies that the graphene/titania electrode accelerates electronic transportation and suppresses the charge recombination. Under an optimal condition, the dye-sensitized solar cell based on graphene/titania photoanode achieve a power conversion efficiency of 7.52%, which is increased by 17.7% compared to the cell based on the pristine titania electrode under a simulated solar light irradiation of 100 mW·cm −2

  18. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    Science.gov (United States)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  19. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2

    Directory of Open Access Journals (Sweden)

    Tan H

    2015-07-01

    Full Text Available Honglue Tan,1 Shengbing Yang,2 Pengyi Dai,1 Wuyin Li,1 Bing Yue2 1Luoyang Orthopedics and Traumatology Institution, Luoyang Orthopedic-Traumatological Hospital, Luoyang, 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Abstract: As a commonly used implant material, calcium sulfate cement (CSC, has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption–desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio, CSC-10S (10% mass ratio, and CSC-20S (20% mass ratio, respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing

  20. Size and morphology effects of titania on dye-sensitized solar cells performance

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Lin, Chien-Chih; Jang, Shiue-Ming; Kao, Tien-Hsieh

    2013-01-01

    This study uses commercial titania (P25) to prepare titania nanowires (NWs) using alkali and hydrothermal treatments. Nanosized titania P25 and NWs were used to prepare spray-dried titania P25 (SP25) and spray-dried titania nanowires (SNWs), respectively, using the spray-drying process. These different titania sizes and morphologies were used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs) and to investigate their effect on cell performance. All prepared titania NWs and SNWs were in the anatase phase after heat treatment at 450 °C for 2 h. The specific areas for titania with different morphologies were 49.5 m 2 /g for P25, 48.3 m 2 /g for SP25, 42.6 m 2 /g for NWs, and 40.3 m 2 /g for SNWs. The results show that the surface areas decreased when the titania P25 or NWs were processed by spray drying. In optimal conditions, DSSCs prepared from P25 + 2.5 wt.% NWs with a light-to-electric energy conversion efficiency of 5.88% were produced using a simulated solar light irradiation of 100 mW/cm 2 (AM 1.5). - Highlights: • Titania with different size and morphology were prepared. • Hydrothermal and spray drying process were applied. • Solar cells with an efficiency of 5.88% were produced

  1. Size and morphology effects of titania on dye-sensitized solar cells performance

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Wen-Chen, E-mail: wcchien@mail.mcut.edu.tw [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Lin, Chien-Chih [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Jang, Shiue-Ming [Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Kao, Tien-Hsieh [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China)

    2013-10-01

    This study uses commercial titania (P25) to prepare titania nanowires (NWs) using alkali and hydrothermal treatments. Nanosized titania P25 and NWs were used to prepare spray-dried titania P25 (SP25) and spray-dried titania nanowires (SNWs), respectively, using the spray-drying process. These different titania sizes and morphologies were used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs) and to investigate their effect on cell performance. All prepared titania NWs and SNWs were in the anatase phase after heat treatment at 450 °C for 2 h. The specific areas for titania with different morphologies were 49.5 m{sup 2}/g for P25, 48.3 m{sup 2}/g for SP25, 42.6 m{sup 2}/g for NWs, and 40.3 m{sup 2}/g for SNWs. The results show that the surface areas decreased when the titania P25 or NWs were processed by spray drying. In optimal conditions, DSSCs prepared from P25 + 2.5 wt.% NWs with a light-to-electric energy conversion efficiency of 5.88% were produced using a simulated solar light irradiation of 100 mW/cm{sup 2} (AM 1.5). - Highlights: • Titania with different size and morphology were prepared. • Hydrothermal and spray drying process were applied. • Solar cells with an efficiency of 5.88% were produced.

  2. Multilayered High Surface Area "Brick and Mortar" Mesoporous Titania Films as Efficient Anodes in Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Szeifert, J. M.; Fattakhova-Rohlfing, D.; Rathouský, Jiří; Bein, T.

    2012-01-01

    Roč. 24, č. 4 (2012), s. 659-663 ISSN 0897-4756 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanium dioxide * functional coatings * mesoporous metal oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.238, year: 2012

  3. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    Science.gov (United States)

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO_2-Functionalized Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; Nagpure, Suraj; Strzalka, Joseph

    2017-01-01

    Exploiting specific interactions with titania (TiO_2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO_2 has many potential advantages over bulk and mesoporous TiO_2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO_2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO_2 content (up to 636 mg TiO2/g). The adsorption isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO_2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO_2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO_2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.

  5. Synthesis and polymorphic control for visible light active titania nanoparticles

    Science.gov (United States)

    Kaewgun, Sujaree

    Titania (TiO2) is useful for many applications in photocatalysis, antimicrobials, pigment, deodorization, and decomposition of harmful organics and undesirable compounds in the air and waste water under UV irradiation. Among the three phases of TiO2, Rutile, Anatase, and Brookite, studies have been more focused on the anatase and rutile phases. Pure brookite is the most difficult phase to prepare, even under hydrothermal conditions. Predominantly brookite phase TiO2 nanoparticles were prepared by the Water-based Ambient Condition Sol (WACS) process in our laboratory. The objectives of this research were to enhance visible light active (VLA) photocatalytic properties of polymorphic brookite TiO2 by minimizing the lattice defects and narrowing band gap of titania by nitrogen and/or carbon chromophone, and to investigate the deactivation, reusability, and regeneration of the VLA titania in order to design better titania catalysts for organic compound degradation applications. In order to study the influence of hydroxyl content on photocatalytic activities (PCAs) of polymorphic titania nanoparticles, the WACS samples were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec-butanol (sec-BuOH). All samples were characterized for phase composition, surface area, hydroxyl contamination, and particle morphology by x-ray diffraction, N2 physisorption, FT-IR, solid state 1H NMR and scanning electron microscopy, and then compared to a commercial titania, Degussa P25. Evaluation of methyl orange (MO) degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania enhanced the PCA. As-prepared titania and SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior PCA came from the reduction in the lattice hydroxyl content. To enhance PCA and VLA properties of WACS, an alternative high boiling point polar solvent, N-methylpyrrolidone (NMP), was utilized in the

  6. The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties

    International Nuclear Information System (INIS)

    Pasqui, Daniela; Atrei, Andrea; Barbucci, Rolando

    2009-01-01

    We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pH values. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate.

  7. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

    International Nuclear Information System (INIS)

    Lombardo, M.V.; Videla, M.; Calvo, A.; Requejo, F.G.; Soler-Illia, G.J.A.A.

    2012-01-01

    Highlights: ► We produce mesoporous amino-silica as Cu(II) adsorbent (1.15–1.75 mmol Cu(II) g −1 ). ► Elemental analysis and XPS demonstrate that amino groups concentrate at the material surface. ► The integrity of the adsorbent through the adsorption, desorption and recycling processes is assessed. ► These materials can be regenerated by exposure to acidic media. ► A careful thermal processing of the material is central to better durability during reprocessing. - Abstract: Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption–desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15–1.75 mmol Cu(II) g −1 ), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the materials processing factors involved in the improved adsorption of Cu(II), its quantitative release and reusability of the

  8. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO{sub 2} films prepared at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Elgh, Björn; Yuan, Ning; Palmqvist, Anders E. C. [Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE 412 96 Göteborg (Sweden); Cho, Hae Sung; Terasaki, Osamu [Graduate School of EEWS (WCU), KAIST, Daejeon 305-701 (Korea, Republic of); Magerl, David; Philipp, Martine; Müller-Buschbaum, Peter [Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748 Garching (Germany); Roth, Stephan V. [DESY, Notkestrasse 85, 22603 Hamburg (Germany); Yoon, Kyung Byung [Department of Chemistry, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  9. Effect of Gold Dispersion on the Photocatalytic Activity of Mesoporous Titania for the Vapor-Phase Oxidation of Acetone

    Directory of Open Access Journals (Sweden)

    S. V. Awate

    2008-01-01

    Full Text Available Mesostructured titanium dioxide photocatalyst, having uniform crystallite size (6–12 nm and average pore diameter of ∼4.2 nm, was synthesized by using a low-temperature nonsurfactant hydrothermal route, employing tartaric acid as a templating agent. Gold additions from 0.5 to 2 wt% were incorporated, either during the hydrothermal process or by postsynthesis wet impregnation. Compared to the impregnation-prepared samples, the samples synthesized hydrothermally contained smaller-size (≤1 nm gold clusters occluded in the pores of the host matrix. Whereas CO2 and H2O were the main reaction products in UV-assisted vapor-phase oxidation of acetone using these catalysts, C2H6 and HCO2CH3 were also produced for higher acetone concentrations in air. The conversion of acetone was found to increase with decrease in the size of both TiO2 and gold particles. In situ IR spectroscopy revealed that titania and gold particles serve as independent adsorption and reaction sites for acetone and oxygen molecules. Acetone molecules adsorb exclusively at TiO2 surface, giving rise to a strongly adsorbed (condensed state as well as to the formation of formate- and methyl formate-type surface species. Hydroxyl groups at titania surface participate directly in these adsorption steps. Nanosize gold particles, on the other hand, were primarily responsible for the adsorption and activation of oxygen molecules. Mechanistic aspects of the photochemical processes are discussed on the basis of these observations.

  10. Titania based nanocomposites as a photocatalyst: A review

    Directory of Open Access Journals (Sweden)

    Farha Modi

    2016-08-01

    Full Text Available Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.

  11. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  12. Fabrication of Titania Nanotubes for Gas Sensing Applications

    Science.gov (United States)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  13. Preparation and characterization of vanadia-titania mixed oxide for immobilization of Serratia rubidaea CCT 5732 and Klebsiella marcescens bacteria

    International Nuclear Information System (INIS)

    Saragiotto Colpini, Leda Maria; Correia Goncalves, Regina A.; Goncalves, Jose Eduardo; Maieru Macedo Costa, Creusa

    2008-01-01

    Vanadia-titania mixed oxide was synthesized by sol-gel method and characterized by several techniques. Texturally, it is formed by mesopores and presents high-specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the material. Structurally, it was possible to identify characteristic V=O stretching bands by IR. The analysis of X-ray diffraction showed that the material, particularly vanadium, is highly dispersed. Application experiments were carried out through the immobilization of Serratia rubidae CCT 5732 and Klebsiella marcescens bacteria by adsorption on the surface of mixed oxide. The micrographies revealed that the bacteria were adsorbed on the entire support, with average surface densities of 8.55 x 10 11 cells/m 2 (Serratia rubidae CCT 5732) and 3.40 x 10 11 cells/m 2 (K. marcescens)

  14. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    International Nuclear Information System (INIS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-01-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO 2 ) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO 2 ). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO 2 /TiO 2 ) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO 2 -Degussa P25 catalyst is detected.

  15. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    Science.gov (United States)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  16. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.

  17. Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications

    International Nuclear Information System (INIS)

    Bela, Somaiah; Ho, Ghim Wei; Wong, Andrew See Weng

    2010-01-01

    One-dimensional titanate and titania nanostructures are prepared by hydrothermal method from titania nanoparticles precursor via hydrolysis and ion exchange processes. The formation mechanism and the reaction process of the nanobelts are elucidated. The effects of the NaOH concentration, HCl leaching duration and the calcination temperature on the morphology and chemical composition of the produced nanobelts are investigated. Na + ions of the titanate nanobelts can be effectively removed by longer acid leaching and neutralization process and transformed into metastable hydrogen titanate compound. A hybrid hydrogen titanate and anatase titania nanobelts can be obtained under dehydration process of 500 0 C. The nanobelts are produced in gram quantities and easily made into nanostructure paper for the bulk study on their electrical and sensing properties. The sensing properties of the nanobelts sheet are tested and exhibited response to H 2 gas.

  18. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  19. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation

    International Nuclear Information System (INIS)

    Cecchinato, Francesca; Karlsson, Johan; Ferroni, Letizia; Gardin, Chiara; Galli, Silvia; Wennerberg, Ann; Zavan, Barbara; Andersson, Martin; Jimbo, Ryo

    2015-01-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO 2 ) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S dr ) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO 2 surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of osteopontin

  20. Sintering and mechanical properties of the alumina–tricalcium phosphate–titania composites

    Energy Technology Data Exchange (ETDEWEB)

    Sakka, Siwar, E-mail: sakka.siwar@yahoo.fr; Bouaziz, Jamel; Ben Ayed, Foued

    2014-07-01

    The objective of this study was to determine the effect of the content of titania and the sintering process on the transformation phase, the densification, the rupture strength and the microstructures of the alumina–10 wt.% tricalcium phosphate composites. After the sintering process, the samples were examined by using {sup 31}P and {sup 27}Al magic angle scanning nuclear magnetic resonance, X-ray powder diffraction and scanning electron microscopy analysis. The Brazilian test was used to measure the rupture strength of the samples. The present results provide new information about solid-state reactivity in the ternary system α-alumina-β-tricalcium phosphate–anatase–titania. The differential thermal analysis of the α-alumina-β-tricalcium phosphate–titania composites shows two endothermic peaks, at 1360 °C and at 1405 °C, which are caused by the reactions between titania/alumina and titania/tricalcium phosphate, respectively. Thus, the presence of titania in the alumina–10 wt.% tricalcium phosphate leads to the formation of β-Al{sub 2}TiO{sub 5} at 1360 °C. At 1600 °C, the alumina–10 wt.% tricalcium phosphate–5 wt.% titania composites displayed the highest rupture strength (74 MPa), compared to the alumina–10 wt.% tricalcium phosphate composites (13.5 MPa). Accordingly, the increase of the rupture strength is due to the formation of the new β-Al{sub 2}TiO{sub 5} phase. - Highlights: • We examine the mechanical properties of bioceramics. • We measure the rupture strength by the Brazilian test. • We characterize the alumina–10 wt.% tricalcium phosphate–titania composites.

  1. Hybrids of ethylene vinyl acetate with Na-montmorillonite and titania: preparation and characterization

    International Nuclear Information System (INIS)

    Ashfaq, M.

    2010-01-01

    Hybrids of Ethylene vinyl acetate (EVA) with Na-montmorillonite and titania were formed. Montmorillonite was organically modified by two different modifiers: Pyridinium ions and 4. 4-oxydianilinium ions. X-ray diffraction results revealed that Pyridinium ions increased the .interlayer spacing by 0.33 nm and 4, 4-oxydianilinium by 0.55 nm approximately. These modified organo-clays were successfully exfoliated in EVA using melt blending. These hybrids showed improvement in mechanical and thermal properties. 4, 4-oxydianilinium ions were degraded at higher temperature due to which thermal degradation was enhanced in EVA. In addition to this, EVA/titania hybrids were also prepared using sot-gel technique and modified by triethoxy vinyl silane and (3-aminopropyI)- triethoxy silane to increase their compatibility with EVA. Some portion of unmodified titania was heat treated to 600 degree C to obtain particulate titania. The hybrid of particulate titania and modified titania improved the mechanical properties and thermal properties. Especially in case of modified titania toughness was almost doubled. (author)

  2. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  3. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO{sub 2} coating with magnesium impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Francesca, E-mail: francesca.cecchinato@mah.se [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Karlsson, Johan [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Ferroni, Letizia; Gardin, Chiara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Galli, Silvia; Wennerberg, Ann [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Zavan, Barbara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Andersson, Martin [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Jimbo, Ryo [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki (Japan)

    2015-07-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO{sub 2}) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S{sub dr}) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO{sub 2} surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of

  4. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  5. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    International Nuclear Information System (INIS)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-01-01

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO 2 ) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 °C) do not show significant activity under our conditions, while the one annealed at 450 °C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: ► Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. ► Titania crystal is formed by annealing hydrogen titanate at different temperatures. ► Best visible-light activity is achieved by Ag-loaded titania annealed at 450 °C. ► The visible light activity is attributed to the surface plasmonic resonance effect.

  6. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    Science.gov (United States)

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  7. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    Science.gov (United States)

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  8. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells

    International Nuclear Information System (INIS)

    Shalan, A.E.; Rashad, M.M.; Yu, Youhai; Lira-Cantú, Mónica; Abdel-Mottaleb, M.S.A.

    2013-01-01

    Graphical abstract: (a) A highly ordered, vertically oriented TiO 2 nanorods compared with TiO 2 nanopaticles and (b) Dye sensitized solar cell fabricated using sealing technique. Highlights: ► TiO 2 nanorods particles size of 3–5 nm was synthesized hydrothermally at 100 °C. ► S BET was 78.14 m 2 /g and the band gap energy was 3.2 eV. ► (J sc ) and (V oc ) of the DSSC were in the range 10.84–13.23 mA cm −2 and 0.71–0.78 V. ► Conversion efficiency of DSSCs was 7.2%. ► IPCE analyses of the DSSC showed two peaks, at ∼350 and 520 nm. -- Abstract: A low temperature hydrothermal process have been developed to synthesize titania nanorods (NRs) and nanoparticles (NPs) with controlled size for dye sensitized solar cells (DSSCs). Effect of calcination temperature on the performance of TiO 2 nanoparticles for solar cells was investigated and discussed. The crystallite size and the relative crystallinity of the anatase phase were increased with increasing the calcination temperature. The structures and morphologies of both (TiO 2 nanorods and nanoparticles) were characterized using XRD, SEM, TEM/HRTEM, UV–vis Spectroscopy, FTIR and BET specific surface area (S BET ) as well as pore-size distribution by BJH. The size of the titania nanorods was 6.7 nm width and 22 nm length while it was 13 nm for nanoparticles. Efficiency of dye-sensitized solar cells (DSSCs) fabricated with oriented TiO 2 nanorods was reported to be more superior compared to DSSC based on mesoporous TiO 2 nanoparticles due to their high surface area, hierarchically mesoporous structures, low charge recombination and fast electron-transfer rate. With increasing calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency (η) decreased. The efficiency of the assembly solar cells was decreased due to the agglomeration of the particles and difficulty of electron movement. The power efficiency was enhanced from 1.7% for TiO 2 nanoparticles cells at

  9. Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid

    Science.gov (United States)

    Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed

    2015-06-01

    Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.

  10. Seeded Growth of Titania Colloids with Refractive Index Tunability and Fluorophore-Free Luminescence

    NARCIS (Netherlands)

    Demirors, A.F.; Jannasch, A.; van Oostrum, P.D.J.; Schäffer, E.; Imhof, A.; van Blaaderen, A.

    2011-01-01

    Titania is an important material in modern materials science, chemistry, and physics because of its special catalytic, electric, and optical properties. Here, we describe a novel method to synthesize colloidal particles with a crystalline titania, anatase core and an amorphous titania-shell

  11. In situ iron-57 Moessbauer spectroscopic investigations of the effect of titania surface area on the reducibility of titania-supported iron oxide

    International Nuclear Information System (INIS)

    Berry, F.J.; Du Hongzhang

    1990-01-01

    Iron-57 Moessbauer spectroscopy has been used to monitor the reducibility in hydrogen of iron oxides supported on titania of differing surface areas. The results show that although Fe 3+ in the iron oxide supported on low surface area titania (11 m 2 g -1 ) is not amenable to facile reduction at low temperatures, complete reduction to metallic iron is achieved by treatment at 600deg C. The data also show that the extent of reduction at elevated temperatures exceeds that which is obtained on similar silica- and alumina-supported systems. Fe 3+ in iron oxide supported on higher surface area titania (50 m 2 g -1 and 240 m 2 g -1 ) is partially reduced in hydrogen at 235deg C to Fe 2+ but fails to attain complete reduction to the metallic state following treatment at 600deg C. The results are related to the different dispersions of iron oxide which can be attained on titania of differing surface area and the consequent interactions between the support and the supported phases. (orig.)

  12. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, M.V. [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); Videla, M. [Rhein Chemie Argentina, Luis Maria Drago 1555 - (B1852LGS) Burzaco, Buenos Aires (Argentina); Calvo, A.; Requejo, F.G. [INIFTA-CONICET, Universidad Nacional de La Plata, CC 16 Sucursal 4 (1900), La Plata (Argentina); Soler-Illia, G.J.A.A., E-mail: gsoler@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (C1428EHA), Buenos Aires (Argentina)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We produce mesoporous amino-silica as Cu(II) adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}). Black-Right-Pointing-Pointer Elemental analysis and XPS demonstrate that amino groups concentrate at the material surface. Black-Right-Pointing-Pointer The integrity of the adsorbent through the adsorption, desorption and recycling processes is assessed. Black-Right-Pointing-Pointer These materials can be regenerated by exposure to acidic media. Black-Right-Pointing-Pointer A careful thermal processing of the material is central to better durability during reprocessing. - Abstract: Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption-desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the

  13. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  14. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  15. M-Polynomials and Topological Indices of Titania Nanotubes

    Directory of Open Access Journals (Sweden)

    Mobeen Munir

    2016-10-01

    Full Text Available Titania is one of the most comprehensively studied nanostructures due to their widespread applications in the production of catalytic, gas sensing, and corrosion-resistant materials. M-polynomial of nanotubes has been vastly investigated, as it produces many degree-based topological indices, which are numerical parameters capturing structural and chemical properties. These indices are used in the development of quantitative structure-activity relationships (QSARs in which the biological activity and other properties of molecules, such as boiling point, stability, strain energy, etc., are correlated with their structure. In this report, we provide M-polynomials of single-walled titania (SW TiO2 nanotubes and recover important topological degree-based indices to theoretically judge these nanotubes. We also plot surfaces associated to single-walled titania (SW TiO2 nanotubes.

