WorldWideScience

Sample records for mesoporous phenol-formaldehyde resins

  1. Formulation of lignin phenol formaldehyde resins as a wood adhesive

    International Nuclear Information System (INIS)

    This work describes the potential of reducing phenol with lignin in phenol formaldehyde resin formulation. The physical and chemical properties between lignin phenol formaldehyde resin (LPF) and commercial phenol formaldehyde resin (CPF) were compared. Phenol had been replaced by lignin [that was extracted from black liquor of oil palm empty fruit bunch (EFB)] in synthesizing resin with a ratio lignin to phenol 1:1. The IR spectra showed that there were similarities in functional groups between LPF resin and CPF resin. The comparison of physical strength properties via tensile strength test between LPF resin and CPF resin showed that the newly formulated resin has higher bonding strength compared to commercial resin. Kinematics viscosity test showed that LPF resin has lower kinematics viscosity compared to CPF resin in 21 days storage time. SEM images for both resin showed similarities in the effect of resin penetration into woods vessel existed. (author)

  2. Chromatographic zinc isotope separation by phenol formaldehyde benzo crown resin.

    Science.gov (United States)

    Ding, Xingcheng; Nomura, Masao; Suzuki, Tatsuya; Sugiyama, Yuichi; Kaneshiki, Toshitaka; Fujii, Yasuhiko

    2006-04-28

    New types of phenol formaldehyde resin having benzo crown as a functional group were synthesized and applied to zinc isotope chromatographic operation. Zinc adsorption and isotope separation capacities were dramatically improved by using phenol formaldehyde benzo-15-crown-5 resin. Zinc batch adsorption tests were performed by various dehydrated organic solvents. Separation coefficient, epsilon 8.1 x 10(-4) and height equivalent to a theoretical plate (HETP) 0.105 cm for the isotopic pair of 68Zn/64Zn in phenol formaldehyde benzo-15-crown-5 resin were obtained in the case of acetone as the solvent at 298+/-1K.

  3. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  4. Wettability of Poplar Wood Impregnated by Phenol-formaldehyde Resin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study,plantation poplar wood was first impregnated by low molecular weight phenol-formaldehyde(PF) resin solution by vacuum-pressure process.And then the wettability of sanded and non-sanded radial and tangential sections from un-impregnated and impregnated poplar wood was tested respectively by the measurement of contact angles using different liquids.Finally,the surface free energy of different samples was estimated by the plot extrapolation method.The results showed that the wettability of woo...

  5. Preparation of phenol formaldehyde resin from phenolated wood

    Institute of Scientific and Technical Information of China (English)

    LIGai-yun; QINTe-fu; TohmuraShin-ichiro; IkedaAtsushi

    2004-01-01

    The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60±2)℃ for lh and then was heated to (85±2)℃ for lh. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.

  6. 介孔分子筛/线性酚醛树脂杂化材料的制备及表征%Preparation and Characterization of Mesoporous Silica/ Novolac Type Phenol-Formaldehyde Resin Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    余传柏; 韦春; 刘红霞; 蒙礼统

    2012-01-01

    Mesoporous silica/novolac type phenol-formaldehyde resin hybrid materials were prepared via in situ polymerization at the silica SBA-15,which was treated with γ-glycidyl oxypropyl trimethoxysilane(KH560) as coupling agent.SBA-15,SBA-15-KH560 and E-SBA-15/PF were characterized and analyzed with X-ray diffraction(XRD),N2 adsorption isotherm,Fourier transform infrared spectroscopic(FT-IR) and thermogravimetric analysis(TGA) respectively.The results indicate that KH560 was chemically grafted onto SBA-15,and PF distributed into the inner and outer path of the SBA-15.An interpenetrating network of organic-inorganic was formed in this hybrid materials.The regular structure of SBA-15 was little influenced with KH560,but it was greatly modified viain situ polymertization.%利用水热法合成介孔分子筛(SBA-15),选择KH560对其表面进行修饰后采用原位聚合的方法制备了介孔分子筛/线性酚醛树脂(SBA-15/PF)有机无机杂化材料。通过傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、N2吸附和热失重分析(TGA)等表征手段对杂化材料的制备过程进行跟踪研究。结果表明,KH-560已嫁接到SBA-15的内外表面,线性酚醛树脂分布于介孔分子筛孔道内外,并与SBA-15存在键接作用,形成有机无机互穿网络结构;表面修饰过程对SBA-15有序结构影响较小,而原位聚合会破坏介孔分子筛部分有序结构。

  7. Study on binder system of CO2-cured phenol-formaldehyde resin used in foundry

    Institute of Scientific and Technical Information of China (English)

    Liu Weihua; Li Yingmin; Qu Xueliang; Liu Xiuling

    2008-01-01

    A new aqueous alkaline resol phenol-formaldehyde resin has been prepared from phenol and formaldehyde using NaOH as catalyst;the optimum synthetic process has been determined.With addition of some cross-linking agents,after passing carbon dioxide gas through the resin bonded sand,high as-gassed strength and 24 h strength are achieved.The bonding bridge of the resin bonded sand fracture has been analyzed by using SEM.

  8. Analysis of Pyrolysates for Phenol Formaldehyde Resin by Py-GC/MS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Pyrolysis of phenol formaldehyde resin has been investigated by Pyrolysis Gas Chromatography- Mass Spectroscopy at the different temperatures from 500℃ to 750℃. Its composition of pyrolysates has been analyzed. Several compounds, especially benzene, toluene, p-xylene could only be formed above 500-550℃. However, peak intensities for some phenol derivatives were decreased at the higher temperature. During pyrolysis,for thermo-setting phenol formaldehyde resins, polymeric chain scissions take place as a successive removal of the monomer units from the polymeric chain. The chain scissions are followed by secondary reactions, which leads to a variety of compounds. Addition reactions can also take place among the double-bond compounds during pyrolysis.

  9. Study on Physical and Mechanical Properties of Poplar Modified by Phenol-formaldehyde Resin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Impregnation method can effectively improve physical and mechanical properties of wood. In this study, plantation poplar lumbers are impregnated by a low molecular weight phenol-formaldehyde resin solution with concentration of 30% under vacuum-pressure process, and then dried and machined according to the related standards. The results show that the physical and mechanical properties of poplar can be improved by the treatment, except for toughness. The average density of poplar increases from 0.397 to 0.71...

  10. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    OpenAIRE

    Noelia Álvarez-Gutiérrez; María Victoria Gil; María Martínez; Fernando Rubiera; Covadonga Pevida

    2016-01-01

    The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation), in post-combustion processes (flue gas, CO2-N2) and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory hav...

  11. A Microfluidic Chip Using Phenol Formaldehyde Resin for Uniform-Sized Polycaprolactone and Chitosan Microparticle Generation

    OpenAIRE

    Wan-Chen Hsieh; Keng-Shiang Huang; Szu-Yu Chen; Chih-Yu Wang; Alexandru Mihai Grumezescu; Yung-Sheng Lin; Chin-Tung Wu; Chih-Hui Yang

    2013-01-01

    This study develops a new solvent-compatible microfluidic chip based on phenol formaldehyde resin (PFR). In addition to its solvent-resistant characteristics, this microfluidic platform also features easy fabrication, organization, decomposition for cleaning, and reusability compared with conventional chips. Both solvent-dependent (e.g., polycaprolactone) and nonsolvent-dependent (e.g., chitosan) microparticles were successfully prepared. The size of emulsion droplets could be easily adjusted...

  12. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    Science.gov (United States)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  13. Curing reaction and mechanism of phenol-formaldehyde novolac resins for foundry

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2016-05-01

    Full Text Available In this study on the curing dynamics of phenol-formaldehyde novolac resins (PFNR and hexamethylene tetramine (HMTA, two typical commercial PFNR were selected as examples and the curing reactions of the resins with HMTA were studied by differential scanning calorimetry (DSC. Based on the data calculated by the Kissinger equation and the Crane equation, a thermocuring dynamic model was established, from which the process conditions, activation energy, reaction kinetics equation and a first-order reaction of the curing reactions were derived.

  14. Study on the microstructure evolution of phenol-formaldehyde resin modified by ceramic additive

    Institute of Scientific and Technical Information of China (English)

    JIANG Haiyun; WANG Jigang; DUAN Zhichao; LI Fan

    2007-01-01

    Boron carbide (B4C) was selected as the additive for the modification of a phenol-formaldehyde (PF) resin, and the micro-structural evolution of the modified resin at high temperature was investigated.Results showed that the distribution of B4C particles became uniform at elevated temperatures.The primary oxidation of B4C started to occur at 450℃,and lots of B2O3 was formed above 650℃.By the modification reactions of B,C,the volatiles including CO was converted into amorphous carbon and remained in the resin matrix,which was responsible for maintaining the stability of the resin at high temperatures.

  15. Complexation Between Borate ion and Hydroxyl Groups of Phenol-Formaldehyde Resol Resin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The complexation reaction between borate ions and phenol-formaldehyde resol resin in aqueous solution was studied by pH measurement, small model molecules and infrared spectroscopy.The results show that the complexation can proceed completely and rapidly at room temperature.Borate ion attacks phenol hydroxyl groups and adjacent position hydroxymethyl groups on the phenol ring of the resin, and forms the coordinate bond between boron atom in borate ion and oxygen atom in the hydroxyl groups. The complexation is a quantitative reaction. The complex is a six member ring containing two oxygens and one boron. The complexation can release hydrogen ions resulting in the decreasing pH in the resin solution.

  16. Effect of modification with phenol formaldehyde resin on the mechanical properties of wood from Chinese fir

    Directory of Open Access Journals (Sweden)

    Yanhui Huang

    2013-02-01

    Full Text Available Samples of Chinese fir were treated with either low-molecular-weight or commercial phenol-formaldehyde (PF resins. The macro- and micromechanical properties of the treated and untreated samples were determined. The average longitudinal tensile modulus of elasticity (MOE was 30.88% larger for the samples treated with the low-molecular-weight PF resin than it was for the untreated samples. The average MOE of the samples treated with the commercial PF resin was 29.84% less than that of the untreated samples. The micromechanical properties of the samples were investigated through nanoindentation studies. For the samples modified with low-molecular-weight PF resin, the values of average MOE and hardness were 32.94 and 32.93%, respectively, greater than those of the untreated samples. In contrast, the average MOE and hardness values were 11.99 and 18.14%, respectively, greater for the samples modified with commercial PF resin compared to the untreated samples. It could be inferred that the low-molecular-weight PF resin was able to diffuse into the nanopores in the S2 layer of the tracheid cell wall of the Chinese fir, thereby improving its macromechanical properties. Modification with low-molecular-weight PF resin was an effective way to enhance the longitudinal macromechanical properties of wood from the Chinese fir.

  17. Synthesis of nanosized tungsten carbide from phenol formaldehyde resin coated precursors

    Institute of Scientific and Technical Information of China (English)

    LUO Ji; GUO Zhimeng; GAO Yuxi; LIN Tao

    2008-01-01

    Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors.The process has three steps in which nanosized tungsten particles were first coated with PF,then the precursors were carburized at 950℃,and finally the carburized powders were treated in flowing wet hydrogen atmosphere at 940℃ to remove the uncombined carbon.The obtained powders were characterizedusing X-ray diffraction analysis (XRD),field-emission scanning electron microscopy (FESEM),small angle X-ray scattering (SAXS),andcombustion-gas-volume method.The results indicated that single-phase WC could be synthesized using excessive PF as carburizer at a muchlower temperature compared with using mixed carbon black.After wet hydrogen treating,the mean size of the obtained WC particles was 94.5nm and the total carbon content was 6.18 wt.%.

  18. Ordered SiO2 (phenolic-formaldehyde resin) in situ nanocomposites

    Science.gov (United States)

    Hernández-Padrón, G.; Rojas, F.; Castaño, V. M.

    2004-01-01

    Nanocomposite materials consisting of monodisperse SiO2 particles embedded in a polymerized resin matrix were produced by the adhesion of silica globules on the surface of a chemically modified phenolic-formaldehyde resin (MPFR) substrate that incorporates carboxylic groups in its molecules. Two routes were followed to obtain SiO2 nanoparticles-MPFR materials. The first procedure consisted of the growth of an SiO2 phase concurrently with the presence of MPFR molecules. The second procedure involved the preparation of a monodisperse SiO2 sol that was subsequently mixed with an MPFR solution. The thermal curing of the MPFR resin phase at 80 °C brought about thin SiO2-MPFR flakes from samples obtained from procedure 1 whilst monolithic pieces arose from samples from procedure 2. During the curing process, silanol surface groups of the silica globules reacted with carboxylic groups of the MPFR molecules to create a reinforced SiO2-MPFR substance that displayed ester bonds across the interface. Thermal treatments of specimens prepared by procedure 2 were performed at 150, 250, 400, 600 and 800 °C to monitor the integrity of the resultant hybrid substrates. To assess the characteristics of SiO2-MPFR materials, some of the main chemical, structural and textural characteristics of several specimens have been determined via FTIR, SEM and N2 adsorption studies.

  19. PEMBUATAN AYAKAN MOLEKULER BERBASIS KARBON UNTUK PEMISAHAN N2/O2 DARI PIROLISIS RESIN PHENOL FORMALDEHYDE

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2012-02-01

    Full Text Available Proses pemisahan campuran gas dengan menggunakan carbon molecular sieve (CMS atau ayakan molekuler berbasis karbon merupakan teknologi proses pemisahan yang mulai banyak diterapkan di dalam industri kimia. Dalam penelitian ini, CMS untuk pemisahan N2 dari udara dibuat dari pirolisis bahan polimer sintetis yaitu resin phenol formaldehyde (PF. Prekursor yang berupa resin tersebut dipanaskan dalam retort pada suhu 400-950oC selama 0,5-3 jam yang disertai dengan pengaliran gas N2 ke dalam retort dengan laju 100 mL/jam. Dengan proses pirolisis, atom-atom non-karbon penyusun bahan polimer akan terurai dan menguap sehingga hanya menyisakan arang karbon dengan struktur kerangka atom karbon yang sesuai dengan struktur kerangka dasar rantai polimer. Kemudian karbon hasil prolisis tersebut dipanaskan lebih lanjut pada suhu 750-950oC sambil dialiri gas CO2 selama 1 jam. Pada kondisi ini karbon akan mengalami proses gasifikasi parsial sehingga terbentuk karbon dengan porositas tinggi. Melalui rekayasa proses polimerisasi dan karbonisasi dihasilkan material karbon berpori yang mayoritas porinya adalah mikropori dengan ukuran pori efektif < 2 nm yang dapat dikategorikan sebagai CMS yang dapat dipergunakan untuk memisahkan campuran gas N2-O2.  Pada penelitian ini dihasilkan CMS dengan selektifitas kinetis DN2/DO2 sekitar 3.

  20. Intrinsic fluorescence studies of compatibility in thermoplastic phenol formaldehyde resin / poly(ε-caprolactone blends

    Directory of Open Access Journals (Sweden)

    2011-08-01

    Full Text Available Intrinsic fluorescence method was applied to study the miscibility and interactions of thermoplastic phenol formaldehyde resin (TPF / poly(ε-caprolactone (PCL blends. The characteristic intrinsic fluorescence emission of TPF at 313 nm showed the very good sensitivity to monitor the macromolecular chain motion in the TPF/PCL blends. The glass transition (Tg, crystallization (Tc, and melting transition point (Tm of TPF/PCL blends were measured by the temperature dependence of intrinsic fluorescence intensities upon heating or cooling process. Interestingly, when TPF/PCL ≥ 5/5, besides a Tg for the amorphous phase of blend, another transition at temperature a little higher than Tg of PCL can be observed by intrinsic fluorescence method. This microheterogeneity can be explained by the so-called ‘rigid amorphous phase’ (RAP due to the good flexibility and the strong self-association of PCL chains in amorphous phase. Besides, the analysis of the dependence of Tg on the content of PCL suggests that this microheterogeneity can attenuate the interactions between TPF and PCL chains and result in a lowering of Tgs of blends. In view of the simplicity and sensitivity of measurement as well as affordability of instrument, intrinsic fluorescence proved to be an effective means for characterization of microstructural variation in polymer blends.

  1. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  2. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.

    Science.gov (United States)

    Zhuang, J M; Hobenshield, E; Walsh, T

    2008-04-01

    A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1).

  3. Influence of oxidation on the preparation of porous carbons from phenol-formaldehyde resins with KOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H.; Wang, S.C.

    2000-03-01

    The influence of oxidation on the production of high-porosity carbons from phenol-formaldehyde resins with KOH activation were examined under various preparation conditions. The activation process principally consisted of KOH impregnation followed by carbonization. Experimental results showed that prior to carbonization treating the resins with oxygen at 120 C, either before or after KOH impregnation, enabled the enhancement of the yield of the carbon products. The porosity development was found to be hindered by conducting oxidation prior to the impregnation. For oxidation performed after the impregnation, at a low KOH/resin ratio the porosity was found to decrease upon oxidation, whereas the oxidation enhanced porosity development for activation performed at higher ratios. Varying the carbonization temperature and time did not show obvious influence on the effects of the oxidation.

  4. Microporous phenol-formaldehyde resin-based adsorbents for pre-combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    C.F. Martin; M.G. Plaza; S. Garcia; J.J. Pis; F. Rubiera; C. Pevida [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2011-05-15

    Different types of phenolic resins were used as precursor materials to prepare adsorbents for the separation of CO{sub 2} in pre-combustion processes. In order to obtain highly microporous carbons with suitable characteristics for the separation of CO{sub 2} and H{sub 2} under high pressure conditions, phenol-formaldehyde resins were synthesised under different conditions. Resol resins were obtained by using an alkaline environment while Novolac resins were synthesised in the presence of acid catalysts. In addition, two organic additives, ethylene glycol (E) and polyethylene glycol (PE) were included in the synthesis. The phenolic resins thus prepared were carbonised at different temperatures and then physically activated with CO{sub 2}. The carbons produced were characterised in terms of texture, chemical composition and surface chemistry. Maximum CO{sub 2} adsorption capacities at atmospheric pressure were determined in a thermogravimetric analyser. Values of up to 10.8 wt.% were achieved. The high-pressure adsorption of CO{sub 2} at room temperature was determined in a high-pressure magnetic suspension balance. The carbons tested showed enhanced CO{sub 2} uptakes at high pressures (up to 44.7 wt.% at 25 bar). In addition, it was confirmed that capture capacities depend highly on the microporosity of the samples, the narrow micropores (pore widths of less than 0.7 nm) being the most active in CO{sub 2} adsorption at atmospheric pressure. The results presented in this work suggest that phenol-formaldehyde resin-derived activated carbons, particularly those prepared with the addition of ethylene glycol, show great potential as adsorbents for pre-combustion CO{sub 2} capture. 39 refs., 6 figs., 4 tabs.

  5. Synthesis of Phenol-Formaldehyde Resin Modified with Epoxy Resin%环氧改性酚醛树脂的合成与研究

    Institute of Scientific and Technical Information of China (English)

    杜郢; 周太炎; 王哲; 任筱芳; 蔡晓燕

    2012-01-01

    合成了酚醛树脂胶黏剂,并采用环氧树脂和有机硅对其进行改性,考察了环氧树脂的加入阶段、种类和加入量及有机硅加入量对酚醛树脂胶黏剂性能的影响;采用TG-DSC和FTIR等方法对试样进行了表征.实验结果表明,在回流前加入约1.5%(w)(基于体系质量)的双酚A型环氧树脂E51和约0.6%(w)(基于体系质量)的羟丙基聚二甲基硅氧烷(有机硅8427),所得酚醛树脂胶黏剂的黏度适中、柔韧性较好,游离甲醛含量为0.037% (w),拉伸剪切强度达到7.1 MPa,各项指标均超过国家标准;改性后的酚醛树脂胶黏剂的耐热性和柔韧性较改性前均有明显提高.%A phenol-formaldehyde resin adhesive was synthetized and modified with epoxy resin and organo-silicon. The effects of adding stage, species and dosage of epoxy resin and organo-silicon dosage on the properties of the phenol-formaldehyde resin adhesives were studied. The products were characterized by means of FTIR and TG-DSC. The results showed that the phenol-formaldehyde resin adhesive modified with about 1.5%(w) (based on the mass of system) bisphenol A epoxy resin(E51) and about 0.6%(w) (based on the mass of system) hydroxypropyl polydimethylsiloxane(organo-silicon 8427) before reflux had modest viscosity and good flexibility, with 0.037%(w) formaldehyde and 7.1 MPa tensile shear strength. The flexibility and thermal resistance of the modified phenol-formaldehyde resin adhesive are better than those of unmodified one.

  6. SYNTHESES AND ADSORPTION PROPERTIES OF PHENOL-FORMALDEHYDE TYPE CHELATING RESINS BEARING THE FUNCTIONAL GROUP OF TARTARIC ACID

    Institute of Scientific and Technical Information of China (English)

    Rong-jun Qu; Chun-nuan Ji; Yan-zhi Sun; Zhong-fang Li; Guo-xiang Cheng; Ren-feng Song

    2004-01-01

    Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105℃;pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was -OCH2CH2NHC2H4NH2, -O(CH2CH2NH)2C2H4NH2 and -O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process.TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.

  7. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy.

    Science.gov (United States)

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Lu, Yang; Zhao, Yang; Yu, Shu-Hong

    2012-07-23

    Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.

  8. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  9. Zinc isotope separation by phenol formaldehyde type 15-crown-5 resin in organic solvents

    International Nuclear Information System (INIS)

    Zinc adsorption and isotope separation by newly synthesized benzo-15-crown-5 resin was evaluated using various solvents. This resin was synthesized in the pores of silica beads for chromatography use. Larger adsorption of zinc was obtained in the case of acetic acid derivatives than in protic solvent such as water and alcohol by the batch treatment. The displacement chromatography was conducted to study zinc isotope separation. The isotope separation coefficient ε=0.32x10-3, 0.69x10-3 and HETP=0.2268, 0.3968 cm were determined for isotopic pair of 68Zn/64Zn at 25degC by five meters migration experiment using methyl isobutyl ketone and acetic acid, respectively. The improvement of enrichment ratio is very small between 1 and 5 m migration. Hydrogen chloride and/or water obviously reduce zinc adsorption to this resin. (author)

  10. Liquefaction of cornstalk in hot-compressed phenol-water medium to phenolic feedstock for the synthesis of phenol-formaldehyde resin.

    Science.gov (United States)

    Wang, Mingcun; Xu, Chunbao Charles; Leitch, Mathew

    2009-04-01

    Cornstalk powders were effectively liquefied in a hot-compressed phenol-water medium (1:4 wt/wt). The optimum liquefaction temperature was around 350 degrees C, where the liquid yield attained a maximum at about 70 wt%. The addition of sodium carbonate showed negligible effect over the Liquefaction product yields. When liquefied in phenol-water medium, essentially no phenol was combined with the liquid products, and the cornstalk-derived bio-oils were partially degraded monomeric and oligomeric products with a broad molecular distribution. Resol type bio-based phenol formaldehyde resins were readily synthesized from the cornstalk-derived bio-oils catalyzed by sodium hydroxide.

  11. 酚醛树脂基复合材料增韧改性研究进展%Research progress of toughening modification for phenol formaldehyde resin composite

    Institute of Scientific and Technical Information of China (English)

    韩建祥; 胡孝勇

    2013-01-01

    对PF(酚醛树脂)复合材料的性能进行了综述,并概述了PF的合成机制.围绕PF存在的缺点,结合国内外对PF的改性研究,总结出PF的力学性能复合改性、耐热氧复合改性等方法;通过这些改性方法的实施,可使PF复合材料的综合性能进一步提升,最终可得到能满足桥梁100年使用要求的PF复合材料.%The properties of PF (phenol formaldehyde resin) composite were summarized, and the synthesis mechanisms of PF were also summarized. The PF' s composite modification methods in mechanical properties and heat-oxygen resistance were summarized based on PF's disadvantages and PF's modified research at home and abroad. Through implementing these modified methods,the combination property of PF composite was further improved. Finally,the PF composites,which could meet application requirements of bridge life at 100 years,could be obtained.

  12. Microwave Assisted Synthesis of Phenol-Formaldehyde Resole

    OpenAIRE

    Subhash Chandra Bajia; Pawan Swarnkar; Sudesh Kumar; Birbal Bajia

    2007-01-01

    An efficient synthesis of phenol-formaldehyde resin has been achieved by using conventional as well as microwave irradiation. Resin samples were tested for their physical and chemical properties. The structures of the resins have been supported by their spectral analysis.

  13. 液相色谱-质谱联用技术分析环氧大豆油改性PF结构%Structure Analysis of Epoxidized Soybean Oil Modiifed Phenol Formaldehyde Resin with Liquid Chromatography-Mass Spectrometry Technology

    Institute of Scientific and Technical Information of China (English)

    赵彦芝; 周菊英; 李浩; 于畅

    2014-01-01

    Under the conditions of acid catalysis or alkaline catalysis,the epoxidized soybean oil modified phenolic compounds was synthesized by using epoxidized soybean oil to react with phenol and bisphenol A,then acid catalytic or alkaline catalytic epoxidized soybean oil modified phenol formaldehyde resin (PF) was prepared through the reaction of the compounds and formaldehyde solution. The compounds were analyzed by the liquid phase chromatography-mass spectrometry technology. From the analysis results,it is gained that phenol and bisphenol A all react with epoxidized soybean oil under the conditions of acid catalysis but bisphenol A is more easy to react with epoxidized soybean oil under the conditions of alkaline catalysis. FTIR analysis results show that the compounds synthesized under the two catalysis conditions all can react with formaldehyde for shaping epoxidized soybean oil modified PF with the body conformation. Comparing with acid catalytic epoxidized soybean oil modified PF,the heat resistance of the alkaline catalytic epoxidized soybean oil modified PF is better and the tensile strength is higher.%在酸性或碱性催化条件下,先将环氧大豆油与苯酚及双酚A反应,合成环氧大豆油改性酚类产物,然后将该产物与甲醛水溶液反应制备了酸催化或碱催化环氧大豆油改性酚醛树脂(PF)。利用液相色谱-质谱联用技术对合成的环氧大豆油改性酚类产物进行分析,发现在酸性催化条件下苯酚和双酚A均与环氧大豆油发生了反应,在碱性催化条件下双酚A更易与环氧大豆油发生反应。傅立叶变换红外光谱分析结果表明,两种催化条件下合成的环氧大豆油改性酚类产物均可与甲醛反应生成具有体型结构的环氧大豆油改性PF。相对于酸催化环氧大豆油改性PF,碱催化的耐热性更好,拉伸强度更高。

  14. 不同固含量低分子酚醛树脂浸渍改性杉木板材性能的研究%The Effects of Phenol Formaldehyde Resin Impregnation on the Main Physical and Mechanical Properties of Cunninghamia lanceolata Lumber

    Institute of Scientific and Technical Information of China (English)

    王向歌; 金菊婉; 邓玉和; 韩书广; 庄寿增

    2014-01-01

    To improve the physical and mechanical properties of Cunninghamia lanceolata wood lumber,low molecular weight phenol formaldehyde resin was impregnated into the lumber via a “vacuum-pressure”process. The distribution characteristic of resin was investigated in the length and thickness directions.The results showed that the dimensional stability of Cunninghamia lanceolata had increased gradually after impregnating with the 10%, 20%,30% concentrations of PF resin.The modulus of rupture remained unchanged after it increased from 64.5 MPa to 75 .0 MPa.The modulus of elasticity and hardness were increased by 6.1%,27.5%,48.2% and 29.8%、63.1%,73.8%,respectively.However,the impact toughness of Cunninghamia lanceolata decreased gradually with the increase of weight gain rate of resin.In the length direction,the resin distributes uniformly.In the thickness direction,the content of resin in the edge is more than that in the inside.%为改善杉木的物理力学性能,采用真空-加压浸渍工艺,对速生杉木进行低分子酚醛树脂增强改性处理,分析不同树脂增重率对改性杉木性能的影响,以及树脂在木材长度和厚度方向上的分布特点。结果表明,杉木经过固含量为10%、20%、30%的酚醛树脂浸渍处理后,其尺寸稳定性随树脂固含量的增加逐渐提高,静曲强度由64.5 MPa提高至75.0 MPa,弹性模量和表面硬度分别提高了6.1%、27.5%、48.2%和29.8%、63.1%、73.8%,但冲击韧性随着树脂增重率的增加而逐渐降低;树脂在木材长度方向上分布均匀,在厚度方向上木材表面多于其内部。

  15. Properties of Modified Phenol-Formaldehyde Adhesive for Plywood Panels Manufactured from High Moisture Content Veneer

    Directory of Open Access Journals (Sweden)

    Pavlo Bekhta

    2015-01-01

    Full Text Available This paper presents the results of laboratory investigations of bonding high moisture content (15 % birch veneers (Betula pubescens Ehrh. with the use of modifi ed phenol-formaldehyde (PF resin. Wheat starch, rye flour, resorcinol and phenol-resorcinol-formaldehyde resin were chosen as modifying agents. Dynamic viscosity, hydrogen ions concentration, solid content, curing time, pot life of developed adhesive compositions and shear strength of plywood samples were evaluated. ANOVA analysis has shown that type, mixture and content of modifying agents affect significantly the mechanical performance of plywood panels. The obtained results of shear strength values were above the standard requirements (1 N/mm2, and the properties of samples met the European standard EN 314-2 for gluing quality of class 3 and such plywood panels can be used in exterior conditions.

  16. Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde.

    Science.gov (United States)

    Kaplan, D L; Hartenstein, R; Sutter, J

    1979-01-01

    The biodegradation of three synthetic 14C-labeled polymers, poly(methyl methacrylate), phenol formaldehyde, and polystyrene, was studied with 17 species of fungi in axenic cultures, five groups of soil invertebrates, and a variety of mixed microbial communities including sludges, soils, manures, garbages, and decaying plastics. Extremely low decomposition rates were found. The addition of cellulose and mineral failed to increase decomposition rates significantly. PMID:533278

  17. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin.

    Science.gov (United States)

    Jin, Yanqiao; Cheng, Xiansu; Zheng, Zuanbin

    2010-03-01

    Phenol-formaldehyde (PF) adhesives modified with enzymatic hydrolysis lignin (EHL) were synthesized by a one-step process. The phenol component of the PF adhesives was partially substituted by EHL extracted from the residues of cornstalks used to produce bio-ethanol. The EHL-PF adhesives were used to prepare plywoods by hot-pressing. The pH value, viscosity, solid content, free phenol content, free formaldehyde content and brominable substance content of EHL-PF resins were investigated. The bonding strengths of the plywoods were determined, and the influences of the replacement percentage of phenol by EHL (a) and the NaOH content (b) on the properties of the adhesives were investigated. The results showed that the performance of the modified adhesives and the plywoods glued with them almost met the Chinese National Standard (GB/T 14732-2006) for first grade plywood when 20 wt% of the phenol was replaced by EHL.

  18. Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites

    Directory of Open Access Journals (Sweden)

    Weihua Xu

    2013-01-01

    Full Text Available Graphene oxide (GO has shown great potential to be used as fillers to develop polymer nanocomposites for important applications due to their special 2D geometrical structure as well as their outstanding mechanical, thermal, and electrical properties. In this work, GO was incorporated into phenol formaldehyde (PF resin by in situ polymerization. The morphologies and structures of GO sheets were characterized by FTIR, XRD, and AFM methods. The structure and properties of the GO/PF nanocomposites were characterized using FTIR, XRD, DSC, and TGA methods. Effects of GO content, reactive conditions, and blending methods on the structure and properties of GO/PF nanocomposites were studied. It was found that due to the well dispersion of GO sheets in polymer matrix and the strong interfacial interaction between the GO sheets and PF matrix, the thermal stability and thermal mechanical properties of the GO/PF nanocomposites were greatly enhanced.

  19. Influences of hydrophobic associating polymer on dispersion characteristics of low-solubility phenol-formaldehyde resin in NaCl solution%疏水缔合聚合物对NaCl溶液中低溶解度PF分散特性的影响

    Institute of Scientific and Technical Information of China (English)

    赵丹; 李明远; 林梅钦; 彭勃; 董朝霞

    2013-01-01

    为改善LPFR(低溶解度酚醛树脂)在低矿化度水中的分散稳定性,以HAP(疏水缔合聚合物)作为LPFR的稳定剂,并测定了分散体系在去离子水或NaC1溶液中的流体力学直径(Dh)、Zeta电位、浊度及稳定时间.结果表明:当LPFR水溶液浓度为300 mg/L时,LPFR以单分子或较小的分子聚集体形式存在于去离子水中,Zeta电位较高、浊度较小且稳定性良好;加入NaC1后,LPFR形成了较大的分子聚集体,Zeta电位降低、浊度增大且稳定性变差;引入HAP后,LPFR/HAP因疏水缔合作用而形成了Dh较小的复合分子聚集体,其Zeta电位较大,浊度明显降低,稳定性增强;HAP能明显改善LPFR在NaC1溶液中的分散特性及稳定性.%In order to improve dispersion stability of LPFR (low-solubility phenol-formaldehyde resin) in low salinity water,with HAP(hydrophobic associating polymer) as stabilizer of LPFR,and the some properties(such as hydrodynamic diameter(Dh),Zeta potential,turbidity,and stable time) of dispersion system were tested in deionized water or in NaCl solution.The results showed that the LPFR with single molecule or smaller molecular aggregation form exists in deionized water,so the system had the higher Zeta potential,smaller turbidity and good stability when LPFR solution concentration was 300 mg/L.The Zeta potential and stability of system were decreased,and the turbidity was increased because the LPFR with larger molecular aggregation form exists in system when the NaC1 was introduced into system.The Zeta potential was higher,the turbidity was obviously decreased,and the stability was increased because the LPFR/HAP with smaller Dh and compound molecular aggregation form exists in system by hydrophobic association when the HAP was introduced into system.The HAP could obviously improve LPFR's dispersion characteristics and stability in NaC1 solution.

  20. Surface modification of a natural graphite/phenol formaldehyde composite plate with expanded graphite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongjie; Wang, Yuxin; Xu, Li; Lu, Jun; Wu, Qian [State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China)

    2008-09-01

    Natural graphite/phenol formaldehyde (NG/PF) resin composite plates modified with thin layers of expanded graphite (EG) are fabricated by mold compression to lower the contact resistance between the plates and gas diffusion layers (GDLs). The modification considerably reduces contact resistance versus bare NG/PF plates. The extent of the decrease in contact resistance is influenced by the expanded volume of EG used. A low contact resistance of 1.42 m{omega} cm{sup 2} persists for the EG (150 ml g{sup -1})-modified NG/PF plates despite the PF content, whereas that of bare plates increases from 3.62 to 17.01 m{omega} cm{sup 2} as PF content changes from 5 wt% to 30 wt%. With increasing EG thickness on the surface of NG/PF plates, contact resistance at first decreases and then approaches a constant value when the NG layer exceeds 40 {mu}m. More importantly, the total electrical resistance, as expressed by volume resistance, can be reduced by applying EG layers to NG/PF composite plates. The reduction of total resistance is more remarkable for the composite plates with high PF content because the bulk resistance of the EG layer can be well compensated by the decrease of contact resistance at a proper range of EG layer thickness. (author)

  1. Synthesis and Characterization of Periodic Mesoporous Organosilicas as Anion-Exchance Resins for Perrhenate Adsorption.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghwan [Korea Institute of Industrial Technology, ChonAn, Korea; Im, Hee-Jung [ORNL; Luo, Huimin [ORNL; Hagaman, Edward {Ed} W [ORNL; Dai, Sheng [ORNL

    2005-01-01

    A new methodology to immobilize ionic liquids through the use of a bridged silsesquioxane N-(3-triethoxysilylpropyl), N(3)-3-trimethoxysilylpropyl-4,5-dihydroimidazolium iodide that incorporates an ionic functionality for the assembly of novel periodic mesoporous organosilica (PMO) materials has been developed. The resulting PMO materials were investigated for use as novel anion exchange resins for the separation of perrhenate anions in aqueous solution. As compared with cetyltrimethylammonium chloride, 1-hexadecane-3-methylimidazolium bromide has been demonstrated to be a more efficient surfactant template for the generation of mesopores and surface areas for such PMO materials.