  16. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Directory of Open Access Journals (Sweden)

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  17. Evaluation of the Morphology and Osteogenic Potential of Titania-Based Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2012-01-01

    Full Text Available Submicron-scale titania-based ceramic fibers with various compositions have been prepared by electrospinning. The as-prepared nanofibers were heat-treated at 700°C for 3 h to obtain pure inorganic fiber meshes. The results show that the diameter and morphology of the nanofibers are affected by starting polymer concentration and sol-gel composition. The titania and titania-silica nanofibers had the average diameter about 100–300 nm. The crystal phase varied from high-crystallized rutile-anatase mixed crystal to low-crystallized anatase with adding the silica addition. The morphology and crystal phase were evaluated by SEM and XRD. Bone-marrow-derived mesenchymal stem cells were seeded on titania-silica 50/50 fiber meshes. Cell number and early differentiation marker expressions were analyzed, and the results indicated osteogenic potential of the titania-silica 50/50 fiber meshes.

  18. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites

    International Nuclear Information System (INIS)

    Mohamed, Khaled R.; Mostafa, Amani A.

    2008-01-01

    Biocomposites consisting of hydroxyapatite (HA) and natural polymers such as collagen, chitosan, chitin,and gelatin have been extensively investigated. However, studies on the combination of HA and titania with chitosan and gelatin have not been conducted yet. Novel biodegradable hydroxyapatite-titania/chitosan-gelatin polymeric composites were fabricated. In this work, our results are concerning with the preparation and characterization of HA powder and HA filler containing titania powder (10 and 30%) with a chitosan and gelatin copolymer matrix. The present research focuses on characterizing the structure of this novel class of biocomposites. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM-EDAX) were employed to assess the produced composites. The mechanical properties in terms of compressive strength and hardness test were also investigated. The in vitro study in simulated body fluid (SBF) was performed to assess the bioactivity of composites. The results proved that apatite resembling natural bone are formed faster and greater in the case the composite of HA containing 10% titania into chitosan-gelatin polymeric matrix when they are soaked in a simulated body fluid (SBF) than the composite containing 30% titania. The biocomposites containing HA with 10% titania are expected to be attractive for bioapplications as bone substitutes and scaffolds for tissue engineering in future

  19. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydroxyapatite nucleated and grown on nano titania particles enhances recruitment of Escherichia coli for subsequent photocatalytic elimination

    International Nuclear Information System (INIS)

    Huang, Jing; Liu, Yi; Liu, Yuxin; Li, Hua

    2015-01-01

    Titania-hydroxyapatite (HA) nanocomposites were fabricated by wet chemical synthesis approach. HA exhibited crystallographic orientation of nucleation on nano titania particle, forming the composite particles with titania being partially enwrapped with HA. Microstructural characterization by high resolution transmission electron microscopy revealed coherent interfacial bond of (110) and (222) planes of HA crystal with (101) plane of anatase. The HA layer promoted significantly recruitment of Escherichia coli bacteria onto the titania-based particles for subsequent photocatalytic killing. Less extent of enwrapping of HA on titania particle, as accomplished by increasing the aging time of HA suspension, gave rise to better capability of photocatalytic degradation of methylene blue and sterilization of the bacteria. The novel HA-enwrapped titania powder shows great potential for environmental applications. - Highlights: • Titania-hydroxyapatite nanocomposite powder was fabricated with cladding structure. • Hydroxyapatite nucleated and grew on titania particle with preferred orientation. • Hydroxyapatite layer promotes recruitment of Escherichia coli onto titania-based particles. • The titania-hydroxyapatite particles show excellent antibacterial performances. • The nanocomposite powder exhibits excellent photocatalytic performances

  2. Hydroxyapatite nucleated and grown on nano titania particles enhances recruitment of Escherichia coli for subsequent photocatalytic elimination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Liu, Yi; Liu, Yuxin; Li, Hua, E-mail: lihua@nimte.ac.cn

    2015-02-01

    Titania-hydroxyapatite (HA) nanocomposites were fabricated by wet chemical synthesis approach. HA exhibited crystallographic orientation of nucleation on nano titania particle, forming the composite particles with titania being partially enwrapped with HA. Microstructural characterization by high resolution transmission electron microscopy revealed coherent interfacial bond of (110) and (222) planes of HA crystal with (101) plane of anatase. The HA layer promoted significantly recruitment of Escherichia coli bacteria onto the titania-based particles for subsequent photocatalytic killing. Less extent of enwrapping of HA on titania particle, as accomplished by increasing the aging time of HA suspension, gave rise to better capability of photocatalytic degradation of methylene blue and sterilization of the bacteria. The novel HA-enwrapped titania powder shows great potential for environmental applications. - Highlights: • Titania-hydroxyapatite nanocomposite powder was fabricated with cladding structure. • Hydroxyapatite nucleated and grew on titania particle with preferred orientation. • Hydroxyapatite layer promotes recruitment of Escherichia coli onto titania-based particles. • The titania-hydroxyapatite particles show excellent antibacterial performances. • The nanocomposite powder exhibits excellent photocatalytic performances.

  3. Preparation of nitrogen-doped titania using sol-gel technique and its photocatalytic activity

    International Nuclear Information System (INIS)

    Qin Haoli; Gu Guobang; Liu Song

    2008-01-01

    Yellowish nitrogen-doped titania was produced through sol-gel method at room temperature, with the elemental nitrogen derived from aqua ammonia. The titania catalysts were characterized using TG-DSC, XRD, BET, TEM, and UV-vis diffuse reflectance spectrophotometer. Methyl orange (MO) and 2-mercaptobenzothiazole (MBT) were used in this study as model chemicals and both the adsorption isotherm and photocatalytic activity of the nitrogen-doped titania catalysts were evaluated based on the MO and MBT photodegradation in aqueous solution under UV and visible light, respectively. The results showed that all titania catalysts were anatase. The crystallite size of nitrogen-doped ones increased with the increase of N/Ti proportion, both the adsorption capacity and adsorption equilibrium constants of the nitrogen-doped titania catalysts were improved by the doping of nitrogen. The doping of nitrogen could extend the absorption shoulder into the visible-light region, thus nitrogen-doped titania possessed visible-light activity illustrated by that higher capability of degradation of MO and MBT under the irradiation of visible light, whereas the pure ones showed little such kind of visible-light activity. The kinetics of the MO and MBT photodegradation using different nitrogen-doped titania were also studied, the experiments demonstrated that there was an optimum N/Ti proportion of 4 mol% to exhibit the highest visible-light activity. The UV activity of nitrogen-doped titania catalysts were worse than that of the pure one and Degussa P-25. In addition, nitrogen-doped titania had weakened appreciably activity in the visible-light region as the N/Ti proportion increased, while a reverse relationship exists for the UV light. It was concluded that the enhancement of MO and MBT photodegradation using the nitrogen-doped titania catalysts mainly involved in both the improvement of the organic substrate adsorption in catalysts suspension and the enhancement of the separation of electron

  4. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  5. Synthesis of eccentric titania-silica core-shell and composite particles

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control

  6. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  7. Performance engineering of dye sensitized solar cells (DSSC) using Ag modified titania as photoanode

    Science.gov (United States)

    Nair, Ranjith G.; Mathan Kumar, P.; Samdarshi, S. K.

    2018-01-01

    Present work reports the fabrication of silver (Ag) modified titania photoanode as an efficient photoanode for Dye Sensitized Solar Cell (DSSC). Pristine and Ag modified Titania nanomaterials were prepared using sol gel method. The structural analyses confirm the high crystallinity of the samples with crystallite size distribution in nanorange. TEM micrograph confirms that the synthesized nanomaterials are in uniform size. A red shift is observed in the UV DRS spectra compared to pristine Titania and which confirm the incorporation of Ag inside titania. A prototype DSSC was fabricated using the pristine and modified Titania as photoanode, Ruthenium dye as sensitizer, I-/I-3 as redox electrolyte and platinum counter electrode. The cell with Ag modified titania photoanode showed 15 times enhanced photoconversion efficiency (PCE) than the pristine one. This improved performance of the Ag modified DSSC can be ascribed to reduced recombination and improved charge carrier transport of electrons/holes at the interfaces.

  8. Iron on mixed zirconia-titania substrate F-T catalyst

    International Nuclear Information System (INIS)

    Dyer, P.N.; Nordquist, A.F.; Pierantozzi, R.

    1988-01-01

    This patent deals with a Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized

  9. Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes

    Directory of Open Access Journals (Sweden)

    Valentina Allodi

    2016-03-01

    Full Text Available A large number of nano-sized oxides have been studied in the literature as fillers for polymeric membranes, such as Nafion®. Superacidic sulfated oxides have been proposed and characterized. Once incorporated into polymer matrices, their beneficial effect on peculiar membrane properties has been demonstrated. The alteration of physical-chemical properties of composite membranes has roots in the intermolecular interaction between the inorganic filler surface groups and the polymer chains. In the attempt to tackle this fundamental issue, here we discuss, by a multi-technique approach, the properties of a nanosized sulfated titania material as a candidate filler for Nafion membranes. The results of a systematic study carried out by synchrotron X-ray diffraction, transmission electron microscopy, thermogravimetry, Raman and infrared spectroscopies are presented and discussed to get novel insights about the structural features, molecular properties, and morphological characteristics of sulphated TiO2 nanopowders and composite Nafion membranes containing different amount of sulfated TiO2 nanoparticles (2%, 5%, 7% w/w.

  10. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T., E-mail: t-kimura@aist.go.jp [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2014-11-01

    Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene) (PS-b-PEO) diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical) macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  11. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    Directory of Open Access Journals (Sweden)

    T. Kimura

    2014-11-01

    Full Text Available Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene (PS-b-PEO diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  12. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Science.gov (United States)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  13. Chirality of Single-Handed Twisted Titania Tubular Nanoribbons Prepared Through Sol-gel Transcription.

    Science.gov (United States)

    Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-08-01

    Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH. © 2015 Wiley Periodicals, Inc.

  14. New Cu-based catalysts supported on TiO2 films for Ullmann SnAr-type C-O coupling reactions

    NARCIS (Netherlands)

    Benaskar, F.; Engels, V.; Rebrov, E.; Patil, N.G.; Meuldijk, J.; Thuene, P.C.; Magusin, P.C.M.M.; Mezari, B.; Hessel, V.; Hulshof, L.A.; Hensen, E.J.M.; Wheatley, A.E.H.; Schouten, J.C.

    2012-01-01

    New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for CO coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles,

  15. The Effect of Titanium Tetrahedral Coordination of Silica-Titania Catalyst on the Physical Properties of Biodiesel

    Science.gov (United States)

    Nizar, U. K.; Hidayatul, J.; Sundari, R.; Bahrizal, B.; Amran, A.; Putra, A.; Latisma DJ, L.; Dewata, I.

    2018-04-01

    This study investigates the correlation of the number of titanium tetrahedral coordination and biodiesel production. The solid-state method has been used to synthesis of silica-titania catalyst for biodiesel production, which the precursors, i.e. silica and titania commercials were heated in the temperature range of 450 - 550°C. The characterization of the prepared silica-titania has been studied by FTIR and DR UV-Vis in order to identify and calculate the presence of titanium tetrahedral coordination in silica-titania catalyst. A very small peak at around 950 cm-1 indicated the presence of titanium tetrahedral coordination through Si–O–Ti bonds. Deconvolution of DR UV-Vis spectra showed the coordination of titanium in silica-titania is more octahedral. However, the number of titanium tetrahedral coordination of the prepared silica-titania is found higher than that of TiO2 commercial. The increasing of titanium tetrahedral fraction in silica-titania affects the physical properties of biodiesel in terms of boiling point, viscosity and density, which is produced by the reaction of methanol and palm oil.

  16. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  17. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  18. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  19. Sustainable steric stabilization of colloidal titania nanoparticles

    Science.gov (United States)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  20. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes

    International Nuclear Information System (INIS)

    Casino, S.; Di Lupo, F.; Francia, C.; Tuel, A.; Bodoardo, S.; Gerbaldi, C.

    2014-01-01

    Highlights: • Mesoporous TiO 2 nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO 2 anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO 2 Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C 18 TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO 2 materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m 2 g −1 . Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy

  1. Facile synthesis of hierarchical nanostructured rutile titania for lithium-ion battery

    International Nuclear Information System (INIS)

    Fei Hailong; Wei Mingdeng

    2011-01-01

    Highlights: → Rutile TiO 2 sub-microflowers and sub-microspheres with different building blocks as anode materials of lithium-ion battery. → Controllable morphologies with oxalic acid by the hydrothermal technique. → Sub-microflower and sub-microspheres constructed by well organized nanorods exhibited high capacity and good cycle stability. → Small size building blocks nanorods enhance the transfer rate of Li-ion. - Abstract: A facile hydrothermal method is developed to prepare rutile titania sub-microflowers consisting of nanorods with oxalic acid and TiOSO 4 as reagents. The diameter of sub-microflowers and nanorods is found to be ca. 800 and 40 nm, respectively. Also, the shape and size of building blocks in rutile titania sub-microflowers can be considerably controlled via adjusting the reaction time and reactant amounts. Rutile titania sub-microflowers composed of nanorods display higher discharge capacity and better rate cycle stability than other rutile titania nanostructures as lithium-ion battery anode material due to enhancing the Li-ion transfer rate for small size building blocks.

  2. Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko

    2015-02-01

    MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.

  3. Solventless acid-free synthesis of mesostructured titania: Nanovessels for metal complexes and metal nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Dag, Oe.; Celik, Oe.; Ozin, G.A. [Department of Chemistry, Bilkent University, 06533 Ankara (Turkey); Soten, I.; Polarz, S.; Coombs, N. [Materials Chemistry Research Group, Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2003-01-01

    A new and highly reproducible method to obtain mesostructured titania materials is introduced in this contribution. The mesostructured titania is obtained by employing self-assembled structures of non-ionic alkyl-poly(ethylene oxide) surfactants as templates. The materials are produced without additional solvents such as alcohols, or even water. Only the titanium(IV) ethoxide and the surfactant (C{sub 12}EO{sub 10}) are needed. Water, in the form of that attached to the surfactant and from the atmosphere, induces growth of titania nanoclusters in the synthesis sol. It is indicated that these nanoclusters interact with the surfactant EO-head groups to form a new titanotropic amphiphile. The new amphiphiles self-assemble into titanium nanocluster-surfactant hybrid lyotropic phases, which are transformed to the final mesostructured materials by further condensation of the titania network. The titania materials can be obtained also with noble-metal particles immobilized in the mesostructured framework. It is seen that when different metal salts are used as the metal precursors, different interactions with the titania walls are found. The materials are characterized by X-ray diffraction (XRD), polarization optical microscopy (POM), transmission electron microscopy (TEM), UV-vis spectroscopy, and micro-Raman analysis. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  5. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    International Nuclear Information System (INIS)

    Colomer, M.T.; Maczka, M.

    2011-01-01

    Taking advantage of the fact that TiO 2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO 2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y 2 (Ti 1-y Zr y ) 2 O 7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO 2 content. Furthermore, zirconium titanate phase (ZrTiO 4 ) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y 2 O 3 in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO 2 range from 0.21 to 10 -7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 o C and 10 -12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO 2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti 3+ and Ti 4+ . -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: → Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors under low partial pressures. → From 5 mol% of TiO 2 , Y 2 (Ti 1-y ,Zr y ) 2 O 7 pyrochlore is

  6. Photocatalytic composites based on titania nanoparticles and carbon nanomaterials

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu; Vu, Dinh Lam

    2015-01-01

    In this article we present a review on recent experimental works toward the formation of visible light responsive composite photocatalysts on the basis of titania nanoparticles and carbon nanomaterials of different types. The research results achieved in last years has shown that the nanocomposite photocatalysts comprising titania nanoparticles and graphene or graphene oxide sheets, and also nanoparticles of noble metals and metallic oxides, exhibited the evident priority compared to the others. Therefore our review emphasizes the research on these promising visible light responsive nanophotocatalysts. (review)

  7. The improved stability of enzyme encapsulated in biomimetic titania particles

    International Nuclear Information System (INIS)

    Jiang Yanjun; Sun Qianyun; Jiang Zhongyi; Zhang Lei; Li Jian; Li Lin; Sun Xiaohui

    2009-01-01

    This study demonstrates a novel biomimetic approach for the entrapment of yeast alcohol dehydrogenase (YADH) within titania nanoparticles to improve its stability. Protamine was as the template and catalyst for the condensation of titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles in which YADH was trapped. The as-prepared titania/protamine/YADH composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of YADH encapsulation was tentatively proposed from a series of experimental results. The preliminary investigation showed that encapsulated YADH could retain most of its initial activity. Compared to free YADH, encapsulated YADH exhibited significantly improved thermal, pH and recycling stability. After 5 weeks storage, no substantial loss of catalytic activity for encapsulated YADH was observed

  8. Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Yao, Mingming; Hu, Zhonghua; Xu, Zijie; Liu, Yafei; Liu, Peipei; Zhang, Qiang

    2015-01-01

    The ribbon-like NiO was synthesized by a hard-template method combining the calcination, using mesoporous carbon as a hard templat and guanidine hydrochloride as precipitant of weak base, respectively. The nanostructured hierarchical mesoporous ribbon-like NiO exhibits the high specific capacitance of 1260 F g −1 at the current density of 1 A g −1 , and 95% capacity retention at a current density of 10 A g −1 in a testing range of 5000 cycles. - Highlights: • Ribbon-like NiO was prepared by using mesoporous carbon as a hard template. • Typical ribbon-like NiO possesses the hierarchical mesoporous nanostructure. • High specific capacitance of 1260 F g −1 is obtained at a current density of 1 A g −1 . • Excellent electrochemical stability of 95% after 5000 charge–discharge cycles. - Abstract: In this paper, nanostructured hierarchical mesoporous ribbon-like NiO was synthesized by a hard-template method combining the calcination process. Nickel sulfate hexahydrate, guanidine hydrochloride and mesoporous carbon were used as nickel precursors, precipitant of weak base and template, respectively. The resultant NiO samples were characterized by Raman spectroscopy, energy dispersive spectrometer, X-ray diffraction, N 2 adsorption and desorption, scanning electron microscopy and transmission electron microscopy. The electrochemical performances were evaluated by cyclic voltammetry (CV), cyclic chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) in 6 M KOH solution. The typical hierarchical mesoporous ribbon-like NiO shows a good electrochemical performance: a high specific capacitance of 1260 F g −1 at 1 A g −1 , 748 F g −1 at high current density of 20 A g −1 and 95% capacity retention at a current density of 10 A g −1 in a testing range of 5000 cycles

  9. Novel structuring routines of titania films for application in photovoltaics

    OpenAIRE

    Niedermeier, Martin A.

    2014-01-01

    Novel routines to structure titania thin films on various length scales are investigated regarding photovoltaic applications. The main focus of the investigations lies on the custom-tailoring of the morphologies of the titania films using sol-gel chemistry in combination with block copolymer templating. Additionally, a low-temperature routine for functional hybrid films as well as the growth of gold as electrode material on top of an organic hole-conductor are investigated. Im Hinblick auf...

  10. Rapid synthesis of nitrogen doped titania with mixed crystal lattice via microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Peilin; Liu Bin; Yin Shu; Wang Yuhua; Petrykin, Valery; Kakihana, Masato; Sato, Tsugio

    2009-01-01

    A microwave-assisted hydrothermal method was employed to synthesize nitrogen doped titania nanoparticles. Due to the high heating efficiency of microwave, rapid synthesis could be achieved in comparison with the conventional oven. Mixed crystal lattice was found existing in the obtained product, and the phase transformation behaviour under calcination was studied by XRD measurement together with Raman spectroscopy in details. The obtained nitrogen doped titania showed high specific surface area, about 300 m 2 g -1 . Photocatalytic activity in destructing NO x gas by the prepared sample exceeded that of commercial titania (P 25) or nitrogen doped titania synthesized by conventional hydrothermal method, under both visible-light and ultraviolet-light irradiation.

  11. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO{sub 2} nanocrystalline Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Casino, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Di Lupo, F., E-mail: francesca.dilupo@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Francia, C. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Tuel, A. [IRCELYON, Institut de Recherches sur la Catalyse et l’environnement de Lyon, UMR 5256, CNRS-Université de Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); Bodoardo, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-05-01

    Highlights: • Mesoporous TiO{sub 2} nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO{sub 2} anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO{sub 2} Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C{sub 18}TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO{sub 2} materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m{sup 2} g{sup −1}. Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy.

  12. The potential health risk of titania nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Ruinan; Bai, Yuhong; Zhang, Bin; Chen, Lingxin; Yan, Bing

    2012-01-01

    Highlights: ► Nanotechnology has been widely used in environmental treatments. ► The safety of nanomaterials to human is under-studied. ► Taking titania nanoparticle as an example to address nanotoxicity and remedy. ► The much needed future investigations are suggested. - Abstract: Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs’ toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.

  13. Lithium ion batteries with titania/graphene anodes

    Science.gov (United States)

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  14. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Directory of Open Access Journals (Sweden)

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  15. The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu

    2005-01-01

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO 2 ) and titania (TiO 2 ) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E g ) around 3.27eV, which is higher than that of pure component of titania (E g =3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO 2 . The cell fabricated by 5μm thick mixed TiO 2 -ZrO 2 electrode gave the short-circuit photocurrent about 13mA/cm 2 , open-circuit voltage about 600 mV and the conversion efficiency 5.4%

  16. Tin-Platinum catalysts interactions on titania and silica

    International Nuclear Information System (INIS)

    Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.

    2007-01-01

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3 Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated

  17. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

    Directory of Open Access Journals (Sweden)

    Ming-Show Wong

    Full Text Available BACKGROUND: Titania dioxide (TiO(2 photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2, carbon-doped TiO(2 [TiO(2 (C] and nitrogen-doped TiO(2 [TiO(2 (N], TiO(2 (N showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2 (N substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

  18. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    Science.gov (United States)

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  20. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    Energy Technology Data Exchange (ETDEWEB)

    Jirák, Zdeněk; Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase, possessing high magnetization, M{sub 10} {sub kOe}(4.5 K) = 63.5 emu g{sup −1}, and Curie temperature, T{sub C} = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO{sub 2} shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles. - Highlights: • Magnetic nanoparticles of perovskite La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase are coated with TiO{sub 2}. • The titania forms a continuous and amorphous shell and provides colloidal stability. • Morphology and surface properties are compared to a silica-coated product. • MRI properties of both the titania- and silica-coated particles are studied at 0.5 T. • The temperature dependence of r{sub 2} is strongly affected by the type of coating.

  1. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V.

    2016-01-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  2. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  3. The potential health risk of titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruinan, E-mail: ruinanzhang87@gmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Bai, Yuhong, E-mail: yuhong.bai1983@gmail.com [School of Pharmaceutical Sciences, Shandong University, Jinan 250100 (China); Zhang, Bin, E-mail: binzhang1968@hotmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Chen, Lingxin, E-mail: lxchen@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); Yan, Bing, E-mail: dr.bingyan@gmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Nanotechnology has been widely used in environmental treatments. Black-Right-Pointing-Pointer The safety of nanomaterials to human is under-studied. Black-Right-Pointing-Pointer Taking titania nanoparticle as an example to address nanotoxicity and remedy. Black-Right-Pointing-Pointer The much needed future investigations are suggested. - Abstract: Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs' toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.

  4. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    International Nuclear Information System (INIS)

    Wu, Jeffrey C.S.; Tseng, I.-Hsiang; Chang, W.-C.

    2001-01-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO 2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500 deg. C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO 2 was further hydrogen-reduced at 300 deg. C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO 2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO 2 and reduced Cu/TiO 2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p 3/2 is 933.4 eV indicating primary Cu 2 O form on the TiO 2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO 2 support

  5. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    Science.gov (United States)

    Wu, Jeffrey C. S.; Tseng, I.-Hsiang; Chang, Wan-Chen

    2001-06-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500°C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO2 was further hydrogen-reduced at 300°C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO2 and reduced Cu/TiO2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p3/2 is 933.4 eV indicating primary Cu2O form on the TiO2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO2 support.

  6. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jeffrey C.S., E-mail: Cswu@ccms.ntu.edu.tw; Tseng, I.-Hsiang; Chang, W.-C. [National Taiwan University, Department of Chemical Engineering (China)

    2001-06-15

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO{sub 2} was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500 deg. C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO{sub 2} was further hydrogen-reduced at 300 deg. C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO{sub 2} particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO{sub 2} and reduced Cu/TiO{sub 2} range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p{sub 3/2} is 933.4 eV indicating primary Cu{sub 2}O form on the TiO{sub 2} supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO{sub 2} support.

  7. Tin-Platinum catalysts interactions on titania and silica

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)], E-mail: tnava@imp.mx; Del Angel, P. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Salmones, J. [Instituto Politecnico Nacional-ESIQIE UPALM, 07738 Mexico, D.F. (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brasil (Brazil); Santiago, P. [Instituto de Fisica, UNAM, Mexico, D. F., 04510 Mexico (Mexico)

    2007-09-30

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO{sub 2} after calcinations, and Pt{sub 3}Sn, PtSn and PtSn{sub 3} after reduction. Rietveld analysis shows that some Ti{sup 4+} are replaced by Sn{sup 4+} atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  8. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  9. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon)

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Zhang, Jason

    2011-01-01

    Research highlights: → Dyes were decolorized and degraded using novel immobilized composite photocatalyst. → Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO 2 . → Nitrate, chloride and sulfate anions were detected as the photocatalytic mineralization products of dyes. → Novel immobilized composite photocatalyst is the most effective novel immobilized composite photocatalyst to degrade of textile dyes. - Abstract: An immobilized composite photocatalyst, titania (TiO 2 ) nanoparticle/activated carbon (AC), was prepared and its photocatalytic activity on the degradation of textile dyes was tested. AC was prepared using Canola hull. Basic Red 18 (BR18) and Basic Red 46 (BR46) were used as model dyes. Fourier transform infrared (FTIR), wavelength dispersive X-ray spectroscopy (WDX), scanning electron microscopy (SEM), UV-vis spectrophotometry, chemical oxygen demand (COD) and ion chromatography (IC) analyses were employed. The effects of reaction parameters such as weight percent (wt.%) of activated carbon, pH, dye concentration and anions (NO 3 - , Cl - , SO 4 2- , HCO 3 - and CO 3 2- ) were investigated on dye degradation. Data showed that dyes were decolorized and degraded using novel immobilized composite photocatalyst. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO 2 . Nitrate, chloride and sulfate anions were detected as the photocatalytic mineralization products of dyes. Results show that novel immobilized composite photocatalyst with 2 wt.% of AC is the most effective novel immobilized composite photocatalyst to degrade of textile dyes.

  11. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  12. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  13. Synthesis and characterization of natural hydroxyapatite (recycled) composites with titania

    International Nuclear Information System (INIS)

    Mendes Filho, Antonio Alves; Gouveia, Vitor Jose Pinto; Pereira, Renato Alves; Araujo, Fernando Gabriel da Silva; Sousa, Camila Mateus de

    2010-01-01

    Natural hydroxyapatite biphasic ceramics (recycled) with titania (TiO_2-Hap) were studied in this work. For the formation of such ceramic the powders were mixed natural hydroxyapatite obtained from veal bone by the hydrothermal method with titania (TiO_2), forming the composites H9T1. The powders, manually homogenized, were conformed in pellet and sintered at temperatures between 1200 and 1400 deg C The ceramic bodies were characterized by XRD and SEM/EDS. The initial results were not satisfactory and require new studies. (author)

  14. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  15. THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES

    Directory of Open Access Journals (Sweden)

    Sasan Otroj

    2011-12-01

    Full Text Available The self-flow characteristics and properties of high-alumina low-cement refractory castables added with nano-titania particles are investigated. For this reason, the reactive alumina in the castable composition is substituted by nano-titania powder in 0-1 %wt. range. The microstructures, phase composition, physical and mechanical properties of these refractory castables at different temperatures are studied. The results show that the addition of nano-titania particles has great effect on the self-flow characteristics, phase composition, physical and mechanical properties of these refractory castables. With increase of nano-titania particles in castable composition, the self-flow value and working time tend to decrease. With addition of 0.5 wt.% nano-titania in the castable composition, the mechanical strength of castable in all firing temperatures tends to increase. It is attributed to the formation of CA6 phase and enhanced ceramic bonding. Nano-titania particles can act as a nucleating agent for hibonite phase and decrease the formation temperature of hibonite. Because of perovskite phase formation, the addition of 1 wt.% nano-titania can decrease the mechanical strength of castable after firing.

  16. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition

    International Nuclear Information System (INIS)

    Jothiramalingam, R.; Wang, M.K.

    2007-01-01

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R 2 and standard error. The goodness to the linear fit was observed for Elovich model with high R 2 (≥0.9477) value

  17. Facile fabrication of mesoporous Fe-Ti-SBA15 silica with enhanced visible-light-driven simultaneous photocatalytic degradation and reduction reactions

    Science.gov (United States)

    Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng

    2018-03-01

    A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.

  18. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  19. Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules

    International Nuclear Information System (INIS)

    Xie Yibing

    2006-01-01

    A highly ordered and crystallized titania (TiO 2 ) nanotube array is fabricated by a low-voltage anodization plus a post-embedding calcination process. Polyoxophosphotungstate-titania (POPTA-TiO 2 ) composite catalyst is synthesized by embedding POPTA in TiO 2 tubule channels to improve the photoelectrochemical properties. The morphological characteristics and crystal behaviour of POPTA-TiO 2 are examined by field-emission scanning electron microscopy and x-ray diffraction. The stability of the chemical structure has been analysed by Fourier transformed infrared spectroscopy measurements. The photoelectrochemical properties are investigated by means of the polarization current response. Photocatalytic and photoelectrocatalytic reactivities for the degradation of an endocrine disrupting chemical have also been investigated to examine the photoelectrochemical reaction efficiency of POPTA-TiO 2 composite catalyst

  20. Adherence and scratching resistance of nanometric titania films

    International Nuclear Information System (INIS)

    Pascoali, S.; Dominguini, L.; Borges, J.B.

    2012-01-01

    TiO 2 films has been used to extend the wear resistance in bearing, seals for pumps and bone prostheses. In this study was analyzed the conventional hardness and scratch toughness. The scratching test equipment used was developed at the Laboratory of materials Labmat / UFSC. The tests were performed on Titania films deposited on glass plates and ceramics via reactive DC magnetron sputtering. The films were deposited by 10, 15 and 60 min. One of the samples has a titanium metal film of a few nanometers thick between the substrate and the Titania film, the oxide has been deposited for 30 min. At this rang of tests loads the deposited films show good adhesion to substrate, there was no cracking or spalling of the film. (author)

  1. Gyroidal mesoporous carbon materials and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Ulrich B.; Werner, Joerg G.

    2017-07-25

    The present invention relates to, inter alia, gyroidal mesoporous carbon materials and methods of use and manufacture thereof. In one embodiment, the present invention relates to a mesoporous carbon composition comprising a gyroidal mesoporous carbon having an ordered gyroidal structure and mesopores having a pore size of greater than 2 nanometers (nm) in diameter, and more particularly greater than 11 nm in diameter.

  2. Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The surface modification of the anatase titania nanoparticles prepared via a controlled nonhydrolytic sol-gel process is achieved by the formation of the bidentate coordination between titania and methacrylic acid (MAA molecules. The in situ photocatalytic polymerization of methyl methacrylate (MMA monomer is initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. A variety of techniques including differential scanning calorimetry (DSC, thermo-gravimetric analysis (TGA and scanning electron microscopy (SEM are employed to characterize the resulting materials. The glass transition temperatures and the thermal stabilities of polymethyl methacrylate (PMMA composite materials prepared via photocatalytic polymerization are enhanced compared with pure polymer. The partial aggregation of titania nanoparticles in PMMA composite films is derived from the surface polymerization of MMA, which makes the inorganic particles hydrophobic and drives them to the water/oil interfaces.

  3. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  5. Enhanced photocatalytic activity of titania-silica mixed oxide prepared via basic hydrolyzation

    International Nuclear Information System (INIS)

    Xie Chao; Xu Zili; Yang Qiujing; Xue Baoyong; Du Yaoguo; Zhang Jiahua

    2004-01-01

    Two different synthesis routes were applied to prepare TiO 2 -XSiO 2 (X denotes mol% of silica in titania-silica mixed oxides) with different silica concentrations by using ammonia water as hydrolysis catalyst. Through comparing the photocatalytic performance of two sets of mixed oxides, we found that the photocatalytic activity of mixed oxides prepared via the route which can promote homogeneity, was significantly enhanced as compared with that of counterparts prepared via the another route, and the highest photocatalytic activity obtained by adding about 9.1 mol% silica into titania was much higher than that of pure TiO 2 . The mixed oxides were investigated by means of XRD, thermal analysis, UV-vis, FT-IR and XPS. The characterization results suggest that, in comparison with pure TiO 2 , the mixed oxides exhibit smaller crystallite size and higher thermal stability which can elevate the temperature of anatase to rutile phase transformation due to the addition of silica. Furthermore, Broensted acidity, which is associated with the formation of Ti-O-Si hetero linkages where tetrahedrally coordinated silica is chemically mixed with the octahedral titania matrix, may be a very important contribution to the enhanced photocatalytic activity of titania-silica mixed oxides as well

  6. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    International Nuclear Information System (INIS)

    Prasad, G.K.; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-01-01

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 × 10 −3 min −1 . Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 × 10 −3 min −1 due to photocatalysis. Gas chromatography–mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P–O–C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: ► Synthesis of titania nanoparticles by sol–gel method. ► Fabrication of titania nanoparticulate film by dip coating. ► Paraoxon ethyl degradation reactions followed pseudo first order behaviour. ► Paraoxon-ethyl degraded to non toxic compounds like CO 2 , acetaldehyde, and nitrophenol.

  7. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  8. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Jing; Wang, Jie; Wang, Cong-Xiao; Xia, Yong-Yao [Department of Chemistry and Shanghai Key Laboratory of Molecular, Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai (China)

    2011-11-15

    Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium-carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium-carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m{sup 2}g{sup -1}), large pore volumes (1.24 cm{sup 3}g{sup -1}), narrow mesopore-size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg{sup -1} in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore-walls can increase the specific surface area to provide more sites for charge storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C.

    2014-01-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H 2 SO 4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H 2 SO 4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates

  10. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn; Huang, Z.X.; Luo, J.M.; Zhong, Z.C., E-mail: zzhong.2006@yahoo.com.cn

    2014-04-15

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H{sub 2}SO{sub 4} solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H{sub 2}SO{sub 4} solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates.

  11. Design of titania nanotube structures by focused laser beam direct writing

    International Nuclear Information System (INIS)

    Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei; Ursaki, Veaceslav; Tiginyanu, Ion

    2013-01-01

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO 2 NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes

  12. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    titania catalysts can be employed to facilitate the oxidation of amines into amides with high selectivity. Furthermore, we report that pure titania is in fact itself a catalyst for the oxidation of amines with molecular oxygen under very mild conditions. We demonstrate that these new methodologies open up for two......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  13. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes

    Directory of Open Access Journals (Sweden)

    Hani Albetran

    2018-02-01

    Full Text Available The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10 kJ/mol for the titanium-to-anatase transformation, and 207 (17 kJ/mol for the anatase-to-rutile transformation were estimated.

  14. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.

    Science.gov (United States)

    Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng

    2018-02-23

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

  15. Fabrication and structural characterization of highly ordered titania nanotube arrays

    Science.gov (United States)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  16. Nanocrystalline TiO{sub 2} photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Sofranko, A.C. [Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904-4741 (United States)

    2006-05-19

    A novel sol-gel dip-coating process to fabricate nanocrystalline TiO{sub 2} photocatalytic membranes with a robust hierarchical mesoporous multilayer and improved performance has been studied. Various titania sols containing poly(oxyethylenesorbitan monooleate) (Tween 80) surfactant as a pore-directing agent to tailor-design the porous structure of TiO{sub 2} materials at different molar ratios of Tween 80/isopropyl alcohol/acetic acid/titanium tetraisopropoxide = R:45:6:1 have been synthesized. The sols are dip-coated on top of a homemade porous alumina substrate to fabricate TiO{sub 2}/Al{sub 2}O{sub 3} composite membranes, dried, and calcined, and this procedure is repeated with varying sols in succession. The resulting asymmetric mesoporous TiO{sub 2} membrane with a thickness of 0.9 {mu}m exhibits a hierarchical change in pore diameter from 2-6, through 3-8, to 5-11 nm from the top to the bottom layer. Moreover, the corresponding porosity is incremented from 46.2, through 56.7, to 69.3 %. Compared to a repeated-coating process using a single sol, the hierarchical multilayer process improves water permeability significantly without sacrificing the organic retention and photocatalytic activity of the TiO{sub 2} membranes. The prepared TiO{sub 2} photocatalytic membrane has great potential in developing highly efficient water treatment and reuse systems, for example, decomposition of organic pollutants, inactivation of pathogenic microorganisms, physical separation of contaminants, and self-antifouling action because of its multifunctional capability. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Directory of Open Access Journals (Sweden)

    Amanda J. Youker

    2013-01-01

    Full Text Available Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.

  18. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  19. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-06-30

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 Multiplication-Sign 10{sup -3} min{sup -1}. Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 Multiplication-Sign 10{sup -3} min{sup -1} due to photocatalysis. Gas chromatography-mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P-O-C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: Black-Right-Pointing-Pointer Synthesis of titania nanoparticles by sol-gel method. Black-Right-Pointing-Pointer Fabrication of titania nanoparticulate film by dip coating. Black-Right-Pointing-Pointer Paraoxon ethyl degradation reactions followed pseudo first order behaviour. Black-Right-Pointing-Pointer Paraoxon-ethyl degraded to non toxic compounds like CO{sub 2}, acetaldehyde, and nitrophenol.

  20. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  1. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)

    2017-04-15

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  2. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  3. Surface characterization of Ag/Titania adsorbents

    International Nuclear Information System (INIS)

    Samokhvalov, Alexander; Nair, Sachin; Duin, Evert C.; Tatarchuk, Bruce J.

    2010-01-01

    The Ag/Titania adsorbent for selective removal of the desulfurization-refractive polycyclic aromatic sulfur heterocycles (PASHs) from liquid hydrocarbon fuels was prepared, its total and the Ag specific surface area were determined and the surface reaction sites in the sorbent that may be active in the adsorptive selective desulfurization were characterized by several spectroscopic and surface science techniques. The sorbent contains Ag, Ti, O and spurious C on its surface, as by the XPS measurements. Silver is present as an oxide, as judged by the XPS Auger parameter (AP). The complementary electron spin resonance (ESR) spectroscopy confirms that the majority of Ag is present in the diamagnetic Ag 1+ form, with the minor concentration (∼0.1% of total Ag) present as Ag 2+ . The findings by XPS and ESR are confirmed by the XRD, UV-vis spectroscopy and thermodynamic considerations. The supported Ag is highly dispersed on the surface of the titania support, with the particle size of ∼30-60 A depending on Ag content, with an Ag specific surface area of ∼7-14 m 2 /g, vs. the total surface area of ∼114-58 m 2 /g.

  4. Magnetic mesoporous material for the sequestration of algae

    Science.gov (United States)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  5. EFFECTS OF SYNTHESIS PARAMETERS ON THE STRUCTURE OF TITANIA NANOTUBES

    Directory of Open Access Journals (Sweden)

    M. NORANI MUTI

    2008-08-01

    Full Text Available Detection of hydrogen is crucial for industrial process control and medical applications where presence of hydrogen in breath indicates different type of health problems particularly in infants. A better performed sensor with high sensitivity, selectivity, reliability and faster response time would be critical and sought after especially for medical applications. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to investigate the effect of the anodizing conditions on the structure of titania nanotubes produced by anodizing method. The anodizing parameters namely the ambient temperature and separation of electrodes are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes for enhanced properties based on their uniformity, coverage, pore size and crystallinity. Samples of nanotubes produced were subjected to annealing process at varying time and temperature in order to improve the crystallinity of the nanotubes. The highly ordered porous titania nanotubes produced by this method are of tabular shape and have good uniformity and alignment over large areas. The pore size of the titania nanotubes ranges from 47 to 94 nm, while the wall thickness is in the range of 17 to 26 nm. The length of the nanotubes was found to be about 280 nm. The structure of nanotubes changes from amorphous to crystalline after undergoing annealing treatment. Nanotubes have also shown to have better crystallinity if they were subjected to annealing treatment at higher temperature. The characteristics of nanotubes obtained are found to be agreeable to those that have been reported to show improved hydrogen gas sensing properties.