  2. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.

    Science.gov (United States)

    Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang

    2015-01-01

    Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. PMID:25109457

  3. Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions

    Energy Technology Data Exchange (ETDEWEB)

    Muylaert, Ilke [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium); Verberckmoes, An, E-mail: an.verberckmoes@hogent.be [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium); Associated Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Spileers, Jeremy [Associated Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Demuynck, Anneleen; Peng, Li; De Clippel, Filip; Sels, Bert [Katholieke Universiteit Leuven, Centre for Surface Chemistry and Catalysis (COK), Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Van Der Voort, Pascal, E-mail: pascal.vandervoort@ugent.be [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2013-02-15

    Mesoporous phenolic resins were functionalized with sulphonic acid groups by four different types of sulphonation procedures: (i) direct sulphonation on the aromatic ring, (ii) alkyl sulphonation of the aromatic ring, and functionalizations of the phenolic hydroxyl surface by using an aryl silane, 2-(4-chlorosulphonylphenyl)ethyl trichlorosilane (iii) or a propyl silane, 3-mercaptopropyltrimethoxysilane (iv). The highest acidity loadings were obtained through direct sulphonation with fuming sulphuric acid (1.90 mmol H{sup +} g{sup −1}) or chlorosulphonic acid (1.31 mmol H{sup +} g{sup −1}) and these materials showed the highest conversion (97+ %) in Fischer esterification of acetic acid with propanol. However, the alkyl sulphonic groups, obtained through sulphonation procedure (ii) showed the highest stability in terms of maintenance of their acidity after use in consecutive catalytic runs or leaching treatments. This was demonstrated both through evaluation of the regenerated catalysts in a consecutive esterification run and during a leaching resistance test in aqueous medium. Moreover, the developed sulphonated mesoporous phenolic resins are presented as novel support for the non-covalent immobilization of an L-phenylalanine derived chiral diamine organocatalyst for asymmetric aldol reactions. The immobilization is established by an acid–base interaction between the sulphonic acid group and the amine function. The acidity and in particular the electronic withdrawing environment of the sulphonic acid groups influence enormously the catalytic performance of the non-covalent immobilized chiral diamine catalyst (aromatic > aliphatic). - Highlights: ► Different types of sulphonation procedures for mesoporous phenolic resins. ► Influence of acidity and electronic withdrawing environment. ► Novel support for non-covalent immobilization of chiral diamine catalyst. ► Catalytic performance in esterification and asymmetric aldol condensation. ► Demonstration

  4. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  5. Multicenter Patch Testing With a Resol Resin Based on Phenol and Formaldehyde Within the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, M.; Ale, I.; Andersen, Klaus Ejner;

    2015-01-01

    Background Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin included in most baseline patch test series. Objective The aims of this study were to investigate the contact allergy rate to PFR-2...

  6. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    Science.gov (United States)

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  7. Investigation of utilization of process of polyethylene waste of low density for creation of competitive materials with application of phenol formaldehyde oligomers

    International Nuclear Information System (INIS)

    Full text: The possibility of the utilization of low density polyethylene wastes by means of their modification with phenol formaldehyde oligomers (Ph FO) and PhFO with the thiourathenes has been investigation. Theology properties of the investigated systems showed that the obtained compositions can be able to be processed by the ordinary methods such as extrusion and casting

  8. Tribological Behavior of TiC/a-C : H-Coated and Uncoated Steels Sliding Against Phenol-Formaldehyde Composite Reinforced with PTFE and Glass Fibers

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    2013-01-01

    Tribological experiments on phenol-formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a ste

  9. PREPARATION OF SULFOMETHYLATED PHENOL FORMALDEHYDE RESIN%磺甲基酚醛树脂的制备

    Institute of Scientific and Technical Information of China (English)

    王庆; 刘福胜; 于世涛

    2008-01-01

    以亚硫酸氢钠/亚硫酸钠为磺化剂,苯酚和甲醛为原料,经苯酚磺甲基化反应和缩聚反应制备了磺甲基酚醛树脂.分别考察了羟甲基磺酸钠的合成反应、苯酚磺甲基化反应和缩聚反应的主要影响因素,羟甲基磺酸钠较佳合成工艺为n(NaHSO3);n(Na2SO3): n(HCHO)=1:1:2.3,反应温度60℃,反应3 h;苯酚磺甲基化反应的较佳反应条件为n(羟甲基磺酸钠):n(苯酚)=O.7;1,反应温度90℃,反应1 h,pH=9;缩聚反应的较佳反应条件为:n(羟甲基磺酸钠);n(苯酚):n(甲醛)=O.7:1:1.2,pH=9,反应温度100℃,反应时间为3 h.产物较佳干燥温度为100℃,较佳条件下磺甲基酚醛树脂产物的平均收率为102.7%,质量分数为10%水溶液的平均粘度为5.84 mPa·s,不溶物质量分数≤3%.对羟甲基磺酸钠和磺甲基酚醛树脂进行了红外光谱表征.

  10. Catalytic Graphitization of Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    Mu Zhao; Huaihe Song

    2011-01-01

    The catalytic graphitization of thermal plastic phenolic-formaldehyde resin with the aid of ferric nitrate (FN) was studied in detail. The morphologies and structural features of the products including onion-like carbon nanoparticles and bamboo-shaped carbon nanotubes were investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy measurements. It was found that with the changes of loading content of FN and residence time at 1000℃, the products exhibited various morphologies. The TEM images showed that bamboo-shaped carbon nanotube consisted of tens of bamboo sticks and onion-like carbon nanoparticle was made up of quasi-spherically concentrically closed carbon nanocages.

  11. Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions

    Science.gov (United States)

    Choma, Jerzy; Jedynak, Katarzyna; Fahrenholz, Weronika; Ludwinowicz, Jowita; Jaroniec, Mietek

    2014-01-01

    Soft-templating method was used to prepare mesoporous carbons. The synthesis in the presence of hydrochloric and citric acids involved resorcinol and formaldehyde as carbon precursors and triblock copolymer Pluronic F127 as a template. The as-synthesized samples underwent carbonization in flowing nitrogen at various temperatures; namely 600 °C, 700 °C and 800 °C. Two routes were used to develop microporosity in the mesoporous carbons studied. The first one involved introduction of tetraethyl orthosilicate to the reaction system. After silica dissolution with NaOH, an increase in microporosity was observed. The second method, chemical activation with KOH at 700 °C, was explored as an alternative approach to create microporosity. It is noteworthy that the TEOS addition not only led to the development of microporosity but also to some improvement of mesoporosity. The post-synthesis KOH activation resulted in more significant increase in the microporosity as compared to the samples obtained by TEOS-assisted synthesis. The mesopore volume was somewhat lower for activated carbons as compared to that in mesoporous carbons. Both methods resulted in micro-mesoporous carbons with good adsorption properties; for instance, in the case of carbons prepared in the presence of TEOS, the best sample exhibited BET surface area of 1463 m2/g and the total pore volume of 1.31 cm3/g. For the KOH activated carbons the best adsorption parameters were as follows: the specific surface area = 1906 m2/g, and the total pore volume = 0.98 cm3/g. Both procedures used for microporosity development afforded carbons with good adsorption properties that can be useful for applications such as CO2 adsorption, air and water purification.

  12. Cardanol Modified Phenol-Formaldehyde Resin of the UV Curing Research%腰果酚改性酚醛树脂的UV光固化研究

    Institute of Scientific and Technical Information of China (English)

    云智勉; 尹美娟; 周亮

    2009-01-01

    合成了腰果酚改性酚醛树脂,得到了优化反应时间为4 h,催化剂的用量为1.2%~1.4%(质量百分比).研究了涂膜紫外光固化的过程,实验结果表明:UV固化膜的物理性能优于热固化膜.

  13. 磺甲基酚醛树脂在水中的分散特性%Dispersion property of sulfomethyl phenol formaldehyde resin in water

    Institute of Scientific and Technical Information of China (English)

    李明远; 郭亚梅; 贺辉宗; 林梅钦; 彭勃; 郭继香

    2010-01-01

    测定磺甲基酚醛树脂水溶液流体力学直径和ζ电势,以此考察磺甲基酚醛树脂在水中的分散特性.结果表明:在去离子水中,当磺甲基酚醛树脂的质量浓度小于0.05 g/L时,体系分子聚集体的流体力学直径为105 nm,其表面带负电;当磺甲基酚醛树脂质量浓度高于0.05 g/L时,磺甲基酚醛树脂分子聚集体之间开始聚集,聚集体的流体力学直径随之增加;不同电解质对磺甲基酚醛树脂水溶液的聚沉作用不同,NaCl与CaCl2,MgCl2,AlCl3,Na2SO4聚沉值之比为1:0.032:0.66:0.00058:0.79;随NaCl质量浓度的增加,磺甲基酚醛树脂分子聚集体的流体力学直径随之增加,ζ电势随之降低;pH=3.0时聚集体流体力学直径最大,ζ电势绝对值最小.

  14. Mesoporous Carbon-based Materials for Alternative Energy Applications

    Science.gov (United States)

    Cross, Kimberly Michelle

    /cm was measured for the composite without carbon nanotubes and the conductivity value improved by over an order of magnitude to 1 S/cm with the addition of 0.5 wt.% CNTs. Triggered by dispersion issues, the agglomeration of MWNTs during the drying process prevented each nanotube from being loaded over a maximum interfacial area. In order to improve the dispersion of carbon nanotubes within the carbon-silica network, electrospinning was explored as a method to improve the alignment of the carbon nanotubes. The electrospun fibers produced with the highest concentration of MWNTs at 1.0 wt.% produced the largest surface area and electrical conductivity values of 333.36 m2/g and 2.09 S/cm, respectively. Capacitance measurements were calculated to examine if improved conductivity results in higher capacitance values. The best capacitance performance was 148 F/g from a carbon-based mesoporous composite with 0.5 wt. % MWNTs in an aqueous electrolyte with a 2.0 mV/s scan rate. An 80% increase in capacitance occurs with the addition of 0.5 wt. % MWNTs. This is in the range of capacitance values produced by hierarchically ordered mesoporous-microporous carbons, reported at 180 F/g. Fibrous carbon tubes assembled from hydrofluoric acid etched perylenetetracarboxylic diimide bridged silsesquioxane (PDBS) were capable of hydrogen adsorption on the order of 1.3-2.5 wt. % at 77K. Lastly chemically activated phenol-formaldehyde resins produced microporous carbon with 1500 m3/g surface areas and pore sizes ranging from 0.3-0.5 nm, which has potential for asymmetric super-capacitor electrodes. Judicious control over the composition and pore structure of carbon-based nanocomposites can lead to improved performance of various alternative energy materials.

  15. Weather ability studies of phenolic resin coated woods and glass fiber reinforced laminates

    International Nuclear Information System (INIS)

    Phenolic resins have made a major breakthrough in the field of high technology in 80's. These are now active participants of high tech' areas ranging from electronics, computers, communication, outer space, aerospace, advanced materials, bio materials and technology. A phenol - formaldehyde (1:1.5) resin having resin content of 70% synthesized in the laboratory has been applied for wood coating and reinforcing glass fiber. The weatherability and solvent resistance of these items have been studied and results discussed keeping in view the envisaged application for structural materials and chemical equipment. The toxic materials released during contact with solvents for chemical applications and during degradation general have been monitored. The results are discussed with reference to environmental pollution due to these resins and their composites under different conditions. (authors)

  16. Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins.

    Science.gov (United States)

    Seredych, Mykola; Ania, Conchi; Bandosz, Teresa J

    2016-03-15

    Phenolic-formaldehyde resins aged at 85, 90 and 95°C were used as ammonia adsorbents at dynamic conditions in dry and moist air. To avoid pressure drops 10% bentonite was added as a binder. The initial and hybrid materials (before and after ammonia adsorption) were extensively characterized from the point of view of their porosity and surface chemistry. The results showed that the addition of the binder had various effects on materials' properties depending on the chemistry of their surface groups. When the phenolic acidic groups were predominant, the largest increase in surface acidity upon the addition of the binder was found. It was linked to the exfoliation of bentonite by polar moieties of the resins, which made acidic groups from aluminosilicate layers available for ammonia adsorption. On this sample, a relatively high amount of ammonia was strongly adsorbed in dry conditions. Insensitivity to moisture is a significant asset of ammonia adsorbents.

  17. Research Progress in the Modified Three Formaldehyde Resins%改性三醛胶的研究进展

    Institute of Scientific and Technical Information of China (English)

    常蔓丽

    2011-01-01

    This paper overviewed the domestic research status of wood adhesive. The characteristics of urea formaldehyde resin, melamine resin and phenol formaldehyde resin were introduced in detail. Meanwile, the research progress of the the modified three formaldehyde resins was expounded. Moreover, existing problem and developing trend of the three formaldehyde resins in wood machining field in our country were indicated.%综述木材胶粘剂的国内现状,介绍了脲醛胶、三聚氰胺一甲醛胶、酚醛胶传统胶种的性质及其低醛改性研究进展,指出了我国木材加工领域用三醛胶存在的问题和发展趋势.

  18. Influence of structure of a crosslinked epoxy resin on its properties studied by positron annihilation and other methods

    International Nuclear Information System (INIS)

    Positron annihilation has been applied to study samples of two crosslinked epoxy resins: diglycidyl ether of bisphenol A (Epikote 828) and polyglycidyl-ether of phenol-formaldehyde novolac (Epikote 155) cured with 4,4'-diamino-diphenylo-methane (MDA), phenol-formaldehyde novolac resin (Novolac Z) and bisphenol A (formaldehyde resin). Results of measurements of positron lifetime spectra were compared with the ones coming from DMTA, flexural strength testing and density measurements. The most important features of samples (glass transition temperature, storage modulus, flexural strength, crosslinking density and tan δ) proved to be correlated with the product Ι3 x v-bar, proportional to the fractional free volume in samples. Values of v-bar have been estimated from the values of τ3, the longest lifetime in positron lifetime spectra. Ι3 corresponds to the intensity of the longest-lived component in them. Distributions of free volume radii reconstructed in the basis of PAL measurements are given for all samples. The influences of structure of both cured resin and the curing agent on the properties of the crosslinked products is clearly seen from the presented results. (author)

  19. Modeling the Effects of Velocity, Spin, Frictional Coefficient, and Impact Angle on Deflection Angle in Near-elastic Collisions of Phenolic Resin Spheres

    CERN Document Server

    Crown, S C

    2004-01-01

    A simple model is outlined to describe the collision of cast phenol-formaldehyde resin spheres such as the balls used in the parlor game of pocket billiards, based in part on the famous analysis of elastic collisions developed by Heinrich Hertz over 100 years ago. The analysis treats the normal and tangential components of the initial sphere's velocity independently as it collides with a stationary identical second sphere. The collective effects of these and other parameters on the trajectory of the second sphere are provided in the conclusions.

  20. Ethylated Urea - Ether - Modified Urea - Formaldehyde Resins,

    Directory of Open Access Journals (Sweden)

    Mathew Obichukwu EDOGA

    2006-07-01

    Full Text Available First, phenol - formaldehyde (PF and urea - formaldehyde (UFII resins were separately conventionally prepared in our laboratory. Also, UF resin synthesized from the acid modified synthesis procedure was synthesized in a purely acid medium of pH 1.0, FU molar ratio of 1.0 and at 50oC (one-stage acid modified-synthesis procedure. Subsequently, the UF resin II was modified during synthesis by incorporating ethylated urea-ether (EUER (i.e. UFIII and glycerol (GLYC (i.e. UFV cured with and without acid curing agent. The structural and physicochemical analyses of the various resin samples were carried out.The results showed that the unmodified UF resin (UF II synthesized in acid medium of pH 1.0, F/U molar ratio 1.0, and at 50oC, cured in absence of acid curing catalyst, showed features in their spectra which are consistent with a tri-, and/or tetra-substituted urea in the reaction to give a 3 - dimensional network cured UF resin. Modification of the UF resin(UF II with ethylated urea-ether and glycerol to produce UF resins III and respectively V prominently increased the absorbance of methylene and ether groups in the spectra which are consistent with increased hydrophobicity and improved hydrolytic stability. For the conventional UF resin (UF I, the only clear distinction between spectra for the UF resin II and UF resins (III/V is the presence of diminished peaks for methylene groups at 2.2 ppm. The relationship between the logarithmic viscosity of cured PF resin with time showed continuos dependence of viscosity with time during cure up to 70 minutes. Similar trends were shown by UF resins (III/V, cured in absence of acid catalyst. In contrast, the conventional UF resins I and UF IV (i.e. UF II cured with NH4CL showed abrupt discontinuity in viscosity with time just after about 20 minutes of cure.

  1. Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry.

    Science.gov (United States)

    Dungan, Robert S; Reeves, James B

    2005-01-01

    Pyrolysis-gas chromatography-mass spectrometry (MS) was used to identify the major organic products produced by pyrolysis of three foundry sand resins: (i) Novolac and (ii) phenolic urethane (PU) (both phenol-formaldehyde based resins) and (iii) furan (furfuryl alcohol based resin). These resins are used in the metal casting industry as a "sand binder" for making cores (used to produce cavities in molds) and molds for nonferrous castings. During the casting process, the cores and molds are subjected to intense heat from the molten metal. As a result, the organic resins undergo thermal decomposition and produce a number of complex organic compounds. In this study, the organics were tentatively identified by MS after pyrolysis of the resins at 750 degrees C. The major thermal decomposition products from the Novolac, PU, and furan resins were derivatives of phenol, benzene, and furan, respectively. Compounds identified that are of potential environmental concern were benzene, toluene, phenol, o- and p-xylene, o- and m-cresol, and polycyclic aromatic hydrocarbons. Pyrolysis of the Novolac resin resulted in the generation of the most compounds of environmental concern. Because there is interest in beneficially using foundry molding sands in manufactured soils and other agricultural products, it is necessary that organic thermal decomposition products be identified to ensure environmental protection. PMID:15991723

  2. 腰果酚醛树脂嵌段聚醚的合成及其破乳性能研究%Synthesis and demulsification of cardanol based phenol-formaldehyde resin block polyether

    Institute of Scientific and Technical Information of China (English)

    王俊; 高振宇; 张志秋; 吴松; 李翠勤

    2014-01-01

    以腰果酚和甲醛为原料合成一种起始剂——腰果酚醛树脂,再以起始剂为原料,分别与环氧丙烷(PO)和环氧乙烷(EO)进行加成聚合,合成了一种腰果酚醛树脂嵌段聚醚(CPFE).采用FT IR对CPFE的分子结构进行了表征,通过瓶试法初步研究了CPFE作为破乳剂对大庆油田采出液的破乳性能.实验结果表明,所合成的CPFE对O/w型原油乳液具有良好的破乳性能,随着添加量和破乳温度的增加,脱水率增大,所表现出来的影响规律与常规聚醚型破乳剂是一致的.在破乳温度为45℃,CPFE的添加量为250 mg/L时,30 min的脱水率达到97.8%,腰果酚醛树脂嵌段聚醚具有快速脱水的特征,显示出良好的应用前景.

  3. Effect of Phenol-Formaldehyde Resin Modified on Properties of Ochroma Lagopus Wood%酚醛树脂改性处理对人工林轻木性能的影响

    Institute of Scientific and Technical Information of China (English)

    谢序勤; 邱坚; 李君

    2014-01-01

    为了拓宽人工林轻木的应用领域,以酚醛树脂为处理液,分别采用常压、负压-负压浸渍法处理轻木.试样的性能检测结果显示:与对照材相比,处理试样的增重率、硬度及顺纹抗压强度均增加,尺寸稳定性改善.

  4. PEO-酚醛树脂络合物的制备及上浆应用%Preparation of polyethylene oxide-phenol-formaldehyde resin complex and application in warp sizing

    Institute of Scientific and Technical Information of China (English)

    沈艳琴; 王淼

    2011-01-01

    介绍了PEO-酚醛树脂络合物的制备工艺,通过实验,对PEO-酚醛树脂络合物与变性淀粉混合浆料的浆膜、浆液及浆纱质量进行了测试,结果表明PEO-酚醛树脂络合物与变性淀粉浆料以适当比例混合,能对浆液性能起良好的改善作用,且浆纱质量明显提高.

  5. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    Science.gov (United States)

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  6. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    International Nuclear Information System (INIS)

    The 177 underground storage tanks at the DOE's Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin

  7. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water

    Science.gov (United States)

    Zhang, Bin; Liu, Chen; Kong, Weiping; Qi, Chenze

    2016-06-01

    Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni-P123-800) have been synthesized through direct carbonization of Fe or Ni functionalized, and ordered mesoporous polymers at 800°C, which could be synthesized from self assembly of resol (phenol/formaldehyde) with block copolymer template (P123) in presence of Fe3+ or Ni2+, and hydrothermal treatment at 200°C. PR-Fe-P123-800 and PR-Ni-P123-800 possess ordered and uniform mesopores, large BET surface areas, good stabilities, controllable surface wettability and partially graphitized framework. The above structural characteristics result in their enhanced selective adsorption property and good reusability for organic pollutants such as RhB, p-nitrophenol and n-heptane in water, which could be easily regenerated through separation under constant magnetic fields and washing with ethanol solvent. The unique magnetically active and adsorptive property found in PR-Fe-P123-800 and PR-Ni-P123-800 will be very important for them to be used as efficient absorbents for removal of various organic pollutants in water.

  8. Synthesis and Mechanism of Metal-Mediated Polymerization of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2016-04-01

    Full Text Available Phenol-formaldehyde (PF resin is a high performance adhesive, but has not been widely developed due to its slow curing rate and high curing temperature. To accelerate the curing rate and to lower the curing temperature of PF resin, four types of metal-mediated catalysts were employed in the synthesis of PF resin; namely, barium hydroxide (Ba(OH2, sodium carbonate (Na2CO3, lithium hydroxide (LiOH, and zinc acetate ((CH3COO2Zn. The cure-acceleration effects of these catalysts on the properties of PF resins were measured, and the chemical structures of the PF resins accelerated with the catalysts were investigated by using Fourier transform infrared (FT-IR spectroscopy and quantitative liquid carbon-13 nuclear magnetic resonance (13C NMR. The results showed that the accelerated efficiency of these catalysts to PF resin could be ordered in the following sequence: Na2CO3 > (CH3COO2Zn > Ba(OH2 > LiOH. The catalysts (CH3COO2Zn and Na2CO3 increased the reaction activity of the phenol ortho position and the condensation reaction of ortho methylol. The accelerating mechanism of (CH3COO2Zn on PF resin is probably different from that of Na2CO3, which can be confirmed by the differences in the differential thermogravimetric (DTG curve and thermogravimetric (TG data. Compared to the Na2CO3-accelerated PF resin, the (CH3COO2Zn-accelerated PF resin showed different peaks in the DTG curve and higher weight residues. In the synthesis process, the catalyst (CH3COO2Zn may form chelating compounds (containing a metal-ligand bond, which can promote the linkage of formaldehyde to the phenolic hydroxyl ortho position.

  9. High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions.

    Science.gov (United States)

    Dai, Mingzhi; Vogt, Bryan D

    2012-12-01

    Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N(2) atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media; after 96 h in 2 M HCl, the powders remain magnetic.

  10. Bonding exterior grade structural panels with copolymer resins of biomass residue components, phenol, and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M. [Univ. of Georgia, Athens, GA (United States)

    1993-12-31

    Components of various forest and agricultural residue biomass-including the polyphenolic compounds-were converted into aqueous solution and/or suspension by extraction and digestion. Some biomass components reacted vigorously under alkaline catalysis with formaldehyde and initially showed a high degree of exothermic reaction; however, other components did not react as vigorously under these conditions, indicating that different biomass materials require different methods to obtain optimum reactivity for the copolymerization with phenol. Our primary goal is to develop adhesives capable of producing acceptable bond quality, as determined by the wood products industries` standards, under a reasonable range of gluing conditions. Copolymer resins of phenol, formaldehyde, and biomass components were synthesized and evaluated for gluability of bonding exterior grade structural replaced with chemicals derived from peanut hulls, pecan shell flour, pecan pith, southern pine bark, and pine needle required shorter press times. These resins also tolerated a broader range of gluing conditions. In summary, it appears that the technology of the fast curing copolymer resins of biomass components as adhesives for wood products has been developed and is ready to be transferred to industrial practice.

  11. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  12. Properties of Sago Particleboards Resinated with UF and PF Resin

    OpenAIRE

    Tay, Chen Chiang; Hamdan, Sinin; Osman, Mohd Shahril B.

    2016-01-01

    The sago processing industry in Mukah, Sarawak, had generated huge amount of sago waste after the milling process and scientists have employed the waste into composite material. In this work, sago residues were mixed with the Phenol Formaldehyde (PF) and Urea Formaldehyde (UF) for particleboard fabrication. The fabrication and testing methods are based on JIS A 5908 Standard. A single layer particleboard using sago particles was fabricated at targeted density of 600 kg/m3. Particles with weig...

  13. Synthesis of Mesoporous Carbon/Silica Using the Oligomer of Urea-formaldehyde Resin as Carbon Source and the Influence of Carbonization Temperature%脲醛树脂为碳源制备介孔碳/二氧化硅及碳化温度的影响

    Institute of Scientific and Technical Information of China (English)

    王颂; 牟鸣薇; 彭策; 李娃; 李凤云; 蔡强; 李恒德

    2013-01-01

    以低聚脲醛树脂为有机碳源前驱体、正硅酸乙酯(TEOS)为无机硅源、表面活性剂F127为模板剂,采用溶剂蒸发诱导自组装(EISA)合成有序介孔碳/二氧化硅杂化材料,研究了碳化温度对于介孔碳/二氧化硅杂化材料比表面积、孔径大小及分布的影响.采用X射线衍射仪(XRD)、热失重分析仪(TGA)、透射电子显微镜(TEM)、氮气吸/脱附等对制备样品进行了表征.结果表明,随着碳化温度的升高,各样品的晶面间距缩小,孔径数值也逐渐变小.碳化温度为850℃时,所得介孔碳/二氧化硅杂化材料孔径较小且孔径尺寸分布较集中.%Ordered mesoporous carbon/silica hybrid materials were synthesized using the oligomer of urea-formaldehyde resin as carbon source,triple copolymer surfactant F127 as template and tetraethylorthosilicate (TEOS) as silica source via evaporation induced self-assembly (ElSA)method.Through changing carbonization temperature,mesoporous carbon/silica hybrid samples with different BET surface areas and pore size distributions were obtained.The materials were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM),Thermo Gravimetric Analyzer (TGA) and nitrogen adsorption-desorption analysis.The results showed that carbonization temperature would directly influence the pore structure.When the carbonization temperature is 850℃,the mesoporous carbon/silica hybrid material with perfect orderliness and narrow pore size distribution can be prepared.

  14. Preparation of mesoporous magnetic ion exchange resin and its removal performance-for the typical organic nitrogen derived from algae%介孔型磁性离子交换树脂的制备及其效能--针对典型藻源含氮有机物

    Institute of Scientific and Technical Information of China (English)

    刘成; 何思源; 刘煜; 陈卫

    2016-01-01

    Mesoporous magnetic ion exchange resin (m-MIER) was synthesized using methyl acrylic glycidyl ester as monomer with the method of monomer polymerization. Its removal performance on the typical dissolved algal organic nitrogen was studied subsequent to some preliminary characterization. Magnetic ion exchange resin (MIEX®) was studied as a comparison simultaneously. The results showed that the lab synthetic m-MIER was mesoporous with the main pore diameter was from 2nm to 60nm, chloride was identified as the exchange group. Compared with MIEX®, m-MIER owned similar wet density, particle size, more abundant pore structure and greater exchange capacity (1.15g/cm3, 150~200µm, 0.1852cm3/g, 3.16mmol/g vs, 1.20g/cm3, 150~180µm, 0.0184cm3/g, 2.23mmol/g). The results of XPS indicated that the major component of the core was Fe3O4, and the m-MIER was quaternary ammonium anion exchange resin. The m-MIER exhibited better removal effects on the typical dissolved nitrogen derived algae cells compared with MIEX®and the removal rate was highly relevant with the categories of the dissolved organic nitrogen.%以甲基丙烯酸缩水甘油酯为单体,利用单体聚合法制备了介孔型磁性离子交换树脂(m-MIER),并在表征其基本性状的基础上,初步分析了其对典型藻源含氮有机物(藻蓝蛋白、氨基酸)的去除效能.为便于比较,研究过程中同步进行了磁性离子交换树脂(MIEX®)的研究.研究结果表明,m-MIER是以氯为交换基团的介孔型材料,其孔径为2~60nm;与MIEX®相比,m-MIER具有相似的湿视密度、粒径,更丰富的孔隙结构、更大的交换容量(1.15g/cm3,150~200μm,0.1852cm3/g,3.16mmol/g Vs 1.20g/cm3,150~180μm,0.0184cm3/g,2.23mmol/g);XPS图谱分析结果表明其内核成分主要为Fe3O4,且为季胺型阴离子交换树脂.针对藻源含氮有机物的去除结果表明,m-MIER对藻蓝蛋白、特定氨基酸的去除效果明显优于MIEX®,且去除效果与氨基酸的种类显著相关.

  15. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina;

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite c...

  16. Analysis of the Compounds from the BTEX Group, Emitted During Thermal Decomposition of Alkyd Resin

    Directory of Open Access Journals (Sweden)

    M. Kubecki

    2012-09-01

    Full Text Available Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea–furfuryl, alkyd under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene, and also polycyclic aromatic hydrocarbons (PAH can be formed and released.The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditionsof formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulnessassessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000C – 13000C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for

  17. 木质素超临界溶剂降解反应及其在酚醛树脂合成中的应用%REDUCTIVE DEGRADATION OF LIGNIN IN SUPERCRITICAL SOLVENT AND APPLICATION IN PHENOLIC RESIN SYNTHESIS

    Institute of Scientific and Technical Information of China (English)

    王明存

    2011-01-01

    The lignin was readily decomposed into phenol compounds via reductive liquefaction in supercritical ethanol media ( formic acid decomposed into hydrogen at reaction temperatures) , opening a promising opportunity to lignin-derived value-added aromatic compounds for highly possible application in phenol-formaldehyde resin production. The supercritical ethanol was the ideal reaction medium for lignin degradation, and the in situ generated hydrogen exactly promoted the decomposition reactions to smaller molecules via encapping the lignin radicals to terminate the further coupling and condensation. The liquefaction mechanism was radical thermal degradation. Some transition metal salts could catalyze the above lignin thermal decomposition, including nickel nitrate, cobalt nitrate and chloroplatinum acid. The yield of the lignin-degraded liquid increased with the increase of formic acid used in the ethanol solvent, while slightly deceased when the reaction temperature increased. The molecular weight of the lignin-derived liquid highly decreased with increase of the reaction temperature,e, g. At 350℃ the number average molecular weight was 143 while for the original lignin feedstock it was 588. The optimum reaction conditions are found to be ethanol-formic acid weight ratio at 1:1; lignin load at 10 wt% ; reaction temperature at 350℃ for 4 h. The lignin-derived phenols were characterized by CC-MS technique, and the liquefied product was mainly phenol derivatives with simple structures. Compared with the lignin, the bio-phenols possessed highly improved solubility and reactivity in phenol-formaldehyde synthesis. As the ideal replacement of industrial phenol, lignin-degraded bio-phenol was utilized readily in resol type phenolic resin production with a replacement higher than 50 wt%. The thermal stability was slightly decreased with the increased amount of lignin-derived biophenol in the phenolic resin formula. The results showed the effective reductive degradation of

  18. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  19. Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials

    Science.gov (United States)

    Parsons-Moss, Tashi

    Pu(IV), Pu(VI), Eu(III), Ce(III), and Zr(IV). The acetamide phosphonate functionalized silica called Ac-Phos-SBA-15 required more extensive synthesis than the other three functionalized silica materials. Development of functionalized mesoporous silica extractants for actinides is contingent on their synthesis and hydrolytic stability, and these two aspects of the Ac-Phos-SBA-15 material are discussed. This material showed the highest binding affinity for all of the target ions, and the sorption and desorption of Pu(VI) to Ac-Phos-SBA-15 was extensively investigated. Ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes, and could be suitable substrates for the development of actinide sensors based on their electrochemical properties. Three different mesoporous carbon materials were synthesized by collaborators to test their application as radionuclide sorbent materials. The first is called CMK (carbons mesostructured by Korea Advanced Institute of Science and Technology), and was synthesized using a hard silica template with 3D-bicontinuous ordered mesostructure. Highly ordered body-centered cubic mesoporous carbon was synthesized by self-assembly of a phenol resin around a soft polymer template, and this material is known as FDU-16 (Fudan University). Etching of the silica portion of mesoporous carbon-silica composites created the 2D-hexagonal mesoporous carbon called C-CS (carbon from carbon-silica nanocomposites) with a bimodal pore size distribution. The as-synthesized nanocast mesoporous carbon in this work is called UN CMK, and the same material after oxidation treatment with nitric acid is called OX CMK. A portion of both FDU-16-type and C-CS-type ordered mesoporous carbons were oxidized with acidic ammonium persulfate, which created the oxidized carbon materials called FDU-16-COOH and C-CS-COOH, respectively. The mesoporous carbons were characterized by scanning electron microscopy to view

  20. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian;

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  1. Surface-functionalized mesoporous carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  2. Periodic Mesoporous Organosilica Nanorice

    Directory of Open Access Journals (Sweden)

    Mohanty Paritosh

    2008-01-01

    Full Text Available Abstract A periodic mesoporous organosilica (PMO with nanorice morphology was successfully synthesized by a template assisted sol–gel method using a chain-type precursor. The PMO is composed of D and T sites in the ratio 1:2. The obtained mesoporous nanorice has a surface area of 753 m2 g−1, one-dimensional channels, and a narrow pore size distribution centered at 4.3 nm. The nanorice particles have a length of ca. 600 nm and width of ca. 200 nm.