  6. Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films.

    Science.gov (United States)

    Talbert, Eric M; Zarick, Holly F; Boulesbaa, Abdelaziz; Soetan, Naiya; Puretzky, Alexander A; Geohegan, David B; Bardhan, Rizia

    2017-08-24

    In this study, ultrafast transient absorption spectroscopy (TAS) is utilized to examine the excited-state dynamics in methylammonium lead iodide/bromide (MAPb(I 1-x Br x ) 3 ) perovskites as a function of bromide content. TAS spectral behavior reveals characteristic lifetimes for thermalization, recombination, and charge carrier injection of MAPb(I 1-x Br x ) 3 from x = 0 to 0.3 infiltrated in mesoporous titania films. Carrier recombination and charge injection lifetimes demonstrated a discernable increase with Br content likely because high carrier populations are supported by the higher density of vacant electronic states in mixed-halide perovskites due to the increased capacity of the conduction band. However, we observe for the first time that carrier thermalization lifetimes significantly decrease with increasing Br. This suggests that the shift in crystal structure from tetragonal towards pseudocubic accelerates carrier cooling, resulting in the relief of the hot phonon bottleneck. Furthermore, the stabilized MAPb(I 1-x Br x ) 3 samples exhibit a lower Burstein-Moss shift of 0.07-0.08 eV compared to pure MAPbI 3 (0.12 eV). Our results provide evidence that Br inclusion contributes to a broadening of the parabolic conduction band and to improvement in electron-phonon coupling and phonon propagation in the lattice.

  7. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  8. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  9. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu

    2012-05-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review gives an introduction to recently developed mesoporous silicas with emphasis on their complicated structures and synthesis mechanisms. In addition, two powerful techniques for solving complex mesoporous structures, electron crystallography and electron tomography, are compared to elucidate their respective strength and limitations. Some critical issues and challenges regarding the development of novel mesoporous structures as well as their applications are also discussed. © 2011 Elsevier Ltd.

  10. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  11. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin

    2014-12-03

    Recently, preparation of mesoporous fibers has attracted extensive attentions because of their unique and broad applications in photocatalysis, optoelectronics, and biomaterials. However, it remains a great challenge to fabricate thoroughly mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a proof of concept, the as-fabricated mesoporous TiO2 fibers exhibit much higher photocatalytic activity and stability than both the conventional solid counterparts and the commercially available P25. The abundant vapors released from the introduced foaming agents are responsible for the creation of pores with uniform spatial distribution in the spun precursor fibers. The present work represents a critically important step in advancing the electrospinning technique for generating mesoporous fibers in a facile and universal manner.

  12. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    Physical and chemical characterization of the mesoporous nanocomposites from the two synthetic methods were investigated using Raman spectroscopy, thermogravimetric analysis, Fourier transformation infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission ...

  13. Surface Properties of Photocatalytic Nano-Crystalline Titania Films and Reactor for Photocatalytic Degradation of Chloroform

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob; Jensen, Henrik

    2006-01-01

    In this work two immobilizations techniques of TiO2 onto glass were investigated; deposition of previously made titania powder (PMTP) and a sol-gel method. The titania powder used in this work was Degussa P25, Hombikat UV100 and a powder prepared in our laboratory SC134. The prepared TiO2 films w...

  14. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  15. Liquid Photonic Crystals for Mesopore Detection.

    Science.gov (United States)

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials

  17. Activity of nanosized titania synthesized from thermal decomposition of titanium (IV n-butoxide for the photocatalytic degradation of diuron

    Directory of Open Access Journals (Sweden)

    Jitlada Klongdee, Wansiri Petchkroh, Kosin Phuempoonsathaporn, Piyasan Praserthdam, Alisa S. Vangnai and Varong Pavarajarn

    2005-01-01

    Full Text Available Nanoparticles of anatase titania were synthesized by the thermal decomposition of titanium (IV n-butoxide in 1,4-butanediol. The powder obtained was characterized by various characterization techniques, such as XRD, BET, SEM and TEM, to confirm that it was a collection of single crystal anatase with particle size smaller than 15 nm. The synthesized titania was employed as catalyst for the photodegradation of diuron, a herbicide belonging to the phenylurea family, which has been considered as a biologically active pollutant in soil and water. Although diuron is chemically stable, degradation of diuron by photocatalyzed oxidation was found possible. The conversions achieved by titania prepared were in the range of 70–80% within 6 h of reaction, using standard UV lamps, while over 99% conversion was achieved under solar irradiation. The photocatalytic activity was compared with that of the Japanese Reference Catalyst (JRC-TIO-1 titania from the Catalysis Society of Japan. The synthesized titania exhibited higher rate and efficiency in diuron degradation than reference catalyst. The results from the investigations by controlling various reaction parameters, such as oxygen dissolved in the solution, diuron concentration, as well as light source, suggested that the enhanced photocatalytic activity was the result from higher crystallinity of the synthesized titania.

  18. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    International Nuclear Information System (INIS)

    Zhang, Jianhua; Tao, Cuilian; Zhu, Yufang; Zhu, Min; Li, Jie; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO 3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO 3 materials were investigated. Mesoporous Fe–CaSiO 3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO 3 materials, mesoporous Fe–CaSiO 3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO 3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO 3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO 3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. (paper)

  19. Structural Characterization of Micellar Aggregates in Sodium Dodecyl Sulfate/Aluminum Nitrate/Urea/Water System in the Synthesis of Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Caragheorgheopol, A.; Caldararu, H.; Vasilescu, M.; Khan, A.; Angelescu, D.; Žilková, Naděžda; Čejka, Jiří

    2004-01-01

    Roč. 108, - (2004), s. 7735-7743 ISSN 1089-5647 Grant - others:MER(RO) 8/2001; NATO Science for Peace and Eur. Union(XE) Sfp-974217 Institutional research plan: CEZ:AV0Z4040901 Keywords : mesoporous alumina * nitrate * water system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  20. Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO 2 crystallisation

    KAUST Repository

    Guldin, Stefan; Hü ttner, Sven; Tiwana, Priti; Orilall, M. Christopher; Ü lgü t, Burak; Stefik, Morgan; Docampo, Pablo; Kolle, Matthias; Divitini, Giorgio; Ducati, Caterina; Redfern, Simon A. T.; Snaith, Henry J.; Wiesner, Ulrich; Eder, Dominik; Steiner, Ullrich

    2011-01-01

    Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). This study demonstrates the benefits of high temperature synthesised mesoporous titania for the performance of solid-state DSCs. In contrast

  1. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  2. Synthesis and characterization of silica–titania core–shell particles

    Indian Academy of Sciences (India)

    reactants (titanium butoxide and water) and the amount of added silica particles. Differ- ... of titania onto silica can enhance its stability and catalytic activity. It is also an .... This work has been supported by DST India under the Nanomaterials,.

  3. Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma Liang; Liu Min; Peng Tianyou; Fan Ke; Lu Lanlan; Dai Ke

    2009-01-01

    A meso-macroporous TiO 2 film electrode was fabricated by using mesoporous TiO 2 (m-TiO 2 ) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO 2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption-desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO 2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO 2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO 2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

  4. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states

    International Nuclear Information System (INIS)

    Raupp, G.B.; Dumesic, J.A.

    1985-01-01

    The adsorptive properties of titania surfaces with different oxidation states were proved by temperature-programmed desorption (TPD) of CO, H 2 , CO 2 , and H 2 O. Auger electron spectroscopy and X-ray photoelectron spectroscopy revealed that vacuum annealing an oxidized titanium foil at temperatures from 300 to 800 K was an effective means of systematically varying the average surface oxidation state from Ti 4+ to Ti 2+ . Carbon monoxide weakly adsorbed (desorption energy of 44-49 kJ x mol -1 ) in a carbonyl fashion on coordinatively unsaturated cation sites. Titania surfaces were inert with respect to H 2 adsorption and dissociation. Carbon dioxide adsorbed in a linear molecular fashion. Water adsorbed both molecularly and dissociatively. Results are discussed in terms of the role of titania oxidation state in CO hydrogenation over titania-supported metal catalysts. 74 references, 7 figures

  5. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-04-30

    An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.

  6. The role of nanocrystalline titania coating on nanostructured austenitic stainless steel in enhancing osteoblasts functions for regeneration of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shah, J.S.; Venkatsurya, P.K.C.; Thein-Han, W.W. [Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Pesacreta, T.C. [Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, LA 70504 (United States); Somani, M.C.; Karjalainen, L.P. [Department of Mechanical Engineering, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2011-03-12

    In the context of osseointegration of metallic implants, while nanostructuring the surface favorably modulates cellular response, the disinfective attributes required during the healing process are not available. Thus, in the present study, we demonstrate that nanocrystalline titania provides cumulative benefit of enhancing osteoblasts functions to promote the efficacy of metal implants together with the disinfective attributes. To this end, the primary objective here is to examine the select functions of bone forming cells (osteoblasts) on electrocrystallized nanonodular titania-coated nanograined/ultrafine grained (NG/UFG) austenitic stainless steel. The accompanying objective is to study the disinfective/antimicrobial activity. To the best of our understanding this is the first study of nanophase titania on a non-titanium substrate. The osteoblasts functions were investigated in terms of cell attachment, proliferation, and quantitative analysis of proteins, actin and vinculin. In comparison to the bare NG/UFG substrate, the nanophase titania-coated substrate exhibited higher degree of cell attachment and proliferation which are regulated via cellular and molecular interactions with proteins, actin and vinculin. The enhanced functions of osteoblasts suggest that nanophase titania adsorbs extracellular matrix proteins, fibronectin and vitronectin from serum enhancing protein, with subsequent binding of integrins and osteoblasts precursor to titania. The antimicrobial attributes assessed in terms of degradation of methyl orange and effectiveness in killing E. coli supports the viewpoint that large surface area of titania would be instrumental in reducing the detrimental effect of biologically reactive oxygen species produced by macrophages in the vicinity of the metal bone/implant interface. In summary, the study provides some new insights concerning nanostructuring of metallic substrates with specific physical and surface properties for medical devices with

  7. Photocatalytic inactivation of hospital-associated bacteria using titania nanoparticle coated textiles

    International Nuclear Information System (INIS)

    Tahir, T.; Qazi, I.A.; Hashmi, I.; Baig, M.A.

    2017-01-01

    Modification in hospital textiles to include disinfection properties may help in the reduction of nosocomial infections. In this study, antibacterial properties were imparted to cotton fabric by modifying it with pure and (1%) silver doped titania nanoparticles. The nanoparticles were prepared by liquid impregnation process and characterized using X-ray Diffraction (XRD) spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). These nanoparticles were attached to cotton fabric using a cross linking agent succinic acid. Samples were washed at three different temperatures (30, 60 and 90 degree C), with and without detergent and for different number of cycles to test the durability of nanoparticles to the fabric. Scanning Electron Microscopy (SEM) was used for studying surface topography of fabric. Energy Dispersive X-ray fluorescence (ED-XRF) spectrometer was used to detect the titanium present on the fabric. Catalytic spectrophotometry using UV/visible spectrophotometer was used to determine titania concentration in washing effluent. The antibacterial activity of the modified fabric was examined against Methicillin Resistant Staphylococcus aureus (MRSA) under UV and fluorescent light. The maximum durability of titania nanoparticles to the fabric was retained after washing without detergent at 30 degree C. The overall results of durability testing showed that coating of nanoparticles on fabric was durable against washing at various conditions, hence suitable from an environmental perspective. Antibacterial testing showed 100% photocatalytic inactivation of MRSA after 4 and 24 h of UV and fluorescent light exposure respectively. The potential of using such textiles in hospital environment was validated through the use of modified bed linen in a local hospital for a period of three days consecutively. The viable count indicated the reduced bacterial contamination on nano-coated fabric as compared to uncoated fabric. Bed linen, curtains

  8. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    NICOLAAS

    Physical and chemical characterization of the mesoporous nanocomposites from ... On the other hand, nanocomposites from sol-gel synthetic method had larger surface areas, were more defective ... This highlights the great potential of typical nanomaterials in ... various options available, especially for a developing world.

  9. Study of nano-structured ceria for catalytic CO oxidation

    Czech Academy of Sciences Publication Activity Database

    Valechha, D.; Lokhande, S.; Klementová, Mariana; Šubrt, Jan; Rayalu, S.; Labhsetwar, N.

    2011-01-01

    Roč. 21, č. 11 (2011), s. 3718-3725 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z40320502 Keywords : mesoporous CeO2 * titania * alumina * oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 5.968, year: 2011

  10. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  11. Characterization of sodium phenytoin co-gelled with titania for a controlled drug-release system

    International Nuclear Information System (INIS)

    Lopez, T.; Quintana, P.; Ortiz-Islas, E.; Vinogradova, E.; Manjarrez, J.; Aguilar, D.H.; Castillo-Ocampo, P.; Magana, C.; Azamar, J.A.

    2007-01-01

    Sodium phenytoin, C 15 H 11 N 2 NaO 2 , in several concentrations was co-gelled with titania (TiO 2 ), by a sol-gel process. This technique is a promising method to encapsulate several drugs, in this case, phenytoin is an anticonvulsant used to control epileptic seizures. Samples were prepared by adding different concentrations (X = 50, 100, 200 and 250 mg per 20 g of titania matrix) of sodium phenytoin (Ph) to a solution of titanium n-butoxide. The resulting titania-Ph-X materials were characterized by transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface areas. The porous nanomaterials showed a wide range of particle size, from 10 to 210 nm, with a mean pore diameter of 5 nm. X-ray diffraction showed an amorphous structure of the prepared samples

  12. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  13. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  14. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  15. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2014-01-01

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm

  16. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    Science.gov (United States)

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  17. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    Science.gov (United States)

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  18. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin; Wang, Lin; Gao, Fengmei; Wei, Guodong; Tang, Bin; Yang, Weiyou; Wu, Tao

    2014-01-01

    mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a

  19. One-step synthesis of mesoporous silica–graphene composites by ...

    Indian Academy of Sciences (India)

    Silica–graphene oxide composites were synthesized by hydrothermal method with simultaneous functionalization and reduction of graphene oxide (GO) in the presence of mesoporous silica. Two types of silica were used in the study, mesoporous synthetic silica (MSU-F) synthesized by sol-gel method and mesoporous ...

  20. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity

    International Nuclear Information System (INIS)

    Liu Weijie; Zou Bo; Zhao Jing; Cui Haining

    2010-01-01

    This article reports an optimized sol-gel opal infiltration technique for the fabrication of high-quality titania inverse opal. Different from previous reports, the presently proposed method is facile, efficient and suitable for other inorganic oxide. We have compared two different infiltration strategies and their influences on the structure, photonic properties and photocatalytic activity. The obtained titania inverse opal displays excellent photonic properties with photonic band gap at 320 nm and better photocatalytic effect, which is attributed to its high-quality inverse opal nanostructure. Reproducibility tests prove that the photocatalytic activity of the resultant titania inverse opal remains intact even after five repeated photocatalytic reactions under the same procedure and experimental conditions.

  1. Impedance response of carbon nanotube-titania electrodes dried under modified gravity

    International Nuclear Information System (INIS)

    Ordenana-Martinez, A.S.; Rincon, M.E.; Vargas, M.; Ramos, E.

    2011-01-01

    The synthesis and impregnation of porous titania films by commercial multiwalled carbon nanotubes and nanotube rich carbon soot are reported. The samples were dried under terrestrial gravity g and in a centrifuge accelerated at 13 g. X-Ray Diffraction data and Scanning Electron Microscopy images indicated differences in the crystal structure and tendency to agglomeration in both carbon types, providing different microstructures of functionally graded electrodes. Drying the samples in a centrifuge helps to the distribution of carbon nanoparticles and to the decrement of the impedance at the contact interfaces. The presence of titania weakens the differences observed in both drying protocols, but not the differences due to the carbon source. Superior capacitance and network conductivity were observed in electrodes based on commercial carbon nanotubes.

  2. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  3. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug.

  4. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion

    International Nuclear Information System (INIS)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-01-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue–implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. - Highlights: • Titanium surfaces were anodized and a nanotubular titania layer was obtained. • Drug eluting time was found to be increasing with anodizaton time. • Varying nanotube diameters has no effect in drug elution time but amount of incorporated drug

  5. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  6. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature.

  7. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites

    International Nuclear Information System (INIS)

    Lee, Hyung Won; Jun, Bo Ram; Kim, Hannah; Kim, Do Heui; Jeon, Jong-Ki; Park, Sung Hoon; Ko, Chang Hyun; Kim, Tae-Wan; Park, Young-Kwon

    2015-01-01

    The hydrodeoxygenation of 2-methoxy phenol and dibenzofuran, which are representative model compounds of bio-oil, was performed using two different Pt/mesoporous zeolite catalysts, Pt/mesoporous Y and Pt/mesoporous MFI. The reforming of 2-methoxy phenol and dibenzofuran via catalytic hydrodeoxygenation was investigated using a batch reactor at 40 bar and 250 °C. The characteristics of the catalysts were analyzed by N 2 adsorption-desorption, X-ray diffraction, and NH 3 temperature programmed desorption. Pt/mesoporous zeolite catalysts containing both strong acid sites and mesopores showed the higher conversion of 2-methoxy phenol than Pt/SiO 2 and Pt/Si-MCM-48 with no acid sites, Pt/γ-Al 2 O 3 , and a mixture of mesoporous Y and Pt/SiO 2 , indicating the importance of both Pt and strong acid sites for high catalytic activity. Among the two Pt/mesoporous zeolite catalysts tested, the conversion of 2-methoxy phenol to cyclohexane over Pt/mesoporous Y was much higher than that over the Pt/mesoporous MFI. This was attributed to the better textural properties, such as surface area, pore volume and micropore size, compared to those of Pt/mesoporous MFI. The catalytic conversions of dibenzofuran obtained using two Pt/mesoporous zeolite catalysts were similar and the main products were 1,1′-bicyclohexyl, cyclopentylmethyl-cyclohexane and cyclohexane. In addition, the reaction mechanisms of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolite were suggested. - Highlights: • HDO of 2-methoxy phenol and dibenzofuran was performed over Pt/mesoporous zeolites. • Pt/mesoporous zeolites have mesopores and strong acid sites. • Main product of HDO of 2-methoxy phenol was cyclohexane. • Main products of HDO of dibenzofuran were bicyclohexyl (BCH), i-BCH, and cyclohexane

  8. Mesoporous Transition Metal Oxides for Supercapacitors

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  9. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  10. Ultrasound-driven design of new mesoporous metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Univ. Bayreuth (Germany); Skorb, Ekaterina [Max-Planck-Institut fuer Kolloid- und Grenzflaechenforschung, Golm (Germany)

    2011-07-01

    Mesoporous metal nanocomposites were formed by a ''green chemistry'' method with ultrasound irradiation. The sonication technique combines the fabrication of a mesoporous support consisting of metallic particles (Al, Mg) several tens of micrometers in size and the subsequent incorporation of metal (Ag, Au, Pt etc.) nanoparticles into its pores. Next to filling the mesoporous support with particles we are also able to form mesoporous alloys e.g. AlNi or CoAlFe. The resulting material is analyzed by transmission electron microscopy, powder X-ray diffraction, small-angle neutron scattering and the Brunauer-Emmett-Teller and the Barrett-Joyner-Halenda method. Surface areas up to 200 m{sup 2}/g with a narrow pore size distribution around 3 nm can be achieved. The mesoporous structures are analyzed by confocal light microscopy after coloring the particles with dye. We explain the formation of the mesoporous inner structures by the following mechanism: Thermal etching and recrystallization of metals by ultrasound-stimulated high-speed jets of liquid form the porous structure that is stabilized by surface oxidation through free radicals generated during cavitation. We expect this approach to be universal and opening perspectives for a whole new class of catalytic materials that can be prepared in a fairly easy and cost effective way.

  11. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  12. Mesoporous carbonates and method of making

    Science.gov (United States)

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  13. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz, E-mail: irek@uni.lodz.pl [University of Lodz, Department of Technology and Chemistry of Materials, Pomorska 163, 90-236 Lodz (Poland); Kadziola, Kinga; Kisielewska, Aneta; Soliwoda, Katarzyna [University of Lodz, Department of Technology and Chemistry of Materials, Pomorska 163, 90-236 Lodz (Poland); Wolszczak, Marian [Technical University of Lodz, Institute of Applied Radiation Chemistry, Wroblewskiego 15, 93-590 Lodz (Poland); Lisowska, Katarzyna; Wronska, Natalia; Felczak, Aleksandra [University of Lodz, Department of Industrial Microbiology and Biotechnology, Pilarskiego 14/16, 90-231 Lodz (Poland)

    2011-06-01

    Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 {+-} 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO{sub 2} nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO{sub 2} covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.

  14. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz; Kadziola, Kinga; Kisielewska, Aneta; Soliwoda, Katarzyna; Wolszczak, Marian; Lisowska, Katarzyna; Wronska, Natalia; Felczak, Aleksandra

    2011-01-01

    Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO 2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO 2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.

  15. UV-Irradiated Photocatalytic Degradation of Nitrobenzene by Titania Binding on Quartz Tube

    Directory of Open Access Journals (Sweden)

    Thou-Jen Whang

    2012-01-01

    Full Text Available A new method for UV-irradiated degradation of nitrobenzene by titania photocatalysts was proposed, titania nanoparticles were coated on a quartz tube through the introduction of tetraethyl orthosilicate into the matrix. The dependence of nitrobenzene photodegradation on pH, temperature, concentration, and air feeding was discussed, and the physical properties such as the activation energy, entropy, enthalpy, adsorption constant, and rate constant were acquired by conducting the reactions in a variety of experimental conditions. The optimum efficiency of the photodegradation with the nitrobenzene residue as low as 8.8% was achieved according to the experimental conditions indicated. The photodegradation pathways were also investigated through HPLC, GC/MS, ion chromatography (IC, and chemical oxygen demand (COD analyses.

  16. Nanoscale roughness and morphology affect the IsoElectric Point of titania surfaces.

    Directory of Open Access Journals (Sweden)

    Francesca Borghi

    Full Text Available We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2 surfaces in aqueous solutions. IsoElectric Points (IEPs of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces.

  17. Research Update: Mesoporous sensor nanoarchitectonics

    Directory of Open Access Journals (Sweden)

    Katsuhiko Ariga

    2014-03-01

    Full Text Available In this short review, we have selected three main subjects: (i mesoporous materials, (ii sensing applications, and (iii the concept of nanoarchitectonics, as examples of recent hot topics in nanomaterials research. Mesoporous materials satisfy the conditions necessary not only for a wide range of applications but also for ease of production, by a variety of simple processes, which yield bulk quantities of materials without loss of their well-defined nanometric structural features. Sensing applications are of general importance because many events arise from interaction with external stimuli. In addition to these important features, nanoarchitectonics is a concept aimed at production of novel functionality of whole units according to concerted interactions within nanostructures. For the combined subject of mesoporous sensor nanoarchitectonics, we present recent examples of research in the corresponding fields categorized according to mechanism of detection including optical, electrical, and piezoelectric sensing.

  18. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  19. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes

    OpenAIRE

    Hani Albetran; Victor Vega; Victor M. Prida; It-Meng Low

    2018-01-01

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase...

  20. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.

  1. Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis

    Directory of Open Access Journals (Sweden)

    Antoine R. M. Dalod

    2017-12-01

    Full Text Available Organic-inorganic hybrid materials are attractive due to the combination of properties from the two distinct types of materials. In this work, transparent titania-polydimethylsiloxane hybrid materials with up to 15.5 vol. % TiO2 content were prepared by an in situ non-aqueous method using titanium (IV isopropoxide and hydroxy-terminated polydimethylsiloxane as precursors. Spectroscopy (Fourier transform infrared, Raman, Ultraviolet-visible, ellipsometry and small-angle X-ray scattering analysis allowed to describe in detail the structure and the optical properties of the nanocomposites. Titanium alkoxide was successfully used as a cross-linker and titania-like nanodomains with an average size of approximately 4 nm were shown to form during the process. The resulting hybrid nanocomposites exhibit high transparency and tunable refractive index from 1.42 up to 1.56, depending on the titania content.

  2. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  3. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  4. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays ...

  5. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    Directory of Open Access Journals (Sweden)

    Jakub S. Prauzner-Bechcicki

    2016-11-01

    Full Text Available Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  6. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  7. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  8. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong

    2016-06-24

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers with mesoporous architectures, controlled morphologies, large surface areas, and optimal performances. In this work, a facile foaming-assisted electrospinning strategy with foaming agent of tea saponin is used to produce thoroughly mesoporous ZnO nanofibers with high purity and controlled morphology. Interestingly, mesoporous fibers with elliptical cross-section exhibit the significantly enhanced photocatalytic activity for hydrogen production, as compared to the counterparts with circular and rectangular cross-sections, and they also perform better than the commercial ZnO nanopowders. The unexpected shape dependence of photocatalytic activities is attributed to the different stacking modes of the mesoporous fibers, and a geometrical model is developed to account for the shape dependence. This work represents an important step toward producing thoroughly mesoporous ZnO nanofibers with tailored morphologies, and the discovery that fibers with elliptical cross-section render the best performance provides a valuable guideline for improving the photocatalytic performance of such mesoporous nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. "Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, P. F.; Mayes, R.; Wang, X. Q.; Mahurin, S., M.; Bauer, J. C.; Presser, V.; McDonough, J.; Gogotsi, Y.; Dai, S.

    2011-04-20

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

  10. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  11. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    International Nuclear Information System (INIS)

    Salas, P.; Chen, L.F.; Wang, J.A.; Armendariz, H.; Guzman, M.L.; Montoya, J.A.; Acosta, D.R.

    2005-01-01

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH 4 ) 2 SO 4 were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m 2 /g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO 4 2- /(ZrO 2 + SiO 2 ) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of 29 Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q 2 + Q 3 )/Q 4 ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure

  12. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  13. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  14. Fabrication of porous silver/titania composite hollow spheres with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Li, Sa; Halperin, Shakked O.; Wang, Chang-An

    2015-01-01

    Silver/titania composite hollow spheres were first synthesized through an in-situ chemical reaction using functional-grouped carbon spheres as the template in this study. The prepared samples were characterized through an X-ray diffraction, N 2 adsorption–desorption, scanning electron microscopy, transmission electron microscopy and UV–Vis spectrophotometer. The photocatalytic activity of as-prepared samples was evaluated by photocatalytic decolorization of Methyl orange (MO) aqueous solution at ambient temperature under UV light. We found a structure with an optimal Ag:TiO 2 composition that exhibited a photodecomposition rate constant more than twice as high as titania hollow spheres lacking silver, and over three times higher than a commercial photocatalyst. - Highlights: • Ag/silver composites. • Hollow spheres. • Photocatalysis enhancement

  15. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zampetti, E., E-mail: emiliano.zampetti@artov.imm.cnr.it; Macagnano, A.; Bearzotti, A. [Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR IMM) (Italy)

    2013-04-15

    An important drawback of semiconductor gas sensors is their operating temperature that needs the use of heaters. To overcome this problem a prototyping sensor using titania nanofibres (with an average diameter of 50 nm) as sensitive membrane were fabricated by electrospinning directly on the transducer of the sensor. Exploiting the effect of titania photoconductivity, resistance variations upon gas interaction under continuous irradiation of ultra violet light were measured at room temperature. The resistive sensor response was evaluated towards ammonia, nitrogen dioxide and humidity. The sensor exhibited a higher response to ammonia than to nitrogen dioxide, especially for concentrations larger than 100 ppb. For 200 ppb of ammonia and nitrogen dioxide, the responses were {approx}2.8 and 1.5 %, respectively.

  16. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    Science.gov (United States)

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes

    International Nuclear Information System (INIS)

    Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquez, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R.

    2005-01-01

    Arrays of Ni nanowires electrodeposited into self-aligned and randomly disordered titania nanotube arrays grown by anodization process are investigated by X-ray diffraction, SEM, rf-GDOES and VSM magnetometry. The titania nanotube outer diameter is about 160 nm, wall thickness ranging from 60 to 70 nm and 300 nm in depth. The so-obtained Ni nanowires reach above 100 nm diameter and 240 nm length, giving rise to coercive fields of 98 and 200 Oe in the perpendicular or parallel to the nanowires axis hysteresis loops, respectively. The formation of magnetic vortex domain states is also discussed

  18. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  19. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu; Pitukmanorom, Pemakorn; Zhao, L. J.; Ying, Jackie

    2010-01-01

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites

  20. Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO 2 crystallisation

    KAUST Repository

    Guldin, Stefan

    2011-01-01

    Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). This study demonstrates the benefits of high temperature synthesised mesoporous titania for the performance of solid-state DSCs. In contrast to earlier methods, the high temperature stability of mesoporous titania is enabled by the self-assembly of the amphiphilic block copolymer polyisoprene-block-polyethylene oxide (PI-b -PEO) which compartmentalises TiO2 crystallisation, preventing the collapse of porosity at temperatures up to 700 °C. The systematic study of the temperature dependence on DSC performance reveals a parameter trade-off: high temperature annealed anatase consisted of larger crystallites and had a higher conductivity, but this came at the expense of a reduced specific surface area. While the reduction in specific surface areas was found to be detrimental for liquid-electrolyte DSC performance, solid-state DSCs benefitted from the increased anatase conductivity and exhibited a performance increase by a factor of three. © 2011 The Royal Society of Chemistry.

  1. Synthesis, characterization and performance of NiMo catalysts supported on titania modified alumina for the hydroprocessing of different gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Bakhshi, N.N.; Dalai, A.K. [Catalysis and Chemical Reactor Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Sask. (Canada); Adjaye, J. [Syncrude Canada Ltd., Edmonton Research Center, No. 9421, 17th Avenue, Edmonton, Alta. (Canada)

    2007-03-08

    In this work, a series of NiMo/Al{sub 2}O{sub 3} catalyst was prepared using different Al{sub 2}O{sub 3} supports modified by titania (0-9 wt%). All modified supports and fresh catalysts were characterized by BET surface area, pore volume and pore diameter measurement, TPR, TPD, XRD, FTIR and Raman spectroscopy analyses. The initial activity of these catalysts were tested in a trickle-bed reactor using three different gas oils such as light gas oil (LGO), blended gas oil (blended: 50% LGO and 50% HGO) and heavy gas oil (HGO), all derived from Athabasca bitumen. Little structural change in alumina was observed with the incorporation of titania. XRD analysis showed the well dispersion of Ni and Mo on the support. Titania in alumina increased the formation of polymolybdenum oxide on the catalyst as evident from TPR and Raman analyses. Weak-intermediate-strong acid sites on the catalyst were observed at all titania concentrations. The Lewis and Bronsted acidity on the catalyst surface increased with the increase in titania concentration from 0 to 9 wt%. Nitrogen conversion increased from 57 to 71 wt%, from 83 to 93 wt% and from 75 to 80 wt% for LGO, blended and HGO, respectively and also sulfur conversion of LGO increased from 86 to 92 wt% when titania concentration was increased from 0 to 9 wt%. For blended and HGO, sulfur conversion was in the range 96-99 wt% at all titania concentrations. (author)

  2. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  3. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... materials were all prepared by hydrothermal crystallization of gels adsorbed on carbon matrices which were subsequently removed by combustion. The procedures presented here resulted in mesoporous zeolite and zeotypes materials with MFI, MEL, BEA, AFI and CHA framework structures. All samples were...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA...

  4. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  5. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  6. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico)]. E-mail: psalas@imp.mx; Chen, L.F. [Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, ESIQIE, Instituto Politecnico Nacional, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Armendariz, H. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Guzman, M.L. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Montoya, J.A. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Acosta, D.R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A. P. 20-364, 01000 Mexico D.F. (Mexico)

    2005-11-15

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH{sub 4}){sub 2}SO{sub 4} were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m{sup 2}/g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO{sub 4} {sup 2-}/(ZrO{sub 2} + SiO{sub 2}) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of {sup 29}Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q{sup 2} + Q{sup 3})/Q{sup 4} ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure.

  7. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    International Nuclear Information System (INIS)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin; Bae, Joonwon

    2013-01-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol–gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  8. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul, 151-742 (Korea, Republic of); Bae, Joonwon [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of)

    2013-06-28

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  9. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Science.gov (United States)

    Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin

    2013-06-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.

  10. Calculation of DSSC parameters based on ZnO nanorod/TiO2 mesoporous photoanode

    Science.gov (United States)

    Safriani, L.; Nurrida, A.; Mulyana, C.; Susilawati, T.; Bahtiar, A.; Aprilia, A.

    2017-07-01

    Photoanode of dye sensitized solar cell (DSSC) plays an important role as electron transport media to accept photogenerated electron from excited state of dye. There are several physical properties that are required from photoanode of DSSC. It should be highly transparent, have large surface area, has a conduction band lower than LUMO of dye molecule, has high charge carrier mobility and finally has a good stability in redox electrolyte process. In this work, DSSC with structure FTO/ZnO nanorod/TiO2 mesoporous/Ru-dye/gel electrolyte/ Pt/FTO has been fabricated. In order to modified the structures of photoanode, ZnO nanorod was grown on aluminium doped ZnO seed layer by variation concentration of Al (0 wt%, 0.5 wt% and 1.0 wt%). Zinc nitrate hexahydrate and hexamethylenetetramine used as raw materials for ZnO nanorod growth solution and deposited by self-assembly methods on FTO/Al doped ZnO seed layer. It is then followed by deposition of titania (TiO2) paste by screen printing methods. DSSC parameters i.e. ideally factor (n), series resistance (RS ), and shunt resistance (RSH ) was derived from current density-voltage (I-V) curve using the simplify equation of ideal diode model. The influences of ZnO photoanode structures to the solar cell performance will be completely discussed.

  11. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  12. Hazard reduction for the application of titania nanoparticles in environmental technology

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Photocatalytically active titania (TiO2) nanoparticles are applied, and considered for application, in the degradation of hazardous substances. However, these nanoparticles are also hazardous by themselves. High efficiency immobilization of TiO2 nanoparticles on large inorganic supports that are not

  13. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    Science.gov (United States)

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  14. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  15. A DFT study on the effect of supporting titania on silica graphene epoxy graphene and carbon nanotubes - Interfacial properties and optical response

    CSIR Research Space (South Africa)

    Kiarii, EM

    2017-08-01

    Full Text Available A first principles study of the Titania is done as used in photo-catalysis to generate charge carries. Models of titania, silica, graphene, epoxy graphene monoxide, single wall Carbon nanotubes and their respective layer were studied in order...

  16. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  17. Enhanced photocatalytic performance of mesoporous TiO{sub 2} coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Lin, Xiao; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng; Li, Ming; Chen, Feitai

    2016-03-15

    Highlights: • Highly uniform mesoporous TiO{sub 2} nanopartices were coated SBA-15. • MT showed smaller crystallite size, higher hydroxyl content and surface area. • MT/SBA-15 show enhanced photocatalytic activity and high reused activity. • The optimum MT loading rate and calcination temperature were obtained to be 15% and 400 °C, respectively. • Photocatalytic behaviors are discussed in terms of the Langmuir–Hinshelwood model. - Abstract: Mesoporous TiO2 coated SBA-15 (MT@S) nanocomposites were fabricated through supercritical CO{sub 2} deposition aided by liquid-crystal template. The as-prepared samples were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and so on. The results reveal that MT uniformly deposited onto silica with titania incorporated in SBA-15 channels, showed smaller crystallite size, higher hydroxyl content and surface area than nonporous TiO{sub 2} coated SBA-15 (NT@S) obtained by a similar route without template. With TiO{sub 2} loading ratio of 15 wt% and calcination temperature of 400 °C, 15%MT@S-400 showed the enhanced degradation efficiency for azo dyes (methylene blue, methyl orange, and rhodamine B) and phenol in comparsion with 15%NT@S-400, due to those improved textural and physicochemical properties. Meanwhile, the reused MT@S also showed high photoactivity. Additionally, the effects of MT content and calcination temperature have been examined as operational parameters. Photocatalytic reactions followed pseudo-first-order kinetics and are discussed in terms of the Langmuir–Hinshelwood model.

  18. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  19. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    Science.gov (United States)

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-05-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  20. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  1. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  2. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  3. Surface layer composition of titania produced by various methods. The change of layer state under illumination

    International Nuclear Information System (INIS)

    Zakharenko, V; Daibova, E; Zmeeva, O; Kosova, N

    2016-01-01

    The comparative analysis of experimental data over titanium dioxide powders prepared by various ways under ambient air is carried out. The results over TiO 2 prepared by high-temperature heating of anatase, produced by burning of titanium micro particles and grinding of rutile crystal are used for that comparison. Water and carbon dioxide were the main products released from the surface of the titania powders. It was found that under UV irradiation absorbed by titania, in absent oxygen, water effectively reacts with lattice oxygen of titanium dioxide. (paper)

  4. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  5. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  6. Non-toxic silver iodide (AgI) quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Moosakhani, S.; Sabbagh Alvani, A.A.; Sarabi, A.A.; Sameie, H.; Salimi, R.; Kiani, S.; Ebrahimi, Y.

    2014-01-01

    Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO 2 . • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titania (TiO 2 ) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO 2 nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N 2 adsorption–desorption measurements, and UV–vis spectroscopy. TiO 2 powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m 2 /g. Afterwards, the QDs were grown on mesoporous TiO 2 surface to fabricate a TiO 2 /AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO 2 matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm 2 under one sun illumination

  7. Development and characterization of silica and titania based nano structured materials for the removal of indoor and outdoor air pollutants

    Science.gov (United States)

    Peiris, Thelge Manindu Nirasha

    Solar energy driven catalytic systems have gained popularity in environmental remediation recently. Various photocatalytic systems have been reported in this regard and most of the photocatalysts are based on well-known semiconducting material, Titanium Dioxide, while some are based on other materials such as Silicon Dioxide and various Zeolites. However, in titania based photocatalysts, titania is actively involved in the catalytic mechanism by absorbing light and generating exitons. Because of this vast popularity of titania in the field of photocatalysis it is believed that photocatalysis mainly occurs via non-localized mechanisms and semiconductors are extremely important. Even though it is still rare, photocatalysis could be localized and possible without use of a semiconductor as well. Thus, to support localized photocatalytic systems, and to compare the activity to titania based systems, degradation of organic air pollutants by nanostructured silica, titania and mixed silica titania systems were studied. New materials were prepared using two different approaches, precipitation technique (xerogel) and aerogel preparation technique. The prepared xerogel samples were doped with both metal (silver) and non-metals (carbon and sulfur) and aerogel samples were loaded with Chromium, Cobalt and Vanadium separately, in order to achieve visible light photocatalytic activity. Characterization studies of the materials were carried out using Nova BET analysis, DR UV-vis spectrometry, powder X-ray diffraction, X-ray photoelectron Spectroscopy, FT-IR spectroscopy, Transmission Electron Microscopy, etc. Kinetics of the catalytic activities was studied using a Shimadzu GCMS-QP 5000 instrument using a closed glass reactor. All the experiments were carried out in gaseous phase using acetaldehyde as the model pollutant. Kinetic results suggest that chromium doped silica systems are good UV and visible light active photocatalysts. This is a good example for a localized

  8. Double-sided anodic titania nanotube arrays: a lopsided growth process.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli

    2010-12-07

    In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.

  9. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    Science.gov (United States)

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  10. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  11. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric

    2007-01-01

    During the last years, several new routes to produce zeolites with controlled mesoporosity have appeared. Moreover, an improved catalytic performance of the resulting mesoporous zeolites over conventional zeolites has been demonstrated in several reactions. In most cases, the mesoporous zeolites...... exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located...... in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso...

  12. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.

    Science.gov (United States)

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Sol-gel titania-coated needles for solid phase dynamic extraction-GC/MS analysis of desomorphine and desocodeine.

    Science.gov (United States)

    Su, Chi-Ju; Srimurugan, Sankarewaran; Chen, Chinpiao; Shu, Hun-Chi

    2011-01-01

    Novel sol-gel titania film coated needles for solid-phase dynamic extraction (SPDE)-GC/MS analysis of desomorphine and desocodeine are described. The high thermal stability of titania film permits efficient extraction and analysis of poorly volatile opiate drugs. The influences of sol-gel reaction time, coating layer, extraction and desorption time and temperature on the SPDE needle performance were investigated. The deuterium labeled internal standard was introduced either during the extraction of analyte or directly injected to GC after the extraction process. The latter method was shown to be more sensitive for the analysis of water and urine samples containing opiate drugs. The proposed conditions provided a wide linear range (from 5-5000 ppb), and satisfactory linearity, with R(2) values from 0.9958 to 0.9999, and prominent sensitivity, LOQs (1.0-5.0 ng/g). The sol-gel titania film coated needle with SPDE-GC/MS will be a promising technique for desomorphine and desocodeine analysis in urine.