  3. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou

    2008-01-01

    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  4. Template Directed Synthesis and Characterization of Organic Mesoporous Polymers and their Adsorption Performance for Lysozyme

    Science.gov (United States)

    Sridhar, Manasa

    Three homologous series of MCFs with diverse pore topologies have been synthesized by symbiotic interplay of TMB/P123 (R1) and TEOS/P123 (R2) weight ratios in the initial microemulsion. It was found that the MCFs synthesized at R2 greater than the conventional value suffered significant lag in the mesopore volumes and areas at low concentrations of TMB. However, when R1 is increased beyond 1.0, the difference in the pore volumes and areas became negligible. Many key findings were reported through this study. TEM images revealed that the MCFs synthesized at higher values of R2 prematurely attained larger average pore sizes accompanied with portions displaying constricted worm-like mesostructures. Such bimodal mesophases are accounted by the swelling action of excess amounts of ethanol discharged due to the hydrolysis of increased amounts of TEOS present in the microemulsion along with partial TEOS dissolution in the hydrophobic PPO cores of the TMB/P123 micelles. MCFs synthesized at highest R2 value of 4.4 exhibits unique interconnected rod-like morphologies which are usually not observed for conventional MCFs. MCF produced using R1 = 2.5 and R2 = 3.0 exhibit bimodal mesophases consisting of polyhedral nanofoam-like textures along with regular spherical pores. USAXS results indicate wall thickness as large as 11 nm for MCFs produced at R2 =4.4. These MCFs of interesting mesostructures were employed as nanoscopic templates to produce Mesocellular Phenol Formaldehyde Foams (MPFFs) using vacuum-assisted incipient wetness impregnation technique. The nanocasted MPFFs show large pore volumes up to 1.4 cm3/g, BET surface areas more than 900 m2/g and large pore diameters in the range 27--99 nm depending on the MCF scaffold used. All the MPFFs showed faithful replication of the cavity sizes of their corresponding MCF parent templates. Stunningly, trimodal MPFFs resulted from the nanocasting of MCFs with R1 > 2.2. The resulting pore sizes were attributed to the original

  5. A general thiol assay based on the suppression of fluorescence resonance energy transfer in magnetic-resin core-shell nanospheres coated with gold nanoparticles

    International Nuclear Information System (INIS)

    A simple, rapid and sensitive fluorescence resonance energy transfer (FRET) method is presented for the determination of thiols. It is based on the thiol-induced enhancement effect of the surfactant sodium dodecyl sulfate (SDS) on the efficiency of fluorescence resonance energy transfer (FRET) in nanospheres consisting of a magnetic (Fe3O4) core and a phenol-formaldehyde resin (PFR) shell containing gold nanoparticles (AuNPs). The luminescence of the core-shell nanospheres at excitation/emission wavelengths of 390/445 nm, respectively, is quenched by the AuNPs which act as energy acceptors. The interaction of AuNPs with thiol compounds in the presence of SDS suppresses FRET and gives rise to a fluorescent signal whose intensity is proportional to the thiol concentration. The analytical features of seven thiols (homocysteine, thioglycolic acid, glutathione, dodecanethiol, cysteamine, cysteine and N-acetylcysteine) were studied. Detection limits are in the range from 0.14 to 0.49 μmol L−1. The precision of the method, expressed as the relative standard deviation, ranges from 0.4 to 4.9 %. The method was applied to the determination of total thiols in water samples with recovery values between 88.7 and 104.6 %. (author)

  6. From polymeric "plasticine" to shape-controlled mesoporous carbon.

    Science.gov (United States)

    Qian, Xu-Fang; Wang, Zheng; Wan, Ying

    2009-07-15

    A soft-phase intercalating process to synthesize mesostructured plasticine by using amphiphilic triblock copolymer F127 as a structure-directing agent, reverse triblock copolymer 25R4 as an intercalating soft matter, and soluble phenolic resin as a carbon source is demonstrated. The "plasticine" has interlayer organic-organic hybrid structure, which is emplastic, sticky, and able to be easily shaped at will. After template removal at 350 degrees C and further carbonization at 600 degrees C, highly ordered mesoporous polymers and carbons can be successively obtained with the maintenance of the original shape. The self-supported, shape-controlled, ordered mesoporous carbon products possess high surface areas (495-777 m(2)/g), large pore volumes (0.32-0.47 cm(3)/g), uniform pore sizes (2.5-4.3 nm) in the nanoscale and hollow tremella-like morphology in the micronscale which may facilitate mass transportation. PMID:19406429

  7. Environmental Protection Phenolic Resin Synthesis of Adhesive%环保型酚醛树脂胶粘剂的合成

    Institute of Scientific and Technical Information of China (English)

    李建锋

    2011-01-01

    The starch, formaldehyde, phenol as raw materials is introduced, in acidic conditions, hydrolysis of starch into D - glucose, glucose dehydration to generate HMF with phenol synthesis of phenolic resin adhesive, synthetic adhesive bond performance and is not modified compared to phenolic resin adhesive. There is not much change, and to reduce the amount of formaldehyde, to reduce costs. Intended to be the subject of partial replacement of starch synthesis of starch modified phenolic formaldehyde resin adhesive, through the study of formaldehyde in the amount of orthogonal test, starch dosage, pH and other factors affect the performance of samples to identify the optimum formulation.%通过对介绍以淀粉、甲醛、苯酚为原料,在酸性条件下,淀粉水解成D-葡萄糖,脱水生成羟甲基糠醛,与苯酚合成酚醛树脂胶粘剂,合成胶粘剂的粘结性能与未改性的酚醛树脂胶粘剂相比较,没有多大变化,而且减少甲醛的用量,降低了成本.本课题拟用淀粉部分取代甲醛合成淀粉改性酚醛树脂胶粘剂,通过正交试验研究甲醛用量、淀粉用量、pH等因素对样品性能的影响,找出最佳工艺配方.

  8. A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications

    Science.gov (United States)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-08-01

    In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  9. Facile Fabrication of Well-Dispersed Pt Nanoparticles in Mesoporous Silica with Large Open Spaces and Their Catalytic Applications.

    Science.gov (United States)

    Liu, Xianchun; Chen, Dashu; Chen, Lin; Jin, Renxi; Xing, Shuangxi; Xing, Hongzhu; Xing, Yan; Su, Zhongmin

    2016-06-27

    In this paper, a facile strategy is reported for the preparation of well-dispersed Pt nanoparticles in ordered mesoporous silica (Pt@OMS) by using a hybrid mesoporous phenolic resin-silica nanocomposite as the parent material. The phenolic resin polymer is proposed herein to be the key in preventing the aggregation of Pt nanoparticles during their formation process and making contributions both to enhance the surface area and enlarge the pore size of the support. The Pt@OMS proves to be a highly active and stable catalyst for both gas-phase oxidation of CO and liquid-phase hydrogenation of 4-nitrophenol. This work might open new avenues for the preparation of noble metal nanoparticles in mesoporous silica with unique structures for catalytic applications. PMID:27245766

  10. Studies on Lignin-Based Adhesives for Particleboard Panels

    OpenAIRE

    ÇETİN, Nihat Sami; Özmen, Nilgül

    2003-01-01

    The ultimate aim of this work was to develop a phenolic resin for partially replacing phenol with modified organosolv lignin in phenol-formaldehyde (PF) resin production. The lignin-formaldehyde relationship was determined in a reactivity test. Organosolv lignin-phenol-formaldehyde (LPF) resins were produced in a two-step preparation with different additions of lignin. The method selected for the manufacture of lignin resins dealt with modification of the lignin by the methylolation route. Th...

  11. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137Cs from waste product was not detected in experiment (author)

  12. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  13. Breakthroughs in Mesoporous Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Mesoporous materials have attracted a great deal of attention due to their extremely high surface area, uniform and tunable pore structure (2-50nm in diameter), and have been investigated extensively since its invention. Unfortunately,their catalytic properties are far away from the expectation due to their amorphous and inert framework and poor stability. This research project is aimed at the design and synthesis of mesoporous-

  14. Review: Resin Composite Filling

    Directory of Open Access Journals (Sweden)

    Desmond Ng

    2010-02-01

    Full Text Available The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  15. Hydrophilic and mesoporous SiO2-TiO2-SO3H system for fuel cell membrane applications

    International Nuclear Information System (INIS)

    Graphical abstract: The composite films containing SiO2-TiO2-SO3H resin additives, with strong water retention capabilities, showed superior proton conductivity, even at 120 oC and 25% RH, as well as a slightly improved current density at 30% RH and 70 oC, when compared to costly Nafion film. Display Omitted Research highlights: → The hydrophilic and mesoporous SiO2-TiO2-SO3H resins have a potential to be used as alternative membrane source materials in PEFCs. → The sulfonation for hydrophilicity is conducted via simple chelating chemistry between catecholic groups and surface Ti ions. → The proton conductivity of SiO2-TiO2-SO3H composite films is superior to the commercial Nafion film. - Abstract: Hydrophilic and mesoporous sulfonated SiO2-TiO2-SO3H systems as new additives for fuel cell electrolyte membranes are directly synthesized by the binary sol-gel reaction of TEOS-TiCl4 and consecutive sulfonation with a hydrophilic generator, dihydroxy-m-benzenedisulfonic acid disodium salt. The sulfonation approach makes use of the simple chelating chemistry between the catecholic groups (dihydroxy benzene) and surface Ti ions of the inorganic ordered mesoporous SBA-15 structure. The system is successfully employed in fuel cell membrane applications with a composite Nafion membrane mixed with a mesoporous hydrophilic resin additive, and reveals an obvious enhancement of the proton conductivity at low humidity and elevated temperatures. This improvement was attributed to the excellent water retention capability of the hydrophilic mesoporous resin.

  16. Synthesis and Characterization of Bimodal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaofang; GUO Cuili; WANG Xiaoli; WU Yuanyuan

    2012-01-01

    Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores.The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 adsorption-desorption measurements.The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm.The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41,while large mesopores were inherited from parent silica gel material.The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.

  17. Properties of Sago Particleboards Resinated with UF and PF Resin

    Directory of Open Access Journals (Sweden)

    Chen Chiang Tay

    2016-01-01

    Full Text Available The sago processing industry in Mukah, Sarawak, had generated huge amount of sago waste after the milling process and scientists have employed the waste into composite material. In this work, sago residues were mixed with the Phenol Formaldehyde (PF and Urea Formaldehyde (UF for particleboard fabrication. The fabrication and testing methods are based on JIS A 5908 Standard. A single layer particleboard using sago particles was fabricated at targeted density of 600 kg/m3. Particles with weight fractions of 90%, 85%, and 80% with two different matrices were used in the fabrication. The results demonstrated that the samples with different weight fraction and matrix have great influence on the mechanical properties such as MOR, MOE, Young’s Modulus, tensile strength, impact strength, screw test, and internal bonding. The sago UF/PF particleboard only displays single stage decomposition. All the panels underwent physical tests which are water absorption and thickness swelling. The combination of sago particles with UF/PF can be utilized for general indoor application purposes such as furniture manufacturing. Sago particleboard made by UF/PF provided the advantages like optimized performance, minimized weight and volume, cost effectiveness, chemical resistance, and resistance to biodegradation.

  18. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  19. Aligned mesoporous architectures and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Lu, Yunfeng (University of California Los Angeles, Los Angeles, CA)

    2011-03-01

    This is the final report for the Presidential Early Career Award for Science and Engineering - PECASE (LDRD projects 93369 and 118841) awarded to Professor Yunfeng Lu (Tulane University and University of California-Los Angeles). During the last decade, mesoporous materials with tunable periodic pores have been synthesized using surfactant liquid crystalline as templates, opening a new avenue for a wide spectrum of applications. However, the applications are somewhat limited by the unfavorabe pore orientation of these materials. Although substantial effort has been devoted to align the pore channels, fabrication of mesoporous materials with perpendicular pore channels remains challenging. This project focused on fabrication of mesoporous materials with perpendicularly aligned pore channels. We demonstrated structures for use in water purification, separation, sensors, templated synthesis, microelectronics, optics, controlled release, and highly selective catalysts.

  20. [Utilization of organic resources in paper pulp waste liquid].

    Science.gov (United States)

    Lin, Qiaojia; Liu, Jinghong; Yang, Guidi; Huang, Biao

    2005-04-01

    In this paper, one hundred percent of condensed sulfate paper pulp waste liquid was used as the raw material of adhesive, and the activation of its lignin as well as the improving effects of phenol formaldehyde resin and polyfunctional aqueous polymer isocyanate (PAPI) were studied. The results showed that adding formaldehyde to the waste liquid could increase the reactivity of contained lignin, and adding 30% phenol formaldehyde resin or 20% PAPI could make the waste liquid in place of pure phenol formaldehyde resin for producing class I plywood. Furthermore, the cost could be reduced by 55.5% and 49.0%, respectively, in comparing with pure phenol formaldehyde resin. This approach fully used the organic resources in paper pulp waste liquid, reduced environment pollution at the same time, and had unexceptionable economic, social and ecological benefits. The feasibility of preparing adhesives from paper pulp waste liquid was also analyzed by infrared spectrum. PMID:16011170

  1. Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process

    Directory of Open Access Journals (Sweden)

    Julien Kiener

    2016-07-01

    Full Text Available Nanocomposites of ordered mesoporous carbon associated with chromium nitride (CrN or vanadium nitride (VN nanoparticles were obtained by a simple one-pot synthesis based on the solvent evaporation induced self-assembly (EISA process using Pluronic triblock surfactant as soft-template and a phenol-based resin (resol as carbon precursor. These nanocomposites were characterized by X-ray diffraction, nitrogen physisorption and Transmission Electron Microscopy (TEM techniques. Electron tomography (or 3D-TEM technique was particularly useful for providing direct insight on the internal architecture of C/CrN nanocomposite. Nanocomposites showed a very well organized hexagonal mesoporous carbon structure and a relatively high concentration of nanoparticles well distributed in the porous network. The chromium and vanadium nitrides/mesoporous carbon nanocomposites could have many potential applications in catalysis, Li-ion batteries, and supercapacitors.

  2. WHEAT STRAW ALKALINE LIGNIN AND ITS DERIVATIVES AS RETENTION AID

    Institute of Scientific and Technical Information of China (English)

    Quanxiao Liu; Beihai He; Huaiyu Zhan; Shuhui Yang; Jianlu Liu; Zhenxing Pan; Jianhua Liu

    2004-01-01

    In this paper, a new type of retention system of PEO/cofactor retention system is introduced, the cofactors used are phenol-formaldehyde resin, wheat straw alkaline lignin and its derivatives such as hydroxymethylated lignin, sulfited lignin and lignin-based phenol-formaldehyde resin. The first pass retention of newsprint slurry and the properties of handsheet are improved by using the system. The results indicate that a new application field for lignin has been exploited.

  3. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  4. [Radiopacity of composite resins].

    Science.gov (United States)

    Tamburús, J R

    1990-01-01

    The author studied the radiopacity of six composite resins, submitted to radiographic examination in standardized conditions, only with kilovoltage variations. Along with resins it was radiographed an aluminium penetrometer, to compare their optical densities. The results showed that kilovoltagem variations interfered in optical densities of the resins, being more pronounced in 50-55, 55-60 and 60-65 kilovoltages. Despite this, the relations of optical densities as compared with that of penetrometer steps kept unaltered most fo the kilovoltages used.

  5. Bimodal mesoporous silica with bottleneck pores.

    Science.gov (United States)

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  6. Magnetic mesoporous material for the sequestration of algae

    Science.gov (United States)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  7. Facile synthesis of hypercrosslinked resins via chloromethylation and continuous condensation of simple aryl molecules

    Indian Academy of Sciences (India)

    Xiaoyan Zhang; Qiu Jin; Libo Dai; Siguo Yuan

    2011-07-01

    A sort of non-polystyrene type hypercrosslinked resin was firstly synthesized through chloromethylation of simple aryl molecules (benzene, toluene, naphthalene, diphenyl), succedent continuous Friedel–Crafts alkylation polymerization and post-crosslinking reaction. The chemical and porous structures of these novel resins were characterized with BET, FT–IR and elementary analysis, respectively. The results showed that these novel adsorptive materials possessing abundant crosslinked networks had high specific surface areas (up to 1191.26 m2/g), large pore volumes (0.2–1.4 ml/g), narrow pore size distributions (mainly in the range of micropores and small mesopores).

  8. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  9. Mesoporous metal oxide graphene nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  10. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    OpenAIRE

    Hongmei Luo; Qianglu Lin; Stacy Baber; Mahesh Naalla

    2010-01-01

    We demonstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta2O5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by sca...

  11. A Micelle Fusion-Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing.

    Science.gov (United States)

    Luo, Wei; Zhao, Tao; Li, Yuhui; Wei, Jing; Xu, Pengcheng; Li, Xinxin; Wang, Youwei; Zhang, Wenqing; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Wang, Lianjun; Jiang, Wan; Liu, Yong; Kong, Biao; Zhao, Dongyuan

    2016-09-28

    Nanostructured carbon materials have received considerable attention due to their special physicochemical properties. Herein, ordered mesoporous carbons (OMCs) with two-dimension (2D) hexagonal mesostructure and unique buckled large mesopores have successfully been synthesized via a micelle fusion-aggregation assembly method by using poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymers as a template and resorcinol-based phenolic resin as a carbon precursor. The obtained ordered mesoporous carbons possess unique fiber-like morphology, specific surface area of 571-880 m(2)/g, pore volume of 0.54 cm(3)/g and large mesopores (up to 36.3 nm) and high density of active sites (i.e., carboxylic groups) of 0.188/nm(2). Gas sensor based on the ordered mesoporous carbons exhibits an excellent performance in sensing NH3 at a low temperature with fast response (detection (<1 ppm), and good selectivity, due to the large pore sizes, high surface area and rich active sites in the carbon pore walls.

  12. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu

    2012-05-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review gives an introduction to recently developed mesoporous silicas with emphasis on their complicated structures and synthesis mechanisms. In addition, two powerful techniques for solving complex mesoporous structures, electron crystallography and electron tomography, are compared to elucidate their respective strength and limitations. Some critical issues and challenges regarding the development of novel mesoporous structures as well as their applications are also discussed. © 2011 Elsevier Ltd.

  13. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  14. Phenol-formaldehyde oligomers application for coatings production применение фенолоформальдегидных олигомеров для производства покровныХ материалов

    Directory of Open Access Journals (Sweden)

    Orlova Anzhela Manvelovna

    2011-11-01

    Full Text Available The description developed by the authors of structures and technologies production safety coatings based on glass fiber and paper, modified phenol-formaldehyde oligomers, which are possessed high physicochemical properties, durability and chemical durability, is presented.Приведено описание разработанных авторами составов и технологий получения защитно-покровных материалов на основе модифицированных фенолформальдегидными олигомерами стеклотканей и бумаги, обладающих высокими физико-химическими свойствами, долговечностью и химической стойкостью.

  15. Biocompatibility of composite resins

    Directory of Open Access Journals (Sweden)

    Sayed Mostafa Mousavinasab

    2011-01-01

    Full Text Available Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity.

  16. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    Science.gov (United States)

    Go, Bit-Na; Kim, Yang Doo; suk Oh, Kyoung; Kim, Chaehyun; Choi, Hak-Jong; Lee, Heon

    2014-09-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively.

  17. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin

    2014-12-03

    Recently, preparation of mesoporous fibers has attracted extensive attentions because of their unique and broad applications in photocatalysis, optoelectronics, and biomaterials. However, it remains a great challenge to fabricate thoroughly mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a proof of concept, the as-fabricated mesoporous TiO2 fibers exhibit much higher photocatalytic activity and stability than both the conventional solid counterparts and the commercially available P25. The abundant vapors released from the introduced foaming agents are responsible for the creation of pores with uniform spatial distribution in the spun precursor fibers. The present work represents a critically important step in advancing the electrospinning technique for generating mesoporous fibers in a facile and universal manner.

  18. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  19. Ecodesign of ordered mesoporous silica materials.

    Science.gov (United States)

    Gérardin, Corine; Reboul, Julien; Bonne, Magali; Lebeau, Bénédicte

    2013-05-01

    Characterized by a regular porosity in terms of pore size and pore network arrangement, ordered mesoporous solids have attracted increasing interest in the last two decades. These materials have been identified as potential candidates for several applications. However, more environmentally friendly and economical synthesis routes of mesoporous silica materials were found to be necessary in order to develop these applications on an industrial scale. Consequently, ecodesign of ordered mesoporous silica has been considerably developed with the objective of optimizing the chemistry and the processing aspects of the material synthesis. In this review, the main strategies developed with this aim are presented and discussed. PMID:23407854

  20. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    Hongmei Luo

    2010-01-01

    Full Text Available We demonstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta2O5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses.

  1. Sample Desorption/Onization From Mesoporous Silica

    Science.gov (United States)

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  2. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  3. Mesoporous Silicon Far Infrared Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make optical filters based on mesoporous silicon multilayers, for use at cold temperatures in the far...

  4. Direct liquid crystal templating of mesoporous silica

    OpenAIRE

    Gordon-Smith, Tobias James

    2003-01-01

    The work described in this thesis is concerned with the development of ordered mesoporous silicas by direct templating from lyotropic liquid crystal phases of the surfactants Pluronic PI23, Pluronic F127, CTAB and Brij 78. The factors affecting the regularity, morphology, pore diameter and wall thickness of the templated mesoporous silicas were examined by exploring the reaction composition space and plotting the structural properties on TMOS/surfactant/water ternary diagrams. ...

  5. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  6. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  7. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter;

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies, a...

  8. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of substituted phenol... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7220 Polymer of substituted phenol... subject to reporting. (1) The chemical substance identified generically as polymer of substituted...

  9. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  10. A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization.

    Science.gov (United States)

    Jang, Jyongsik; Lim, Byungkwon; Choi, Moonjung

    2005-09-01

    Mesoporous carbons with highly uniform and tunable mesopores were fabricated by one-step vapor deposition polymerization (VDP) using colloidal silica particles as templates and polyacrylonitrile (PAN) as a carbon precursor. PMID:16100607

  11. Mesoporous Carbon for Capacitive Deionization of Saline Water

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [ORNL; Mayes, Richard T [ORNL; Kiggans, Jim [ORNL; Sharma, Ms. Ketki [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; DePaoli, David W [ORNL; Dai, Sheng [ORNL

    2011-01-01

    Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration.

  12. Mesoporous carbon for capacitive deionization of saline water.

    Science.gov (United States)

    Tsouris, C; Mayes, R; Kiggans, J; Sharma, K; Yiacoumi, S; DePaoli, D; Dai, S

    2011-12-01

    Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration. PMID:22032802

  13. Influence of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghwan [Korea Institute of Industrial Technology, ChonAn, Korea; Ma, Zhen [ORNL; Zhang, Zongtao [ORNL; Park, Chulhwan [Kwangwoon University; Dai, Sheng [ORNL

    2009-01-01

    Loading gold on mesoporous materials via different methods has been actively attempted in the literature, but the knowledge about the influences of synthesis details and different mesoporous structures on the size and thermal stability of gold nanoparticles supported on mesoporous hosts is still limited. In this study, Au/HMS, Au/MCM-41, Au/MCM-48, Au/SBA-15, and Au/SBA-16 samples were prepared by modifying a variety of mesoporous silicas by amine ligands followed by loading HAuCl4 and calcination. The influences of different amine ligands ((3-aminopropyl)triethoxysilane versus N-[3-(trimethoxysilyl)propyl]ethylenediamine), solvents (water versus ethanol), calcination temperatures (200 or 550 C), and mesoporous structures on the size of supported gold nanoparticles were systematically investigated employing nitrogen adsorption-desorption measurement, X-ray diffraction (XRD), diffuse reflectance UV-vis spectroscopy, and transmission electron microscopy (TEM). Interestingly, while big and irregular gold particles situate on MCM-48 with bicontinuous three-dimensional pore structure and relatively small pore size (2.4 nm) upon calcination at 550 C, homogeneous and small gold nanoparticles maintain inside SBA-15 with one-dimensional pore structure and relatively big pore size (6.8 nm). Apparently, the pore structure and pore size of mesoporous silica hosts play a key role in determining the size and thermal stability of the supported gold nanoparticles. Our results may provide some useful clues for the rational design of supported metal catalysts by choosing suitable mesoporous hosts.

  14. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  15. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  16. Advanced thermoplastic resins, phase 1

    Science.gov (United States)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  17. Supramolecular-templated synthesis of mesoporous silica-zirconia nanocomposite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mesoporous SiO2-ZrO2 nanocomposite was successfully prepared by using supramolecular triblock copolymer as the template through evaporation-induced self-assembly approach. The textural and structural properties were characterized by X-ray diffraction, nitrogen adsorption analysis, and transmission electron microscope.Comparison between pure mesoporous silica and mesoporous silica-zirconia nanocomposite was also presented in this work. The surface area, pore size, and pore volume decreased as the Zr doping in the mesoporous silica framework. But the obtained nanocomposite maintained the cubic Im3m-type mesoporous structure.

  18. Preparation and characterization of mesoporous indium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi-zhe; CHENG Zhi-xuan; PAN Qing-yi; DONG Xiao-wen; ZHANG Jian-cheng; PAN Ling-li

    2009-01-01

    Indium oxide nanocrystals with mesoporous structure were successfully synthesized by using triblock copolymer as a template,and characterized by thermogravimetry-differential scanning calorimeter (TG-DSC),X-ray powder diffraction (XRD),high resolution transmission electron microscopy (HRTEM) and N2 adsorption.A high EO/PO ratio is thought to be the key point to prepare mesoporous In2O3.The results show that the average pore diameter of the products is 6 nm,the BET surface area is 54.78 m2/g,and the adsorbing pore volume is 0.345 cm3/g.After comparing with normal indium oxide nanoparticles by BET test,mesoporous indium oxide demonstrates a large difference in adsorbing pore volume and average pore diameters from normal ones.

  19. Pore Narrowing of Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Christophe Detavernier

    2013-02-01

    Full Text Available To use mesoporous silicas as low-k materials, the pore entrances must be really small to avoid diffusion of metals that can increase the dielectric constant of the low-k dielectric. In this paper we present a new method to narrow the pores of mesoporous materials through grafting of a cyclic-bridged organosilane precursor. As mesoporous material, the well-studied MCM-41 powder was selected to allow an easy characterization of the grafting reactions. Firstly, the successful grafting of the cyclic-bridged organosilane precursor on MCM-41 is presented. Secondly, it is demonstrated that pore narrowing can be obtained without losing porosity by removing the porogen template after grafting. The remaining silanols in the pores can then be end-capped with hexamethyl disilazane (HMDS to make the material completely hydrophobic. Finally, we applied the pore narrowing method on organosilica films to prove that this method is also successful on existing low-k materials.

  20. Basic Functionalization of Hexagonal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    3-Aminopropyltricthoxysilanc (AM), 3-cthyldiaminopropyltrimcthoxysilane (ED) and 3-piperazinylpropyltriethoxysilanc (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The inerease in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.

  1. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  2. Location of laccase in ordered mesoporous materials

    Directory of Open Access Journals (Sweden)

    Álvaro Mayoral

    2014-11-01

    Full Text Available The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (Cs corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  3. Location of laccase in ordered mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  4. Microstructure and application of mesoporous nanosize zirconia

    Institute of Scientific and Technical Information of China (English)

    LIU Xinmei; YAN Zifeng; G.Q.Lu

    2004-01-01

    The mesoporous nanoscale zircoina zeolite was firstly synthesized via solid state -- Structure directing method without addition of any stabilizer. The sample bears lamellar or worm pore structures, relatively high surface area compared with that reported. The mesoporous nanosize structure can also resist higher calcination temperature. The introduction of above zirconia to the catalyst of methanol synthesis dedicates the nanosize particle size to the catalyst, which significantly changes the physical structure and electronic effect of the catalyst. The catalyst shows higher catalytic activity and selectivity to methanol. The active sites for methanol synthesis are demonstrated over various catalysts in this paper.

  5. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  6. Unidirectional self-assembly of soft templated mesoporous carbons by zone annealing

    Science.gov (United States)

    Xue, Jiachen; Singh, Gurpreet; Qiang, Zhe; Karim, Alamgir; Vogt, Bryan D.

    2013-08-01

    Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing.Surfactant or block copolymer-templated mesoporous films have

  7. Mesoporous mordenite, preparation and use thereof

    NARCIS (Netherlands)

    Groen, J.C.; Moulijn, J.A.; Perez-Ramirez, J.

    2008-01-01

    The invention is directed to a process for the preparation of a mesoporous mordenite, which process comprises subjecting a non-dealuminated mordenite having an atomic ratio of framework Si-to-Al of least, to an alkaline treatment in order to create mesoporosity by removal of silicon, to various meso

  8. Supra-amphiphilic transparent mesoporous silica coating

    Institute of Scientific and Technical Information of China (English)

    MA Jin; YANG Zhenglong; QU Xiaozhong; YANG Zhenzhong

    2006-01-01

    Transparent mesoporous silica coatings were achieved by conventional sol-gel process. The obtained coatings display permanent supraamphiphilicity, transparent appearance and good wetting property with very fast spread rate. Incorporation of functional materials such as crystalline titania nanoparticles into the coatings was also carried out without affecting the transparency and supraamphiphilicity.

  9. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  10. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil;

    2012-01-01

    Background. Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown....... Objectives. To evaluate the prevalence of contact allergy to epoxy resin monomer (diglycidyl ether of bisphenol A; MW 340) among patients with suspected contact dermatitis and relate this to occupation and work-related consequences. Patients/methods. The dataset comprised 20 808 consecutive dermatitis...... patients patch tested during 2005-2009. All patients with an epoxy resin-positive patch test were sent a questionnaire. Results. A positive patch test reaction to epoxy resin was found in 275 patients (1.3%), with a higher proportion in men (1.9%) than in women (1.0%). The prevalence of sensitization...

  11. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    International Nuclear Information System (INIS)

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO3 materials were investigated. Mesoporous Fe–CaSiO3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO3 materials, mesoporous Fe–CaSiO3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. (paper)

  12. Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation

    Directory of Open Access Journals (Sweden)

    Pascal Van Der Voort

    2013-08-01

    Full Text Available A Periodic Mesoporous Organosilica (PMO functionalized with sulfonic acid groups has been successfully synthesized via a sequence of post-synthetic modification steps of a trans-ethenylene bridged PMO material. The double bond is functionalized via a bromination and subsequent substitution obtaining a thiol functionality. This is followed by an oxidation towards a sulfonic acid group. After full characterization, the solid acid catalyst is used in the acetylation of glycerol. The catalytic reactivity and reusability of the sulfonic acid modified PMO material is investigated. The catalyst showed a catalytic activity and kinetics that are comparable with the commercially available resin, Amberlyst-15, and furthermore our catalyst can be recycled for several subsequent catalytic runs and retains its catalytic activity.

  13. Structure Evolution of Ordered Mesoporous Carbons Induced by Water Content of Mixed Solvents Water/Ethanol.

    Science.gov (United States)

    Li, Peng; Liang, Shujun; Li, Zhenzhong; Zhai, Yan; Song, Yan

    2016-12-01

    In this work, mesostructure evolution of ordered mesoporous carbons (OMCs) from the 2-D hexagonal (space group p6mm) to the discontinuous cubic [Formula: see text], then towards the face-centered cubic lattice [Formula: see text], and finally, to the simple cubic Pm3n is achieved by simply adjusting the cosolvent water content of the mixed solvents water/ethanol in the presence of a reverse nonionic triblock copolymer and low molecular resin by evaporation-induced self-assembly method. Experimental results demonstrate that both the cosolvent and the reverse triblock copolymer play a key role in the mesophase transitions of OMCs. Furthermore, the OMCs with Pm3n symmetry are reported for the first time. Finally, the mechanism of mesostructure transition was discussed and proposed. PMID:27518232

  14. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release.

    Science.gov (United States)

    Geng, Hongjian; Zhao, Yating; Liu, Jia; Cui, Yu; Wang, Ying; Zhao, Qinfu; Wang, Siling

    2016-08-20

    The purpose of this study was to develop a high drug loading hollow mesoporous silica nanoparticles (HMS) and apply for regulation insoluble drug release. HMS was synthesized using hard template phenolic resin nanoparticles with the aid of cetyltrimethyl ammonium bromide (CTAB), which was simple and inexpensive. To compare the difference between normal mesoporous silica (NMS) and hollow mesoporous silica in drug loading efficiency, drug release behavior and solid state, NMS was also prepared by soft template method. Transmission electron microscopy (TEM), specific surface area analysis, FT-IR and zeta potential were employed to characterize the morphology structure and physicochemical property of these carriers. The insoluble drugs, carvedilol and fenofibrate(Car and Fen), were chosen as the model drug to be loaded into HMS and NMS. We also chose methylene blue (MB) as a basic dye to estimate the adsorption ability of these carriers from macroscopic and microscopic view, and the drug-loaded carriers were systematically studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and UV-vis spectrophotometry. What' more, the in vivo process of HMS was also study by confocal microscopy and in vivo fluorescence imaging. In order to confirm the gastrointestinal safety of HMS, the pathological examination of stomach and intestine also be evaluated. HMS allowed a higher drug loading than NMS and exhibited a relative sustained release curve, while NMS was immediate-release. And the effect of preventing drugs crystallization was weaker than NMS. As for in vivo process, HMS was cleared relatively rapidly from the mouse gastrointestinal and barely uptake by intestinal epithelial cell in this study due to its large particle size. And the damage of HMS to gastrointestinal could be ignored. This study provided a simple method to obtain high drug loading and regulation insoluble drug release, expanded the application of inorganic carriers in drug delivery system

  15. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  16. 21 CFR 872.3140 - Resin applicator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin applicator. 872.3140 Section 872.3140 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application...

  17. Indirect resin composites

    Directory of Open Access Journals (Sweden)

    Nandini Suresh

    2010-01-01

    Full Text Available Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ′indirect resin composites,′ composite inlays,′ and ′fiber-reinforced composites.′

  18. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  19. ADSORPTION OF WATER AND BENZENE VAPOUR IN MESOPOROUS MATERIALS

    OpenAIRE

    Paulina Taba

    2008-01-01

    Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification). MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16) or MCM-41 (C12) respectively and a mixture of cethyltrimethylammoniu...

  20. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    Science.gov (United States)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  1. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    Science.gov (United States)

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to

  2. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  3. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  4. EPOXY RESIN TOUGHENED BY THERMOPLASTICS

    Institute of Scientific and Technical Information of China (English)

    FU Zengli; SUN Yishi

    1989-01-01

    Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.

  5. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  6. SYNTHESIS AND COATING OF ORDERED MESOPOROUS SILICA

    Institute of Scientific and Technical Information of China (English)

    Wei Guo; Guangsheng Luo; Yujun Wang

    2003-01-01

    1,3,5-trimethyl benzene (TMB) was used as organic swelling agent in O/W emulsions to template ultra-large mesoporous materials using the hydrothermal method. The silicas with well-defined mesopores and hydrothermally robust framework were characterized by X-ray diffraction, transmission electron microscopy and BET surface area analysis. The influence of the quantity of TMB during preparation was studied. It has been found that the TMB/CTAB ratio must be controlled for producing high pore volume materials. Polysulfone (PSU), as the usual extraction agent, was coated on the silicas with the solvent evaporation method to produce a solid separation medium. The adsorptivity and the surface area of the coated MCM were determined: 10% PSU coated MCM adsorbed twice as much phenol as the uncoated material, reaching 0.5 mg/g silica. It was found that the surface area of the coated material decreased rapidly with an increase of the PSU loading.

  7. Recycle of silicate waste into mesoporous materials.

    Science.gov (United States)

    Kim, Jung Ho; Kim, Minwoo; Yu, Jong-Sung

    2011-04-15

    Template synthesis of porous carbon materials usually requires selective removal of template silica from the carbon/silica composites. It not only involves waste of valuable chemicals, but also poses significant environmental concerns including high waste treatment cost. Recycling of silicates released from such nanocasting methods is successfully performed for the first time to regenerate valuable mesoporous MCM and SBA type silica materials, which will not only help in saving valuable chemicals, but also in decreasing chemical waste, contributing in improvement of our environmental standards. This approach can thus improve cost effectiveness for the mass production of nanostructured carbon and others utilizing silica directed nanocasting method by recycling otherwise silicate waste into highly desirable valuable mesoporous silica.

  8. Regenerating Water-Sterilizing Resins

    Science.gov (United States)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  9. Liquid monobenzoxazine based resin system

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  10. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor.

    Science.gov (United States)

    Kruk, Michal; Dufour, Bruno; Celer, Ewa B; Kowalewski, Tomasz; Jaroniec, Mietek; Matyjaszewski, Krzysztof

    2005-05-19

    Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs. PMID:16852101

  11. Immobilization of Methyltrioxorhenium on Mesoporous Aluminosilicate Materials

    Directory of Open Access Journals (Sweden)

    Martina Stekrova

    2014-03-01

    Full Text Available The presented report focuses on an in-depth detailed characterization of immobilized methyltrioxorhenium (MTO, giving catalysts with a wide spectra of utilization. The range of mesoporous materials with different SiO2/Al2O3 ratios, namely mesoporous alumina (MA, aluminosilicates type Siral (with Al content 60%–90% and MCM-41, were used as supports for immobilization of MTO. The tested support materials (aluminous/siliceous exhibited high surface area, well-defined regular structure and narrow pore size distribution of mesopores, and therefore represent excellent supports for the active components. Some of the supports were modified by zinc chloride in order to obtain catalysts with higher activities for instance in metathesis reactions. The immobilization of MTO was optimized using these supports and it was successful using all supports. The success of the immobilization of MTO and the properties of the prepared heterogeneous catalysts were characterized using X-ray Fluorescence (XRF, atomic absorption spectroscopy (AAS, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, physical adsorption of N2, ultraviolet-visible spectroscopy (UV-Vis, infrared spectroscopy (FTIR, Fourier Transform Infrared Spectroscopy (FTIR using pyridine as a probe molecule and X-ray photoelectron spectroscopy (XPS. Furthermore, the catalytic activity of the immobilized MTO on the tested supports was demonstrated on metathesis reactions of various substrates.

  12. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  13. Polymer/mesoporous metal oxide composites

    Science.gov (United States)

    Ver Meer, Melissa Ann

    Understanding the nature of the interfacial region between an organic polymer matrix and an inorganic filler component is essential in determining how this region impacts the overall bulk properties of the organic/inorganic hybrid composite material. In this work, polystyrene was used as the model polymer matrix coupled with silica-based filler materials to investigate the nature of structure-property relationships in polymer composites. Initial work was conducted on synthesis and characterization of colloidal and mesoporous silica particles melt blended into the polystyrene matrix. Modification of the interface was accomplished by chemically bonding the silica particles with the polystyrene chains through polymerization from the particle surface via atom transfer radical polymerization. High molecular weight polystyrene chains were formed and bulk test samples were evaluated with increased thermal stability of the grafted polymer composite system versus equivalent melt blended polymer composites. Polymer grafting was also conducted from the internal pores of mesoporous silica, further improving the thermal stability of the composite system without degrading dynamic mechanical properties. Characterization of the polymer composites was conducted with gel permeation chromatography, transmission electron microscopy, thermogravimetric analysis and dynamic mechanical analysis. It was also discovered during the polystyrene-silica composite studies that amorphous polystyrene can possess a less mobile phase, evident in a second peak of the loss tangent (tan delta). The long annealing times necessitated by the mesoporous silica composites were replicated in as received polystyrene. This new, less mobile phase is of particular interest in determining the mobility of polymer chains in the interfacial region.

  14. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke

    2011-01-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI: http://dx.doi.org/10.9767/bcrec.5.2.793.63-67

  15. Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation

    Science.gov (United States)

    Xu, Shunjian; Luo, Yufeng; Zhong, Wei; Xiao, Zonghu; Luo, Yongping; Ou, Hui; Zhao, Xing-Zhong

    2014-06-01

    In this paper, a gradient mesoporous carbon (GMC) monolith derived from the mixtures of phenolic resin (PF) and ethylene glycol (EG) was prepared by a facile route based on polymerization-induced phase separation under temperature gradient (TG). A graded biphasic structure of PF-rich and EG-rich phases was first formed in preform under a TG, and then the preform was pyrolyzed to obtain the GMC monolith. The TG is mainly induced by the thermal resistance of the preferential phase separation layer at high temperature region. The pore structure of the monolith changes gradually along the TG direction. When the TG varies from 58°C to 29°C, the pore size, apparent porosity and specific surface area of the monolith range respectively from 18 nm to 83 nm, from 32% to 39% and from 140.5 m2/g to 515.3 m2/g. The gradient porous structure of the monolith is inherited from that of the preform, which depends on phase separation under TG in the resin mixtures. The pyrolysis mainly brings about the contraction of the pore size and wall thickness as well as the transformation of polymerized PF into glassy carbon.

  16. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  18. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs;

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA......-type single crystals could be crystallized from fluoride media by a newly developed procedure presented here. Thus, we here present the only known route to mesoporous BEA-type single crystals, since crystallization of this framework structure from basic media is known to give only nanosized crystals...

  19. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  20. Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica

    Indian Academy of Sciences (India)

    A Bhaumik; S Samanta; N K Mal

    2005-11-01

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV–visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3),` within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore.

  1. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  2. A highly ordered cubic mesoporous silica/graphene nanocomposite

    Science.gov (United States)

    Lee, Chang-Wook; Roh, Kwang Chul; Kim, Kwang-Bum

    2013-09-01

    A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites.A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites. Electronic supplementary information (ESI) available: S1: TEM images of disordered mesoporous silica/graphene nanocomposite; S2: TEM images of KIT-6/GO nanocomposite; S3: Thermogravimetric analysis of KIT-6/GO and KG-400-700; S4: SEM and TEM images of KIT-6; S5: Low angle XRD, Raman spectra, N2 adsorption isotherms, pore size distribution and photographic images of the prepared samples; S6: TEM image and N2 adsorption isotherms of mesoporous carbon/graphene nanocomposite; S7: XPS C1s spectra of the prepared samples. See DOI: 10.1039/c3nr03108j

  3. THE SYNTHESIS OF MODIFIED DIPHENYL OXIDE RESIN

    Institute of Scientific and Technical Information of China (English)

    MAOMingfei; LIUZhifang; 等

    2002-01-01

    Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants.And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerized and modify once more.The system was applied in composites.Their properties wrer investigated and found that they met the requirements as a heat-resisting adhesive.

  4. Uranium sorption by tannin resins

    International Nuclear Information System (INIS)

    The sorption of uranium by immobilised Eucalyptus Saligna Sm. and Lysiloma latisiliqua L tannins was investigated. Immobilization condition were analyzed. These resins resulted suitable adsorbent for the concentration of uranium from aqueous systems. The sorption of uranium is pH dependent. At pH 5.5 maximum in sorption capacity is registered. The presence of appreciable amount of sodium chloride do not have any effect on uranium removal. Carbonate and calcium ions in concentrations similar to these that could be found in sea water and other natural water do not decrease the uranium uptake. Tannin resins can be used several times without an appreciable decay of their sorption capacity

  5. Adsorption-Induced Deformation of Mesoporous Solids

    CERN Document Server

    Gor, Gennady Yu

    2010-01-01

    The Derjaguin - Broekhoff - de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by adsorbed phase with the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a semi-quantitative description of non-monotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.

  6. Method of removing contaminants from plastic resins

    Science.gov (United States)

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  7. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  8. 21 CFR 177.1680 - Polyurethane resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyurethane resins. 177.1680 Section 177.1680 Food... of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  9. 21 CFR 172.280 - Terpene resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely...

  10. 21 CFR 177.1595 - Polyetherimide resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyetherimide resin. 177.1595 Section 177.1595... Components of Single and Repeated Use Food Contact Surfaces § 177.1595 Polyetherimide resin. The polyetherimide resin identified in this section may be safely used as an article or component of an...

  11. Silica-based mesoporous nanoparticles for controlled drug delivery.

    Science.gov (United States)

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A; Kim, Hae-Won; Chrzanowski, Wojciech

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  12. Stochastic resin transfer molding process

    CERN Document Server

    Park, M

    2016-01-01

    We consider one-dimensional and two-dimensional models of stochastic resin transfer molding process, which are formulated as random moving boundary problems. We study their properties, analytically in the one-dimensional case and numerically in the two-dimensional case. We show how variability of time to fill depends on correlation lengths and smoothness of a random permeability field.

  13. Gated Silica Mesoporous Materials in Sensing Applications.

    Science.gov (United States)

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-08-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept-that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  14. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  15. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  16. Photoacoustic analysis of dental resin polymerization

    Science.gov (United States)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  17. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; da Cunha, Leonardo Fernandes; Benetti, Ana Raquel;

    2007-01-01

    The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the e......The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces...... of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1) rinsing with water and drying; (G2) application of an adhesive system; (G3) rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4) rinsing and drying, etching, application......-resin interfaces with saliva significantly reduced shear strength, especially after prolonged storage (p...

  18. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.

  19. Preparation of Helical Mesoporous Ethenylene-silica Nanofibers with Lamellar Mesopores on Their Surface

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Li Yi; Bi Lifeng; Zhuang Wei; Wang Sibing; Chen Yuanli; Li Baozong; Yang Yonggang

    2011-01-01

    The morphologies and pore architectures of mesoporous ethenylene-silica were controlled using cetyl-trimethylammonium bromide (CTAB) as template and (S)-β-citroneliol as a co-structure-directing agent under basic conditions. When the (S)-β-citronellol/CTAB molar ratios are in the range of 0.75-2.0, helical nanofibers were ob-tained. With increasing the (S)-β-citronellol/CTAB molar ratio, the lengths of the nanofibers increases. Lamellar mesopores were identified on the surfaces of the nanofibers prepared in the (S)-β-citronellol/CTAB molar ratio range of 1.5-2.0. At the (S)-β-citronellol/CTAB molar ratio of 2.5 : 1, nanoparticles with nanoflakes on the sur-faces were obtained. The field emission scanning electron microscopy images taken after different reaction times indicated that the helical pitches of the nanofibers decreased with increasing the reaction time. Helical 1,4-phenylene-silica and methylene-silica nanofibers were also prepared. The results indicated that the morpholo-gies and pore architectures of the obtained organic-inorganic hybrid silicas are also sensitive to the hybrid silica precursors. Helical ethenylene-silica nanofibers with lamellar mesopores on their surfaces can be also prepared us-ing the mixtures of CTAB and racemic citronellol within a narrower citronellol/CTAB molar ratio range.

  20. Novel method to incorporate Si into monodispersed mesoporous carbon spheres.

    Science.gov (United States)

    Yano, Kazuhisa; Tatsuda, Narihito; Masuda, Takashi; Shimoda, Tatsuya

    2016-10-01

    Liquid silicon precursor is used as a silicon source and very simple and easy method for the incorporation of Si into mesoporous carbon spheres is presented. By using capillary condensation, the liquid precursor, Cyclopentasilane, penetrates into mesopores of carbon spheres homogeneously and subsequent heating brings the decomposition of the precursor and the formation of silicon inside meso-channels of carbon even though the decomposition is done much higher than the boiling point of the precursor. The homogeneous distribution of silicon is verified by EDX mapping of the composite as well as SEM observation of the calcined one. More than 45wt% of Si can be incorporated into mesopores by just one operation. The Si@mesoporous carbon composite works as an anode for a Lithium ion battery. PMID:27344486

  1. Phosphorus recovery by mesoporous structure material from wastewater.

    Science.gov (United States)

    Lee, S H; Lee, B C; Lee, K W; Lee, S H; Choi, Y S; Park, K Y; Iwamoto, M

    2007-01-01

    This study was designed to investigate the fundamental aspects of a possible removal of phosphorous from wastewater by using the mesoporous structure materials for wastewater reuse. The zirconium sulphate with mesoporous structure as a new type of ion exchangers was synthesised by hydrothermal reaction. From the results of X-ray diffraction and transmission electron microscope, it was discovered that the synthesised material had hexagonal mesoporous structure with a pore size of approximately 40-50A. Experimental results showed that the zirconium sulphate with mesoporous structure had very high sorption capacity for the phosphorus. The novel ion exchange occurred between PO4(3-) and SO4(2-), OH-. The amount of phosphate ions exchanged into the solid was as great as 3.4 mmol/g-ZS. Furthermore, it is possible to obtain a higher removal efficiency than other ion exchange media and adsorbents.

  2. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  3. Mesoporous Silicas with Tunable Morphology for the Immobilization of Laccase

    Directory of Open Access Journals (Sweden)

    Victoria Gascón

    2014-05-01

    Full Text Available Siliceous ordered mesoporous materials (OMM are gaining interest as supports for enzyme immobilization due to their uniform pore size, large surface area, tunable pore network and the introduction of organic components to mesoporous structure. We used SBA-15 type silica materials, which exhibit a regular 2D hexagonal packing of cylindrical mesopores of uniform size, for non-covalent immobilization of laccase. Synthesis conditions were adjusted in order to obtain supports with different particle shape, where those with shorter channels had higher loading capacity. Despite the similar isoelectric points of silica and laccase and the close match between the size of laccase and the pore dimensions of these SBA-15 materials, immobilization was achieved with very low leaching. Surface modification of macro-/mesoporous amorphous silica by grafting of amine moieties was proved to significantly increase the isoelectric point of this support and improve the immobilization yield.

  4. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  5. Preparation of mesoporous aluminophosphate usingpoly(amido amine) as template

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaofeng; LIN Shen; CHEN Xinqing; CHEN Jiebo; YANG Liuyi; LUO Minghong

    2007-01-01

    Mesoporous aluminophosphate was prepared by using G4.0 poly(amido amine)dendrimer as a template and characterized by Fourier transform infrared spectrometer(FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption/desorption methods.Results show that the title compound exhibits a typical mesoporous structure with the average pore size from 5 to 8 nm. The formation mechanism of the nanoporous structure using dendrimer as a template was also discussed.

  6. Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials

    OpenAIRE

    Parsons-Moss, Tashi

    2014-01-01

    Ordered mesoporous materials are porous solids with a regular, patterned structure composed of pores between 2 and 50 nm wide. Such materials have attracted much attention in the past twenty years because the chemistry of their synthesis allows control of their unique physicochemical properties, which can be tuned for a variety of applications. Generally, ordered mesoporous materials have very high specific surface areas and pore volumes, and offer unique structures that are neither crystalli...

  7. Synthesis, Characterization and Pore Structure Analysis of Mesoporous Materials

    OpenAIRE

    Saldarriaga Lopez, Laura Carolina

    2014-01-01

    Self-assembly provides a route to make mesoporous structures that have accessible internal surface area. These types of materials show promise for use in opto-electronic devices as well as for energy storage devices. In this work we synthesize a range of mesoporous thin films from molecular and nanocrystal precursors. We characterize these films' porous structure and surface area using ellipsometric-porosimetry. This work is divided into three parts; the first section focuses on synthesizing ...

  8. Solar hydrogen and solar electricity using mesoporous materials

    Science.gov (United States)

    Mahoney, Luther

    The development of cost-effective materials for effective utilization of solar energy is a major challenge for solving the energy problems that face the world. This thesis work relates to the development of mesoporous materials for solar energy applications in the areas of photocatalytic water splitting and the generation of electricity. Mesoporous materials were employed throughout the studies because of their favorable physico-chemical properties such as high surface areas and large porosities. The first project was related to the use of a cubic periodic mesoporous material, MCM-48. The studies showed that chromium loading directly affected the phase of mesoporous silica formed. Furthermore, within the cubic MCM-48 structure, the loading of polychromate species determined the concentration of solar hydrogen produced. In an effort to determine the potential of mesoporous materials, titanium dioxide was prepared using the Evaporation-Induced Self-Assembly (EISA) synthetic method. The aging period directly determined the amount of various phases of titanium dioxide. This method was extended for the preparation of cobalt doped titanium dioxide for solar simulated hydrogen evolution. In another study, metal doped systems were synthesized using the EISA procedure and rhodamine B (RhB) dye sensitized and metal doped titania mesoporous materials were evaluated for visible light hydrogen evolution. The final study employed various mesoporous titanium dioxide materials for N719 dye sensitized solar cell (DSSC) materials for photovoltaic applications. The materials were extensively characterized using powder X-ray diffraction (XRD), nitrogen physisorption, diffuse reflectance spectroscopy (DRS), UV-Vis spectroscopy, Fourier-Transform-Infrared Spectroscopy (FT-IR), Raman spectroscopy, chemisorption, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). In addition, photoelectrochemical measurements were completed using

  9. Advanced thermoplastic resins, phase 2

    Science.gov (United States)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  10. Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions

    Science.gov (United States)

    Helgeson, Matthew E.; Moran, Shannon E.; An, Harry Z.; Doyle, Patrick S.

    2012-04-01

    We report the formation of mesoporous organohydrogels from oil-in-water nanoemulsions containing an end-functionalized oligomeric gelator in the aqueous phase. The nanoemulsions exhibit an abrupt thermoreversible transition from a low-viscosity liquid to a fractal-like colloidal gel of droplets with mesoscale porosity and solid-like viscoelasticity with moduli approaching 100 kPa, possibly the highest reported for an emulsion-based system. We hypothesize that gelation is brought about by temperature-induced interdroplet bridging of the gelator, as shown by its dependence on the gelator chemistry. The use of photocrosslinkable gelators enables the freezing of the nanoemulsion’s microstructure into a soft hydrogel nanocomposite containing a large fraction of dispersed liquid hydrophobic compartments, and we show its use in the encapsulation and release of lipophilic biomolecules. The tunable structural, mechanical and optical properties of these organohydrogels make them a robust material platform suitable for a wide range of applications.

  11. Adsorption of octadecyltrichlorosilane on mesoporous SBA-15

    International Nuclear Information System (INIS)

    Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m2/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH3) and methylene (-CH2) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 deg. C and that the OTS monolayers decompose between 230 and 400 deg. C

  12. Adsorption of octadecyltrichlorosilane on mesoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Mirji, S.A. [Physical Chemistry Division, National Chemical Laboratory, Pune 411008 (India)]. E-mail: mirji@dalton.ncl.res.in; Halligudi, S.B. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Sawant, Dhanashri P. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Jacob, Nalini E. [Inorganic and Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Patil, K.R. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Gaikwad, A.B. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Pradhan, S.D. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India)

    2006-04-15

    Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m{sup 2}/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH{sub 3}) and methylene (-CH{sub 2}) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 deg. C and that the OTS monolayers decompose between 230 and 400 deg. C.

  13. Stabilization of mesoporous nanocrystalline zirconia with Laponite

    Institute of Scientific and Technical Information of China (English)

    LIU Xinmei; YAN Zifeng; LU Gaoqing

    2005-01-01

    The mesoporous nanocrystalline zircoina was synthesized via solid state reaction--structure directing method in the presence of Laponite. The introduction of Laponite renders the higher thermal stability and lamellar track to the zirconia. Laponite acts as inhibitor for crystal growth and also hard template for the mesostructure. The role of Laponite is attributed to the interaction between the zirconia precursors and the nano-platelets of Laponite via the bridge of hydrophilic segments of surfactant. It results in the formation of Zr-O-Mg-O-Si frameworks in the direction of Laponite layer with the condensation of frameworks during the calcination process, which contributes the higher stability and lamellar structure to the nano-sized zirconia samples.

  14. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    OpenAIRE

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-01-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielec...

  15. CHARACTERIZATION OF GLUED LAMINATED PANELS PRODUCED WITH STRIPS OF BAMBOO (Guadua magna) NATIVE FROM THE BRAZILIAN CERRADO

    DEFF Research Database (Denmark)

    Teixeira, Divino Eterno; Bastos, Rodrigo Pinheiro; Almeida, Sergio Alberto de Oliveira

    2015-01-01

    Panels were produced with strips of bamboo (Guadua magna) in layers crossed at angles of 90° and bonded with phenol-formaldehyde or PVA based resin, glued in three and five plies. The panels were tested and the physical and mechanical properties determined. The tests were primarily related to the...

  16. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure. PMID:12240191

  17. Synthesis of ordered mesoporous U{sub 3}O{sub 8} by a nanocasting route

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran; Wang, Lin; Gu, Zhan-Jun; Yuan, Li-Yong; Xiao, Cheng-Liang; Zhao, Yu-Liang; Shi, Wei-Qun [Institute of High Energy Physics, Beijing (China). Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Chai, Zhi-Fang [Institute of High Energy Physics, Beijing (China). Key Laboratory of Nuclear Radiation and Nuclear Energy Technology; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences

    2014-11-01

    Ordered mesoporous U{sub 3}O{sub 8} has been synthesized by a nanocasting route using mesoporous silica (KIT-6 and SBA-15) as templates and characterized by using XRD, SEM and nitrogen adsorption/desorption techniques.

  18. Development of tough, moisture resistant laminating resins

    Science.gov (United States)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  19. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Xylene-formaldehyde resins condensed with 4,4â²... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...) The resins are produced by the condensation of xylene-formaldehyde resin and...

  20. Relative Molecular Mass Distribution of BG Resins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Benzoguanamine-formaldehyde (BG-F) resins are a class of amino resins, which are important cross-linking agents for epoxy, alkyol and acrylic resins, etc. The cross-linking performance is the best one when the polymerization degree is 2-4. This paper discusses the effects of the pH value for polycondensation and the formaldehyde to benzoguanamine mole ratio in a methanol system, and compares the relative molecular mass distribution using the Flory statistics method.

  1. Epoxy Resins Modified with Vegetable Oils

    Institute of Scientific and Technical Information of China (English)

    P.Czub

    2007-01-01

    1 Results The application of modified natural oils, nontoxic, biodegradable and renewable materials, for the modification and the synthesis of epoxy resins were presented. Firstly, the application of epoxidized vegetable oils (soybean, rapeseed, linseed and sunflower):as reactive diluents for epoxy resins was proposed and studied[1-2]. Viscosity reducing ability of epoxidized oils was tested in the compositions with Bisphenol A based low-molecular-weight epoxy resins. The rheological behaviour of the mi...

  2. Two-dimensional mesoporous materials: From fragile coatings to flexible membranes

    Institute of Scientific and Technical Information of China (English)

    Zheng-Long Yang; Jiao-Li Li; Cheng-Liang Zhang; Yun-Feng Lu; Zhen-Zhong Yang

    2013-01-01

    This paper reviews the progress of two-dimensional mesoporous materials including their synthesis strategy,mesostructure,composition,surface property,flexibility,and potential applications.During the past two decades,research on two-dimensional mesoporous materials has experienced an evolution from fragile coatings to flexible membranes.Aiming at practical applications,it is significant to support mesoporous materials with proper matrices for example porous membranes especially flexible ones to form mesoporous composite membranes with designed pore size and chemistry.

  3. Damping Properties of Flexible Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang; LIU Hanxing; OUYANG Shixi

    2008-01-01

    Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.

  4. Resin composites in minimally invasive dentistry.

    Science.gov (United States)

    Jacobsen, Thomas

    2004-01-01

    The concept of minimally invasive dentistry will provide favorable conditions for the use of composite resin. However, a number of factors must be considered when placing composite resins in conservatively prepared cavities, including: aspects on the adaptation of the composite resin to the cavity walls; the use of adhesives; and techniques for obtaining adequate proximal contacts. The clinician must also adopt an equally conservative approach when treating failed restorations. The quality of the composite resin restoration will not only be affected by the outline form of the preparation but also by the clinician's technique and understanding of the materials.

  5. Bending rigidity of composite resin coating clasps.

    Science.gov (United States)

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  6. Curing Mechanism of Condensed Polynuclear Aromatic Resin and Thermal Stability of Cured Resin

    Institute of Scientific and Technical Information of China (English)

    Li Shibin; Sun Qiqian; Wang Yuwei; Wu Mingbo; Zhang Zailong

    2015-01-01

    In order to improve the thermal stability of condensed polynuclear aromatic (COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by pro-ton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier trans-form infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermo-gravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the cur-ing process, and the curing mechanism was conifrmed to be the electrophilic substitution reaction. Compared with the un-cured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65%at 600℃, which was much higher than 25.02%of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.

  7. FABRICATION AND STUDY OF LIGNOCELLULOSIC HIBISCUS SABDARIFFA FIBER REINFORCED POLYMER COMPOSITES

    OpenAIRE

    Amar Singh Singha; Vijay Kumar Thakur

    2008-01-01

    Fabrication of polymer composites reinforced with lignocellulosic materials has increased considerably during the last few years. This work reports the synthesis of natural fiber reinforced phenol-formaldehyde (PF) resin matrix based polymer composite using a compression molding technique. Initially the PF resin was prepared by varying the concentration of formaldehyde with a fixed weight of phenol. Polymeric resin of different P: F ratios were subjected for optimization of their mechanical p...

  8. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.;

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting in a hier...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  9. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-02-14

    The present study is the first report on the synthesis and characterization of mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). A series of NR/HMS composites were prepared in tetrahydrofuran via an in situ sol–gel process using tetraethylorthosilicate as the silica precursor. The physicochemical properties of the composites were characterized by various techniques. The effects of the gel composition on the structural and textural properties of the NR/HMS composites were investigated. The Fourier-transform infrared spectroscopy (FTIR) and {sup 29}Si magic angle spinning nuclear magnetic resonance ({sup 29}Si MAS NMR) results revealed that the surface silanol groups of NR/HMS composites were covered with NR molecules. The powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated an expansion of the hexagonal unit cell and channel wall thickness due to the incorporation of NR molecules into the mesoporous structure. NR/HMS composites also possessed nanosized particles (∼79.4 nm) as confirmed by scanning electron microscopy (SEM) and particle size distribution analysis. From N{sub 2} adsorption–desorption measurement, the NR/HMS composites possessed a high BET surface area, large pore volume and narrow pore size distribution. Further, they were enhanced hydrophobicity confirmed by H{sub 2}O adsorption–desorption measurement. In addition, the mechanistic pathway of the NR/HMS composite formation was proposed. - Highlights: • NR molecules were incorporated into hexagonal meso-structure of HMS. • NR/HMS composites exhibited an expanded unit cell and channel wall thickness. • Nanosized NR/HMS composites with a lower particle size range were obtained. • NR/HMS had high surface area, large pore volume and narrow pore size distribution. • NR/HMS composites displayed an enhanced hydrophobicity.

  10. Curing kinetics of alkyd/melamine resin mixtures

    OpenAIRE

    Jovičić Mirjana C.; Radičević Radmila Ž.

    2009-01-01

    Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor...

  11. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  12. Organized thiol functional groups in mesoporous core shell colloids

    Energy Technology Data Exchange (ETDEWEB)

    Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: wolosiuk@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  13. Mesoporous materials used in medicine and environmental applications.

    Science.gov (United States)

    Gunduz, Oguzhan; Yetmez, Mehmet; Sonmez, Maria; Georgescu, Mihai; Alexandrescu, Laura; Ficai, Anton; Ficai, Denisa; Andronescu, Ecaterina

    2015-01-01

    Mesoporous materials synthesized in the presence of templates, are commonly used for environment and medical applications. Due to the properties it holds, mesoporous silica nanoparticles is an excellent material for use in medical field, biomaterials, active principles delivery systems, enzyme immobilization and imaging. Their structure allows embedding large and small molecules, DNA adsorption and genetic transfer. Using mesoporous silica nanoparticles for delivery of bioactive molecules can protect them against degradation under physiological conditions, allow controlled drugs release and minimize side effects on healthy tissues. Cellular tests performed on mesoporous silica nanoparticles demonstrate that MSN's cytotoxicity is dependent on the size and concentration and suggests the use of larger size nanoparticles is optimal for medical applications. Mesoporous materials possess high biological compatibility, are non-toxic and can be easily modified by functionalizing the surface or inside the pores by grafting or co-condensation method. The structure, composition and pores size of this material can be optimized during synthesis by varying the stoichiometric reactants, reaction conditions, nature of the template's molecules or by functionalization method. PMID:25877095

  14. MODIFICATION OF X-5 RESIN AND ADSORPTION PROPERTY OF THE MODIFIED RESINS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Three polymeric adsorbents with hydrogen bonding acceptors, methylamine,N-methyl-acetamide and aminotri(hydroxymethyl)methane modified resins are synthesized fromchloromethylated X-5 resin. Adsorption isotherms of phenol and theophylline onto the three modifiedresins and the original X-5 resin from aqueous solution are measured. The results show thatadsorption of compounds with hydrogen bonding donor onto methylamine and N-methylacetamidemodified resins is enhanced as compared with that onto X-5 resin, and adsorption mechanismbetween the adsorbents and the adsorbates is mainly based on hydrogen bonding and hydrophobicinteraction. While adsorption of compounds with hydrogen bonding donor ontoaminotri(hydroxymethyl)methane modified resin is lowered as compared with that onto X-5 resin, andadsorption mechanism between the adsorbent and the adsorbates is mainly based on hydrophobicinteraction.

  15. Some experiences with epoxy resin grouting compounds.

    Science.gov (United States)

    Hosein, H R

    1980-07-01

    Epoxy resin systems are used in tiling and grouting in the construction industry. Because of the nature of the application, skin contact is the primary hazard. The most prevalent reaction was reddening of the forearms, followed by whole body reddening and loss of appetite, these latter two being associated with smoking while applying the resin. PMID:7415974

  16. Dental resin cure monitoring by inherent fluorescence

    Science.gov (United States)

    Li, Qun; Zhou, Jack X.; Li, Qingxiong; Wang, Sean X.

    2008-02-01

    It is demonstrated that the inherent fluorescence of a dental composite resin can be utilized to monitor the curing status, i.e. degree of conversion of the resin. The method does not require any sample preparation and is potentially very fast for real time cure monitoring. The method is verified by Raman spectroscopy analysis.

  17. TMI-2 purification demineralizer resin study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  18. Enhancing the Porosity of Mesoporous Carbon-Templated ZSM-5 by Desilication

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Egeblad, Kresten; Vennestrøm, Peter Nicolai Ravnborg;

    2008-01-01

    A tunable desilication protocol applied on a mesoporous ZSM-5 zeolite synthesized by carbon-templating is reported. The strategy enables a systematic manufacture of zeolite catalysts with moderate to very high mesoporosities. Coupling carbon-templating and desilication thus allow for more than...... a doubling of the original mesopore volume and mesopore surface area. The porosity effect arising from various treatment times and base amounts in the media has been thoroughly mapped. Initially, small mesopores are created, and as desilication strength increases the average mesopore size enhances...

  19. Evaluation of resins for provisional restorations.

    Science.gov (United States)

    Burgess, J O; Haveman, C W; Butzin, C

    1992-06-01

    An in vivo study of two resin materials (Barricaid and Caulk Temporary Crown and Bridge Resin) was done to determine the retention, post-operative sensitivity, and fabrication time of provisional restorations made from these materials. Following the placement of these resins in 67 intracoronal cavity preparations of 19 adult patients, a baseline evaluation was made which included a clinical examination and color slides. Twenty-four hours after the temporary restorations were placed, the patients completed evaluations of the post-operative sensitivity experienced. There was no difference in post-operative sensitivity between the teeth restored with Barricaid or Caulk Temporary Crown and Bridge Resin. At the insertion appointment of the final restoration, the interim restoration's success rate was determined. There was no difference between the retention of the two provisional materials. Fabrication time was significantly different with Barricaid restorations requiring less than one-half the fabrication time of the Caulk Temporary Crown and Bridge Resin material. PMID:1388950

  20. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  1. Release and toxicity of dental resin composite.

    Science.gov (United States)

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  2. EPOXY RESINS TOUGHENED WITH CARBOXYL TERMINATED POLYETHERS

    Institute of Scientific and Technical Information of China (English)

    YU Yunchao; LI Yiming

    1983-01-01

    Carboxyl terminated polyethers, the adducts of hydroxyl terminated polytetrahydrofuran and maleic anhydride, were used as toughener for epoxy resins. The morphology of the toughened resins was investigated by means of turbidity measurement, dynamic mechanical testing and scanning electron microscope observation. It turned out that the molecular weight and the carboxyl content of the polyether and the cure conditions are important factors, which affect the particle size of the polyether-rich domains and, in turn, the mechanical properties of the cured resin. Carboxyl terminated polytetrahydrofurans have a low glass transition temperature, and in appropriate amount they do not affect the thermal resistance of the resin. These advantages make them preferable as toughener for epoxy resins.

  3. Posterior adhesive composite resin: a historic review.

    Science.gov (United States)

    Fusayama, T

    1990-11-01

    Since development of the BIS-GMA composite resin, there have been many innovations to improve the physical properties for posterior use. Subsequent development of a caries detector and chemically adhesive composite resin has further revolutionally raised the value of composite resin restoration, replacing the traditional restorative system of mechanical approach by the new system of biological approach. In this system only the infected irreversibly deteriorated insensitive tissue, stainable with the caries detector, is removed painlessly. The cavity is immediately filled with the composite resin with no further tissue reduction for retention or resistance form or extension for prevention. Both enamel and dentin walls are etched by a single etchant without lining. The chemical adhesion to the cavity margin and wall minimizes the marginal failure in size and prevalence and prevents secondary caries penetration along the wall. The chemically adhesive composite resin is thus a useful restorative material much kinder to teeth than amalgam.

  4. Mesoporous junctions and nanocrystalline solar cells

    Science.gov (United States)

    Graetzel, Michael

    2000-03-01

    Learning from the concepts used by green plants, we have developed a molecular photovoltaic system based on the sensitization of nanocrystalline TiO2 films. In analogy to photosyntesis, light is absorbed by a monolayer of dye attached to the surface of a wide-band-gap oxide. The mesoporous morphology of the layer provides a substrate characterized by a very large surface area. The roughness factor of a 10-micron thick film reaches easily 1000. Light penetrating the dye loaded TiO2 nanocrystals is therefore collected in an efficient manner, similar to the thylakoid vesicles in green leafs which are stacked in order to enhance solar light harvesting. The excited dye injects an electron in the conduction band of the oxide resulting in efficient and very rapid charge separation. Nearly quantitative conversion of photons in electric current have been achieved with these devices over the whole visible and near-IR range of the spectrum. The overall AM 1.5 solar-to electric power conversion efficiency has reached already 11unravel the dynamics of interfacial charge transfer reactions at these dye- sensitized heterojunctions.

  5. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  6. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity. PMID:24699503

  7. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  8. Mesoporous materials for energy conversion and storage devices

    Science.gov (United States)

    Li, Wei; Liu, Jun; Zhao, Dongyuan

    2016-06-01

    To meet the growing energy demands in a low-carbon economy, the development of new materials that improve the efficiency of energy conversion and storage systems is essential. Mesoporous materials offer opportunities in energy conversion and storage applications owing to their extraordinarily high surface areas and large pore volumes. These properties may improve the performance of materials in terms of energy and power density, lifetime and stability. In this Review, we summarize the primary methods for preparing mesoporous materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells. Finally, we outline the research and development challenges of mesoporous materials that need to be overcome to increase their contribution in renewable energy applications.

  9. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  10. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  11. Selective SERS Sensing Modulated by Functionalized Mesoporous Films.