  14. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    Science.gov (United States)

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  15. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  16. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    Science.gov (United States)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  17. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  18. Study of hybrid solar cells made of multilayer nanocrystalline titania and poly(3-octylthiophene) or poly-(3-(2-methylhex-2-yl)-oxy-carbonyldithiophene)

    DEFF Research Database (Denmark)

    Antoniadou, Maria; Stathatos, Elias; Boukos, Nikolaos

    2009-01-01

    Hybrid solar cells have been constructed by using nanocrystalline titania and hole-transporting polymers. Titania was deposited on fluorine-doped tin-oxide transparent electrodes in three layers: a blocking layer and two nanostructured layers, giving densely packed or open structures. Open...

  19. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  20. Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film

    International Nuclear Information System (INIS)

    Yu Jiuhong; Ju Huangxian

    2003-01-01

    Hemoglobin (Hb) was entrapped in a titania sol-gel matrix and used as a mimetic peroxidase to construct a novel amperometric biosensor for hydrogen peroxide. The Hb entrapped titania sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process for protein immobilization. The morphologies of both titania sol-gel and the Hb films were characterized using scanning electron microscopy (SEM) and proved to be chemically clean, porous, homogeneous. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Hb and a very low mass transport barrier to the substrates. H 2 O 2 could be reduced by the catalysis of the entrapped hemoglobin at -300 mV without any mediator. The reagentless H 2 O 2 sensor exhibited a fast response (less than 5 s) and sensitivity as high as 1.29 mA mM -1 cm -2 . The linear range for H 2 O 2 determination was from 5.0x10 -7 to 5.4x10 -5 M with a detection limit of 1.2x10 -7 M. The apparent Michaelis-Menten constant of the encapsulated hemoglobin was calculated to be 0.18±0.02 mM. The stability of the biosensor was also evaluated

  1. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid.

    Science.gov (United States)

    Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian; Liu, Jianzhao; Hu, Yi-Xin; Ma, Tianyuan; Amine, Rachid; Xie, Yingying; Zhang, Xiaoyi; Liu, Yuzi; Ren, Yang; Sun, Cheng-Jun; Heald, Steve M; Kovacevic, Jasmina; Sehlleier, Yee Hwa; Schulz, Christof; Mattis, Wenjuan Liu; Sun, Shi-Gang; Wiggers, Hartmut; Chen, Zonghai; Amine, Khalil

    2018-01-10

    Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na + intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li + , K + , Mg 2+, and Al 3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  2. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gui-Liang [Chemical; Xiao, Lisong [Center; Sheng, Tian [Collaborative; Liu, Jianzhao [Chemical; Hu, Yi-Xin [Chemical; Department; Ma, Tianyuan [Chemical; Amine, Rachid [Materials; Xie, Yingying [Chemical; Zhang, Xiaoyi [X-ray Science; Liu, Yuzi [Nanoscience; Ren, Yang [X-ray Science; Sun, Cheng-Jun [X-ray Science; Heald, Steve M. [X-ray Science; Kovacevic, Jasmina [Center; Sehlleier, Yee Hwa [Center; Schulz, Christof [Center; Mattis, Wenjuan Liu [Microvast Power Solutions, 12603; Sun, Shi-Gang [Collaborative; Wiggers, Hartmut [Center; Chen, Zonghai [Chemical; Amine, Khalil [Chemical

    2017-12-15

    Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  3. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  4. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

    Science.gov (United States)

    Kołodyńska, D.; Gęca, M.; Skwarek, E.; Goncharuk, O.

    2018-04-01

    The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

  5. Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

    International Nuclear Information System (INIS)

    Lin, Rong; Yue, Wenbo; Niu, Fangzhou; Ma, Jie

    2016-01-01

    As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Graphene-encapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides (SnO_2, Mn_3O_4), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides with high isoelectric points are not essential for this synthesis method since metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

  6. Basic Principle of Advanced Oxidation Technology : Hybrid Technology Based on Ozone and Titania

    International Nuclear Information System (INIS)

    Widdi Usada; Agus Purwadi

    2007-01-01

    One of problems in health environment is organic liquid waste from many pollutant resources. Environmental friendly technology for degrading this waste is ozone which produced by plasma discharge technology, but its capability is limited. However, it is needed a new environmental friendly technology which has stronger capability. This new technology is so called advanced oxidation technology. Advanced oxidation technology is a hybrid of ozone, peroxide, UV light and photo catalyst. In this paper, it is introduced basic principle of hybrid of ozone and titania photo catalyst semiconductor. The capability of organic liquid degradation will be stronger because there is new radical which is produced by chemical reaction between electron-hole pair from photo catalyst titania and water or oxygen. This new radical then degrades this organic pollutant. This technology is used to degrade phenol. (author)

  7. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures.

    Science.gov (United States)

    Fang, Jixiang; Zhang, Lingling; Li, Jiang; Lu, Lu; Ma, Chuansheng; Cheng, Shaodong; Li, Zhiyuan; Xiong, Qihua; You, Hongjun

    2018-02-06

    Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Mesoporous titania was synthesized by a sol-gel method using the surfactants Span85 and X114 as the template. The pore structure was determined by the N2 adsorption/desorption method below 73 K and calculated using the BJH model. TEM characterizations show that the pores are formed through particle ...

  9. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  10. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  14. Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities

    Energy Technology Data Exchange (ETDEWEB)

    Chanhom, Padtaraporn [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Charoenlap, Nisanart [Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Tomapatanaget, Boosayarat [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-01

    New types of colloidal multifunctional nanocomposites that combine superparamagnetic character and high photocatalytic activity were synthesized and investigated. The superparamagnetic nanocomposites composed of anatase titania, silica, and iron oxide nanoparticles (TSI) were synthesized using thermal decomposition method followed by microemulsion method, without calcination at high temperature. Different techniques including X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize and confirm the structure of the nanocomposites. These nanocomposites showed high photocatalytic activity when used in the photodegradation of methylene blue under irradiation with a black light lamp. Moreover, the nanocomposites exhibited high antibacterial properties. From our study, the nanocomposites can be useful in various applications such as removal of pollutants with readily separation from the environment using an external magnetic field. These composites could effectively photo-degrade the dye at least three cycles without regeneration. The effects of silica shell thickness on the photocatalytic activity was investigated, and the thickness of 6 nm of the silica interlayer is enough for the inhibition of electron translocation between titania and iron oxide nanoparticles and maintaining the efficiency of photocatalytic activity of titania nanoparticles. - Highlights: • New colloidal nanocomposites of iron oxide-silica-titania were prepared. • The nanocomposites exhibited high photocatalytic activity with magnetic response. • The effects of silica thickness on photocatalytic activity were investigated. • Bactericidal activity of the nanocomposites was demonstrated.

  15. Super/Subcritical Fluid Extractions for Preparation of the Crystalline Titania

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Cajthaml, Tomáš; Matěj, Z.; Benada, Oldřich; Klusoň, Petr; Šolcová, Olga

    2010-01-01

    Roč. 52, č. 2 (2010), s. 215-221 ISSN 0896-8446 R&D Projects: GA ČR GP104/09/P290; GA ČR GA104/09/0694 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : titania * supercritical fluid extraction * pressurised fluid extraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.986, year: 2010

  16. Lamellar Micelles - Mediated Synthesis of Nanoscale Thick Sheets of Titania

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Šolcová, Olga; Matějová, Lenka; Cajthaml, Tomáš

    2007-01-01

    Roč. 61, 14-15 (2007), s. 2931-2934 ISSN 0167-577X R&D Projects: GA ČR(CZ) GA104/04/0963; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : nanostructures * lamellar titania * templating Subject RIV: CA - Inorganic Chemistry Impact factor: 1.625, year: 2007

  17. Thermal and hydrothermal stability of ZrMCM-41 mesoporous ...

    Indian Academy of Sciences (India)

    Administrator

    The mesoporous structure of the ZrMCM-41 mesoporous molecular sieve still retains after calcination at 750°C for 3 h or ... adsorption, sensor and petrochemical industry. 2–5. However, the ... the pH value of the mixed solution was adjusted to.

  18. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve; Influencia do metodo de incorporacao da zirconia sulfatada na peneira molecular MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V., E-mail: eduardopereira.eq@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Centro de Ciencia e Tecnologia

    2016-07-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  19. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  20. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  1. Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Po-Wen [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The dissertation begins with Chapter 1, which is a general introduction of the fundamental synthesis of mesoporous silica materials, the selective functionlization of mesoporous silica materials, and the synthesis of nanostructured porous materials via nanocasting. In Chapter 2, the thermo-responsive polymer coated mesoporous silica nanoparticles (MSN) was synthesized via surface-initated polymerization and exhibited unique partition activities in a biphasic solution with the thermally induced change. In Chapter 3, the monodispersed spherical MSN with different mesoporous structure (MCM-48) was developed and employed as a template for the synthesis of mesoporous carbon nanoparticles (MCN) via nanocasting. MCN was demonstrated for the delivery of membrane impermeable chemical agents inside the cells. The cellular uptake efficiency and biocompabtibility of MCN with human cervical cancer cells were also investigated. In addition to the biocompabtibility of MCN, MCN was demonstrated to support Rh-Mn nanoparticles for catalytic reaction in Chapter 4. Owing to the unique mesoporosity, Rh-Mn nanoparticles can be well distributed inside the mesoporous structure and exhibited interesting catalytic performance on CO hydrogenation. In Chapter 5, the synthesis route of the aforementioned MCM-48 MSN was discussed and investigated in details and other metal oxide nanoparticles were also developed via nanocasting by using MCM-48 MSN as a template. At last, there is a general conclusion summarized in Chapter 6.

  2. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor

    International Nuclear Information System (INIS)

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-01-01

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  3. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.

    Science.gov (United States)

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-02-18

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  4. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  5. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  6. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    Science.gov (United States)

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  7. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  8. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  9. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  10. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  11. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  12. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite

    KAUST Repository

    Akhtar, M. N.; Al-Yassir, N.; Al-Khattaf, S.; Čejka, Jiří

    2012-01-01

    Aromatization of hexane and propane was investigated over Pt promoted mesoporous gallium-containing HZSM-11 with controlled mesoporosity generated by desilication. Prepared catalysts were characterized by nitrogen adsorption, X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared of chemisorbed pyridine, and NH 3 temperature programmed desorption confirming the development of intracrystalline mesoporosity of Ga-containing HZSM-11. The catalytic activities, which were compared in the aromatization of n-hexane and propane, increased upon desilication. The aromatization of n-hexane decreased in the following order, Pt/mesoporous GaZSM-11 Pt/conventional GaZSM-11 mesoporous GaZSM-11 > conventional GaZSM-11. Hexane conversion reached 70.1% over mesoporous Pt/GaZSM-11 with Si/Ga of 61, as compared with 29.6 and 24.9% for corresponding mesoporous and conventional GaZSM-11 (Si/Ga = 94), respectively, for experiments at liquid hour space velocity of 3.6 h -1, and 540 °C. Comparison of BTX (benzene-toluene-xylene) selectivity at the conversion level of ∼21.0% revealed that Pt/mesoporous GaZSM-11 is more selective than corresponding mesoporous and conventional GaZSM-11. The BTX selectivity over Pt/mesoporous GaZSM-11 (Si/Ga = 94), which showed strong dependence on the conversion, reached 28.2%, whereas over corresponding mesoporous and conventional GaZSM-11catalysts reached 19.1% and 5.5%, respectively. A higher conversion and better selectivity can be attributed to the improved accessibility to the active extra-framework Ga species owing to the generation of mesopores inside the zeolite particles and shortening the contact time. It is worth mentioning that the prepared catalysts exhibited quite low activity in propane aromatization but exhibiting similar trends as for hexane aromatization. © 2011 Elsevier B.V. All rights reserved.

  13. Non-toxic silver iodide (AgI) quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moosakhani, S. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sabbagh Alvani, A.A., E-mail: sabbagh_alvani@aut.ac.ir [Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sameie, H.; Salimi, R.; Kiani, S.; Ebrahimi, Y. [Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO{sub 2}. • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titania (TiO{sub 2}) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO{sub 2} nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N{sub 2} adsorption–desorption measurements, and UV–vis spectroscopy. TiO{sub 2} powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m{sup 2}/g. Afterwards, the QDs were grown on mesoporous TiO{sub 2} surface to fabricate a TiO{sub 2}/AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO{sub 2} matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm{sup 2} under one sun illumination.

  14. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Recent Advances in Catalysis Over Mesoporous Molecular Sieves

    Czech Academy of Sciences Publication Activity Database

    Martín-Aranda, R. M.; Čejka, Jiří

    2010-01-01

    Roč. 53, 3-4 (2010), s. 141-153 ISSN 1022-5528 R&D Projects: GA AV ČR KAN100400701; GA AV ČR IAA400400805; GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous molecular sieves * MCM-41 * SBA-15 * mesoporous alumina Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.359, year: 2010

  16. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    Science.gov (United States)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  17. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, P.; Kuráň, P.; Šťastný, M.

    2015-01-01

    Roč. 344, JUL (2015), s. 9-16 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Titania-iron oxides * Homogeneous hydrolysis * Degradation of organophosphates * Parathion methyl Subject RIV: CA - Inorganic Chemistry Impact factor: 3.150, year: 2015

  18. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  19. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong; Ding, Yong; Li, Zhou; Song, Jinhui; Wang, Zhong Lin

    2009-01-01

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed

  20. Commercial and home-made nitrogen modified titanias. A short reflection about the advantageous/disadvantageous properties of nitrogen doping in the frame of their applicability

    Science.gov (United States)

    Pap, Zs.; Mogyorósi, K.; Veréb, G.; Dombi, A.; Hernádi, K.; Danciu, V.; Baia, L.

    2014-09-01

    As visible light driven photocatalysis became more and more intensively studied, the first commercial products showed up on the market. Simultaneously controversial results appeared in the literature generating an intensive debate regarding the advantages and draw-backs of nitrogen doping of titania. Hence, the present work focuses on two commercially available and four sol-gel made nitrogen modified titania powders regarding their structure and activity. It is demonstrated that the interstitial nitrogen entities “leak out” from the catalysts if the material is irradiated with UV light, while substitutional nitrogen remains stable. However, the latter one was proven to be less important in the photocatalytic point of view. These observations were also valid in the case of sol-gel made nitrogen modified titanias. Furthermore, the results obtained after applying different spectroscopic methods (IR, XPS and DRS) shown that the yellow color of the titanias, does not necessary mean that a successful doping is achieved.

  1. Hybrid Dye-Sensitized Solar Cells Consisting of Double Titania Layers for Harvesting Light with Wide Range of Wavelengths

    Science.gov (United States)

    Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2011-02-01

    We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.

  2. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  3. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  4. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    Czech Academy of Sciences Publication Activity Database

    Brunátová, T.; Matěj, Z.; Oleynikov, P.; Vesely, J.; Danis, S.; Popelková, Daniela; Kuzel, R.

    2014-01-01

    Roč. 98, December (2014), s. 26-36 ISSN 1044-5803 Institutional support: RVO:61389013 Keywords : titania nanowires * titanate nanorods * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.845, year: 2014

  5. Catalytic properties of Thallium-containing mesoporous silicas

    Directory of Open Access Journals (Sweden)

    A. Baradji

    2017-02-01

    Full Text Available The benzylation of benzene by benzyl chloride over a series of Thallium-containing mesoporous silicas with different Tl contents has been investigated. These materials (Tl-HMS-n have been characterized by chemical analysis, N2 adsorption/desorption isotherm and X-ray diffraction (XRD. The mesoporous Thallium-containing materials showed both high activity and high selectivity for the benzylation of benzene. More interesting is the observation that these catalysts are always active and selective for large molecules like naphthenic compounds such as methoxynaphthalene.

  6. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  7. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  8. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  9. Multifunctional EuYVO4 nanoparticles coated with mesoporous silica

    International Nuclear Information System (INIS)

    Justino, Larissa G.; Nigoghossian, Karina; Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M.; Ribeiro, Sidney J.L.; Caiut, José Maurício A.

    2016-01-01

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO 4 nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO 4 :Eu 3+ nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  10. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    Energy Technology Data Exchange (ETDEWEB)

    Mnasri, Najib [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Charnay, Clarence; Ménorval, Louis-Charles de [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Elaloui, Elimame [Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Zajac, Jerzy, E-mail: jerzy.zajac@umontpellier.fr [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France)

    2016-11-15

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.

  11. Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte.

    Science.gov (United States)

    Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop

    2005-06-21

    A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.

  12. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    International Nuclear Information System (INIS)

    Cheng, Liang; Shao, Mingwang; Chen, Dayan; Zhang, Yuzhong

    2010-01-01

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC 2 O 4 precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  13. Formation of pyridine N-oxides using mesoporous titanium silicalite-1

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Perez-Ferreras, Susana

    2014-01-01

    Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome the...

  14. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  15. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Albert Serrà

    2014-03-01

    Full Text Available A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane’s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

  16. Syntheses and applications of periodic mesoporous organosilica nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2015-11-06

    Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms.

  17. Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization

    KAUST Repository

    Abdul Kaleel, S. H.

    2012-09-01

    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp 2ZrCl 2 and Cp 2TiCl 2) in combination with methylalumoxane. Titanium(IV) oxide containing 1% Mn as dopant was used as nanofillers. The influence of filler concentration, reaction temperature and pressure on the catalytic activity and polymer properties was investigated. There was a fourfold increase in the activity of zirconocene catalyst by addition of doped-titania. The morphology indicates that the doped-titania nanoparticles have a nucleus effect on the polymerization and caused a homogeneous PE shell around them. The optimum condition for polymerization was found to be 30°C. © 2012 The Korean Society of Industrial and Engineering Chemistry.

  18. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  19. Fabrication of modified lithium orthosilicate pebbles by addition of titania

    Energy Technology Data Exchange (ETDEWEB)

    Knitter, R., E-mail: regina.knitter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Kolb, M.H.H.; Kaufmann, U. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Goraieb, A.A. [Goraieb Versuchstechnik (GVT), Karlsruhe, 76227 (Germany)

    2013-11-15

    Highlights: ► Lithium orthosilicate pebbles with additions of titania were fabricated by a modified melt-based process. ► The fabricated pebbles exhibit a very fine-grained microstructure with lithium metatitanate as a secondary phase. ► Due to the addition of titanate, the crush load of the pebbles was significantly increased. ► The closed porosity was found to be slightly increased with increasing titanate content. -- Abstract: Lithium orthosilicate pebbles are one of the ceramic tritium breeder materials destined for the European solid breeder test blanket modules of ITER, the large-scale scientific experiment intended to prove the viability of fusion as an energy source, presently under construction in Cadarache, France. While the current reference material is fabricated by melt-spraying with 2.5 wt.% excess of silica, resulting in a two-phase material of lithium orthosilicate and metasilicate, a modified melt-based process was used to fabricate breeder pebbles with additions of titania in order to obtain pebbles with lithium metatitanate as a secondary phase. The fabricated two-phase pebbles exhibit a fine-grained microstructure and increased crush loads. The optimum titanate content has yet to be evaluated, nonetheless the pebbles may have the potential to combine the advantages of both lithium orthosilicate and metatitanate breeder ceramics.

  20. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  1. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    International Nuclear Information System (INIS)

    Gao, Lin; Sun, Jihong; Zhang, Li; Wang, Jinpeng; Ren, Bo

    2012-01-01

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N 2 adsorption–desorption isotherms, thermogravimetric analyses, solid-state 29 Si NMR spectra, elemental analysis, and UV–vis spectra. Meanwhile, the Korsmeyer–Peppas equation f t = kt n was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer–Peppas equation was around 4.10. Highlights: ► BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. ► Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. ► BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  2. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    Science.gov (United States)

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  3. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  4. Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies

    Directory of Open Access Journals (Sweden)

    M. Ihsan Danish

    2013-01-01

    Full Text Available Nanosized metal oxide, Titania, provides high surface area and specific affinity for the adsorption of heavy metals, including arsenic (As, which is posing a great threat to the world population due to its carcinogenic nature. In this study, As(III adsorption was studied on pure and metal- (Ag- and Fe- doped Titania nanoparticles. The nanoparticles were synthesized by liquid impregnation method with some modifications, with crystallite size in the range of 30 to 40 nm. Band gap analysis, using Kubelka-Munk function showed a shift of absorption band from UV to visible region for the metal-doped Titania. Effect of operational parameters like dose of nanoparticles, initial As(III concentration, and pH was evaluated at 25°C. The data obtained gave a good fit with Langmuir and Freundlich isotherms and the adsorption was found to conform to pseudo-second-order kinetics. In batch studies, over 90% of arsenic removal was observed for both types of metal-doped Titania nanoparticles from a solution containing up to 2 ppm of the heavy metal. Fixed bed columns of nanoparticles, coated on glass beads, were used for As(III removal under different operating conditions. Thomas and Yoon-Nelson models were applied to predict the breakthrough curves and to find the characteristic column parameters useful for process design. The columns were regenerated using 10% NaOH solution.