    Science.gov (United States)

    López-Puente, Vanesa; Angelomé, Paula C; Soler-Illia, Galo J A A; Liz-Marzán, Luis M

    2015-11-25

    A hybrid material comprising metal nanoparticles embedded in functionalized mesoporous thin films was constructed, and its use as a selective SERS-based sensor was demonstrated. The presence of specific functional groups in the pore network allows control over the surface chemistry of the pores, tuning the selectivity for specific molecules. Amino-functionalized hybrid mesoporous thin films were used in a proof of concept experiment, to discern the presence of methylene blue (MB) in mixtures with acid blue (AB), with no need for any sample pretreatment step. Selective detection of MB was possible through entrapment of AB in the mesoporous matrix, based on its high affinity for amino groups. The sensor selectivity can be tuned by varying the solution pH, rendering a pH responsive surface and thus, selective SERS-based sensing. The developed sensors allow specific detection of molecules in complex matrixes. PMID:26536368

  12. Syntheses and applications of periodic mesoporous organosilica nanoparticles

    Science.gov (United States)

    Croissant, Jonas G.; Cattoën, Xavier; Wong Chi Man, Michel; Durand, Jean-Olivier; Khashab, Niveen M.

    2015-12-01

    Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms.

  13. Synthesis and Characterization of Mesoporous Titanium Dioxide Spheres

    Institute of Scientific and Technical Information of China (English)

    GULI Mi-na; CHEN Yu-ning; LI Xiao-tian

    2011-01-01

    Mesoporous titanium dioxide spheres were synthesized by a convenient solvothermal method at room temperature with tetraethyl titanate as a precursor. Investigation by means of X-ray di ffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), and N2 adsorption-desorption isotherms confirms that the sample has a mesostructure with a higher specific surface area and shows that the mesoporous TiO2 spheres have a diameter of 2 μm, the average pore size is about 5.9 nm, and the BET surface area and specific pore volume are about 236 m2/g and 2.116 cm3/g, respectively. The anatase and ruffle mesoporous TiO2 spheres calcined at 700 C show much better photocatalytic activity than the samples calcined at other temperatures and is comparable to an uncaicined sample in the photodegradation of Methyl Blue(MB) under the UV irradiation.

  14. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 oC, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 oC to 500 oC. The N2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  15. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  16. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  17. Preliminary Synthesis and Characterization of Mesoporous Nanocrystalline Zirconia

    Institute of Scientific and Technical Information of China (English)

    Xinmei Liu; Gaoqing Lu; Zifeng Yan

    2003-01-01

    A novel method to prepare mesoporous nano-zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via a solid-state reaction. The materials exhibit a strong diffraction peak at low 2θ angle and their nitrogen adsorption/desorption isotherms are typical of type Ⅳ with H1 hysteresis loops. The pore structure imaged by TEM can be described as wormhole domains.The tetragonal zirconia nanocrystals are uniform in size (around 1.5 nm) and their mesopores focus on around 4.6 nm. The zirconia nanocrystal growth is tentatively postulated to be the result of an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOC12, crystallization and calcination temperature play an important role in the synthesis of mesoporous nano-zirconia.

  18. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    Science.gov (United States)

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented. PMID:15787373

  19. Reinforcement of Denture Base Resins

    Directory of Open Access Journals (Sweden)

    T Nejatiant

    2005-10-01

    Full Text Available Introduction: PMMA has been the most popular denture base material because of its advantages including good aesthetics, accurate fit, stability in the oral environment, easy laboratory and clinical manipulation and inexpensive equipments since the 1930’s. However, its fracture resistance is not satisfactory. Aim: The aim of this study is to improve the fracture resistance of denture bases made of PMMA by assessing the effect of resin type, packing and processing variables on biaxial flexural strength (BFS. Materials & methods: 930 discs, 12 mm diameter and 2 mm thick were prepared with the following variables: a. Veined (V and Plain (P PMMA. b. 5 different powder/liquid ratios by volume (1.5:1, 2:1, 2.5:1, 3:1, 3.5:1. c. Conventional (C and Injection packing methods (I. d. Dry heat (D Water bath (W; and e. different curing times. The discs were trimmed and stored in 37°C tap water for 50 hours before carrying out BFS test, according to BS EN ISO 1567: 2001. BFS test was carried out using a tensile-testing machine (Lloyd LRX, Lloyd instruments Ltd (Figure.1 b, with a x-head speed of 1mm/min. ONE-WAY ANOVA analysis and TUKEY’S comparison were carried out (MINITAB. The temperature within the curing baths and inside of curing resin was evaluated by using a thermocouple. Results: BFS of Powder/liquid ratio of 1.5:1 is significantly lower than the other four ratios. Among the last four ratios, 2.5:1 was the strongest one although the difference was not significant. BFS of the plain type of PMMA is significantly higher than the veined type.• BFS of conventionally packed PMMA discs was greater than the injectional packed ones and the difference is significant. Water bath cured resin showed a significant higher BFS compared with dry heat curing. • Changing the curing time in the dry heat bath from 7h @ 75º C and 2hrs @ 95º C to 5hrs @ 75º C and 3hrs @ 95º C and then 2hrs @ 95º C improves BFS of PMMA. In the water bath the trend is identical

  20. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  1. The synthesis and application of two mesoporous silica nanoparticles as drug delivery system with different shape

    Science.gov (United States)

    Wang, Jiayi; Wang, Zhuyuan; Chen, Hui; Zong, Shenfei; Cui, Yiping

    2015-05-01

    Mesoporous silica nanospheres(MSNSs) have been obtained utilizing the conventional reverse micelles synthesis method while the mesoporous silica nanorods(MSNRs) have been acquired by means of changing certain parameters. Afterwards, the prepared mesoporous silica nanospheres and nanorods were used as drug carriers to load and release the classical cancer therapeutic drug—DOX. According to the absorption spectra, the encapsulation efficiency of the mesoporous silica nanospheres is almost as high as that of the nanospheres. Different from the familiar encapsulation efficiency, the release characteristic curves of the mesoporous silica nanospheres and nanorods possessed certain differences during the release process. Finally incellular fluorescence imaging was achieved to observe the endocytosis of the mesoporous silica materials. Our results show that although both of the two kinds of nanoparticles possess favourable properties for loading and releasing drugs, the mesoporous silica nanospheres perform better in dispersity and controlled release than the nanorods, which probably endow them the potential as incellular drug delivery system.

  2. Low temperature crystallisation of mesoporous TiO2.

    Science.gov (United States)

    Kohn, Peter; Pathak, Sandeep; Stefik, Morgan; Ducati, Caterina; Wiesner, Ulrich; Steiner, Ullrich; Guldin, Stefan

    2013-11-01

    Conducting mesoporous TiO2 is rapidly gaining importance for green energy applications. To optimise performance, its porosity and crystallinity must be carefully fine-tuned. To this end, we have performed a detailed study on the temperature dependence of TiO2 crystallisation in mesoporous films. Crystal nucleation and growth of initially amorphous TiO2 derived by hydrolytic sol-gel chemistry is compared to the evolution of crystallinity from nanocrystalline building blocks obtained from non-hydrolytic sol-gel chemistry, and mixtures thereof. Our study addresses the question whether the critical temperature for crystal growth can be lowered by the addition of crystalline nucleation seeds.

  3. Functionalized periodic mesoporous organosilicas: Hierarchical and chiral materials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their potential applications as novel chiral solids in heterogeneous asymmetric catalysis.

  4. Simple Preparation of Novel Metal-Containing Mesoporous Starches

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2013-05-01

    Full Text Available Metal-containing mesoporous starches have been synthesized using a simple and efficient microwave-assisted methodology followed by metal impregnation in the porous gel network. Final materials exhibited surface areas >60 m2 g−1, being essentially mesoporous with pore sizes in the 10–15 nm range with some developed inter-particular mesoporosity. These materials characterized by several techniques including XRD, SEM, TG/DTA and DRIFTs may find promising catalytic applications due to the presence of (hydroxides in their composition.

  5. Stress effects in meso-porous silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, V.; Populaire, C.; Remaki, B.; Barbier, D. [Laboratoire de Physique de la Matiere, UMR-5511 CNRS, INSA de Lyon, 7, avenue Jean Capelle, Bat. Blaise Pascal, 69621 Villeurbanne Cedex (France); Champagnon, B. [Laboratoire de Physico-Chimie de Materiaux Luminescents, UMR-5620 CNRS, Universite Claude Bernard Lyon I, 43 boulevard 11 novembre 1918, Bat. Lippmann, 69622 Villeurbanne (France); Artmann, H.; Pannek, T. [Robert Bosch GmbH, FV/FLD, Postfach 10 60 50, 70049 Stuttgart (Germany)

    2005-06-01

    Mechanisms of strain and stress appearing in as-prepared and treated meso-porous silicon nanostructures are described. Stress effects induced by nano-pores filling with ethanol and capping of the porous nanostructures are observed by micro-Raman spectroscopy and discussed in details. Strong correlations between macroscopic and nanoscale stresses as well as with earlier X-ray measurements are found. Influence of stress on thermal properties of meso-porous silicon nanostructures is demonstrated. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Gautam Gundiah

    2001-04-01

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of mesopores has been verified by X-ray diffraction. The surface areas of the samples vary between 676 and 1038 m2g–1, with the highest value in the sample with Si/Al = 48.

  7. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry

    Directory of Open Access Journals (Sweden)

    Ryong Ryoo

    2012-04-01

    Full Text Available With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.

  8. Optical and electronic loss analysis of mesoporous solar cells

    Science.gov (United States)

    Kovalsky, Anton; Burda, Clemens

    2016-07-01

    We review the art of complete optical and electronic characterization of the popular mesoporous solar cell motif. An overview is given of how the mesoporous paradigm is applied to solar cell technology, followed by a discussion on the variety of techniques available for thoroughly probing efficiency leaching mechanisms at every stage of the energy transfer pathway. Some attention is dedicated to the rising importance of computational results to augment loss analysis due to the complexity of solar cell devices, which have emergent properties that are important to account for, but difficult to measure, such as parasitic absorption.

  9. Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-10-15

    This study is the first report on synthesis, characterization and catalytic application of propylsulfonic acid-functionalized mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). In comparison with propylsulfonic acid-functionalized HMS (HMS-SO{sub 3}H), a series of NR/HMS-SO{sub 3}H composites were prepared via an in situ sol–gel process using tetrahydrofuran as the synthesis media. Tetraethylorthosilicate as the silica source, was simultaneously condensed with 3-mercaptopropyltrimethoxysilane in a solution of NR followed by oxidation with hydrogen peroxide to achieve the mesoporous composites containing propylsulfonic acid groups. Fourier-transform infrared spectroscopy and {sup 29}Si MAS nuclear magnetic resonance spectroscopy results verified that the silica surfaces of the NR/HMS-SO{sub 3}H composites were functionalized with propylsulfonic acid groups and covered with NR molecules. After the incorporation of NR and organo-functional group into HMS, the hexagonal mesostructure remained intact concomitantly with an increased framework wall thickness and unit cell size, as evidenced by the X-ray powder diffraction analysis. Scanning electron microscopy analysis indicated a high interparticle porosity of NR/HMS-SO{sub 3}H composites. The textural properties of NR/HMS-SO{sub 3}H were affected by the amount of MPTMS loading to a smaller extent than that of HMS-SO{sub 3}H. NR/HMS-SO{sub 3}H exhibited higher hydrophobicity than HMS-SO{sub 3}H, as revealed by H{sub 2}O adsorption–desorption measurements. Moreover, the NR/HMS-SO{sub 3}H catalysts possessed a superior specific activity to HMS-SO{sub 3}H in the esterification of lauric acid with ethanol, resulting in a higher conversion level. - Highlights: • Acidic NR/HMS-SO{sub 3}H composites were prepared by in situ sol–gel process. • Propylsulfonic acid was functionalized onto HMS surface by direct co-condensation. • NR/HMS-SO{sub 3}H exhibited a hexagonal

  10. Adsorption behaviors of a novel carbonyl and hydroxyl groups modified hyper-cross-linked poly(styrene-co-divinylbenzene) resin for beta-naphthol from aqueous solution.

    Science.gov (United States)

    He, Chunlian; Huang, Jianhan; Yan, Cheng; Liu, Jianbo; Deng, Linbei; Huang, Kelong

    2010-08-15

    A series of novel hyper-cross-linked resins were synthesized from macroporous cross-linked chloromethylated poly(styrene-co-divinylbenzene) by adding different dosage of hydroquinone in Friedel-Crafts reaction. The results of the pore structures revealed that the prepared resins possessed micropores, mesopores and macropores, and the chloromethyl groups and the uploaded hydroquinone were partly oxidized according to the results of Fourier-transformed infrared ray spectra. Among these hydroquinone modified resins, HJ-Y06 resin held the largest adsorption capacity for beta-naphthol, and its adsorption capacity was comparable with XAD-4 while much larger than X-5. The adsorption kinetics could be characterized by pseudo-second-order rate equation and intra-particle diffusion model was the rate-limiting step at the initial process. The adsorption was favorable at solution pH lower than 6.5. The adsorption isotherms could be fitted by Langmuir model and the adsorption was an endothermic process. Hydrogen bonding between formaldehyde carbonyl and quinone carbonyl groups on HJ-Y06 and phenolic hydroxyl groups of beta-naphthol was the main driving force for the adsorption.

  11. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly(vinyl fluoride) resins. 175.270 Section 175... Substances for Use as Components of Coatings § 175.270 Poly(vinyl fluoride) resins. Poly(vinyl fluoride... the purpose of this section, poly(vinyl fluoride) resins consist of basic resins produced by...

  12. 21 CFR 177.2260 - Filters, resin-bonded.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, resin-bonded. 177.2260 Section 177.2260... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which...

  13. 76 FR 4936 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-01-27

    ... on granular PTFE resin from Italy and Japan (75 FR 67082-67083 and 67105-67108, November 1, 2010... COMMISSION Granular Polytetrafluoroethylene Resin From Italy AGENCY: United States International Trade... antidumping duty order on granular polytetrafluoroethylene resin (``granular PTFE resin'') from Italy....

  14. Improved microbial-check-valve resins

    Science.gov (United States)

    Colombo, G. V.; Putnam, D. F.

    1980-01-01

    Improved microbial-check-valve resins have been tested for their microbicidal effectiveness and long-term stability. Resins give more-stable iodine concentrations than previous preparations and do not impart objectionable odor or taste to treated water. Microbial check valve is small cylindrical device, packed with iodide-saturated resin, that is installed in water line where contamination by micro-organisms is to be prevented. Prototype microbial check valve was tested for stability and performance under harsh environmental conditions. Effectiveness was 100 percent at 35 deg, 70 deg, and 160 deg F (2 deg, 21 deg, and 71 deg C).

  15. Advanced Fibre Reinforced Methyl Nadicimide Resins .

    Directory of Open Access Journals (Sweden)

    Sarfaraz Alam

    1996-07-01

    Full Text Available Glass/carbon/kevlar-reinforced composites were fabricated using two structurally different methl nadicimide resins. The resin content of the laminates was in the range of 32-39 per cent. Interlaminar shear strength (ILSSand flexual strength (FS depended on the structure of the methyl nadicimide resins. A significant decrease in the ILSS was observed on treatment with boiling water for 500 h and on isothermal ageing at 300 degree celsius for 100,250 and 500 h. The limiting oxygen index (LOI was the lowest for laminates based on Kevlar fabrics (i.e.54 whereas the laminates based on glass/carbon showed very high LOI(>90.

  16. Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2014-06-01

    Full Text Available Core/shell nanoparticles, containing magnetic iron-oxide (maghemite core and mesoporous shell with radial porous structure, were prepared by dispersing magnetite nanoparticles and adding tetraethylorthosilicate to a basic aqueous solution containing structure-templating cetyltrimethylammonium bromide and a pore-swelling mesithylene. The material is characterized by SEM and TEM imaging, nitrogen sorption and powder X-ray diffraction. Distinctive features of the prepared material are its high surface area (959 m2/g, wide average pore diameter (12.4 nm and large pore volume (2.3 cm3/g. The material exhibits radial pore structure and the high angle XRD pattern characteristic for maghemite nanoparticles, which are obtained upon calcination of the magnetite-containing material. The observed properties of the prepared material may render the material applicable in separation, drug delivery, sensing and heterogeneous catalysis.

  17. Phenolic resin-based porous carbons for adsorption and energy storage applications

    Science.gov (United States)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  18. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi;

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  19. The encapsulation of spent ion-exchange resins in an epoxide resin

    International Nuclear Information System (INIS)

    Inorganic and organic IX resins have been incorporated into a water-tolerant epoxide resin system. The effect of γ-irradiation to 5 x 109 rads on the mechanical properties of samples containing wet IX resins has been investigated. It was found that although there is a marked embrittlement of the epoxide matrix, useful mechanical properties are retained up to this dose. Gas evolution studies under irradiation and thermogravimetric analyses have also been carried out. (author)

  20. Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems

    OpenAIRE

    AlJehani, Yousef A.; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Pekka K. Vallittu

    2015-01-01

    Background With the increase in demand for cosmetics and esthetics, resin composite restorations and all-ceramic restorations have become an important treatment alternative. Taking into consideration the large number of prosthodontic and adhesive resins currently available, the strength and durability of these materials needs to be evaluated. This laboratory study presents the shear bond strengths of a range of veneering resin composites bonded to all-ceramic core material using different adh...

  1. Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups

    Science.gov (United States)

    Roik, N. V.; Belyakova, L. A.

    2013-12-01

    Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.

  2. Incorporation of anti-inflammatory agent into mesoporous silica

    Science.gov (United States)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  3. Mesoporous carbon microspheres with high capacitive performances for supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • Small mesopores-enriched porous carbon microspheres were easily synthesized. • Small mesopores offer high ion-accessible surface area and facilitated ion diffusion. • The porous carbon exhibited a high specific capacitance and a good power property. - Abstract: Novel small-mesopores-enriched porous carbon microspheres have been synthesized from carbonaceous polysaccharide microspheres, by using the associated lithium acetate treating and heat treating strategies. X-ray diffraction, scanning electron microscope, transmission electron microscopy and nitrogen adsorption-desorption techniques have been employed to investigate the as-prepared samples. The analysis results indicate that the porous carbon microspheres has a high specific surface area of 1163 m2 g−1 and a satisfactory small mesoporous texture (2∼5 nm), with the mean pore size of 3.24 nm and the pore volume ratio of 2∼5 nm pores up to 92%. The capacitive performances of the samples in 6 mol L−1 KOH aqueous electrolyte, have been tested by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge techniques. A specific capacitance of 171.5 F/g is obtained for the porous carbon microspheres via charge-discharge at a current density of 1000 mA/g. It also displayed a very high cycle stability of 97.8%, compared with the initial capacitance, after 1000 cycles at the high current density of 1000 mA/g

  4. Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Nijmeijer, A.; Sripathi, V.G.P.; Winnubst, A.J.A.

    2015-01-01

    A method for polydimethylsiloxane grafting of alumina powders is described which involves chemical modification of the surface of mesoporous (5 nm) γ-alumina flakes with a linker (3-aminopropyltriethoxysilane: APTES), either by a solution phase (SPD) or a vapour phase (VPD) reaction, followed by PDM

  5. Enhanced photocatalytic properties in well-ordered mesoporous WO3

    KAUST Repository

    Li, Li

    2010-01-01

    We used polyisoprene-block-ethyleneoxide copolymers as structure-directing agents to synthesise well-ordered and highly-crystalline mesoporous WO 3 architectures that possess improved photocatalytic properties due to enhanced dye-adsorption in absence of diffusion limitation. © 2010 The Royal Society of Chemistry.

  6. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen [ORNL

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing

  7. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  8. Advanced cement solidification technique for spent resins

    International Nuclear Information System (INIS)

    In the past 40 years, the nuclear facilities of China Institute of Atomic Energy (CIAE) produced an amount of radioactive organic resins, a kind of problematic stream in nuclear industry. As these facilities were stepping into decommissioning, the treatment of the spent organic resins was put on the agenda. The various routes for spent resin treatment such as incineration, advanced oxidation, cement immobilization, etc, were considered. Each method has its advantages and disadvantages when applied in the treatment of spent resins. Since the quantities of the spent organic resins were relatively small and an experience with variety of cementation processes existed in CIAE, predominately for immobilization of the evaporated concentrates, the option of direct encapsulation of the spent organic resins into cementitious materials was adopted in 2003, as a preferred method from the point of view of saving the on the cost of the disposal. In order to realize the end goal, the main work consisted of: the survey of the source terms; cementitious material formula investigation; and the process development. This work, which was undertaken in the following years, is addressed as follows. Source terms of the spent resins in CIAE were to be made clear firstly. The results showed that a total of 24-29 m3 of spent resins was generated and accumulated in the past 40 years. Spent resin arose from two research reactors (heavy water reactor and light water reactor), and from the waste management plant. The amount of the spent resins from the heavy water reactor was 1m3 or so, but its radioactive concentration was high to ∼108-∼109Bq/m3. Two kinds of cements, ASC and OPC cement were selected next, as the solidifying matrix to be investigated. A mixture surface response approach was employed to design experiment and interpret data. In comparison, ASC was superior to OPC cement and it displayed preferable performances to encapsulate spent resins. The optimum formulation is:1) resin

  9. Amine chemistry. Update on impact on resin

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Gregory; Kellogg, Douglas [Siemens Industry, Inc., Rockford, IL (United States). Technology and Lab Services; Wilkes, Marty [Siemens Industry, Inc., Rockford, IL (United States). Water Technologies Div.

    2012-03-15

    Impurity removal in the steam cycle and the associated prevention of corrosion and/or fouling of system components are the goals of ion exchange resins. However, in many instances (such as a switch to amine chemistry or a change in product specifications), resins do not remove, and, in fact, contribute impurities to the steam cycle. This paper reviews recent data compiled to determine the direct and indirect effects of amines on ion exchange resins used in the power industry. Water chemistries have improved in recent years, in large part due to changes in chemistry and resins, but it is necessary to continue to develop products, processes and techniques to reduce impurities and improve overall water chemistry in power plant systems. (orig.)

  10. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  11. Integrating Porous Resins In Enzymatic Processes

    DEFF Research Database (Denmark)

    Al-Haque, Naweed

    of these enzymes to be harnessed. Porous resins as opposed to other auxiliary phases, for example organic solvents, are nonbioavailable, biocompatible and offer simpler operational handling (no foaming and emulsification). This strategy has been applied effectively to single substrate – single product systems...... of integrating porous resins for multi-component systems. In this manner, a generic platform has been established for biocatalytic reactions that require the integration of this strategy. The framework identifies the key information about the reaction and the process using a step-wise protocol with the required...... tools. It includes the use of kinetic modelling in characterizing the reaction kinetics, a heuristic approach for screening resins and a model based approach for evaluating the process. Greater knowledge about the enzymatic processes with integrated porous resins can therefore be gained and thus...

  12. Phenolic Resin Sector Enters New Stage

    Institute of Scientific and Technical Information of China (English)

    Pu Zeshuang

    2007-01-01

    @@ Rapid output increase With the importation of new production technologies and the boom of large timber processing, insulation refractory material, composite material and foam plastics sectors in recent years, the phenolic resin production in China has developed rapidly.

  13. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  14. Contraction stresses of composite resin filling materials.

    Science.gov (United States)

    Hegdahl, T; Gjerdet, N R

    1977-01-01

    The polymerization shrinkage of composite resin filling materials and the tensile stresses developed when the shrinkage is restrained were measured in an in vitro experiment. This allows an estimation to be made of the forces exerted upon the enamel walls of cavities filled with the resin in the acid etch technique. The results indicate that the stresses acting on the enamel are low compared to the tensile strength of the enamel.

  15. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  16. Multitasking mesoporous nanomaterials for biorefinery applications

    Science.gov (United States)

    Kandel, Kapil

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications

  17. Multitasking mesoporous nanomaterials for biorefinery applications

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Kapil [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications

  18. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media

    International Nuclear Information System (INIS)

    The present work reports preparation of ordered mesoporous carbon (OMC) film supported on a graphite fiber as a new type of solid-phase microextraction (SPME) fiber for determination of benzene series from aqueous media. The strategy for the supported OMC film preparation was combined dip-coating technology with solvent evaporation-induced self-assembly (EISA) approach. A graphite fiber was immersed in an ethanol solution containing phenolic resin and Pluronic triblock copolymer. Upon solvent evaporation and subsequent pyrolysis under 700 °C, the phenolic resin and the surfactant self-assembled on the surface of the graphite fiber to form smooth OMC film. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen isothermal adsorption results indicate that the resultant OMC film possesses well-ordered two dimensional hexagonal mesostructure with pore diameters of 4.5 nm and BET surfaces of 630 m2/g. Scanning electron microscopy (SEM) studies show the supported OMC film with thickness at 8.5 μm is continuous and defect-free. The SPME efficiency of the OMC fiber was evaluated by analysis of five benzene series (benzene, toluene, ethylbenzene, p-xylene and m-xylene) from water samples by gas chromatography-flame ionization detection (GC-FID). The analysis results indicate that the prepared OMC fiber has wide linear ranges (0.5–500 μg/L), low detection limits (0.01–0.05 μg/L) and good repeatabilities (4.0–5.8% for one fiber, 2.9–8.7% for fiber-to-fiber). Compared with commercial counterparts, the OMC fiber exhibits improved extraction efficiency for benzene series and PAHs. - Highlights: • Ordered mesoporous carbon film supported on graphite fiber was first reported as solid-phase microextraction coating. • The strategy for the film preparation was combined dip-coating technology with evaporation-induced self-assembly approach. • The obtained fiber showed enhanced thermal stability and organic solvents resistance. • The fiber

  19. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Geography Science, Nantong University, Nantong 226001 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Mingyue; Lu, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-08-12

    The present work reports preparation of ordered mesoporous carbon (OMC) film supported on a graphite fiber as a new type of solid-phase microextraction (SPME) fiber for determination of benzene series from aqueous media. The strategy for the supported OMC film preparation was combined dip-coating technology with solvent evaporation-induced self-assembly (EISA) approach. A graphite fiber was immersed in an ethanol solution containing phenolic resin and Pluronic triblock copolymer. Upon solvent evaporation and subsequent pyrolysis under 700 °C, the phenolic resin and the surfactant self-assembled on the surface of the graphite fiber to form smooth OMC film. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen isothermal adsorption results indicate that the resultant OMC film possesses well-ordered two dimensional hexagonal mesostructure with pore diameters of 4.5 nm and BET surfaces of 630 m{sup 2}/g. Scanning electron microscopy (SEM) studies show the supported OMC film with thickness at 8.5 μm is continuous and defect-free. The SPME efficiency of the OMC fiber was evaluated by analysis of five benzene series (benzene, toluene, ethylbenzene, p-xylene and m-xylene) from water samples by gas chromatography-flame ionization detection (GC-FID). The analysis results indicate that the prepared OMC fiber has wide linear ranges (0.5–500 μg/L), low detection limits (0.01–0.05 μg/L) and good repeatabilities (4.0–5.8% for one fiber, 2.9–8.7% for fiber-to-fiber). Compared with commercial counterparts, the OMC fiber exhibits improved extraction efficiency for benzene series and PAHs. - Highlights: • Ordered mesoporous carbon film supported on graphite fiber was first reported as solid-phase microextraction coating. • The strategy for the film preparation was combined dip-coating technology with evaporation-induced self-assembly approach. • The obtained fiber showed enhanced thermal stability and organic solvents resistance. • The

  20. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles

    OpenAIRE

    Islam, Md Nazrul; Dungani, Rudi; Abdul Khalil, HPS; Alwani, M Siti; Nadirah, WO Wan; Fizree, H Mohammad

    2013-01-01

    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and...

  1. Preparation of mesoporous titania particles using ionic liquid dissolving starch as templates

    Institute of Scientific and Technical Information of China (English)

    CHEN Chunming; RAN Jingwen; YE Qiunan

    2009-01-01

    A mesoporous titania photocatalyst was prepared via calcining the solution of ionic liquid (1-methyl-3-butyl imidazolium bromide,[BMIM]Br) containing tetrabutyl titanate (TBT) and starch. The microstructure of the prepared mesoporous titania was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption/desorption iso-therm. The results indicate that the resulting mesoporous titania has a grain size of about 13.9 nm, a special surface area of 106 m2/g, and a pore volume of 0.22 cm3/g, and the pore size can be adjusted by the concentration of starch in ionic liquid. The photocatalytic activity of mesoporous titania in the degradation of methyl orange solution was determined. The effect of the specific surface area of mesoporous titania on the photocatalytic activity was also studied. The prepared mesoporous titania exhibits a high catalytic activity.

  2. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances.

    Science.gov (United States)

    Jin, Junjiang; Ye, Xinxin; Li, Yongsheng; Wang, Yanqin; Li, Liang; Gu, Jinlou; Zhao, Wenru; Shi, Jianlin

    2014-06-14

    Mesoporous Beta zeolite has been successfully prepared through hydrothermal synthesis in the presence of cationic ammonium-modified chitosan as the meso-template. Through a subsequent solid-gas reaction between highly dealuminated mesoporous Beta zeolite and SnCl4 steam at an elevated temperature, mesoporous Sn-Beta has been facilely obtained. It was revealed that the addition of cationic chitosan induced the nanocrystal aggregation to particle sizes of ∼300 nm, giving rise to the intercrystalline/interparticle mesoporosity. In the Sn-implanting procedure, Sn species were demonstrated to be doped into the framework of the resulting mesoporous Beta zeolite in a tetrahedral environment without structural collapse. Due to the micro/mesoporous structures, both mesoporous Beta and Sn-Beta exhibited superior performances in α-pinene isomerization, Baeyer-Villiger oxidation of 2-adamantanone by hydrogen peroxide and the isomerization of glucose in water, respectively.

  3. Direct coating of mesoporous titania on CTAB-capped gold nanorods

    Science.gov (United States)

    Zhao, Junwei; Xu, Pengyu; Li, Yue; Wu, Jian; Xue, Junfei; Zhu, Qiannan; Lu, Xuxing; Ni, Weihai

    2016-03-01

    We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles.We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. UV-Vis extinction spectra, SEM images, and TEM images of AuNR@mTiO2 nanostructures. See DOI: 10.1039/c5nr05692f

  4. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    OpenAIRE

    Chengli Huo; Jing Ouyang; Huaming Yang

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous material...

  5. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction

    Science.gov (United States)

    Liu, Peng; Kong, Jiangrong; Liu, Yaru; Liu, Qicheng; Zhu, Hongze

    2015-03-01

    Mesoporous carbon is constructed by monolithic polyaromatic mesophase deriving from the hexane insoluble of coal-tar pitch. This carbon material exhibits spherical morphology and layered crystallite, and thereby can be graphitized at 900 °C without destroying the mesoporous structure. Electrochemical measurements indicate that graphitic mesoporous carbon (GMC) support not only improves the activity of Pt electrocatalyst to oxygen reduction reaction (ORR), but also shows higher corrosion resistance than commercial XC-72 carbon black in the acid cathode environment.

  6. Synthesis of novel Mesoporous Fullerene and its application to electro-oxidation of methanol

    OpenAIRE

    Mondal, Sujit K.

    2010-01-01

    One pot synthetic technique was used to synthesize mesoporous fullerene using highly ordered mesoporous template such as KIT6-150 and SBA-15-150. Highly ordered porous fullerene with cross linkage between the fullerene molecules was obtained at high temperature 900 0C. This type of highly ordered and high surface area mesoporous fullerence was used as catalyst to study anodic performance in sulphuric acid medium. Finally, it was used to test its catalytic activity for electrochemical methanol...

  7. Non-surfactant synthesis of mesoporous silica with dye as template

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel non-surfactant method was described to synthesize mesoporous silica using dye basic fuchsin as template. Chemical reactions were introduced into the formation of mesopores rather than the weak electrostatic or hydrogen-bonding interactions in the traditional surfactant routes. The reactant composition was found to be crucial to the pore structure of objective product. The formation mechanism of mesopore was also proved.

  8. Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications

    Energy Technology Data Exchange (ETDEWEB)

    Seong Huh

    2004-12-19

    I found an efficient method to control the morphology of the organically monofunctionalized mesoporous silica materials by introducing different types of organoalkoxysilanes in a base-catalyzed co-condensation reaction. The monofunctionalized materials exhibit different particle morphologies relative to the pure MCM-41 material. The concentration dependence of the morphology is a critical factor to determine the final particle shape. A proposed mechanism of the shape evolution is also offered. After understanding the role of organoalkoxysilanes in producing various well-shaped nanomaterials, I also obtained a series of bifunctional mesoporous silica materials with certain particle morphology. A series of bifunctional mesoporous silica nanospheres (MSNs) whose physicochemical properties was investigated via solid state NMR techniques and Cu{sup 2+} adsorption capacity tests, The ratio of two different organic groups inside of mesopores of these MSNs could be fine-tuned. These MSNs serve as a useful model system to study substrate selectivity in catalytic reactions and sorption phenomena. For example, the Cu{sup 2+} adsorption capacity of these materials was dictated by the chemical nature of the mesopores generated by the different organic functional groups. An investigation of the substrate selectivity of the bifunctionalized MSNs in a competitive nitroaldol reaction using an equimolar amount of two competing 4-nitrobenzaldehyde derivatives was performed. Shape-controlled bifunctional MSNs were employed as the catalysts. The properties of the MSNs were investigated using various spectroscopic methods and electron microscopy. The more hydrophobic the surface organic groups are, the higher the ratio of hydrophobic final product. This is the first example to demonstrate the selection of substrate using physicochemical nature of the mesopore surface other than the conventional shape selection in zeolite systems. I also created a cooperative dual catalyst system that is

  9. Using mesoporous carbon electrodes for brackish water desalination.

    Science.gov (United States)

    Zou, Linda; Li, Lixia; Song, Huaihe; Morris, Gayle

    2008-04-01

    Electrosorptive deionisation is an alternative process to remove salt ions from the brackish water. The porous carbon materials are used as electrodes. When charged in low voltage electric fields, they possess a highly charged surface that induces adsorption of salt ions on the surface. This process is reversible, so the adsorbed salt ions can be desorbed and the electrode can be reused. In the study, an ordered mesoporous carbon (OMC) electrode was developed for electrosorptive desalination. The effects of pore arrangement pattern (ordered and random) and pore size distribution (mesopores and micropores) on the desalination performance was investigated by comparing OMC and activated carbon (AC). It were revealed from X-ray diffraction and N(2) sorption measurements that AC has both micropores and mesopores, whereas ordered mesopores are dominant in OMC. Their performance as potential electrodes to remove salt was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests at a range of electrolyte concentrations and sweep rates. It is deduced that under the same electrochemical condition the specific capacitance values of OMC electrode (i.e. 133 F/g obtained from CV at a sweep rate of 1 mV/s in 0.1M NaCl solution) are larger than those of AC electrode (107 F/g), suggesting that the former has a higher desalting capacity than the latter. Furthermore, the OMC electrode shows a better rate capacity than the AC electrode. In addition, the desalination capacities were quantified by the batch-mode experiment at low voltage of 1.2V in 25 ppm NaCl solution (50 micros/cm conductivity). It was found that the adsorbed ion amounts of OMC and AC electrodes were 11.6 and 4.3 micromol/g, respectively. The excellent electrosorptive desalination performance of OMC electrode might be not only due to the suitable pore size (average of 3.3 nm) for the propagation of the salt ions, but also due to the ordered mesoporous structure that facilitates desorption of the

  10. Morphological control of multifunctionalized mesoporous silica nanomaterials for catalysis applications

    Science.gov (United States)

    Huh, Seong

    I found an efficient method to control the morphology of the organically monofunctionalized mesoporous silica materials by introducing different types of organoalkoxysilanes in a base-catalyzed co-condensation reaction. The monofunctionalized materials exhibit different particle morphologies relative to the pure MCM-41 material. The concentration dependence of the morphology is a critical factor to determine the final particle shape. A proposed mechanism of the shape evolution is also offered. After understanding the role of organoalkoxysilanes in producing various well-shaped nanomaterials, I also obtained a series of bifunctional mesoporous silica materials with certain particle morphology. A series of bifunctional mesoporous silica nanospheres (MSNs) whose physicochemical properties was investigated via solid state NMR techniques and Cu 2+ adsorption capacity tests. The ratio of two different organic groups inside of mesopores of these MSNs could be fine-tuned. These MSNs serve as a useful model system to study substrate selectivity in catalytic reactions and sorption phenomena. For example, the Cu2+ adsorption capacity of these materials was dictated by the chemical nature of the mesopores generated by the different organic functional groups. An investigation of the substrate selectivity of the bifunctionalized MSNs in a competitive nitroaldol reaction using an equimolar amount of two competing 4-nitrobenzaldehyde derivatives was performed. Shape-controlled bifunctional MSNs were employed as the catalysts. The properties of the MSNs were investigated using various spectroscopic methods and electron microscopy. The more hydrophobic the surface organic groups are, the higher the ratio of hydrophobic final product. This is the first example to demonstrate the selection of substrate using physicochemical nature of the mesopore surface other than the conventional shape selection in zeolite systems. I also created a cooperative dual catalyst system that is capable of

  11. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming, E-mail: hiuminglin@gmail.com; Qu, Fengyu, E-mail: qufengyu2012@yahoo.cn, E-mail: qufengyu@hrbnu.edu.cn [Harbin Normal University, College of Chemistry and Chemical Engineering (China)

    2014-12-15

    Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with ∼1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2–6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m{sup 2} g{sup −1}) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g{sup −1} at 0.5 A g{sup −1}). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.