  5. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  6. Kinetics of the water formation in the propene epoxidation over gold-titania catalysts

    NARCIS (Netherlands)

    Nijhuis, T.A.; Weckhuysen, B.M.

    2007-01-01

    The kinetics of the hydrogen oxidation were determined for a number of different gold catalysts supported on titania, silica, and silicalite-1. A dual site Langmuir-Hinshelwood kinetic model was able to describe the reaction well. The kinetic parameters are independent of the support. Water was

  7. Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid

    Directory of Open Access Journals (Sweden)

    Junhyun Choi

    2014-01-01

    Full Text Available Silicate mesoporous materials were synthesized with nonionic surfactant and their surfaces were modified by oleic acid adsorption. Infrared spectrometer, nitrogen adsorption-desorption isotherm, scanning electron microscopy, and thermogravimetric analyses were used to investigate the structure of oleic acid modified mesoporous material. The effects of heat treatment at various temperatures on oleic acid modified materials were also studied. Oleic acids on silica surfaces were found to be bonded chemically and/or physically and be capable of enduring up to 180°C. The adsorbed oleic acid improved the hydrothermal stability of mesoporous silica and assisted mesopore structure to grow more in hydrothermal treatment process by preventing the approach of water.

  8. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  9. Hydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)], E-mail: drm@ansto.gov.au; Triani, G.; Zhang, Z. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2008-10-01

    A two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130 deg. C) has been assessed. Titania thin films were deposited at 80 deg. C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120 deg. C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised.

  10. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g −1 at 2 A g −1 and impressive high-rate capability with a specific capacitance of 338 F g −1 at 40 A g −1 . In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g −1 , a high capacitance of 660 F g −1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties

  11. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  12. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  13. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    Science.gov (United States)

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    Science.gov (United States)

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and Physicochemical Characterization of Mesoporous SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dharani Das

    2014-01-01

    Full Text Available There exists a knowledge gap in understanding potential toxicity of mesoporous silica nanoparticles. A critical step in assessing toxicity of these particles is to have a wide size range with different chemistries and physicochemical properties. There are several challenges when synthesizing mesoporous silica nanoparticles over a wide range of sizes including (1 nonuniform synthesis protocols using the same starting materials, (2 the low material yield in a single batch synthesis (especially for particles below 60–70 nm, and (3 morphological instability during surfactant removal process and surface modifications. In this study, we synthesized a library of mesoporous silica nanoparticles with approximate particle sizes of 25, 70, 100, 170, and 600 nm. Surfaces of the silica nanoparticles were modified with hydrophilic-CH2–(CH22–COOH and relatively hydrophobic-CH2–(CH210–COOH functional groups. All silica nanoparticles were analysed for morphology, surface functionality, surface area/pore volume, surface organic content, and dispersion characteristics in liquid media. Our analysis revealed the synthesis of a spectrum of monodisperse bare and surface modified mesoporous silica nanoparticles with a narrow particle size distribution and devoid of cocontaminants critical for toxicity studies. Complete physicochemical characterization of these synthetic mesoporous silica nanoparticles will permit systematic toxicology studies for investigation of structure-activity relationships.

  16. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Multilayer films from templated TiO2 and structural changes during their thermal treatment

    Czech Academy of Sciences Publication Activity Database

    Procházka, Jan; Kavan, Ladislav; Shklover, V.; Zukalová, Markéta; Frank, Otakar; Kalbáč, Martin; Zukal, Arnošt; Tarábková, Hana; Janda, Pavel; Mocek, Karel; Klementová, Mariana; Carbone, D.

    2008-01-01

    Roč. 20, č. 9 (2008), s. 2985-2993 ISSN 0897-4756 R&D Projects: GA MŠk LC510; GA MŠk 1P05OC069 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : sensitized solar-cells * titania thin films * mesoporous metal oxides Subject RIV: CG - Electrochemistry Impact factor: 5.046, year: 2008

  18. Optical, mechanical and TEM assessment of titania-doped Bi2V1 ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 37; Issue 7. Optical, mechanical and TEM assessment of titania-doped Bi2V1−TiO5.5−δ bismuth vanadate oxides. Gurbinder Kaur Gary Pickrell Vishal Kumar Om Prakash Pandey Kulvir Singh Daniel Homa. Volume 37 Issue 7 December 2014 pp ...

  19. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S.A. Mandavgane

    2010-12-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as aconcrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc.Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitatedfrom the sodium silicate by acidification. In the present work, conversion of about 90% of silica containedin RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The resultsshowed that silica obtained from RHA is mesoporous, has a large surface area and small particle size.Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usuallycontains carbon particles. Activated carbon embedded on silica has been prepared using the carbon alreadypresent in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67

  20. Mesoporous metal catalysts formed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  1. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Cao Dandan; Lue Jianxia; Liu Jingfu; Jiang Guibin

    2008-01-01

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H 2 O 2 (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a ∼1.2 μm thick nanostructured coating consisting of ∼100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L -1 ), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L -1 ), and good linearity (coefficient of estimation R 2 = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  2. Structural transformation of nanocrystalline titania by sol-gel and the growth kinetics of crystallites

    International Nuclear Information System (INIS)

    Hu Linhua; Dai Songyuan; Wang Kongjia

    2002-05-01

    Structural transformation of nanocrystalline titania prepared by sol-gel with hydrolysis precursor titanium isopropoxide was investigated. At the same time, the growth kinetics of titania powders was also studied here. It was found that the grain size of the powders increased slowly with autoclave heating temperature up to 230 degree C, when hydrolysis pH was 0.9, but grew rapidly when heating temperature was higher that 230 degree C. The activation energies for growth of anatase crystallites in two temperature regions were calculated to be 18.5 kJ/mol and 59.7 kJ/mol respectively. The X-ray diffraction results show that the transformation from anatase phase to rutile phase starts at 230 degree C and structural transformation finished when temperature raises to 270 degree C, which is a temperature much more lower than that of the transformation by conventional literature reports

  3. Ordered mesoporous carbide-derived carbon as new high performance electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Korenblit, Yair; Yushin, Gleb [Georgia Inst. of Technology, Atlanta, GA (United States); Rose, Marcus; Kockrick, Emanuel; Borchardt, Lars; Kaskel, Stefan [Technische Univ. Dresden (Germany); Kvit, Alexander [Wisconsin Univ., Madison, WI (United States)

    2010-07-01

    The preparation and application of templated ordered mesoporous CDC overcome the present limitations of slow intraparticle ion transport and poor control over the biomodal pore size distribution in the carbons currently used, and shows a route for further performance enhancement. The ordered mesoporous channels in SiC CDC serve as ion-highways and allow for very fast ionic transport into the bulk of the CDC particles, thus leading to an excellent frequency response and outstanding capacitance retention at high current densities. The ordered mesopores in SiC allow for a greatly increased specific surface area and specific capacitance of SiC CDC, nearly doubling the previously reported values. The use of CDC produced from other carbides, including mesoporous TiC or VC is expected to further enhance the energy storage characteristics of EDLC electrodes, while optimization of the mesopore size is expected to enhance the power characteristics of EDLC. (orig.)

  4. Catalytic Activity and Photophysical Properties of Biomolecules Immobilized on Mesoporous Silica

    DEFF Research Database (Denmark)

    Ikemoto, Hideki

    Mesoporous silicas, based on Santa Barbara Amorphous-15 (SBA-15), with different morphology, structure, pore size and functional groups have been synthesized. Two metalloenzymes and a photosynthetic membrane protein were immobilized on or confined in the pores of the mesoporous silicas to prepare...

  5. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    Directory of Open Access Journals (Sweden)

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  6. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  7. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  8. Preparation of Mesoporous SnO2 by Electrostatic Self-Assembly

    Directory of Open Access Journals (Sweden)

    Yang Jing

    2014-01-01

    Full Text Available We report a simple and scalable strategy to synthesize mesoporous SnO2 with tin dioxide nanoparticles of 5-6 nm crystalline walls and 3-4 nm pore diameter with the assistance of Mo7O246- as templating agent at room temperature. The samples were characterized by XRD, TEM, UV-DRS, XPS, and BET. The product has a moderately high surface area of 132 m2 g−1 and a narrow mesoporous structure with an average pore diameter of 3.5 nm. The photocatalytic activities of the mesoporous SnO2 were evaluated by the degradation of methyl orange (MO in aqueous solution under UV light irradiation.

  9. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    Science.gov (United States)

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  10. In-vitro bioactivity and electrochemical behavior of polyaniline encapsulated titania nanotube arrays for biomedical applications

    Science.gov (United States)

    Agilan, P.; Rajendran, N.

    2018-05-01

    Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.

  11. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    Science.gov (United States)

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  13. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    Science.gov (United States)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  14. Titania Supported Co-Mn-Al Oxide Catalysts in Total Oxidation of Ethanol

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jirátová, Květa; Klempa, Jan; Böhmová, Vlasta; Obalová, L.

    2012-01-01

    Roč. 179, č. 1 (2012), s. 164-169 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/1762; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z30130516 Keywords : mixed oxide catalysts * voc oxidation * titania Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  15. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Schimmelmann, A.

    2009-01-01

    Changes in high-volatile bituminous coal (Pennsylvanian) near contacts with two volcanic intrusions in Illinois were investigated with respect to optical properties, coal chemistry, and coal pore structure. Vitrinite reflectance (Ro) increases from 0.62% to 5.03% within a distance of 5.5??m from the larger dike, and from 0.63% to 3.71% within 3.3??m from the small dike. Elemental chemistry of the coal shows distinct reductions in hydrogen and nitrogen content close to the intrusions. No trend was observed for total sulfur content, but decreases in sulfate content towards the dikes indicate thermochemical sulfate reduction (TSR). Contact-metamorphism has a dramatic effect on coal porosity, and microporosity in particular. Around the large dike, the micropore volume, after a slight initial increase, progressively decreases from 0.0417??cm3/g in coal situated 4.7??m from the intrusive contact to 0.0126??cm3/g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility. ?? 2008 Elsevier B.V. All rights reserved.

  16. A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties

    Science.gov (United States)

    Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun

    2017-11-01

    Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.

  17. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Kelly, Peter J.; West, Glen T. [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Tosheva, Lubomira; Edge, Michele [School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2017-01-15

    Highlights: • Bismuth tungstate coatings were deposited by reactive magnetron sputtering. • Oscillating bowl was introduced to the system to enable coating of nanopartulates. • Deposition of Bi{sub 2}WO{sub 6} enhanced visible light activity of titania nanoparticles. • The best results were obtained for coating with Bi:W ratio of approximately 2:1. • Deposition of Bi{sub 2}WO{sub 6} onto TiO{sub 2} resulted in more efficient electron-hole separation. - Abstract: Titanium dioxide − bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO{sub 2} evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO{sub 2} nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these

  18. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  19. A review on chemical methodologies for preparation of mesoporous silica and alumina based materials.

    Science.gov (United States)

    Naik, Bhanudas; Ghosh, Narendra Nath

    2009-01-01

    The discovery of novel family of molecular sieves called M41S aroused a worldwide resurgence in the field of porous materials. According to IUPAC definition inorganic solids that contain pores with diameter in the size range of 20-500 A are considered mesoporous materials. Mesoporous silica and alumina based materials find applications in catalysis, adsorption, host- guest encapsulation etc. This article reviews the current state of art and outline the recent patents in mesoporous materials research in three general areas: Synthesis, various mechanisms involved for porous structure formation and applications of silica and alumina based mesoporous materials.

  20. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  1. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  2. Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior

    International Nuclear Information System (INIS)

    Chatzikyriakou, Dafni; Krins, Natacha; Gilbert, Bernard; Colson, Pierre; Dewalque, Jennifer; Denayer, Jessica; Cloots, Rudi; Henrist, Catherine

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous films exhibit better electrochemical kinetics compared to the dense films. • Mesoporous films exhibit better reversibility compared to the dense films. • Li + cations disrupt WO 3 network in a reversible way in the mesoporous film. • Li + irreversibly intercalate in the voids of crystallites in the dense film. - Abstract: The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin films are significantly influenced by their structural and surface characteristics. In this study, we prepared two types of amorphous films via the sol-gel technique: one dense and one mesoporous in order to compare their response upon lithium intercalation and de-intercalation. According to chronoamperometric measurements, Li + intercalates/de-intercalates faster in the mesoporous film (24s/6s) than in the dense film (48s/10s). The electrochemical measurements (cyclic voltammetry and chronoamperometry) also showed worse reversibility for the dense film compared to the mesoporous film, giving rise to important Li + trapping and remaining coloration of the film. Raman analysis showed that the mesoporous film provides more accessible and various W-O surface bonds for Li + intercalation. On the contrary, in the first electrochemical insertion and de-insertion in the dense film, Li + selectively reacts with a few surface W-O bonds and preferentially intercalates into pre-existing crystallites to form stable irreversible Li x WO 3 bronze

  3. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke

    2011-01-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI: http://dx.doi.org/10.9767/bcrec.5.2.793.63-67

  4. Multifunctional EuYVO{sub 4} nanoparticles coated with mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Larissa G. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil); Nigoghossian, Karina [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M. [Department of Morphology, Dental School at Araraquara, Univ. Estadual Paulista – UNESP, Araraquara, SP (Brazil); Ribeiro, Sidney J.L. [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Caiut, José Maurício A., E-mail: caiut@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil)

    2016-11-15

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO{sub 4} nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO{sub 4}:Eu{sup 3+} nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  5. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dandan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Environmental Science Division, School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Lue Jianxia [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2008-03-17

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H{sub 2}O{sub 2} (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a {approx}1.2 {mu}m thick nanostructured coating consisting of {approx}100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L{sup -1}), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L{sup -1}), and good linearity (coefficient of estimation R{sup 2} = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  6. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    Science.gov (United States)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  7. A simple large-scale synthesis of mesoporous In_2O_3 for gas sensing applications

    International Nuclear Information System (INIS)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-01-01

    Graphical abstract: Large-scale mesoporous In_2O_3 nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In_2O_3 nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In_2O_3 nanostructures were discussed based on the experimental results. • The as-prepared In_2O_3 samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In_2O_3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In_2O_3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In_2O_3. The In_2O_3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In_2O_3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  8. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  9. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    treatment of a mixture of sucrose and ammonia followed by carbonization of the mixture in N-2 at high temperatures. The porous carbon produced by this method was subsequently applied as a hard template in the synthesis of mesoporous silicalite-1 and removed by combustion after synthesis. X-ray diffraction......A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal...... the porous carbon template as well as the mesoporous zeolite single-crystal material....

  10. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  11. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  12. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal; Wang, Peng

    2013-01-01

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  13. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    Science.gov (United States)

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  14. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  15. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  16. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan|info:eu-repo/dai/nl/088245489; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases

  17. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. &lt;b&gt;Methods:&lt;/b&gt; We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. &lt;b&gt;Results:&lt;/b&gt; The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. &lt;b&gt;Conclusion:&lt;/b&gt; The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  18. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    Science.gov (United States)

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Effects of Doping Copper and Mesoporous Structure on Photocatalytic Properties of TiO2

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available This paper describes a system for the synthesis of Cu-doped mesoporous TiO2 nanoparticles by a hydrothermal method at relatively low temperatures. The technique used is to dope the as-prepared mesoporous TiO2 system with copper. In this method, the copper species with the form of Cu1+, which was attributed to the reduction effect of dehydroxylation and evidenced by X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD, was well dispersed in the optimal concentration 1 wt.% Cu-doped mesoporous TiO2. In this as-prepared mesoporous TiO2 system, original particles with a size of approximately 20 nm are aggregated together to shapes of approximately 1100 nm, which resulted in the porous aggregate structure. More importantly, the enhancement of the photocatalytic activity was discussed as effects due to the formation of stable Cu(I and the mesoporous structure in the Cu-doped mesoporous TiO2. Among them, Cu-doped mesoporous TiO2 shows the highest degradation rate of methyl orange (MO. In addition, the effects of initial solution pH on degradation of MO had also been investigated. As a result, the optimum values of initial solution pH were found to be 3.

  20. Improving the photovoltaic parameters in Quantum dot sensitized solar cells through employment of chemically deposited compact titania blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Prasad, M.B., E-mail: rajendraprasadmb75@gmail.com [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India); National Defence Academy, Khadakwasla, Pune, 411023 (India); Kadam, Vishal [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India); Joo, Oh-Shim [Korea Institute of Science and Technology, PO Box No. 131, Chongryang, Seoul, 130-650 (Korea, Republic of); Pathan, Habib M. [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India)

    2017-06-15

    Incorporation of compact blocking layer at the Transparent Conducting Oxide (TCO)/Electrolyte interface is an effective method to improve the device performance in QDSSC through mitigation of electron recombinations at this interface. This paper reports the most facile and cost effective method of depositing a rutile titania Compact Layer (CL) over Fluorine doped Tin Oxide (FTO) substrate and its application in titania based CdS QD sensitized solar cells. The deposited compact layers are characterized to study their structural, optical, morphological and electrochemical properties using X-Ray Diffractometry, UV–Visible spectroscopy, Scanning electron microscopy, Cyclic Voltammetry and Contact Angle measurements. Sandwich solar cells are fabricated using these CL based electrodes and characterized using Electrochemical Impedance Spectroscopy, Open Circuit Voltage Decay and J-V characteristics. The CL incorporated CdS QDSSC showed more than 100% increase in the photoconversion efficiency (1.68%) as compared to its bare FTO counterpart (0.73%) proving the efficacy of employed strategy. - Highlights: • Deposited titania compact layer by a facile room temperature chemical bath method. • Employed this to mitigate back electron transfer at TCO/Electrolyte interface. • Compact layer incorporation has improved the solar cell performance by 130%.

  1. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle

    Directory of Open Access Journals (Sweden)

    Morrison RA

    2017-05-01

    Full Text Available Rachel A Morrison,1,* Malgorzata J Rybak-Smith,1,* James M Thompson,2 Bénédicte Thiebaut,3 Mark A Hill,2 Helen E Townley1,4 1Department of Engineering Science, 2Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, 3Johnson Matthey, Technology Centre, Reading, Berkshire, 4Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK *These authors have contributed equally to this work Abstract: The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%. It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization

  2. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry; Desenvolvimento e caracterizacao de compositos ceramicos baseados em alumina-titania reforcados com oxido de lantanio para fabricacao de revestimentos inertes em tanques metalicos da industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S., E-mail: julianamb91@gmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Engenharia Mecanica

    2016-07-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have

  3. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Michal Sela-Adler

    2017-05-01

    Full Text Available The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  4. Recovery evaluation of organophosphorus pesticides from bee pollen by matrix solid-phase dispersion extraction using sorbents based on silica and titania

    International Nuclear Information System (INIS)

    Torres-Perea, C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Medina-Peralta, S; Moguel-Ordóñez, Y B

    2013-01-01

    This work focused on the evaluation of the recovery of organophosphorus pesticides from bee pollen after matrix solid phase-dispersion extraction (MSPD). Materials based on silica, titania and titania modified with polivylnylimidazole or polyestirene were used as adsorbents for the extraction of pesticides. Small amounts of fortified pollen (0.1 g, at 1 micro-g/g of pesticides), adsorbent (0.4 g) and solvent elution (1 mL de acetonitrile – ACN) were used in the extractions. For recovery evaluation, pollen extracts were analyzed by gas chromatography coupled with mass spectrometry.

  5. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst

    International Nuclear Information System (INIS)

    Chen Jiangyao; Li Guiying; He Zhigui; An Taicheng

    2011-01-01

    Highlights: → Adsorptive combined titania-montmorillonite-silica photocatalysts synthesized. → All catalysts had relatively high adsorption capacities of multinary VOCs. → All catalysts preferred to adsorb the VOCs with higher polarity. → CTMS80 can effectively photocatalytically remove VOCs of various components. - Abstract: A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO 2 particles with increasing of TiO 2 content, and anatase was the only crystalline phase with nano-scale TiO 2 particles. With increasing of the cation exchange capacity to TiO 2 molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene < ethyl acetate < ethanethiol, and increased with the increase of adsorption capacities for different pollutants of various components.

  6. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites

    Institute of Scientific and Technical Information of China (English)

    RUN Mingtao; ZHANG Dayu; WU Sizhu; WU Gang

    2007-01-01

    The nonisothermal and isothermal degradation processesofpoly(ethyleneterephthalate)/mesoporous molecular sieve (PET/MMS) composites synthesized by insitu polymerization were studied by using thermogravimetric analysis in nitrogen.The nonisothermal degradation of the composite is found to be the first-order reaction.An isoconversional procedure developed by Ozawa is used to calculate the apparent activation energy (E),which is an average value of about 260 kJ/mol with the weight conversion from 0% to 30%,and is higher than that of neat PET.Isothermal degradation results are confirmed with the nonisothermal process,in which PET/MMS showed higher thermal stability than neat PET.The polymer in mesoporous channels has more stability due to the protection of the inorganic pore-wall.These results indicate that mesoporous MMS in PET/MMS composites improve the stability of the polymer.

  8. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    Science.gov (United States)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  9. A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications

    Science.gov (United States)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-08-01

    In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  10. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  11. Direct fabrication of ordered mesoporous carbons with super-micropore/small mesopore using mixed triblock copolymers.

    Science.gov (United States)

    Li, Peng; Song, Yan; Tang, Zhihong; Yang, Guangzhi; Yang, Junhe

    2014-01-01

    Ordered mesoporous carbons (OMCs) have been prepared by the strategy of evaporation-induced organic-organic self-assembly method by employing a mixture of amphiphilic triblock copolymers poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) and reverse PPO-PEO-PPO as templates, with soluble in ethanol, low-molecular-weight phenolic resin as precursor, followed by carbonization. It has been found that the as prepared OMCs with porosity that combines super-micropore and small mesopore size distributed from 0.8 to 4 nm, which bridges the pore size from 2 to 3 nm and also for the diversification of the soft-templating synthesis of OMCs. Furthermore, the results showed that the OMCs obtained have mesophase transition from cylindrical p6 mm to centered rectangular c2 mm structure by simply tuning the ratio of PPO-PEO-PPO/PEO-PPO-PEO. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Preparation of Nanocrystalline Titania Thin Films by Using Pure and Water-modified Supercritical Carbon Dioxide.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Dřínek, Vladislav; Daniš, S.; Matějová, L.

    2016-01-01

    Roč. 117, NOV 2016 (2016), s. 289-296 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin films * supercritical carbon dioxide * crystallization Subject RIV: CA - Inorganic Chemistry Impact factor: 2.991, year: 2016

  13. Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity

    International Nuclear Information System (INIS)

    Kumaresan, L.; Prabhu, A.; Palanichamy, M.; Murugesan, V.

    2011-01-01

    Research highlights: → Mesoporous TiO 2 synthesized using P123 as soft template in sol-gel method. → Nanoparticle aggregates are better for photocatalytic activity than free nanoparticles. → Particle to particle transport of electrons in the conduction band of aggregates are important factor. - Abstract: Mesoporous TiO 2 was synthesized using triblock copolymer as the structure directing template in ethanol/water, isopropanol/water or 1-butanol/water medium by sol-gel method. The presence of intense peak at low angle in the XRD patterns confirmed the orderly arrangement of mesopores in the material. Among the three different alcohols, ethanol had influenced better in controlling the particle size than others. The enhanced specific surface area also revealed the formation of mesopores. Aggregates of particles were clearly seen in the TEM images and the size of the particles was approximately 10 nm. The photocatalytic activity of mesoporous TiO 2 was evaluated using aqueous alachlor as a model pollutant. The activity of mesoporous TiO 2 synthesized in ethanol/water mole ratio of 50 was higher than other mesoporous TiO 2 and commercial TiO 2 (Degussa P-25). The transport of excited electrons from one particle to its neighboring nanoparticles of mesoporous TiO 2 is suggested to be the cause for enhanced photocatalytic activity.

  14. Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Qiao, Rui [ORNL

    2010-01-01

    In the spirit of the theoretical evolution from the Helmholtz model to the Gouy Chapman Stern model for electric double-layer capacitors, we explored the effect of a diffuse layer on the capacitance of mesoporous carbon supercapacitors by solving the Poisson Boltzmann (PB) equation in mesopores of diameters from 2 to 20 nm. To evaluate the effect of pore shape, both slit and cylindrical pores were considered. We found that the diffuse layer does not affect the capacitance significantly. For slit pores, the area-normalized capacitance is nearly independent of pore size, which is not experimentally observed for template carbons. In comparison, for cylindrical pores, PB simulations produce a trend of slightly increasing area-normalized capacitance with pore size, similar to that depicted by the electric double-cylinder capacitor model proposed earlier. These results indicate that it is appropriate to approximate the pore shape of mesoporous carbons as being cylindrical and the electric double-cylinder capacitor model should be used for mesoporous carbons as a replacement of the traditional Helmholtz model.

  15. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  16. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  17. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties

    Science.gov (United States)

    Li, Cuiling; Dag, Ömer; Dao, Thang Duy; Nagao, Tadaaki; Sakamoto, Yasuhiro; Kimura, Tatsuo; Terasaki, Osamu; Yamauchi, Yusuke

    2015-03-01

    Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles.

  18. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  19. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.

    Science.gov (United States)

    Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng

    2014-03-17

    The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.

  20. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Science.gov (United States)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  1. Photovoltaic behaviour of titanyl phthalocyanine thin films and titania bilayer films

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Zachary, A. M.; Choi, Y.; Hanuš, J.; Toušek, J.; Toušková, J.; Cimrová, Věra; Slavinská, D.; Biederman, H.; Hanley, L.

    2008-01-01

    Roč. 268, č. 1 (2008), s. 57-60 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA MŠk(CZ) 1M06031 Grant - others:National Science Foundation(US) CHE0241425; GA MŠk(CZ) 1P05ME754 Institutional research plan: CEZ:AV0Z40500505 Keywords : conjugated polymers * photovoltaics * phthalocyanine * thin films * titania Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Characterization of nanocrystalline anatase titania: an in situ HTXRD study

    International Nuclear Information System (INIS)

    Jagtap, Neelam; Bhagwat, Mahesh; Awati, Preeti; Ramaswamy, Veda

    2005-01-01

    Nanocrystalline titania was synthesized by the hydrolysis of titanium iso-propoxide using ultrasonication. The powder XRD patterns of the sample were recorded in static air and vacuum using a Philips X-pert Pro diffractometer equipped with a high-temperature attachment (HTK16) from room temperature (298 K) to 1173 K and were analyzed by the Rietveld refinement technique. The anatase to rutile phase transformation was observed at 1173 K for the data collected in static air. Only 3% of anatase titania transformed to rutile when the experiments were carried out at 1173 K in vacuum. The phase transformation from anatase to rutile is accompanied by a continuous increase in the crystallite size of the anatase phase from 9 nm at room temperature to 28 nm at 873 K and then to 50 nm at 1173 K in air while the process of crystallite growth was suppressed in vacuum. A linear increase in the unit cell parameters 'a' and 'c', and thus, an overall linear increase in the unit cell volume was observed as a function of temperature in static air as well as vacuum. The lattice and volume thermal expansion coefficients (TEC), α a , α c and α V at 873 K are 8.57 x 10 -6 , 8.71 x 10 -6 and 25.91 x 10 -6 K -1 in air and 18.01 x 10 -6 , 14.95 x 10 -6 and 51.13 x 10 -6 K -1 in vacuum, respectively

  3. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-02-14

    The present study is the first report on the synthesis and characterization of mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). A series of NR/HMS composites were prepared in tetrahydrofuran via an in situ sol–gel process using tetraethylorthosilicate as the silica precursor. The physicochemical properties of the composites were characterized by various techniques. The effects of the gel composition on the structural and textural properties of the NR/HMS composites were investigated. The Fourier-transform infrared spectroscopy (FTIR) and {sup 29}Si magic angle spinning nuclear magnetic resonance ({sup 29}Si MAS NMR) results revealed that the surface silanol groups of NR/HMS composites were covered with NR molecules. The powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated an expansion of the hexagonal unit cell and channel wall thickness due to the incorporation of NR molecules into the mesoporous structure. NR/HMS composites also possessed nanosized particles (∼79.4 nm) as confirmed by scanning electron microscopy (SEM) and particle size distribution analysis. From N{sub 2} adsorption–desorption measurement, the NR/HMS composites possessed a high BET surface area, large pore volume and narrow pore size distribution. Further, they were enhanced hydrophobicity confirmed by H{sub 2}O adsorption–desorption measurement. In addition, the mechanistic pathway of the NR/HMS composite formation was proposed. - Highlights: • NR molecules were incorporated into hexagonal meso-structure of HMS. • NR/HMS composites exhibited an expanded unit cell and channel wall thickness. • Nanosized NR/HMS composites with a lower particle size range were obtained. • NR/HMS had high surface area, large pore volume and narrow pore size distribution. • NR/HMS composites displayed an enhanced hydrophobicity.

  4. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  5. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  6. Periodically Arranged Arrays of Dendritic Pt Nanospheres Using Cage-Type Mesoporous Silica as a Hard Template.

    Science.gov (United States)

    Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke

    2018-01-04

    Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Jian-Hua; He, Jian-Ping; Ji, Ya-Jun; Dang, Wang-Juan; Liu, Xiao-Lei; Zhao, Gui-Wang; Zhang, Chuan-Xiang; Zhao, Ji-Shuang; Fu, Qing-Bin; Hu, Huo-Ping

    2007-01-01

    Mesoporous carbon with ordered hexagonal structure derived from the co-assembly of triblock copolymer F127 and resol was employed as the carbon support of Pt catalysts for hydrogen electro-oxidation. Structural characterizations revealed that the mesoporous carbon exhibited large surface area and uniform mesopores. The Pt nanoparticles supported on the novel mesoporous carbon were fabricated by a facile CTAB assisted microwave synthesis process, wherein CTAB was expected to improve the wettability of carbon support as well as the dispersion of Pt nanoparticles. X-ray diffraction and transmission electron microscopy were applied to characterize the Pt catalysts. It was found that the Pt nanoparticles were uniform in size and highly dispersed on the mesoporous carbon supports. The cyclic voltammograms in sulfuric acid demonstrated that the electrochemical active surface area of Pt catalysts prepared with CTAB was two times than that without CTAB

  8. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  9. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  10. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  11. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  12. Controllable Fabrication of Ordered Mesoporous Bi2WO6 and Its High Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Xueming Dang

    2014-01-01

    Full Text Available Ordered mesoporous Bi2WO6 was fabricated by nanocasting technique using SBA-15 as the template. The effect of the dosage of SBA-15 on the formation of the ordered structure and the photocatalytic ability of mesoporous Bi2WO6 was discussed. It was confirmed that the ordered mesoporous structure was obtained as the dosage of SBA-15 was 0.3 g. It was found that, compared to Bi2WO6, the RhB degradation rate with ordered mesoporous Bi2WO6 was enhanced under visible light (λ>400 nm by the photocatalytic measurements. The enhanced photocatalytic performance of ordered mesoporous Bi2WO6 was attributed to its particular ordered mesoporous structure which could increase the light-harvesting efficiency, reduce the recombination of the photogenerated charge carriers, and promote the surface reaction.

  13. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry

    Directory of Open Access Journals (Sweden)

    Ryong Ryoo

    2012-04-01

    Full Text Available With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.

  14. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  15. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  16. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  17. Potassium effects on kinetics of propane oxydehydrogenation on vanadia-titania catalyst

    International Nuclear Information System (INIS)

    Grabowski, R.; Samson, K.

    2003-01-01

    Oxidative dehydrogenation of propane (ODH) over V 2 O 5 /TiO 2 and V 2 O 5 /TiO 2 doped with K was carried out by measuring conversions and selectiveness for various feed compositions, contact times and temperatures. The results obtained for both catalysts were interpreted on the basis of the mechanism, in which propene is formed through Eley-Rideal sequence of steps, i.e. without participation of the adsorbed propane species. Kinetic constants (activation energies, pre-exponential factors) for the model of ODH reaction of propane on these catalysts, obtained on the basis of steady-state results, are given. Addition of K to vanadia-titania catalysts leads to decrease of total combustion of propane and consecutive combustion of propene. It has been found that the direct propane total oxidation is 5 - 9 times lower than that of the consecutive propene oxidation and is almost temperature independent for potassium doped catalyst, whereas it quickly decreases with temperature for a non-doped catalyst. Secondly, the addition of K to a vanadia-titania catalyst decreases the activation energies for propene formation (k 1 ), parallel formation of CO x (k 3 ) and reoxidation of the catalyst (k os ). Potassium exhibits a stronger inhibitory effect on the secondary propene combustion, what reflects the lower activity of V 5+ cations modified by the strongly basic alkali oxide species. (author)

  18. Surface modification to improve the sorption property of U(VI) on mesoporous silica

    International Nuclear Information System (INIS)

    Lijuan Song; Yulong Wang; Lu Zhu; Bolong Guo; Suwen Chen; Wangsuo Wu

    2014-01-01

    Polyoxometalates K 7 [α-PW 11 O 39 ]·14H 2 O (PW11) modified mesoporous silica (MCM-48) with cubic structure, was prepared by impregnation and calcination methods. The modified mesoporous silica sorbent (PW11/MCM-48) was studied as a potential adsorbent for U(VI) from aqueous solutions. MCM-48 and PW11/MCM-48 were confirmed by X-ray diffraction and nitrogen physisorption techniques. The results indicate the original keggin structure of PW11 and mesoporous structure of MCM-48 are maintained after supporting PW11 on mesoporous silica MCM-48. The effects of contact time, solid-to-liquid ratio (m/V), solution pH and ionic strength on U(VI) sorption behaviors of the pure and modified mesoporous silicas were also studied. Typical sorption isotherms such as Langmuir and Freundlich isotherms were determined for sorption process. The results suggest that the sorption of U(VI) on MCM-48 or PW11/MCM-48 are strongly dependent on pH values but independent of ionic strength. The sorption capacity of PW11/MCM-48 for U(VI) is about ten times more than that of MCM-48. (author)

  19. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Science.gov (United States)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  20. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  1. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  2. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    Science.gov (United States)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  3. Raman spectroscopy of pharmaceutical cocrystals in nanosized pores of mesoporous silica

    International Nuclear Information System (INIS)

    Ohta, Ryuichi; Ajito, Katsuhiro; Ueno, Yuko

    2017-01-01

    The Raman spectroscopy of pharmaceutical cocrystals based on caffeine and oxalic acid in nanosized pores of mesoporous silica has been demonstrated at various molar amounts. The Raman peak shifts of caffeine molecules express the existence of pharmaceutical cocrystals in mesoporous silica. The molar amount dependence of the peak shifts describes that caffeine and oxalic acid cocrystallized on the surface of the nanosized pores and piled up layer by layer. This is the first report that shows the Raman spectroscopy is a powerful tool to observe the synthesis of pharmaceutical cocrystals incorporated in the nanosized pores of mesoporous silica. The results indicate a way to control the size of cocrystals on a nanometer scale, which will provide higher bioavailability of pharmaceuticals. (author)

  4. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    Science.gov (United States)

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  5. Mesoporous Spinel Li4Ti5O12 Nanoparticles for High Rate Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Liu, Weijian; Shao, Dan; Luo, Guoen; Gao, Qiongzhi; Yan, Guangjie; He, Jiarong; Chen, Dongyang; Yu, Xiaoyuan; Fang, Yueping

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous Li 4 Ti 5 O 12 nanoparticles were prepared by a simple hydrothermal method. • The mesoporous Li 4 Ti 5 O 12 nanoparticles exhibited a diameter of 40 ± 5 nm and a pore-size distribution of 6 - 8 nm. • Cells with the mesoporous Li 4 Ti 5 O 12 anode showed excellent high rate electrochemical properties. - Abstract: Mesoporous spinel lithium titanate (Li 4 Ti 5 O 12 ) nanoparticles with the diameter of 40 ± 5 nm and the pore-size distribution of 6 - 8 nm were prepared by a simple hydrothermal method. As an anode material for lithium-ion batteries, these spinel Li 4 Ti 5 O 12 mesoporous nanoparticles exhibited desirable lithium storage properties with an initial discharge capacity of 176 mAh g −1 at 1 C rate and a capacity of approximately 145 mAh g −1 after 200 cycles at a high rate of 20 C. These excellent electrochemical properties at high charge/discharge rates are due to the mesoporous nano-scale structures with small size particles, uniform mesopores and larger electrode/electrolyte contact area, which shortens the diffusion path for both electrons and Li + ions, and offers more active sites for Li + insertion-extraction process

  6. Sensitization of Xanthophylls-Chlorophyllin Mixtures on Titania Solar Cells

    Directory of Open Access Journals (Sweden)

    Indriana Kartini

    2015-03-01

    Full Text Available Co-sensitization of natural dyes on TiO2 for dye-sensitized solar cell (DSSC was proposed between chlorophyllin (C and xanthophylls (X at various volume ratios of C/X. Chlorophyllin is chlorophyll derivative providing -COOH groups essential for binding to TiO2. The chlorophyll was extracted from dried spinach (amaranthus viridis leaves in a mixture of methanol-acetone (70%:30%. Chlorophyll extract dye was obtained after partition of the crude extracts in diethyl ether solution. Then, it was hydrolyzed under alkaline condition to get chlorophyllin. Xanthophyll was extracted from fresh petal of chrysanthemum (chrysanthemum indicum flowers. Blending of chlorophyllin and xanthophyll was carried out at various volume ratios of C to X (1:0, 5:1, 1:1, 1:5, 0:1. Titania solar cells were constructed in sandwich system of conducting glass-titania/dyes as the photoanode and conducting glass-platinum as the photocathode. Electrolyte solution containing I-/I3- was inserted between the electrodes by capillary action. All dye extracts and blending solutions were analyzed by UV-Vis spectrophotometer. It is shown that the absorption spectra of blending dyes are complimentary in the visible region resulted in a panchromatic response of the dyes. From the cyclic voltammogram of the dyes and blended-dyes, it is found that the energy level of xanthophyll is the lowest. The I-V test at 100 mw/cm2 irradiation confirmed that the energy conversion efficiency (h of the blended dyes of xanthophyll and chlorophyllin-sensitized solar cell resulted in significant improvement than those of the single dye. Beneficially, the mixed dyes can be adsorbed from solution blend using single dipping step.

  7. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu; Zhang, Daliang

    2012-01-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review

  8. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Simon, Paul; Schulze, Renate; Doert, Thomas; Luo, Yongxiang; Cuniberti, Gianaurelio

    2011-04-01

    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO(2) glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO(2) in an effort to develop a bioactive mesoporous SrO-SiO(2) (Sr-Si) glass with the capacity to deliver Sr(2+) ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr(2+) on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr-Si glass were investigated. The prepared mesoporous Sr-Si glass was found to have an excellent release profile of bioactive Sr(2+) ions and dexamethasone, and the incorporation of Sr(2+) improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr-Si glass had no cytotoxic effects and its release of Sr(2+) and SiO(4)(4-) ions enhanced alkaline phosphatase activity - a marker of osteogenic cell differentiation - in human bone mesenchymal stem cells. Mesoporous Sr-Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr(2+) into mesoporous SiO(2) glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Titania-coated manganite nanoparticles: synthesis of the shell, characterization and MRI properties

    Czech Academy of Sciences Publication Activity Database

    Jirák, Zdeněk; Kuličková, Jarmila; Herynek, Vít; Maryško, Miroslav; Koktan, Jakub; Kaman, Ondřej

    2017-01-01

    Roč. 427, Apr (2017), s. 245-250 ISSN 0304-8853 R&D Projects: GA ČR GA15-10088S; GA ČR GA16-04340S Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * core-shell nanoparticles * titania coating * perovskite manganite * magnetic resonance imaging * transverse relaxivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  10. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  12. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  13. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  14. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  15. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  16. Mesoporous PtSnO2/C Catalyst with Enhanced Catalytic Activity for Ethanol Electro-oxidation

    Directory of Open Access Journals (Sweden)

    Siyu Chen

    2018-01-01

    Full Text Available In this paper, we report the synthesis, characterization, and electrochemical evaluation of a mesoporous PtSnO2/C catalyst, called PtSnO2(M/C, with a nominal Pt : Sn ratio of 3 : 1. Brunauer–Emmett–Teller and transmission electron microscopy characterizations showed the obvious mesoporous structure of SnO2 in PtSnO2(M/C catalyst. X-ray photoelectron spectroscopy analysis exhibited the interaction between Pt and mesoporous SnO2. Compared with Pt/C and commercial PtSnO2/C catalysts, PtSnO2(M/C catalyst has a lower active site, but higher catalytic activity for ethanol electro-oxidation reaction (EOR. The enhanced activity could be attributed to Pt nanoparticles deposited on mesoporous SnO2 that could decrease the amount of poisonous intermediates produced during EOR by the interaction between Pt and mesoporous SnO2.

  17. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

    OpenAIRE

    Xing, Wei; Wu, Zucheng; Tao, Shanwen

    2016-01-01

    Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved a...

  18. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  19. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  20. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    Science.gov (United States)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…