  12. Introduction of bridging and pendant organic groups into mesoporous alumina materials.

    Science.gov (United States)

    Grant, Stacy M; Woods, Stephan M; Gericke, Arne; Jaroniec, Mietek

    2011-11-01

    Incorporation of organic functionalities into soft-templated mesoporous alumina was performed via organosilane-assisted evaporation induced self-assembly using aluminum alkoxide precursors and block copolymer templates. This strategy permits one to obtain mesoporous alumina-based materials with tailorable adsorption, surface and structural properties. Isocyanurate, ethane, mercaptopropyl, and ureidopropyl-functionalized mesoporous alumina materials were synthesized with relatively high surface area and large pore volume with uniform and wormhole-like mesopores. The presence of organosilyl groups within these hybrid materials was confirmed by IR or Raman spectroscopy and their concentration was determined by elemental analysis. PMID:21988174

  13. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  14. Tc-99 Ion Exchange Resin Testing

    Energy Technology Data Exchange (ETDEWEB)

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  15. Hot dewatering and resin encapsulation of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    The chemistry of the processes involved in the hot dewatering and encapsulation of alumino-ferric hydroxide floc in epoxide resin have been studied. Pretreatment of the floc to reduce resin attack and hydrolysis and to increase the dimensional stability of the solidified wasteform has been evaluated. It has been demonstrated that removal of ammonium nitrate from the floc and control of the residual water in the resin are important factors in ensuring dimensional stability of the solidified resin. Resin systems have been identified which, together with the appropriate waste pretreatment have successfully encapsulated a simulated magnox sludge producing a stable wasteform having mechanical and physical properties comparable with the basic resin. (author)

  16. Resin flow monitoring in vacuum-assisted resin transfer molding using optical fiber distributed sensor

    Science.gov (United States)

    Eum, Soohyun; Kageyama, Kazuro; Murayama, Hideaki; Ohsawa, Isamu; Uzawa, Kiyoshi; Kanai, Makoto; Igawa, Hirotaka

    2007-04-01

    In this study, we implemented resin flow monitoring by using an optical fiber sensor during vacuum assisted resin transfer molding (VaRTM).We employed optical frequency domain reflectometry (OFDR) and fiber Bragg grating (FBG) sensor for distributed sensing. Especially, long gauge FBGs (about 100mm) which are 10 times longer than an ordinary FBG were employed for more effective distributed sensing. A long gauge FBG was embedded in GFRP laminates, and other two ones were located out of laminate for wavelength reference and temperature compensation, respectively. During VaRTM, the embedded FBG could measure how the preform affected the sensor with vacuum pressure and resin was flowed into the preform. In this study, we intended to detect the gradient of compressive strain between impregnated part and umimpregnated one within long gauge FBG. If resin is infused to preform, compressive strain which is generated on FBG is released by volume of resin. We could get the wavelength shift due to the change of compressive strain along gauge length of FBG by using short-time Fourier transformation for signal acquired from FBG. Therefore, we could know the resin flow front with the gradient of compressive strain of FBG. In this study, we used silicon oil which has same viscosity with resin substitute for resin in order to reuse FBG. In order to monitor resin flow, the silicon oil was infused from one edge of preform, the silicon oil was flowed from right to left. Then, we made dry spot within gauge length by infusing silicon oil to both sides of preform to prove the ability of dry spot monitoring with FBG. We could monitor resin flow condition and dry spot formation successfully using by FBG based on OFDR.

  17. 76 FR 42114 - Granular Polytetrafluoroethylene Resin From Italy: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-07-18

    ... Granular Polytetrafluoroethylene Resin From Italy, 76 FR 39896 (July 7, 2011), and USITC Publication 4240... International Trade Administration Granular Polytetrafluoroethylene Resin From Italy: Continuation of... the antidumping duty order on granular polytetrafluoroethylene resin (``PTFE resin'') from Italy...

  18. Preparation and Characterization of Cardanol Modified Sand Core%树脂催化腰果酚改性砂芯粘合剂的制备与表征

    Institute of Scientific and Technical Information of China (English)

    刘颖; 王德堂; 李敢; 肖先举

    2015-01-01

    在邻苯酚甲醛树脂体系中引入具有长链烷基的取代酚——腰果酚,采用强碱性大孔阴离子交换树脂为催化剂进行改性.经试验研究,得到了较好的制备了腰果酚邻苯基苯酚甲醛树脂粘结剂的工艺条件.通过IR、DSC、TG等手段对腰果酚邻苯基苯酚甲醛树脂的结构、固化性能及耐热性进行了分析,结果表明,合成树脂结构中含有腰果酚,该树脂耐热性优于邻苯基苯酚甲醛树脂,具有优异的韧性及粘结性能.%It was the introducted of substituted phenols--cardanol with long chain alkyl group in the ortho phenol formaldehyde resin system, using strongly basic macroporous anion exchange resin as catalyst was modified, after the test and research, has been well prepared cashew phenol ortho phenyl phenol formaldehyde resin adhesive technology. Through the IR, DSC, TG and other means of cashew phenol ortho phenyl phenol formaldehyde resin structure, curing properties and heat resistance are analyzed, results show that, the synthetic resin structure contains cardanol, the resin heat resistance is better than that of ortho phenyl phenol formaldehyde resin, toughness and excellent bonding properties.

  19. Interconnected mesopores and high accessibility in UVM-7-like silicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cabero, Monica [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Hungria, Ana B. [Universidad de Cadiz, Departamento de Ciencia de Materiales, Ingenieria Metalurgica y Quimica Inorganica (Spain); Morales, Jose Manuel [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Tortajada, Marta; Ramon, Daniel [Biopolis S. L. (Spain); Moragues, Alaina; El Haskouri, Jamal; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro, E-mail: pedro.amoros@uv.es [Universitat de Valencia, Institut de Ciencia dels Materials (Spain)

    2012-08-15

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  20. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    Science.gov (United States)

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal. PMID:25872710

  1. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    Science.gov (United States)

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc. PMID:19441565

  2. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    Science.gov (United States)

    Munaweera, Imalka; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J.; Balkus, Kenneth J., Jr.

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  3. Designing advanced functional periodic mesoporous organosilicas for biomedical applications

    Directory of Open Access Journals (Sweden)

    Dolores Esquivel

    2014-03-01

    Full Text Available Periodic mesoporous organosilicas (PMOs, reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity and physical properties (morphology, porosity as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

  4. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Munaweera, Imalka; Balkus, Kenneth J. Jr., E-mail: Balkus@utdallas.edu, E-mail: Anthony.DiPasqua@unthsc.edu [Department of Chemistry, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States); Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J., E-mail: Balkus@utdallas.edu, E-mail: Anthony.DiPasqua@unthsc.edu [Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas 76107 (United States)

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  5. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  6. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  7. SAXS andalysis of interface in organo—modified mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    ZhiHongLi; YanJunGong; DongWu; YuHanSun; JunWang; YiLiu; BaozhongDon

    2001-01-01

    A small-angle x-ray scattering(SAXS)technique using synchrotron radiation as the x-ray source has been employed to characterize the microstructure of mesoporous silica prepared by one-pot template-directed synthesis methodology.The scattering of pure silica agreed with Porod’s law.the scattering of organomodified mesoporous silica showed a negative deviation from Porod’s law,suggesting that an interfacial layer exists between the pores and silica matrix.It was the organic groups comprising the interface,as shown by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance imaging (29Si cp MAS/NMR) and Fourier transform infrared spectroscopy(FTIR),that caused this negative deviation of SAXS intensity from Porod’s law,and the average thichness of the interfacial layer could be deduced from this negative deviation.Copyright 2001 john Wiley and Sons,Ltd.

  8. Mesoporous multilayer thin films: environment-sensitive photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Soler Illia, Galo; Fuertes, Maria Cecilia; Angelome, Paula Cecilia [Comision Nacional de Energia Atomica, San Martin, Buenos Aires (Argentina). Centro Atomico Constituyentes. Gerencia de Quimica; Marchi, Maria Claudia [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. INQUIMAE; Troiani, Horacio [Comision Nacional de Energia Atomica (CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche and Instituto Balseiro; Luca, Vittorio [Australian Nuclear Science and Technology Organization, Lucas Heights (Australia). Inst. of Materials and Engineering Sciences; Miguez, Hernan [Consejo Superior de Investigaciones Cientificas, Isla de La Cartuja, Sevilla (Spain). Inst. de Ciencia de Materiales

    2008-11-15

    Photonic Crystals made up of stacked mesoporous thin films (MTF) were produced by sequential deposition. These materials present order at different length scales: atomic (local structure), mesoscopic (ordered mesopores) and submicronic (controlled thickness), which were accurately assessed by Small Angle X-ray Scattering (2D SAXS, D11A SAXS1) and X-ray Reflectometry (XRR, D10A XRD2). Each MTF building block of a complex multilayer architecture behaves like an 'optical switch' in the presence of vapours. Its electronic density (and therefore the refractive index) changes due to capillary condensation of a given solvent within the pore systems. This allows for the creation of photonic crystals that are responsive to environment, with promising applications in selective sensing or active waveguides. (author)

  9. Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jinho; Park, Mira; Ham, Dukho; Mane, Rajaram S.; Han, Sung-Hwan [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea); Ogale, S.B. [Physical and Materials Chemsitry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2008-06-01

    Electrochemical supercapacitive (ES) properties of liquid-phase synthesized mesoporous (pore size distribution centered {proportional_to}12 nm) and of 120 m{sup 2}/g surface area nickel hydroxide film electrodes onto tin-doped indium oxide substrate are discussed. The amounts of inner and outer charges are calculated to investigate the contribution of mesoporous structure on charge storage where relatively higher contribution of inner charge infers good ion diffusion into matrix of nickel hydroxide. Effect of different electrolytes, electrolyte concentrations, deposit mass and scan rates on the current-voltage profile in terms of the shape and enclosed area is investigated. Specific capacitance of {proportional_to}85 F/g at a constant current density of 0.03 A/g is obtained from the discharge curve. (author)

  10. Natural dye -sensitized mesoporous ZnO solar cell

    Science.gov (United States)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  11. Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

    2012-08-01

    Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl [U(VI)] ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

  12. Stabilizing parquet blocks with epoxy resin

    Directory of Open Access Journals (Sweden)

    S.S. Glazkov

    2015-11-01

    Full Text Available While parquet blocks and panels from stabilized wood show much promise as finishing materials, their widespread use is limited by their low dimensional stability in variable-humidity environments. Existing solutions to stabilize the blocks have several disadvantages, including hard-to-find or toxic stabilizers. This is why this study discusses modifications of epoxy resin which has sufficient functionality for effective structuring. We analyzed the capillary-porous structure of different types of wood, and established the patterns associated with a reduction in the porosity or the specific volume of voids in pine, birch and oak. The basic characteristics of impregnating compositions indicating the high penetrative and structuring capabilities of epoxy resin have been discovered. It is shown that in addition to increasing the strength characteristics, there is a steady decline in water absorption and swelling with an increase in resin content in the wood. It has been found by the method of test fluids that curing the epoxy resin in the presence of hexamethylenediamine is accompanied by a decrease in the proportion of polar components in the total value of the surface tension. Oligomer molecules were shown to penentrate pine wood cells, providing a high moisture protection effect. The results suggest it is possible to use epoxy resin to modify parquet blocks and panels that would be used under variable humidity and high impact loads.

  13. Biocompatibility of polymethylmethacrylate resins used in dentistry.

    Science.gov (United States)

    Gautam, Rupali; Singh, Raghuwar D; Sharma, Vinod P; Siddhartha, Ramashanker; Chand, Pooran; Kumar, Rakesh

    2012-07-01

    Biocompatibility or tissue compatibility describes the ability of a material to perform with an appropriate host response when applied as intended. Poly-methylmethacrylate (PMMA) based resins are most widely used resins in dentistry, especially in fabrication of dentures and orthodontic appliances. They are considered cytotoxic on account of leaching of various potential toxic substances, most common being residual monomer. Various in vitro and in vivo experiments and cell based studies conducted on acrylic based resins or their leached components have shown them to have cytotoxic effects. They can cause mucosal irritation and tissue sensitization. These studies are not only important to evaluate the long term clinical effect of these materials, but also help in further development of alternate resins. This article reviews information from scientific full articles, reviews, or abstracts published in dental literature, associated with biocompatibility of PMMA resins and it is leached out components. Published materials were searched in dental literature using general and specialist databases, like the PubMED database. PMID:22454327

  14. Study on Oxidative Desulfurization Performance of Mesoporous Alumina Material

    Institute of Scientific and Technical Information of China (English)

    Xu Li

    2009-01-01

    This article refers to the study on the performance of mesoporous silica used as the catalyst for oxidative desulfurization reactions. The test results revealed that under mild reaction conditions using tert-butyl hydroperoxide as the oxidizing agent the content of dibenzothiophene (DBT) contained in oil samples could be reduced from 5000 ppm to less than 5 ppm. Furthermore, the mesoporons silica material can be easily regenerated and recycled.

  15. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    OpenAIRE

    Variola F; SF Zalzal; Leduc A; Barbeau J; Nanci A

    2014-01-01

    Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explore...

  16. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    OpenAIRE

    Variola, Fabio

    2014-01-01

    Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been...

  17. Green Synthesis of Benzylated Aromatics Using Iron Loaded Mesoporous Materials

    OpenAIRE

    Preethi, Muthuraj Esther Leena; Revathi, Shanmugam; Sivakumar, Thiripuranthagan

    2008-01-01

    Syntheses of benzylated aromatics like diphenylmethane and its derivatives by the condensation of benzene or toluene or o-xylene with benzylchloride or 4-methylbenzylchloride in the presence of a catalytic amount of various iron loaded mesoporous solid acid catalysts such as Fe/Al-MCM-41 (Si/Al=25), Fe/Al-MCM-41 (Si/Al=50) and Fe/Al-MCM-41 (Si/Al=100) are reported.

  18. Synthese und Charakterisierung aromatischer periodisch mesoporöser Organosilicas

    OpenAIRE

    Morell, Jürgen

    2008-01-01

    Die zugrunde liegende Arbeit befasst sich mit der Synthese und Charakterisierung aromatischer periodisch mesoporöser Organosilicas. Neben der Untersuchung des Bildungsmechanismus Biphenyl-verbrückter PMO-Materialien durch in situ-SAXS-Messungen wurden eine Reihe Thiophen-verbrückter PMOs unter Verwendung verschiedener Tenside als Strukturdirektoren synthetisiert. Es konnten so 2D-hexagonale sowie kubische Produkte erhalten werden. Des Weiteren konnte die Synthese von bifunktionellen PMO-Mat...

  19. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels

    OpenAIRE

    Macías, Carlos; Haro Remón, Marta; Rasines, Gloria; Parra Soto, José Bernardo; Ovín Ania, María Concepción

    2013-01-01

    [EN] A simple modification of the conventional sol–gel polymerization of resorcinol–formaldehyde mixtures allowed a facile preparation of ultrahigh mesoporous carbon gels. In the conventional synthesis the growth of the cluster polymer particles leading to the development of the porosity is controlled by the R/C ratio. In the presence of a carbon conductive additive, the polymerization of the reactants proceeded through the formation of less-branched polymer clusters resulting in carbon gels ...

  20. Rapid removal of bisphenol A on highly ordered mesoporous carbon

    Institute of Scientific and Technical Information of China (English)

    Qian Sui; Jun Huang; Yousong Liu; Xiaofeng Chang; Guangbin Ji; Shubo Deng; Tao Xie; Gang Yu

    2011-01-01

    Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3,prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg·min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40℃.No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9to 13.

  1. Biomolecule-assisted route to prepare titania mesoporous hollow structures.

    Science.gov (United States)

    Ding, Shangjun; Wang, Yaoming; Hong, Zhanglian; Lü, Xujie; Wan, Dongyun; Huang, Fuqiang

    2011-10-01

    Amino acids, as a particularly important type of biomolecules, have been used as multifunctional templates to intelligently construct mesoporous TiO(2) hollow structures through a simple solvothermal reaction. The structure-directing behaviors of various amino acids were systematically investigated, and it was found that these biomolecules possess the general capability to assist mesoporous TiO(2) hollow-sphere formation. At the same time, the nanostructures of the obtained TiO(2) are highly dependent on the isoelectric points (pI) of amino acids. Their molecular-structure variations can lead to pI differences and significantly influence the final TiO(2) morphologies. Higher-pI amino acids (e.g., L-lysine and L-arginine) have better structure-directing abilities to generate nanosheet-assembled hollow spheres and yolk/shell structures. The specific morphologies and mesopore size of these novel hollow structures can also be tuned by adjusting the titanium precursor concentration. Heat treatment in air and vacuum was further conducted to transform the as-prepared structures to porous nanoparticle-assembled hollow TiO(2) and TiO(2)/carbon nanocomposites, which may be potentially applied in the fields of photocatalysts, dye-sensitized solar cells, and Li batteries. This study provides some enlightenment on the design of novel templates by taking advantage of biomolecules. PMID:21882272

  2. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  3. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  4. Mesoporous Metal-Containing Carbon Nitrides for Improved Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2013-01-01

    Full Text Available Graphitic carbon nitrides (g-C3N4 have attracted increasing interest due to their unusual properties and promising applications in water splitting, heterogeneous catalysis, and organic contaminant degradation. In this study, a new method was developed for the synthesis of mesoporous Fe contained g-C3N4 (m-Fe-C3N4 photocatalyst by using SiO2 nanoparticles as hard template and dicyandiamide as precursor. The physicochemical properties of m-Fe-C3N4 were thoroughly investigated. The XRD and XPS results indicated that Fe was strongly coordinated with the g-C3N4 matrix and that the doping and mesoporous structure partially deteriorated its crystalline structure. The UV-visible absorption spectra revealed that m-Fe-C3N4 with a unique electronic structure displays an increased band gap in combination with a slightly reduced absorbance, implying that mesoporous structure modified the electronic properties of g-Fe-C3N4. The photocatalytic activity of m-Fe-C3N4 for photodegradation of Rhodamine B (RhB was much higher than that of g-Fe-C3N4, clearly demonstrating porous structure positive effect.

  5. Rapid removal of bisphenol A on highly ordered mesoporous carbon.

    Science.gov (United States)

    Sui, Qian; Huang, Jun; Liu, Yousong; Chang, Xiaofeng; Ji, Guangbin; Deng, Shubo; Xie, Tao; Yu, Gang

    2011-01-01

    Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg x min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40 degrees C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13. PMID:21516989

  6. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    Science.gov (United States)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  7. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    International Nuclear Information System (INIS)

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles

  8. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  9. A Review: Fundamental Aspects of Silicate Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Zeid A. ALOthman

    2012-12-01

    Full Text Available Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1 and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.

  10. N-doped mesoporous alumina for adsorption of carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Jayshri A.Thote; Ravikrishna V.Chatti; Kartik S.Iyer; Vivek Kumar; Arti N.Valechha; Nitin K.Labhsetwar; Rajesh B.Biniwale; M.K.N.Yenkie; Sadhana S.Rayalu

    2012-01-01

    N-doped mesoporous alumina has been synthesized using chitosan as the biopolymer template.The adsorbent has been thoroughly investigated for the adsorption of CO2 from a simulated flue gas stream (15% CO2 balanced with N2) and compared with commercially available mesoporous alumina procured from SASOL,Germany.CO2 adsorption was studied under different conditions of pretreatment and adsorption temperature,inlet CO2 concentration and in the presence of oxygen and moisture.The adsorption capacity was determined to be 29.4 mg CO2/g of adsorbent at 55℃.This value was observed to be 4 times higher in comparison to that of commercial mesoporous alumina at a temperature of 55℃.Basicity of alumina surface coupled with the presence of nitrogen in template in synthesized sample is responsible for this enhanced CO2 adsorption.Adsorption capacity for CO2 was retained in the presence of oxygen; however moisture had a deteriorating effect on the adsorption capacity reducing it to nearly half the value.

  11. Benzylation of Toluene over Iron Modified Mesoporous Ceria

    Directory of Open Access Journals (Sweden)

    K.J. Rose Philo

    2012-12-01

    Full Text Available Green chemistry has been looked upon as a sustainable science which accomplishes both economical and environmental goals, simultaneously.With this objective, we developed an alternative process to obtain the industrially important benzyl aromatics by benzylation of aromatics using benzyl chloride, catalysed by mesoporous solid acid catalysts. In this work mesoporous ceria is prepared using neutral surfactant which helped the calcination possible at a lower temperature enabling a higher surface area. Mesoporous ceria modified with Fe can be successfully utilized for the selective benzylation of toluene to more desirable product methyl diphenyl methane with 100% conversion and selectivity in 2 hours using only 50mg of the catalyst under milder condition. The reusability, regenerability, high selectivity, 100% conversion, moderate reaction temperature and absence of solvent, etc. make these catalysts to be used in a truly heterogeneous manner and make the benzylation reaction an environment friendly one. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 30th June 2012; Revised: 7th November 2012; Accepted: 10th November 2012[How to Cite: K.J. Rose Philo, S. Sugunan. (2012. Benzylation of Toluene over Iron Modified Mesoporouxs Ceria. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 158-164. (doi:10.9767/bcrec.7.2.3759.158-164][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3759.158-164 ] | View in 

  12. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons

    Institute of Scientific and Technical Information of China (English)

    Jitong Wang; Huichao Chen; Huanhuan Zhou; Xiaojun Liu; Wenming Qiao; Donghui Long; Licheng Ling

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume.The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption,scanning electron microscopy (SEM),thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture.Factors that affected the sorption capacity of the sorbent were studied.The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%.The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75℃,owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%).Moisture had a promoting effect on the sorption separation of CO2.In addition,the developed sorbent could be regenerated easily at 100℃,and it exhibited excellent regenerability and stability.These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  13. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    Science.gov (United States)

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  14. Study of carbon monoxide oxidation on mesoporous platinum.

    Science.gov (United States)

    Esterle, Thomas F; Russell, Andrea E; Bartlett, Philip N

    2010-09-10

    H(1) mesoporous platinum surfaces formed by electrodeposition from lyotropic liquid crystalline templates have high electroactive surface areas (up to 60 m(2) g(-1)) provided by the concave surface within their narrow (≈2 nm diameter) pores. In this respect, they are fundamentally different from the flat surfaces of ordinary Pt electrodes or the convex surfaces of high-surface-area Pt nanoparticles. Cyclic voltammetry of H(1) mesoporous Pt films in acid solution is identical to that for polycrystalline Pt, suggesting that the surfaces of the pores are made up of low-index Pt faces. In contrast, CO stripping voltammetry on H(1) mesoporous Pt is significantly different from the corresponding voltammetry on polycrystalline Pt and shows a clear prewave for CO oxidation and the oxidation CO at lower overpotential. These differences in CO stripping are related to the presence of trough sites where the low-index Pt faces that make up the concave surface of the pore walls meet. PMID:20578119

  15. Composite resin fillings and inlays: An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, U.; Qvist, V.

    2003-01-01

    Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth......Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth...

  16. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  17. Composite resin in medicine and dentistry.

    Science.gov (United States)

    Stein, Pamela S; Sullivan, Jennifer; Haubenreich, James E; Osborne, Paul B

    2005-01-01

    Composite resin has been used for nearly 50 years as a restorative material in dentistry. Use of this material has recently increased as a result of consumer demands for esthetic restorations, coupled with the public's concern with mercury-containing dental amalgam. Composite is now used in over 95% of all anterior teeth direct restorations and in 50% of all posterior teeth direct restorations. Carbon fiber reinforced composites have been developed for use as dental implants. In medicine, fiber-reinforced composites have been used in orthopedics as implants, osseous screws, and bearing surfaces. In addition, hydroxyapatite composite resin has become a promising alternative to acrylic cement in stabilizing fractures and cancellous screw fixation in elderly and osteoporotic patients. The use of composite resin in dentistry and medicine will be the focus of this review, with particular attention paid to its physical properties, chemical composition, clinical applications, and biocompatibility.

  18. [Allergic contact eczema from epoxy resin].

    Science.gov (United States)

    Calzado, Leticia; Ortiz-de Frutos, Francisco J; del Prado Sánchez-Caminero, María; Galera, Carmen María; Valverde, Ricardo; Vanaclocha, Francisco

    2005-11-01

    Epoxy resins are plastics that are widely used as electrical insulation, in coatings, and as adhesives and paints. They have strong sensitizing power and are one of the main causes of allergic contact eczema, both in the workplace and elsewhere. We present the case of a worker at a plastics/chemical plant, who handled aeronautical components in the process of manufacturing fuselage parts. He consulted his physician because of eczematous lesions on his fingers, hands and forearms which had developed over a two-year period and were clearly related to his work. The standard battery of skin tests was performed, along with the plastics and adhesives series and tests using the products from his workplace. Positivity was shown to epoxy resins (standard battery) and to the products from his workplace, which included different fiberglass and carbon fiber sheets impregnated with epoxy resins and epoxy adhesives.

  19. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Science.gov (United States)

    2010-07-01

    ... thermoplastic resins subcategory. 414.40 Section 414.40 Protection of Environment ENVIRONMENTAL PROTECTION... Thermoplastic Resins § 414.40 Applicability; description of the thermoplastic resins subcategory. The provisions... the products classified under SIC 28213 thermoplastic resins including those resins and resin...

  20. The influence of resin flexural modulus on the magnitude of ceramic strengthening.

    LENUS (Irish Health Repository)

    Fleming, Garry J P

    2012-07-01

    The aim was to determine the magnitude of ceramic resin-strengthening with resin-based materials with varying flexural moduli using a regression technique to assess the theoretical strengthening at a \\'zero\\' resin-coating thickness. The hypothesis tested was that experimentally, increasing resin flexural modulus results in increased resin-strengthening observed at a theoretical \\'zero\\' resin-coating thickness.

  1. Interacting Blends of Novel Unsaturated Polyester Amide Resin with Styrene

    OpenAIRE

    Hasmukh S. Patel; Panchal, Kumar K.

    2004-01-01

    Novel unsaturated poly (ester-amide) resins (UPEAs) were prepared by the reaction between an epoxy resin, namely diglycidyl ether of bisphenol–A (DGEBA) and unsaturated aliphatic bisamic acids using a base catalyst. These UPEAs were then blended with a vinyl monomer namely, Styrene (STY.) to produce a homogeneous resin syrup. The curing of these UPEAs-STY. resin blends was carried out by using benzoyl peroxide (BPO) as a catalyst and was monitored by using a differential scanning calorimeter ...

  2. Study on the Novel Dicyanate Ester Resin Containing Naphthalene Unit

    Institute of Scientific and Technical Information of China (English)

    Hong Qiang YAN; Hong Yun PENG; Li JI; Guo Rong QI

    2004-01-01

    The novel dicyanate ester resin containing naphthalene unit (DNCY) was synthesized, and characterized by FT-IR, 1H-NMR, 13C-NMR and elemental analysis (EA).The thermal properties of DNCY resin was studied by thermal degradation analysis at a heating rate of 10 (C /min-1 in N2 and air. The DNCY resin exhibited better thermal and thermal-oxidative stability than bisphenol A dicyanate (BACY) resin.

  3. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    OpenAIRE

    Octarina Octarina; Andi Soufyan; Yosi Kusuma Eriwati

    2013-01-01

    Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV) is obtained using multi-step (MS) resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC) was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS) of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups...

  4. Synthesis of highly carboxylate acrylic resins for leather impregnation

    OpenAIRE

    Ollé Otero, Lluís; Solé, M.M.; Shendrik, Alexander; Labastida, L.; Bacardit Dalmases, Anna

    2012-01-01

    This work describes the synthesis of new leather finishing acrylic resins. Four resins ware synthesized varying the concentration of ethyl acrylate, and metracrylic acid. Sodium lauryl sulphate was used as emulsifying system. By means of an experimental design, an optimal resin for leather impregnation was defined. The results obtained indicated that the variation of the monomer concentration influences the resin properties, the hardness of the film, and the penetration into the leather. Most...

  5. Adsorption of D113 Resin for Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption behavior and mechanism of D113 resin for Dy(Ⅲ) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+chemical analysis and IR spectra.

  6. Evaluation of marginal leakage between a flowable composite resin and resin-modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Álvaro VOLPATO

    2005-11-01

    Full Text Available The aim of the present study was to evaluate, in vitro, the leakage between a flowable composite resin (Fill Magic Flow® and resin-modified glass ionomer cements (Vitremer®. Forty extracted human premolars were selected for this study. The teeth were randomly assigned into two groups. Class cavities were prepared with margin extended apically. All teeth were subjected to thermocycling with 250 cycles. Afterwards, the teeth were submitted to a basic fuccina 0,5% to be analyzed to the infiltration degree throughout the walls of the preparation. The results showed that resin-modified glass ionomer cements present the worst results (p < 0,05.

  7. Simultaneous metal adsorption on tannin resins

    International Nuclear Information System (INIS)

    Vegetable tannin sorbent is evaluated as ion exchange resin using a multitracer study on the adsorption behavior of various elements. Lisiloma latisiliqua L. tannins, polycondensated into spherical pellets were chosen as sorbent resin material. Sorption evaluation of Ce, Cu(II), U(VI), Eu, Fe(III), Th, Nd as representatives of different classes of metal ions were done at different pH values. The distribution ratio of the studied elements was calculated from laboratory experiments. Tannic ion exchange material shows excellent ability for actinides and rare earth elements adsorption from waters. Using radiotracers, the number of catechins subunits involve in each tannin-metal complex was determined. (author)

  8. Clinical guidelines for indirect resin restorations.

    Science.gov (United States)

    Shannon, A

    1997-06-01

    Ongoing advances in adhesive dentistry have made it possible to successfully and predictably bond tooth-supporting restorations using conservative preparation techniques. Improvements in the durability and esthetic properties of tooth-colored restorative materials have also increased the range of available treatment options. However, dentists have been slow to accept both direct and indirect posterior esthetics. This article provides a step-by-step technique for practitioners who choose to treat their patients with indirect resin esthetic restorations. It will not discuss other posterior restorative treatment techniques or materials (i.e. gold, porcelain, amalgam, bonded amalgam, or direct resin).

  9. Advances in the history of composite resins.

    Science.gov (United States)

    Minguez, Nieves; Ellacuria, Joseba; Soler, José Ignacio; Triana, Rodrigo; Ibaseta, Guillermo

    2003-11-01

    The use of composite resins as direct restoration material in posterior teeth has demonstrated a great increase, due to esthetic requirements and the controversy regarding the mercury content in silver amalgams. In this article, we have reviewed the composition modifications which have occurred in materials based on resins since their introduction over a half a century ago which have enabled great improvements in their physical and mechanical properties. Likewise, we have highlighted current lines of research, centered on finding the ideal material for replacing silver amalgam as a direct filling material.

  10. Color stability of recent composite resins

    OpenAIRE

    Ardu, Stefano; Duc, Olivier; Di Bella, Enrico; Krejci, Ivo

    2016-01-01

    The objective of the study was to evaluate the color stability of 8 recently developed resin composites when exposed to various staining agents. Six disc-shaped specimens made out of 8 resin composite materials were immersed in artificial saliva, coffee, coke, tea, orange juice and red wine. The initial color (T0) of the 288 specimens was assessed by a calibrated reflectance spectrophotometer (SpectroShade, MHT) over a black as well as a white background. All specimens were kept in an incubat...

  11. Treatment of liquid wastes using composite resins

    International Nuclear Information System (INIS)

    Composite ion exchange resins were prepared by coating copper ferrocyanide and hydrous manganese oxide powders on polyurethane foam. The binder used was polyvinyl acetate in alcohol/acetone medium. Studies were conducted in pilot scale using 50 L ion exchange column and treated category III radioactive liquid wastes. About 2000 to 2400 bed volumes of liquid wastes containing radioactive 137Cs and 90Sr were treated. Digestion of the resins was carried out in a 25 L column using alkaline KMnO4. The digested liquid was fixed in cement matrix and the matrices were characterized with respect to compressive strength, biological and leach resistance. (author)

  12. Adsorption of L-phenylalanine onto mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Goscianska, Joanna; Olejnik, Anna; Pietrzak, Robert, E-mail: pietrob@amu.edu.pl

    2013-11-01

    Mesoporous silica materials, such as SBA-3, SBA-15, SBA-16 and KIT-6 were synthesized using tetraethyl orthosilicate as the silica source and different surfactants as templates. The products were characterised by a number of techniques, including low-temperature nitrogen sorption, X-ray diffraction and transmission electron microscopy. Results of the studies confirmed the ordered mesoporous structures of all silica samples obtained. Adsorption of L-phenylalanine on various mesoporous adsorbents was studied from solutions with different pH (5.6–9.4). Maximum sorption capacity was observed at pH 5.6, which is close to the isoelectric point of L-phenylalanine (pI = 5.48). Above this pH value, the amount of adsorbed amino acid decreased. In the range of equilibrium concentration (pH 5.6), the adsorption capacities of ordered silica samples decreased in the following order: KIT-6 (420 μmol g{sup −1}) > SBA-15 (389 μmol g{sup −1}) > SBA-16 (357 μmol g{sup −1}) > SBA-3 (219 μmol g{sup −1}). The lowest sorption capacity towards L-phenylalanine was found for SBA-3 despite the fact that it showed the largest surface area, which can be explained assuming that part of the pores in SBA-3 can be inaccessible to L-phenylalanine molecules. Large pore size of KIT-6 and SBA-15 permitted the amino acid molecule to enter into the pores of these mesoporous molecular sieves. - Highlights: • SBA-3, SBA-15, SBA-16, KIT-6 materials were prepared by hydrothermal method. • Ordered mesoporous silicas are promising as adsorbents of L-phenylalanine. • Adsorption of L-phenylalanine was studied from solutions with different pH. • Sorption capacities decrease in the following order: KIT-6 > SBA-15 > SBA-16 > SBA-3. • Large pore size of KIT-6 and SBA-15 permit the amino acid to enter into the pores.

  13. Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin

    Directory of Open Access Journals (Sweden)

    H. Kimura

    2011-12-01

    Full Text Available Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin were investigated. The cure behavior of benzoxazine with cyanate ester resin was monitored by model reaction using nuclear magnetic resonance (NMR. As a result of the model reaction, the ring opening reaction of benzoxazine ring and thermal self-cyclotrimerization of cyanate ester group occurred, and then the phenolic hydoroxyl group generated by the ring opening reaction of benzoxazine ring co-reacted with cyanate ester group. The properties of the cured thermosetting resin were estimated by mechanical properties, electrical resistivity, water resistance and heat resistance. The cured thermosetting resin from benzoxazine and cyanate ester resin showed good heat resistance, high electrical resistivity and high water resistance, compared with the cured thermosetting resin from benzoxazine and epoxy resin.

  14. Solid-State Microwave Synthesis of Melamine-Formaldehyde Resin

    OpenAIRE

    Subhash Bajia; Rashmi Sharma; Birbal Bajia

    2009-01-01

    An efficient synthesis of melamine-formaldehyde resin has been achieved using conventional as well as microwave irradiations (without and with solid support) in different molar ratio. Resin samples were tested for their chemical as well as physical properties. The structure of all the resin has been supported by their spectral data

  15. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinylidene fluoride resins. 177.2510 Section... as Components of Articles Intended for Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used as articles or components of articles intended for repeated...

  16. TRIMETHYLSILYLATED SILICA AS RHEOLOGY MODIFIER FOR SILICONE RESINS

    Institute of Scientific and Technical Information of China (English)

    Wei Huang; Ying Huang; Yunzhao Yu

    2000-01-01

    Trimethylsilylated silica was synthesized through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.

  17. 21 CFR 872.3820 - Root canal filling resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  18. 21 CFR 872.3670 - Resin impression tray material.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin impression tray material. 872.3670 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material. (a) Identification. Resin impression tray material is a device intended for use in a two-step dental mold...

  19. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  20. 40 CFR 721.9499 - Modified silicone resin.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified silicone resin. 721.9499... Substances § 721.9499 Modified silicone resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified silicone resin (PMN P-96-1649)...

  1. 40 CFR 721.5905 - Modified phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5905 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified phenolic resin...

  2. 21 CFR 872.3310 - Coating material for resin fillings.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  3. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for...

  4. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section...

  5. 21 CFR 173.10 - Modified polyacrylamide resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Modified polyacrylamide resin. 173.10 Section 173... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.10 Modified polyacrylamide resin. Modified polyacrylamide resin may be safely used in food in accordance with the following...

  6. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin...

  7. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  8. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  9. 76 FR 39896 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Granular Polytetrafluoroethylene Resin From Italy Determination On the basis of the record \\1... antidumping duty order on granular polytetrafluoroethylene resin from Italy would be likely to lead to... Granular Polytetrafluoroethylene Resin from Italy: Investigation No. 731-TA-385 (Third Review). By order...

  10. 75 FR 67105 - Granular Polytetrafluoroethylene Resin From Italy and Japan

    Science.gov (United States)

    2010-11-01

    ... granular polytetrafluoroethylene resin from Japan (53 FR 32267). On August 30, 1988, Commerce issued an antidumping duty order on imports of granular polytetrafluoroethylene resin from Italy (53 FR 33163... orders on imports of granular polytetrafluoroethylene resin from Italy and Japan (70 FR 76026)....

  11. 21 CFR 872.3200 - Resin tooth bonding agent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  12. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  13. 21 CFR 172.215 - Coumarone-indene resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Coumarone-indene resin. 172.215 Section 172.215... CONSUMPTION Coatings, Films and Related Substances § 172.215 Coumarone-indene resin. The food additive coumarone-indene resin may be safely used on grapefruit, lemons, limes, oranges, tangelos, and tangerines...

  14. 40 CFR 721.5908 - Modified phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified phenolic resin (generic). 721... Substances § 721.5908 Modified phenolic resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as modified phenolic resin (PMN...

  15. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a...

  16. 21 CFR 872.3690 - Tooth shade resin material.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  17. Color change of composite resins subjected to accelerated artificial aging

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  18. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  19. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  20. Development of radiation-curable resin based on natural rubber

    International Nuclear Information System (INIS)

    A new radiation curable resin based on natural rubber has been developed. The resin was based on the reaction between low molecular weight epoxidised natural rubber and acrylic acid. When formulated with reactive monomers and photoinitiator, it solidified upon irradiation with UV light. The resin may find applications in coating for cellulosic-based substrates and pressure-sensitive adhesive

  1. Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template.

    Science.gov (United States)

    Baù, Luca; Bártová, Barbora; Arduini, Maria; Mancin, Fabrizio

    2009-12-28

    A surfactant-free synthesis of mesoporous and hollow silica nanoparticles is reported in which boron acts as the templating agent. Using such a simple and mild procedure as a treatment with water, the boron-rich phase is selectively removed, affording mesoporous pure silica nanoparticles with wormhole-like pores or, depending on the synthetic conditions, silica nanoshells. PMID:20024287

  2. Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH

    NARCIS (Netherlands)

    Sommer, L.; Mores, D.; Svelle, S.; Stöcker, M; Weckhuysen, B.M.; Olsbye, U.

    2013-01-01

    A zeolite H-SSZ-13 material with CHA topology and a Si/Al ratio of 14 was treated with sodium hydroxide solutions of various concentrations. The post synthesis treatment led to desilication of the framework accompanied by mesopore formation. N2-physisorption measurements showed that the mesopore vol

  3. Synthesis of Mesoporous Silica and Ti-containing Molecular Sieves via A Novel Assembly

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thermally stable mesoporous silica and Ti-containing molecular sieves have been synthesized at mild temperature using low-cost and biodegradable---amphoteric tetradecyl betaine as template. The physicochemical characterizations proved that Ti(Ⅳ) could be incorporated in the mesoporous struture.

  4. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    Science.gov (United States)

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis. PMID:26695263

  5. Platinum nanoclusters studded in the microporous nanowalls of ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.C.; Woo, S.I.; Jeon, M.K.; Sohn, J.M.; Kim, M.R.; Jeon, H.J. [Center for Ultramicrochemical Process Systems and Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 305-701 (Korea)

    2005-02-23

    Methanol-tolerant cathode materials for use in direct-methanol fuel cells are composed of ordered mesoporous carbon with walls studded with ultrafine Pt nanoclusters. The material, composed of PtC regularly interconnected nanocomposite arrays, is prepared by pyrolysis of carbon and platinum precursors in silica mesoporous templates such as SBA-15. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. Effect of polysulfonate resins and direct compression fillers on multiple-unit sustained-release dextromethorphan resinate tablets

    OpenAIRE

    Pongjanyakul, Thaned; Priprem, Aroonsri; Chitropas, Padungkwan; Puttipipatkhachorn, Satit

    2005-01-01

    The purpose of this work was to investigate the effect of different polysulfonate resins and direct compression fillers on physical properties of multiple-unit sustained-release dextromethorphan (DMP) tablets. DMP resinates were formed by a complexation of DMP and strong cation exchange resins, Dowex 50 W and Amberlite IRP69. The tablets consisted of the DMP resinates and direct compression fillers, such as microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), and spray-dried...

  7. Titanium-Containing Mesoporous Materials: Synthesis and Application in Selective Catalytic Oxidation

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Chunhui Zhou; Huali Xie; Zhonghua Ge; Liangcai Yuan; Xiaonian Li

    2006-01-01

    Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.

  8. Structure/Property Relationships of Poly(L-lactic Acid/Mesoporous Silica Nanocomposites

    Directory of Open Access Journals (Sweden)

    Javier Gudiño-Rivera

    2013-01-01

    Full Text Available Biodegradable poly(L-lactic acid (PLLA/mesoporous silica nanocomposites were prepared by grafting L-lactic acid oligomer onto silanol groups at the surface of mesoporous silica (SBA-15. The infrared results showed that the lactic acid oligomer was grafted onto the mesoporous silica. Surface characterization of mesoporous silica proved that the grafted oligomer blocked the entry of nitrogen into the mesopores. Thermal analysis measurements showed evidence that, once mixed with PLLA, SBA-15 not only nucleated the PLLA but also increased the total amount of crystallinity. Neat PLLA and its nanocomposites crystallized in the same crystal habit and, as expected, PLLA had a defined periodicity compared with the nanocomposites. This was because the grafted macromolecules on silica tended to cover the lamellar crystalline order. The g-SBA-15 nanoparticles improved the tensile moduli, increasing also the tensile strength of the resultant nanocomposites. Overall, the silica concentration tended to form a brittle material.

  9. Structrue and Characteristics of Mesoporous Silica Synthesized in Acid Medium and Its Reaction Mechanism

    Institute of Scientific and Technical Information of China (English)

    LEI Jia-heng; ZHAO Jun; CHEN Yong-xi; GUO Li-ping; LIU Dan

    2004-01-01

    Structrue and pore characteristics of the mesoporous silica synthesized in acid medium were studied by means of XRD, HRTEM, BET, FT-IR, DSC-TGA, and the reaction mechanism was also investigated deeply. The results show that mesopores in the sample possess hexagonal arrays obviously, whereas the structure of silica matrix is amorphous. The results also show that the acting mode of silica and CTMA+ inside the mesopores was chemical bonding force. The structure of mesoporous silica was mainly dependent on the aggregational condition of micelle of CTMA+ as well as their liquid-crystallized status. In addition, condensation and dehydration of silicate radicals were accompanied in the process of calcination, which resulted in the mesoporous structure ordered in local range and the pore sizes largening.

  10. Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release.

    Science.gov (United States)

    Xie, Chunling; Li, Ping; Liu, Yan; Luo, Fei; Xiao, Xiufeng

    2016-10-01

    Nanotube structures such as TiO2 nanotube (TNT) arrays produced by self-ordering electrochemical anodization have been extensively explored for drug delivery applications. In this study, we presented a new implantable drug delivery system that combined mesoporous calcium silicate coating with nanotube structures to achieve a controllable drug release of water soluble and antiphlogistic drug loxoprofen sodium. The results showed that the TiO2 nanotubes/mesoporous calcium silicate composites were successfully fabricated by a simple template method and the deposition of mesoporous calcium silicate increased with the soaking time. Moreover, the rate of deposition of biological mesoporous calcium silicate on amorphous TNTs was better than that on anatase TNTs. Further, zinc-incorporated mesoporous calcium silicate coating, produced by adding a certain concentration of zinc nitrate into the soaking system, displayed improved chemical stability. A significant improvement in the drug release characteristics with reduced burst release and sustained release was demonstrated. PMID:27287140

  11. Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping; Lee, Se-Hee; Tracy, C. Edwin; Turner, John A.; Pitts, J. Roland; Deb, Satyen K. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2003-12-01

    Mesoporous vanadium oxide thin films have been deposited electrochemically from a water/ethanol solution of vanadyl sulfate and a nonionic polymer surfactant. Aggregates of the polymer surfactant serve as templates that result in the formation of a mesoporous structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicate the presence of both macroporosity and mesoporosity in the electrodeposited film. Chemochromic behavior of mesoporous vanadium oxide is demonstrated in a palladium/vanadium oxide thin-film device, which colors when exposed to hydrogen gas. A comparison of results with evaporated vanadium oxide reveals that the mesoporous film displays an improved kinetic performance, which is most likely attributable to its highly porous structure. Also, the electrochemical properties have been explored in a lithium-battery configuration. Mesoporous vanadium oxide exhibits a very high lithium storage capacity and greatly enhanced charge-discharge rate. In situ optical measurements show that the film exhibits a multicolor electrochromic effect.

  12. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications.

    Science.gov (United States)

    Ivanova, Irina I; Knyazeva, Elena E

    2013-05-01

    The review covers the recent developments in the field of novel micro-mesoporous materials obtained by zeolite recrystallization. The materials are classified into three distinctly different groups depending on the degree of recrystallization: (i) coated mesoporous zeolites (RZEO-1); (ii) micro-mesoporous nanocomposites (RZEO-2); and (iii) mesoporous materials with zeolitic fragments in the walls (RZEO-3). The first part of the review is focused on the analysis of the synthetic strategies leading to different types of recrystallized materials. In the second part, a comprehensive view on their structure, texture and porosity in connection with acidic and diffusion properties is given. The last part is devoted to the catalytic applications of recrystallized materials. The advantages and disadvantages with respect to pure micro- and mesoporous molecular sieves and other hierarchical zeolites are critically analyzed and the future opportunities and perspectives are discussed.

  13. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric;

    2007-01-01

    During the last years, several new routes to produce zeolites with controlled mesoporosity have appeared. Moreover, an improved catalytic performance of the resulting mesoporous zeolites over conventional zeolites has been demonstrated in several reactions. In most cases, the mesoporous zeolites...... exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located...... in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso...

  14. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  15. Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Hong-Wei; Gao, Feng [Taiyuan Univ. of Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Technology (China). Key Laboratory of Interface Science and Engineering in Advanced Materials; Li, Kai-Xi [Chinese Academy of Sciences, Taiyuan, Shanxi (China). Key Laboratory of Carbon Materials

    2013-09-15

    Three kinds of epoxy resins, i.e. tetraglycidyl diaminodiphenyl methane (AG80), difunctional diglycidyl ether of bisphenol-A (E51) and novolac type epoxy resin (F46) were selected as matrices for carbon fiber/epoxy composites. The objective of this work is to study the mechanical properties of fiber/epoxy composites by using these three kinds of epoxy resins with different physical and chemical performance. The results show that the composites fabricated with AG80 present the best stiffness and the composites prepared with E5 1have the best toughness. The stiffness and toughness of the composites prepared with F46 are middle values located between those for AG80/epoxy and E51/epoxy composites. Thus, the mixed epoxy resin is a promising approach for industrial production. (orig.)

  16. Low-melt Viscosity Polyimide Resins for Resin Transfer Molding (RTM) II

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2007-01-01

    A series of polyimide resins with low-melt viscosities in the range of 10-30 poise and high glass transition temperatures (Tg s) of 330-370 C were developed for resin transfer molding (RTM) applications. These polyimide resins were formulated from 2,3,3 ,4 -biphenyltetracarboxylic dianhydride (a-BPDA) with 4-phenylethynylphthalic anhydride endcaps along with either 3,4 - oxyaniline (3,4 -ODA), 3,4 -methylenedianiline, (3,4 -MDA) or 3,3 -methylenedianiline (3,3 -MDA). These polyimides had pot lives of 30-60 minutes at 260-280 C, enabling the successful fabrication of T650-35 carbon fiber reinforced composites via RTM process. The viscosity profiles of the polyimide resins and the mechanical properties of the polyimide carbon fiber composites will be discussed.

  17. Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides

    Directory of Open Access Journals (Sweden)

    Heyong He

    2010-01-01

    Full Text Available Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic activities and shape selectivities in some reactions, compared to the parent HPAs in homogeneous systems. This review summarizes recent progress in the field of mesoporous silica-supported HPAs applied in the heterogeneous catalysis area and preparation of nanostructured metal oxides using HPAs as precursors and mesoporous silicas as hard templates.

  18. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.W.; Li, G.R.; Wang, F.; Gao, X.P. [Institute of New Energy Material Chemistry, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071 (China)

    2010-07-15

    Highly ordered mesoporous carbon arrays are prepared by a facile carbonization of the natural bamboo and oak wood in argon atmosphere. The as-prepared oak mesoporous carbon arrays have good electrocatalytic activity and high conductivity, based on their well connected framework, highly ordered microtexture, wider mesopores and larger surface area. Consequentially, the photovoltaic performance of the DSSC with the oak mesoporous carbon array film as counter electrode is excellent and comparable to that of the DSSC with FTO/Pt counter electrode. In addition, it is a simple method for a mass production of mesoporous carbon arrays with natural wood materials. (author)

  19. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite

    KAUST Repository

    Akhtar, M. N.

    2012-01-01

    Aromatization of hexane and propane was investigated over Pt promoted mesoporous gallium-containing HZSM-11 with controlled mesoporosity generated by desilication. Prepared catalysts were characterized by nitrogen adsorption, X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared of chemisorbed pyridine, and NH 3 temperature programmed desorption confirming the development of intracrystalline mesoporosity of Ga-containing HZSM-11. The catalytic activities, which were compared in the aromatization of n-hexane and propane, increased upon desilication. The aromatization of n-hexane decreased in the following order, Pt/mesoporous GaZSM-11 Pt/conventional GaZSM-11 mesoporous GaZSM-11 > conventional GaZSM-11. Hexane conversion reached 70.1% over mesoporous Pt/GaZSM-11 with Si/Ga of 61, as compared with 29.6 and 24.9% for corresponding mesoporous and conventional GaZSM-11 (Si/Ga = 94), respectively, for experiments at liquid hour space velocity of 3.6 h -1, and 540 °C. Comparison of BTX (benzene-toluene-xylene) selectivity at the conversion level of ∼21.0% revealed that Pt/mesoporous GaZSM-11 is more selective than corresponding mesoporous and conventional GaZSM-11. The BTX selectivity over Pt/mesoporous GaZSM-11 (Si/Ga = 94), which showed strong dependence on the conversion, reached 28.2%, whereas over corresponding mesoporous and conventional GaZSM-11catalysts reached 19.1% and 5.5%, respectively. A higher conversion and better selectivity can be attributed to the improved accessibility to the active extra-framework Ga species owing to the generation of mesopores inside the zeolite particles and shortening the contact time. It is worth mentioning that the prepared catalysts exhibited quite low activity in propane aromatization but exhibiting similar trends as for hexane aromatization. © 2011 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of resorcinol-formaldehyde resin chars doped by zinc oxide

    Science.gov (United States)

    Gun'ko, Vladimir M.; Bogatyrov, Viktor M.; Oranska, Olena I.; Urubkov, Iliya V.; Leboda, Roman; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga

    2014-06-01

    Polycondensation polymerization of resorcinol-formaldehyde (RF) mixtures in water with addition of different amounts of zinc acetate and then carbonization of dried gels are studied to prepare ZnO doped chars. Zinc acetate as a catalyst of resorcinol-formaldehyde polycondensation affects structural features of the RF resin (RFR) and, therefore, the texture of chars prepared from Zn-doped RFR. The ZnO doped chars are characterized using thermogravimetry, low temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). At a relatively high content of zinc acetate (1 mol per 10-40 mol of resorcinol) in the reaction mixture, the formation of crystallites of ZnO (zincite) occurs in a shape of straight nanorods of 20-130 nm in diameter and 1-3 μm in length. At a small content of zinc acetate (1 mol per 100-500 mol of resorcinol), ZnO in composites is XRD amorphous and does not form individual particles. The ZnO doped chars are pure nanoporous at a minimal ZnO content and nano-mesoporous or nano-meso-macroporous at a higher ZnO content.

  1. Synthesis and characterization of resorcinol–formaldehyde resin chars doped by zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gun’ko, Vladimir M., E-mail: vlad_gunko@ukr.net [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Bogatyrov, Viktor M.; Oranska, Olena I. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Urubkov, Iliya V. [Kurdyumov Institute of Metal Physics, 36 Vernadsky Boulevard, 03142 Kyiv (Ukraine); Leboda, Roman; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga [Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin (Poland)

    2014-06-01

    Polycondensation polymerization of resorcinol–formaldehyde (RF) mixtures in water with addition of different amounts of zinc acetate and then carbonization of dried gels are studied to prepare ZnO doped chars. Zinc acetate as a catalyst of resorcinol–formaldehyde polycondensation affects structural features of the RF resin (RFR) and, therefore, the texture of chars prepared from Zn-doped RFR. The ZnO doped chars are characterized using thermogravimetry, low temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). At a relatively high content of zinc acetate (1 mol per 10–40 mol of resorcinol) in the reaction mixture, the formation of crystallites of ZnO (zincite) occurs in a shape of straight nanorods of 20–130 nm in diameter and 1–3 μm in length. At a small content of zinc acetate (1 mol per 100–500 mol of resorcinol), ZnO in composites is XRD amorphous and does not form individual particles. The ZnO doped chars are pure nanoporous at a minimal ZnO content and nano-mesoporous or nano-meso-macroporous at a higher ZnO content.

  2. A temporary space maintainer using acrylic resin teeth and a composite resin.

    Science.gov (United States)

    Kochavi, D; Stern, N; Grajower, R

    1977-05-01

    A one-session technique for preparing a temporary space maintainer has been described. The technique consists of attaching an acrylic resin pontic to etched surfaces of natural adjacent teeth by means of a composite resin. The main advantages of this technique are elimination of premature tooth preparation, good esthetics, fair strength, low cost, and rapid completion of the restoration without the need of a dental laboratory.

  3. Resin Dynamics Contributes to the NMR Line Broadening of Organic Molecules Grafted onto a Polystyrene Resin

    Science.gov (United States)

    Lippens, Guy; Chessari, Gianni; Wieruszeski, Jean-Michel

    2002-06-01

    Despite the use of high resolution magic angle spinning NMR, the NMR linewidth of anchored molecules on the commonly used Merrifield solid phase resins remains larger than that of the corresponding molecules in solution. We investigate the different mechanisms that might be at the origin of this line broadening. Experimentally, we use the CPMG method to determine the 15N relaxation times of a tethered tripeptide and show that the slow resin dynamics significantly contributes to the transverse relaxation.

  4. Microbial treatment of ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Kouznetsov, A.; Kniazev, O. [D. Mendeleyev University of Chemical Technology of Russia, Dept. Biotechnology, Mocow (Russian Federation)

    2001-07-01

    A bioavailability of ion exchange resins to a microbial destruction as one of the alternative methods of compacting used ionites from the nuclear fuel manufacturing cycle enterprises has been investigated. The bio-destruction was studied after a preliminary chemical treatment or without it. A sensitivity of the ion exchange resins (including highly acidic cationite KU-2-8) to the microbial destruction by heterotrophic and chemo-litho-trophic microorganisms under aerobic conditions was shown in principle. The biodegradation of the original polymer is possible in the presence of the water soluble fraction of the resin obtained after its treatment by Fenton reagent and accelerated in the presence of Mn-ions in optimal concentration 1-2 g of Mn per liter of medium. Thus, the process of bio-destruction of ionite polymer by heterotrophic microorganisms can be compared with the bio-destruction of lignin or humic substances. The optimum parameters of bio-destruction and microorganisms used must be different for resins with different functional groups. (authors)

  5. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  6. [Resin-bonded fixed partial dentures

    NARCIS (Netherlands)

    Kreulen, C.M.; Creugers, N.H.J.

    2013-01-01

    A resin-bonded fixed partial denture is a prosthetic construction which can replace I or several teeth in an occlusal system and which comprises a pontic element which is adhesively attached to 1 or more abutment teeth. To compensate for the limited shear strength of the adhesive layer, the Jixed pa

  7. Crack propagation directions in unfilled resins.

    Science.gov (United States)

    Baran, G; Sadeghipour, K; Jayaraman, S; Silage, D; Paul, D; Boberick, K

    1998-11-01

    Posterior composite restorative materials undergo accelerated wear in the occlusal contact area, primarily through a fatigue mechanism. To facilitate the timely development of new and improved materials, a predictive wear model is desirable. The objective of this study was to develop a finite element model enabling investigators to predict crack propagation directions in resins used as the matrix material in composites, and to verify these predictions by observing cracks formed during the pin-on-disc wear of a 60:40 BISGMA:TEGDMA resin and an EBPADMA resin. Laser confocal scanning microscopy was used to measure crack locations. Finite element studies were done by means of ABAQUS software, modeling a cylinder sliding on a material with pre-existing surface-breaking cracks. Variables included modulus, cylinder/material friction coefficient, crack face friction, and yield behavior. Experimental results were surprising, since most crack directions were opposite previously published observations. The majority of surface cracks, though initially orthogonal to the surface, changed direction to run 20 to 30 degrees from the horizontal in the direction of indenter movement. Finite element modeling established the importance of subsurface shear stresses, since calculations provided evidence that cracks propagate in the direction of maximum K(II)(theta), in the same direction as the motion of the indenter, and at an angle of approximately 20 degrees. These findings provide the foundation for a predictive model of sliding wear in unfilled glassy resins.

  8. 21 CFR 177.1500 - Nylon resins.

    Science.gov (United States)

    2010-04-01

    .... Nylon 6/69 resins for use only as specified in 21 CFR 177.1395 of this chapter 1.09±0.02 270-277 >140...), heating as necessary. The contents of the flask are transferred to an evaporation dish (which has been... available for inspection at the National Archives and Records Administration (NARA). For information on...

  9. Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Daohong; JIA Demin; HUANG Xianbo

    2007-01-01

    The study on toughening and reinforcing of bisphenol-A epoxy resin is one of important developmental direction in the field.This paper reports a one-pot synthesis of aromatic polyester hyperbranched epoxy resin HTDE-2,an effect of HTDE-2 content on the mechanical and thermal performance of the bisphenol-A (E51)/HTDE-2 hybrid resin in detail.Fourier transform infrared (FT-IR) spectrometer,scanning electronic microscopy (SEM),differential scanning calorimetry (DSC),thermogravimetric analysis (TGA),dynamic mechanical thermal analysis (DMA) and molecular simulation technology are used to study the structure of HTDE-2,performance and toughening and reinforcing mechanism of the HTDE-2/E51 hybrid resin.It has been shown that the content of HTDE-2 has an important effect on the performance of the hybrid resin,and the performance of the HTDE-2/E51 blends has maximum with the increase in HTDE-2 content.The impact strength and fracture toughness of the hybrid resin with 9 wt-% HTDE-2 are almost 3.088 and 1.749 times of E51 performance respectively,furthermore,the tensile and flexural strength can also be enhanced about 20.7% and 14.2%,respectively.The glass transition temperature and thermal degradation temperature,however,are found to decrease to some extent.

  10. ANALYSIS OF VENTING OF A RESIN SLURRY

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  11. Syntheses of SBA-15 and Investigation on Properties of E-127 Epoxy Resin System%介孔SBA-15/环氧树脂复合材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    陈书文; 王雁冰; 黄志雄; 张超

    2011-01-01

    Using ultrasonic dispersion method, the synthesized mesoporous silica SBA-15 can fully dispersed in the epoxy resin, and then we can get SBA-15/epoxy composite materials.Condition of the filler dispersion in the resin was investigated by XRD analysis;meanwhile, characteristics of epoxy resin were researched by dielectrics constant and thermal gravimetric analysis.The research shows that SBA-15 filler can improve the thermal stability of epoxy resin and reduce its dielectric constant.%合成了孔径SBA-15介孔二氧化硅材料,利用超声波分散法制得了SBA-15/环氧树脂复合材料,TEM和氮气吸附脱附测试显示制备的SBA-15孔径为5 nm.通过SEM测试观察了介电复合材料中填料的分散情况;同时采用热失重分析、介电常数测定等方法对该介电复合材料的性能进行了研究.结果表明:SBA-15粒子的填充,可以提高环氧树脂的热稳定性,降低其介电常数.

  12. Cobalt oxide and nitride particles supported on mesoporous carbons as composite electrocatalysts for dye-sensitized solar cells

    Science.gov (United States)

    Chen, Ming; Shao, Leng-Leng; Gao, Ze-Min; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-07-01

    The composite electrocatalysts of cobalt oxide/mesoporous carbon and cobalt nitride/mesoporous carbon are synthesized via a convenient oxidation and subsequent ammonia nitridation of cobalt particles-incorporated mesoporous carbon, respectively. The cobalt oxide and nitride particles are uniformly imbedded in mesoporous carbon matrix, forming the unique composites with high surface area and mesopore architecture, and the resultant composites are evaluated as counter electrode materials, exhibiting good catalytic activity for the reduction of triiodide. The composites of cobalt nitride and mesoporous carbon are superior to the counterparts of cobalt oxide and mesoporous carbon in catalyzing the triiodide reduction, and the dye-sensitized solar cell with the composites achieves an optimum power conversion efficiency of 5.26%, which is comparable to the one based on the conventional Pt counter electrode (4.88%).

  13. FDI report on adverse reactions to resin-based materials.

    Science.gov (United States)

    Fan, P L; Meyer, D M

    2007-02-01

    Resin-based restorative materials are considered safe for the vast majority of dental patients. Although constituent chemicals such as monomers, accelerators and initiators can potentially leach out of cured resin-based materials after placement, adverse reactions to these chemicals are rare and reaction symptoms commonly subside after removal of the materials. Dentists should be aware of the rare possibility that patients could have adverse reactions to constituents of resin-based materials and be vigilant in observing any adverse reactions after restoration placement. Dentists should also be cognisant of patient complaints about adverse reactions that may result from components of resin-based materials. To minimise monomer leaching and any potential risk of dermatological reactions, resin-based materials should be adequately cured. Dental health care workers should avoid direct skin contact with uncured resin-based materials. Latex and vinyl gloves do not provide adequate barrier protection to the monomers in resin-based materials.

  14. Petroleum Resins: Separation, Character, and Role in Petroleum

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Speight, James

    2001-01-01

    In petroleum science, the term resin generally implies material that has been eluted from various solid adsorbents, whereas the term maltenes (or petrolenes) indicates a mixture of the resins and oils obtained as filtrates from the asphaltene precipitation. Thus, after the asphaltenes...... are precipitated, adsorbents are added to the n-pentane solutions of the resins and oils, by which process the resins are adsorbed and subsequently recovered by the use of a more polar solvent, and the oils remain in solution. The resin fraction plays an important role in the stability of petroleum and prevents...... separation of the asphaltene constituents as a separate phase. Indeed, the absence of the resin fraction (produced by a variety of methods) from the maltenes influences the ability of the de-resined maltenes to accommodate the asphaltenes either in solution or as a stable part of a colloidal system. In spite...

  15. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  16. Mesoporous Few-Layer Graphene Platform for Affinity Biosensing Application.

    Science.gov (United States)

    Ali, Md Azahar; Singh, Chandan; Mondal, Kunal; Srivastava, Saurabh; Sharma, Ashutosh; Malhotra, Bansi D

    2016-03-30

    A label-free, highly reproducible, sensitive, and selective biosensor is proposed using antiapolipoprotein B 100 (AAB) functionalized mesoporous few-layer reduced graphene oxide and nickel oxide (rGO-NiO) nanocomposite for detection of low density lipoprotein (LDL) molecules. The formation of mesoporous rGO-NiO composite on indium tin oxide conductive electrode has been accomplished via electrophoretic technique using colloidal suspension of rGO sheets and NiO nanoparticles. This biosensor shows good stability obtained by surface conjugation of antibody AAB molecules with rGO-NiO matrix by EDC-NHS coupling chemistry. The defect-less few layer rGO sheets, NiO nanoparticles (nNiO) and formation of nanocomposite has been confirmed by Raman mapping, electron microscopic studies, X-ray diffraction, and electrochemical techniques. The synthesized rGO-NiO composite is mesoporous dominated with a small percentage of micro and macroporous structure as is evident by the results of Brunauer-Emmett-Teller experiment. Further, the bioconjugation of AAB with rGO-NiO has been investigated by Fourier transform-infrared spectroscopy studies. The kinetic studies for binding of antigen-antibody (LDL-AAB) and analytical performance of this biosensor have been evaluated by the impedance spectroscopic method. This biosensor exhibits an excellent sensitivity of 510 Ω (mg/dL)(-1) cm(-2) for detection of LDL molecules and is sensitive to 5 mg/dL concentration of LDL in a wide range of 0-130 mg/dL. Thus, this fabricated biosensor is an efficient and highly sensitive platform for the analysis of other antigen-antibody interactions and biomolecules detection. PMID:26950488

  17. Selective catalysis utilizing bifunctionalized MCM-41 mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Strosahl, Kasey Jean

    2005-05-01

    Selective catalysis is a field that has been under intense investigation for the last 100 years. The most widely used method involves catalysts with stereochemical selectivity. In this type of catalysis, the catalyst controls which reactants will be transformed into the desired product. The secret to employing this type of catalysis, though, is to design the proper catalyst, which can be difficult. One may spend as much time developing the catalyst as spent separating the various products achieved. Another method of selective catalysis is now being explored. The method involves utilizing a multifunctional mesoporous silica catalyst with a gate-keeping capability. Properly functionalized mesoporous materials with well-defined pore morphology and surface properties can provide an ideal three-dimensional environment for anchoring various homogeneous catalysts. These materials can circumvent the multi-sited two-dimensional nature most heterogeneous systems have without adversely impacting the reactant diffusivity. These single-site nanostructured catalysts with ordered geometrical structure are advantageous in achieving high selectivity and reactivity. Mesoporous materials can be prepared to include pores lined homogeneously with tethered catalysts via co-condensation. Additionally, these materials can be reacted with another (RO){sub 3}Si{approx}Z group by using the traditional grafting method; this group is anchored predominantly at the entrances to the pores rather than inside the pores. Thus, if these {approx}Z groups are chosen properly, they can select certain molecules to enter the pores and be converted to products (Scheme 1). In such multifunctional catalysts, the selectivity depends on the discrimination of the gatekeeper. Gate-keeping MCM-41 materials are at the forefront of catalytic substances.

  18. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  19. Synthesis and Application of a New Acrylic Ester Resin for Recycling SIPA from its Water Solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.

  20. Industrial water treatment, by adsorption, using organized mesoporous materials

    Science.gov (United States)

    Koubaissy, Bachar; Toufaily, Joumana; Kafrouny, Lina; Joly, Guy; Magnoux, Patrick; Hamieh, Tayssir

    In this work, pure silica SBA-15 was synthesized by a sol-gel method and in-situ functionalized by a series of organosilane. These mesoporous materials are used to absorb polluants from wastewater. We studied the influence of functional groups on adsorption of phenol drifts. The carboxylic acid groups and substituted chlorine on phenol have been studied. There is a sharp increase of adsorption (more than double compared to phenol) which is very encouraging. Furthermore we note that the percentage of grafted ligands also plays an important role in adsorption. Finally, the adsorption capacity also depends on the nature and percentage of ligands present.

  1. Photocatalytic Cementitious Composites containing Mesoporous Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    FALIKMAN Vyacheslav Ruvimovich

    2014-02-01

    Full Text Available The advanced method to produce nanoparticles of anatase mesoporous TiO₂ with high specific surface 300 m²/g has been developed. It was shown that titanium nanodioxide can be used in cement and gypsum composites as a highly efficient photocatalyst in the conversion processes of nitric oxide and volatile organic substances. Influence of radiation intensity, relative humidity, and concentration of contaminant and its stream speed on photocatalysis was studied. It was determined that efficiency of the composites with synthesized samples is 1,5–1,7 times higher than that of the commercial sample of the titanium nanodioxide.

  2. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  3. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells

    Science.gov (United States)

    Morelli, Catia; Maris, Pamela; Sisci, Diego; Perrotta, Enrico; Brunelli, Elvira; Perrotta, Ida; Panno, Maria Luisa; Tagarelli, Antonio; Versace, Carlo; Casula, Maria Francesca; Testa, Flaviano; Andò, Sebastiano; Nagy, Janos B.; Pasqua, Luigi

    2011-08-01

    Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae

  4. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing surface area or pore volume available for CO2 capture, leading to a CO2 capture capacity of 3.2 mmol g−1 under simulated flue gas conditions. The sorbent is readily regenerated at 100°C and exhibits good stability over repetitive adsorption-desorption cycling.

  5. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing

    2011-05-15

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  6. Mesoporous tertiary oxides via a novel amphiphilic approach

    Directory of Open Access Journals (Sweden)

    Natasha Bennett

    2016-01-01

    Full Text Available We report a facile biomimetic sol-gel synthesis using the sponge phase formed by the lipid monoolein as a structure-directing template, resulting in high phase purity, mesoporous dysprosium- and gadolinium titanates. The stability of monoolein in a 1,4-butanediol and water mixture complements the use of a simple sol-gel metal oxide synthesis route. By judicious control of the lipid/solvent concentration, the sponge phase of monoolein can be directly realised in the pyrochlore material, leading to a porous metal oxide network with an average pore diameter of 10 nm.

  7. Mesoporous tertiary oxides via a novel amphiphilic approach

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Natasha; Hall, Simon R., E-mail: simon.hall@bristol.ac.uk, E-mail: Annela.Seddon@bristol.ac.uk [Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom and Complex Functional Materials Group, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Seddon, Annela M., E-mail: simon.hall@bristol.ac.uk, E-mail: Annela.Seddon@bristol.ac.uk; Hallett, James E. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Kockelmann, Winfried [STFC Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Ting, Valeska P. [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Sadasivan, Sajanikumari; Tooze, Robert P. [Sasol Technology (UK) Ltd, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (United Kingdom)

    2016-01-01

    We report a facile biomimetic sol-gel synthesis using the sponge phase formed by the lipid monoolein as a structure-directing template, resulting in high phase purity, mesoporous dysprosium- and gadolinium titanates. The stability of monoolein in a 1,4-butanediol and water mixture complements the use of a simple sol-gel metal oxide synthesis route. By judicious control of the lipid/solvent concentration, the sponge phase of monoolein can be directly realised in the pyrochlore material, leading to a porous metal oxide network with an average pore diameter of 10 nm.

  8. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  9. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO2-CaO-P2O5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  10. Investigation of impregnation methods in amine modification of mesoporous solids

    OpenAIRE

    Daniels, Emma; Madden, David; Curtin, Teresa

    2013-01-01

    non-peer-reviewed Carbon dioxide is one of a number of gases known as green-house gases which is thought to contribute to global climate change. CO2 released from fossil-fuel fired electric power generation plants is believed to be one of the main contributors to these emissions. A potential way to deal with these CO2 emissions is carbon dioxide capture and storage. This research investigates the application of amine-modified mesoporous silica as CO2 adsorbents. Various amine modification...

  11. Preparation and characterization of mesoporous tetragonal sulfated zirconia

    Institute of Scientific and Technical Information of China (English)

    Chun Xia He; Bin Yue; Ji Fang Cheng; Wei Ming Hua; Ying Hong Yue; He Yong He

    2009-01-01

    Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)poly(ethylene glycol) (P123) as the template. The samples were characterized by X-ray diffraction, N2 sorption, TEM, and NH3TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed. The product shows strong acidity.

  12. Curing of natural rubber and epoxy adhesive

    International Nuclear Information System (INIS)

    Low molecular weight epoxy resin based on diglycidyl ether of bisphenol A was synthesized and mixed at constant percentages with natural rubber. The rubber epoxy system was cured with various types of curing agents such as ethylene diamine, maleic anhydride as well as the prepared resole phenol formaldehyde. A study of the photo-induced crosslinking of the prepared elastic adhesives and film samples was carried out by exposure to ultraviolet lamp (300 w) for 2 weeks at 20 deg. C. Samples containing ethylene diamine were cured at 25 + - 1 deg. C. for 24 h while samples containing maleic anhydride or resole phenol formaldehyde resins were thermally cured at 150-170 deg. C. for 10 min. Cured adhesive compositions were tested mechanically and physically and evaluated as wood adhesives. While hardness, chemical resistance as well as heat stability of the prepared cured film sample were investigated. The obtained data indicate that the highest epoxy resin content and the presence of resole phenol formaldehyde resin in composition improve the tensile strength and adhesion properties on wood. While their cured film sample have the best hardness properties, chemical resistance and heat stability. (author)

  13. Salivary contamination and post-cured resin/resin lute bond.

    Science.gov (United States)

    Stokes, A N; Pereira, B P

    1994-01-01

    A previous study has shown that sandblasting and silane priming a post-cured inlay resin gave a secure bond to dual-cure luting resin. To determine the influence of salivary contamination 4 additional groups of 15 post-cured resin discs were mounted in acrylic cylinders, their faces sandblasted with 50 microns alumina and silane primed. Surface treatments with saliva (sa), air/water spray (a/w), phosphoric acid gel (pa), and silane (si) followed in the order listed: A) control, no further treatment; B) sa, a/w; C) sa, a/w, si; D) sa, a/w, pa a/w; E) sa, a/w, pa, a/w, si. A 3.9 mm diameter column of dual-cure resin lute was then bonded to the dry stored in water surfaces. Specimens were stored in water for 2 weeks after which the dual-cure resin columns were sheared off the post-cured resin discs. Shear bond strengths were A) 19.2 +/- 3.7, B) 17.4 +/- 3.9, C) 16.7 +/- 3.1, D) 15.6 +/- 3.5, E) 15.4 +/- 2.3 MPa. One-way ANOVA and Duncan's Multiple Range Procedure showed groups D and E to be significantly lower than the uncontaminated control group A (p < 0.05). There were 2 adhesive failures in group B and all others were cohesive within the post-cured resin discs. This implies that air/water alone after salivary contamination is an unreliable cleansing method. The low shear bond values for Groups D and E may have been related to inadequate clearance of the phosphoric acid gel. It was concluded that salivary contamination adversely affected the quality of the bonds studied and decontamination using phosphoric acid gel resulted in significantly reduced shear bond strengths.

  14. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    Directory of Open Access Journals (Sweden)

    F. Shafie

    2010-03-01

    Full Text Available Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage.Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1mm below the cemento-enamel junction. Indirect composite inlays were fabricated and thespecimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: withchlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storagetime. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20×stereomicroscope. Dye penetration was scored using 0-3 criteria.The data was analyzed using Kruskal-Wallis and complementary Dunn tests.Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05. There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033. In general, gingival margins showed more leakage than occlusal margins.Conclusion: Additionally, resin coating in self-etch (Panavia F2.0 and chlorhexidine application in etch-rinse (Nexus resin cement reduced microleakage at gingival margins after storage.

  15. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong

    2016-06-24

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers with mesoporous architectures, controlled morphologies, large surface areas, and optimal performances. In this work, a facile foaming-assisted electrospinning strategy with foaming agent of tea saponin is used to produce thoroughly mesoporous ZnO nanofibers with high purity and controlled morphology. Interestingly, mesoporous fibers with elliptical cross-section exhibit the significantly enhanced photocatalytic activity for hydrogen production, as compared to the counterparts with circular and rectangular cross-sections, and they also perform better than the commercial ZnO nanopowders. The unexpected shape dependence of photocatalytic activities is attributed to the different stacking modes of the mesoporous fibers, and a geometrical model is developed to account for the shape dependence. This work represents an important step toward producing thoroughly mesoporous ZnO nanofibers with tailored morphologies, and the discovery that fibers with elliptical cross-section render the best performance provides a valuable guideline for improving the photocatalytic performance of such mesoporous nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-pressure synthesis of mesoporous stishovite: potential applications in mineral physics

    Science.gov (United States)

    Stagno, Vincenzo; Mandal, Manik; Landskron, Kai; Fei, Yingwei

    2015-06-01

    Recently, we have described a successful synthesis route to obtain mesoporous quartz and its high-pressure polymorph coesite by nanocasting at high pressure using periodic mesostructured precursors, such as SBA-16 and FDU-12/carbon composite as starting materials. Periodic mesoporous high-pressure silica polymorphs are of particular interest as they combine transport properties and physical properties such as hardness that potentially enable the industrial use of these materials. In addition, synthesis of mesoporous crystalline silica phases can allow more detailed geology-related studies such as water/mineral interaction, dissolution/crystallization rate and the surface contribution to the associated thermodynamic stability (free energy and enthalpy) of the various polymorphs and their crossover. Here, we present results of synthesis of mesoporous stishovite from cubic large-pore periodic mesoporous silica LP-FDU-12/C composite as precursor with an fcc lattice. We describe the synthesis procedure using multi-anvil apparatus at 9 GPa (about 90,000 atm) and temperature of 500 °C. The synthetic mesoporous stishovite is, then, characterized by wide and small-angle X-ray diffraction, scanning/transmission electron microscopy and gas adsorption. Results show that this new material is characterized by accessible mesopores with wide pore size distribution, surface area of ~45 m2/g and volume of pores of ~0.15 cm3/g. Results from gas adsorption indicate that both porosity and permeability are retained at the high pressures of synthesis but with weak periodic order of the pores.

  17. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres.

    Science.gov (United States)

    Fang, Xiaoliang; Chen, Cheng; Liu, Zhaohui; Liu, Pengxin; Zheng, Nanfeng

    2011-04-01

    Hollow mesoporous silica spheres have recently attracted increasing attention. However, effective synthesis of uniform hollow mesoporous spheres with controllable well-defined pore structures for fundamental research and practical applications has remained a significant challenge. In this work, a straightforward and effective "cationic surfactant assisted selective etching" synthetic strategy was developed for the preparation of high-quality hollow mesoporous silica spheres with either wormhole-like or oriented mesoporous shell. The as-prepared hollow mesoporous silica spheres have large surface area, high pore volume, and controllable structure parameters. Our experiments demonstrated that cationic surfactant plays critical roles in forming the hollow mesoporous structure. A formation mechanism involving the etching of solid SiO(2) accelerated by cationic surfactant followed by the redeposition of dissolved silica species directed by cationic surfactant is proposed. Furthermore, the strategy can be extended as a general strategy to transform silica-coated composite materials into yolk-shell structures with either wormhole-like or oriented mesoporous shell. PMID:21305093

  18. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.

    Science.gov (United States)

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong K; Hensley, Dale K; Grappe, Hippolyte A; Meyer, Harry M; Dai, Sheng; Paranthaman, M Parans; Naskar, A K

    2014-01-28

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  19. Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Mesoporous films exhibit better electrochemical kinetics compared to the dense films. • Mesoporous films exhibit better reversibility compared to the dense films. • Li+cations disrupt WO3 network in a reversible way in the mesoporous film. • Li+ irreversibly intercalate in the voids of crystallites in the dense film. - Abstract: The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin films are significantly influenced by their structural and surface characteristics. In this study, we prepared two types of amorphous films via the sol-gel technique: one dense and one mesoporous in order to compare their response upon lithium intercalation and de-intercalation. According to chronoamperometric measurements, Li+ intercalates/de-intercalates faster in the mesoporous film (24s/6s) than in the dense film (48s/10s). The electrochemical measurements (cyclic voltammetry and chronoamperometry) also showed worse reversibility for the dense film compared to the mesoporous film, giving rise to important Li+ trapping and remaining coloration of the film. Raman analysis showed that the mesoporous film provides more accessible and various W-O surface bonds for Li+ intercalation. On the contrary, in the first electrochemical insertion and de-insertion in the dense film, Li+ selectively reacts with a few surface W-O bonds and preferentially intercalates into pre-existing crystallites to form stable irreversible LixWO3 bronze

  20. Thermal and hydrothermal stability of ZrMCM-41 mesoporous molecular sieves obtained by microwave irradiation

    Indian Academy of Sciences (India)

    T S Jiang; Y H Li; X P Zhou; Q Zhao; H B Yin

    2010-05-01

    ZrMCM-41 mesoporous molecular sieves were synthesized by using the zirconium sulfate as zirconium source and using cetyltrimethyl ammonium bromide as a template under microwave irradiation condition. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductive coupled plasma (ICP) technique, Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption, respectively. The effect of the different initial ZrO2 : SiO2 molar ratio, the different thermal treatment temperature and hydrothermal treatment time on textural property was investigated. The results show that the obtained products possess a typical mesoporous structure of MCM-41 and have specific surface areas in the range of 598.1 ∼ 971.4 m2/g and average pore sizes in the range of ca. 2.46 ∼ 3.43 nm. On the other hand, the BET specific surface area and pore volume of the synthesized ZrMCM-41 mesoporous molecular sieve decrease with the increased amount of zirconium incorporated in the starting material, the rise of thermal treatment temperature and the prolonging of hydrothermal treatment time, the mesoporous ordering deteriorates. The mesoporous structure of the ZrMCM-41 mesoporous molecular sieve still retains after calcination at 750°C for 3 h or hydrothermal treatment at 100°C for 6 days, however, the mesoporous ordering is poor.

  1. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  2. Mesoporous three-dimensional network of crystalline WO{sub 3} nanowires for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China); Wang Fei; Shen Wanjiang; Hu Ming [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China)

    2012-11-05

    Highlights: Black-Right-Pointing-Pointer Mesoporous 3D network of WO{sub 3} nanowires was prepared by nanocasting method. Black-Right-Pointing-Pointer The 3D WO{sub 3} nanowires exhibits excellent structural properties for gas-sensing. Black-Right-Pointing-Pointer The 3D WO{sub 3} nanowires is responsive to NO{sub 2} gas at ppb level. Black-Right-Pointing-Pointer High NO{sub 2} response, fast response and recovery and good selectivity are achieved. - Abstract: Mesoporous three-dimensional (3D) network of crystalline WO{sub 3} nanowires was prepared by nanocasting method using 3D SBA-15 silica with hexagonally ordered mesopores as hard template. After impregnation, mineralization and template removal, a mesoporous 3D framework of ordered crystalline WO{sub 3} nanowires with high specific surface area and stable mesopore channels was formed through the randomly distributed bridging between the neighboring nanowires. The mesostructure of the product was confirmed by low-angle X-ray diffraction (XRD) and nitrogen physisorption measurements. High resolution transmission electron microscopy (HRTEM) images indicate the single crystal structure with different crystal orientation for mesoporous particles. The gas sensing properties of the mesoporous 3D WO{sub 3} nanowires replica were investigated at 50 Degree-Sign C up to 200 Degree-Sign C over NO{sub 2} concentration ranging from 15 to 500 ppb. The results indicate that the mesoporous 3D WO{sub 3} nanowires exhibits high response, good selectivity and fast response-recovery characteristics in the detection of sub-ppm and ppb level NO{sub 2} at the optimal operating temperature of 125 Degree-Sign C due to the stable mesopore channels, large surface area and perfect single-crystal structure.

  3. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  4. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas

    2016-06-03

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a remarkably high organic content with a high surface area. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt%), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.

  5. Mesoporous MgO: Synthesis, physico-chemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Kasyanov, I. A.; Moskovskaya, I. F.; Romanovsky, B. V.

    2016-06-01

    Mesoporous MgO was obtained via the hydrothermal synthesis using both ionogenic and non-ionogenic surfactants as structure-directing templates. The materials prepared were characterized by SEM, BET-N2, XRD, and TG-DTA techniques. MgO particles are spherical 20-μm aggregates of primary oxide particles well shaped as rectangular parallelepipeds. Magnesium oxide samples have the specific surface area of 290-400 m2/g and pore sizes of 3.3-4.1 nm. Their mesoporous structure remained unchanged after calcination up to 350°C. Catalytic activity of mesoporous MgO was studied in acetone condensation reaction.

  6. Preparation and Photocatalysis of Mesoporous TiO2 Nanofibers via an Electrospinning Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; YUAN Qing; CHI Yue; SHAO Chang-lu; LI Nan; LI Xiao-tian

    2012-01-01

    Mesoporous TiO2 nanofibers have been synthesized by a new method that combines sol-gel chemistry and electrospinning technique.The obtained mesoporous TiO2 nanofibers were characterized with scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM) and nitrogen adsorptiondesorption isotherms.The photocatalytic performance was evaluated by the photocatalytic degradation of Rhodamine B undcr UV light irradiation.The results show that mesoporous TiO2 nanofibers exhibit higher photocatalytic activity compared with nonporous TiO2 nanofibers.

  7. Synthesis and characterization of pure mesoporous zirconia thin film with two-dimensional hexagonal framework

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pure mesoporous ZrO2 thin film with two-dimensional hexagonal framework mesostructure has been successfully prepared by using a nonionic triblock copolymer as the structure-directing agent and ZrCl4 as the zirconia source through evaporation-induced self-assembly approach. The resulting materials were characterized by X-ray diffraction, scanning electron microscope, and nitrogen adsorption measurements. The obtained mesoporous ZrO2 thin film has a nanocrystalline inorganic framework (tetragonal zirconia) and narrowly distributed mesopore size (6. 7 nm in diameter).

  8. Effects of Carbonization Temperature and Component Ratio on Electromagnetic Interference Shielding Effectiveness of Woodceramics

    Directory of Open Access Journals (Sweden)

    Yubo Tao

    2016-07-01

    Full Text Available Woodceramics were fabricated in a vacuum through carbonization of wood powder impregnated with phenol formaldehyde (PF resin. The effects of carbonization temperature and mass ratio of wood/resin on electromagnetic interference (EMI shielding effectiveness (SE and morphology of woodceramics were explored. The PF resin made wood cell walls have the characteristics of glassy carbon. Wood axial tracheid and ray cells were filled with more glassy carbon by increasing addition of PF resin. Moreover, the increase of carbonization temperature was beneficial to improving SE. Woodceramics (mass ratio 1:1 obtained at 1000 °C presented a medium SE level between 30 MHz and 1.5 GHz.

  9. Epoxy resins used to seal brachytherapy seed

    International Nuclear Information System (INIS)

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  10. The effect of resin shades on microhardness, polymerization shrinkage, and color change of dental composite resins.

    Science.gov (United States)

    Jeong, Tae-Sung; Kang, Ho-Seung; Kim, Sung-Ki; Kim, Shin; Kim, Hyung-Il; Kwon, Yong Hoon

    2009-07-01

    The present study sought to evaluate the effect of resin shades on the degree of the polymerization. To this end, response variables affected by the degree of polymerization were examined in this study - namely, microhardness, polymerization shrinkage, and color change. Two commercial composite resins of four different shades were employed in this study: shades A3, A3.5, B3, and C3 of Z250 (Z2) and shades A3, A3.5, B3, and B4 of Solitaire 2 (S2). After light curing, the reflectance/absorbance, microhardness, polymerization shrinkage, and color change of the specimens were measured. On reflectance and absorbance, Z2 and S2 showed similar distribution curves regardless of the resin shade, with shade A3.5 of Z2 and shade A3 of S2 exhibiting the lowest/highest distributions. Similarly for attenuation coefficient and microhardness, the lowest/highest values were exhibited by shade A3.5 of Z2 and shade A3 of S2. On polymerization shrinkage, no statistically significant differences were observed among the different shades of Z2. Similarly for color change, Z2 specimens exhibited only a slight (DeltaE*=0.5-0.9) color change after immersion in distilled water for 10 days, except for shades A3 and A3.5. Taken together, results of the present study suggested that the degree of polymerization of the tested composite resins was minimally affected by resin shade.

  11. Resin gathering in neotropical resin bugs (Insecta: Hemiptera: Reduviidae): functional and comparative morphology.

    Science.gov (United States)

    Forero, Dimitri; Choe, Dong-Hwan; Weirauch, Christiane

    2011-02-01

    Apiomerini (Reduviidae: Harpactorinae) collect plant resins with their forelegs and use these sticky substances for prey capture or maternal care. These behaviors have not been described in detail and morphological structures involved in resin gathering, transfer, and storage remain virtually undocumented. We here describe these behaviors in Apiomerus flaviventris and document the involved structures. To place them in a comparative context, we describe and document leg and abdominal structures in 14 additional species of Apiomerini that represent all but one of the 12 recent genera in the tribe. Based on these morphological data in combination with the behavioral observations on A. flaviventris, we infer behavioral and functional hypotheses for the remaining genera within the tribe Apiomerini. Setal abdominal patches for resin storage are associated with maternal care so far only documented for species of Apiomerus. Based on the occurrence of these patches in several other genera, we propose that maternal care is widespread within the tribe. Ventral abdominal glands are widespread within female Apiomerini. We propose that their products may prevent hardening of stored resins thus providing long-term supply for egg coating. Judging from the diverse setal types and arrangements on the front legs, we predict six different behavioral patterns of resin gathering within the tribe.

  12. Enhanced capacitive deionization of graphene/mesoporous carbon composites.

    Science.gov (United States)

    Zhang, Dengsong; Wen, Xiaoru; Shi, Liyi; Yan, Tingting; Zhang, Jianping

    2012-09-01

    Capacitive deionization (CDI) with low-energy consumption and no secondary waste is emerging as a novel desalination technology. Graphene/mesoporous carbon (GE/MC) composites have been prepared via a direct triblock-copolymer-templating method and used as CDI electrodes for the first time. The influences of GE content on the textural properties and electrochemical performance were studied. The transmission electron microscopy and nitrogen adsorption-desorption analysis indicate that mesoporous structures are well retained and the composites display improved specific surface area and pore size distribution, as well as pore volume. Well dispersed GE nanosheets are deduced to be beneficial for enhanced electrical conductivity. The electrochemical performance of electrodes in an NaCl aqueous solution was characterized by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy measurements. The composite electrodes perform better on the capacitance values, conductive behaviour, rate performance and cyclic stability. The desalination capacity of the electrodes was evaluated by a batch mode electrosorptive experiment and the amount of adsorbed ions can reach 731 μg g⁻¹ for the GE/MC composite electrode with a GE content of 5 wt%, which is much higher than that of MC alone (590 μg g⁻¹). The enhanced CDI performance of the composite electrodes can be attributed to the better conductive behaviour and higher specific surface area. PMID:22836788

  13. Mesoporous silica as carrier of antioxidant for food packaging materials

    Science.gov (United States)

    Buonocore, Giovanna Giuliana; Gargiulo, Nicola; Verdolotti, Letizia; Liguori, Barbara; Lavorgna, Marino; Caputo, Domenico

    2014-05-01

    Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packaging.

  14. Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis

    Science.gov (United States)

    Moreno-Tost, Ramón; Jiménez-Jiménez, José; Infantes-Molina, Antonia; Cavalcante, Celio L.; Azevedo, Diana C. S.; Soriano, María Dolores; López Nieto, José Manuel; Jiménez-López, Antonio; Rodríguez-Castellón, Enrique

    Porous phosphate heterostructures (PPHs) are solids formed by a layered metal(IV) phosphate expanded with silica galleries obtained by combining the two main strategies for obtaining mesoporous materials [pillared layered structures (PLS') and MCM-41]. The different synthetic pathways for obtaining mesoporous phosphate structures with silica galleries with Zr- or Ti-doped silica, the study of their structural, textural and acid properties, its functionalisation with different organic substances such as propionitrile, 3-aminopropyl triethoxysilane, (3-mercaptopropyl)trimethoxysilane, vinyltrimethoxysilane, phenyltriethoxysilane and 3-(triethoxysilyl)propionitrile are discussed. The preparation of metal-supported catalysts and their application in gas separation, adsorption and catalysis are reviewed. Specifically, the use of Cu- and Fe-exchanged PPH for the adsorption of benzothiophene and the separation of propane/propene is the main application as adsorbent. The hydrotreating of aromatic hydrocarbons using ruthenium-impregnated catalysts via hydrogenation and hydrogenolysis/hydrocracking for the production of clean diesel fuels, the selective catalytic reduction of NO from stationary and mobile sources by using Cu-PPH with 1, 3 and 7 wt% of Cu and the selective oxidation of hydrogen sulphide to sulphur with vanadium-containing PPH are the three catalytic reactions of environmental interest studied.

  15. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia

    2015-02-16

    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.

  16. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  17. Synthesis and Characterization of Mesoporous Europium (Ⅲ) Silicate Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    Yin Wei

    2005-01-01

    The luminescent nanosized Eu-MCM (1:10) was synthesized by means of sol-gel-assisted self-assembly under basic conditions at room temperature. The results of 29Si-MAS NMR show that the peaks are Q4, Q3, Q2 [(SiO)4-mSi-(OH)m (m=0, 1, 2), at -δ111, -δ103, -δ90], and q3, q2, q1, q0 [(SiO)4-nSi-(O-Eu)n (n=1, 2, 3, 4 ), at -δ83, -δ72, -δ55, -δ47]. The result proves Eu3+ doped Si-O framework. The HRTEM image shows that the regular uniform nanoparticles with a diameter of 15 nm possess large pore with Φ8 nm, which is consistent with the result of N2 adsorption. The patterns of selected-area electron diffraction, XRD, and pore-size distribution plot of Eu-MCM (1:10) show that the sample of Eu-MCM (1:10) possesses the both of crystal and amorphous phases. The FT IR results indicate that the peaks near 970 cm-1 are assigned to the deformation vibration of silanol group. The as-product was calcined at 800 ℃ and the mesoporous material possesses enormous specific areas and large pores, which shows that the mesoporous material is ultrastable.

  18. Synthesis, characterization and photocatalytic reactions of phosphated mesoporous titania

    Indian Academy of Sciences (India)

    Pallabi Goswami; Jatindra Nath Ganguli

    2012-10-01

    Mesoporous titania nanoparticles with a well-definedmesostructure was prepared by hydrothermal process, using nonionic triblock copolymer P123 as surfactant template, modified with phosphoric acid and followed by calcination at 600°C. The sol–gel titania was modified by in situ phosphorylation using phosphoric acid and thereby incorporating phosphorous directly into the framework of TiO2. The resulting materials were characterized by XRD, SEM, TEM, nitrogen adsorption, TGA and DRS. It was found that the structural and optical properties of titania samples are strongly influenced by their phosphate modification. In case of calcined samples a positive effect on the specific surface area for the in situ phosphated sample was found. Mesoporous structure of phosphated titania did not collapse even after calcination at 600°C. The enhanced photocatalytic activity of the synthesized phosphate nanomaterials were evaluated through a study of the decomposition of fluorescein under UV light excitation and compared with undoped titania nanomaterial as well as with commercial titania.

  19. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Tung Xuan, E-mail: bxtung@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-09-15

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  20. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongdong, E-mail: lidongchem@sina.cn [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhu, Yuntao; Liang, Zhiqiang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.

  1. Cellulose whisker/epoxy resin nanocomposites

    OpenAIRE

    Tang, Liming; Weder, Christoph

    2010-01-01

    New nanocomposites composed of cellulose nanofibers or “whiskers” and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of ∼10 and ∼84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185−192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtu...

  2. Fully bio-based epoxy resins

    OpenAIRE

    Ertl, Johanna

    2015-01-01

    Epoxy resins are mainly produced by reacting bisphenol A with epichlorohydrin. Growing concerns about the negative health effects of bisphenol A are urging researchers to find alternatives. In this work diphenolic acid is suggested, as it derives from levulinic acid, obtained from renewable resources. Nevertheless, it is also synthesized from phenol, from fossil resources, which, in the current paper has been substituted by plant-based phenols. Two interesting derivatives were identified: dip...

  3. Microwave Study of Recycled ABS Resins

    Institute of Scientific and Technical Information of China (English)

    A; M; Hasna

    2002-01-01

    This article provides a review of the research unde rt aken in order to determine the suitability of utilizing microwave technology in the production of Recycled ABS Acrylonitrile Butadiene Styrene resin for mouldin gs. The experimental investigation determined the suitability of the existing re cycled ABS material, the mould material used with respect to performance and lon gevity, potential commercial plant and equipment, end mould compression. Introduction Frequency Characterization of ABS The first ...

  4. Synthesis of Resins with Chiral Salen Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The enormous growth in the use of polymer resin supports in solid phase combinatorial synthesis, and related methodologies, has re-stimulated interest in the area of polymer-supported transition metal complex catalyst .The recently developed chiral salen-based for the enantioselective ring opening of meso epoxides and kinetic resolution of terminal epoxides are appealing candidates for immobilization on solid support. The catalysts are reading prepare from inexpensive components, and are amenable to modification for attachment to a solid support.

  5. Adsorption of Iminodiacetic Acid Resin for Lutetium

    Institute of Scientific and Technical Information of China (English)

    熊春华; 姚彩萍; 王惠君

    2004-01-01

    The adsorption behavior and mechanism of a novel chelate resin,iminodiacetic acid resin(IDAAR) for Lu(Ⅲ) were investigated.The statically saturated adsorption capacity is 210.8 mg·g-1 at 298 K in HAc-NaAc medium.The Lu(Ⅲ) adsorbed on IDAAR can be eluted by 0.5 mol·L-1 HCl and the elution percentage reaches 96.5%.The resin can be regenerated and reused without obvious decrease in adsorption capacity.The apparent adsorption rate constant is k298=2.0×10-5 s-1.The adsorption behavior of IDAAR for Lu(Ⅲ) obeys the Freundlich isotherm.The thermodynamic adsorption parameters,enthalpy change ΔH,free energy change ΔG and entropy change ΔS of IDAAR for Lu(Ⅲ) are 13.1 kJ·mol-1,-1.37 kJ·mol-1 and 48.4 J·mol-1·K-1,respectively.The apparent activation energy is Ea=31.3 kJ·mol-1.The molar coordination ratio of the functional group of IDAAR to Lu(Ⅲ) is about 3∶1.The adsorption mechanism of IDAAR for Lu(Ⅲ) was examined by chemical method and IR spectrometry.

  6. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  7. Thermal stability of ion-exchange resins

    International Nuclear Information System (INIS)

    The action of heat, radiation and oxidants on carbonchain polymers, such as ion-exchange resins, often cause irreversible chemical changes in macro molecules. These changes can be e g the rupture of the carbon-carbon single or double bond, and/or the degradation of the macro molecule. Ion-exchange materials also contain the far less stable bonds between functional groups and the polymer matrix. For this reason the thermal stability of ion-exchange mat- erials is mainly based on the behaviour of the functional groups, which are responsible for the ion-exchange. The solidification of the ion-exchange resin waste usually involves elevated tempera- tures. Bituminization is carried out at 130-160 degrees C. Cementa- tion is carried out at room temperature. However, cementation can generate temperatures of up to 100-120 degrees C in the solidifica- tion product during the curing period. In this study the swelling/ shrinking properties of different ion-exchange materials have been studied in air and water as a function of the drying time and temp- erature. The air dried resins were used as the reference material. The effect of sodium sulphate as a possible additive to reduce swelling was studied, The experiments which were performed and re- sults observed are discussed in detail in the Appendices. (Authors)

  8. Effects of layering technique on the shade of resin overlays and the microhardness of dual cure resin cement

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2014-06-01

    Full Text Available The purpose of this study was to assess the color of layered resin overlays and to test the early microhardness of dual cure resin cement (DCRC light cured through the layered resin overlays. Resin overlays of 1.5 mm thickness were fabricated with the A3 shade of Z350 (Group 1L, the A3B and A3E shades of Supreme XT (Group 2L, and the A3, E3, and T1 shades of Sinfony (Group 3L using one, two, and three layers, respectively (n = 7. Each layer of the resin overlays was set in equal thickness. The color of the resin overlays was measured with a colorimeter and compared with an A3 shade resin denture tooth. DCRC was light cured through the resin overlays, and the early microhardness of the DCRC was measured. The ΔE value between the denture tooth and the resin overlays and the Vickers hardness number (VHN of the DCRC were analyzed with one-way ANOVA and Tukey’s HSD test. The color differences were 8.9 ± 0.5, 5.3 ± 1.0, and 7.3 ± 0.5 and the VHNs were 19.4 ± 1.1, 21.1 ± 0.9, and 29.3 ± 0.6 for Groups 1L, 2L, and 3L, respectively. Therefore, to match the designated tooth color of resin inlays and to increase the early microhardness of DCRC, layered resin inlays are more appropriate than single-dentin-layer resin inlays. However, the translucent layer should be used cautiously because the color difference of resin inlays with a translucent layer was affected more than those without a translucent layer.

  9. Modification of unsaturated polyester resins (UP) and reinforced UP resins via plasma treatment

    International Nuclear Information System (INIS)

    Unsaturated polyester resins (UP) and reinforced composite unsaturated polyester resins (RCP) were made superhydrophobic by plasma assisted methods. Both CF4-plasma-enhanced chemical vapor deposition (CF4-PECVD) and alternative method were tested. The surfaces were characterized by water contact angle (CA) measurements and scanning electron microscopy (SEM). Water contact angle results indicated that CF4-PECVD can significantly improve the wettability of UP surfaces, but suffer from difficulties for RCP surfaces. Alternatively, O2 plasma followed by self-assembly of octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) was tested. It was shown that regardless of the filler percentage, O2 plasma followed by self-assembly of OTS monolayer formation all led to superhydrophobic surfaces. The results provided a means to improve the wettability of reinforced UP resins (RCP).

  10. Rapid dewatering of Powdex resins at a BWR

    International Nuclear Information System (INIS)

    For most BWR's a large portion of their radioactive waste produced is water demineralization resins, both powdered and bead. In order to minimize the quantities of resins produced, proper demineralizer operation, volume reduction and minimization techniques are relevant to spent resin dewatering and packaging. To meet burial requirements spent resin needs to be dewatered and packaged properly. Methods of dewatering spent resins have included centrifuge separation and pulling water out of the resin with a diaphragm pump. Various vendors are offering systems that provide rapid dewatering and volume reduction using filter/liners in combination with vacuum pumps and air blowers. The various systems required a standardized test program for proper comparison and evaluation. The program is described in this paper

  11. Epoxy resin developments for large superconducting magnets impregnation

    Science.gov (United States)

    Rey, J. M.; Gallet, B.; Kircher, F.; Lottin, J. C.

    The future detectors ATLAS and CMS of the Large Hadron Collider at CERN will use two huge superconducting magnets. Both are now under design, and their electrical insulation could be realized using epoxy resin and a wet impregnation technique. Because of their large dimensions, and the indirect cooling of the superconductor, the strengths of the resin and of the resin/conductor interface are of major importance. A new generation of epoxy resins for vacuum/pressure impregnation methods has been tested, and compared with some classical and well-known epoxy resins used in impregnation techniques. In order to understand the mechanical behaviour at 4 K, the complete evolution from liquid state to low temperature service condition is considered. The paper will present some results on the mechanical properties, the density and the chemical shrinkage occurring during the polymerization and the thermal contraction between room temperature and 4 K for these different types of epoxy resins.

  12. Hot resin supercompaction. The development through the years

    Energy Technology Data Exchange (ETDEWEB)

    Fehrmann, Henning [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2014-04-15

    The Hot Resin Supercompaction (HRSC) is a thermal spent resin treatment process which is installed in several Nuclear Power Plants (NPP). The first installation was in the mid 1990 at NPP Philipsburg (Germany), followed by NPP Tihange (Belgium) in 2008 and NPP Sanmen (China) in 2013. Characteristically the HRSC process provides completely dry spent resin and final waste products that are volume reduced and contained in so called pellets. The pellets themselves are qualified waste products according to German repository requirements which enable flexible handling. Through the years development was carried out to adapt the HRSC process from its first application with a mixture of powder and bead resins to treatment of pure bead resins. Up to now the HRSC process is successfully used in the operational phase for spent resin treatment. Its application for the post operation and decommissioning phase is a valid option as the integrated Supercompactor can be used for other waste streams resulting out of decommissioning. (orig.)

  13. Mechanical Behavior of Areca Fiber and Maize Powder Hybrid Composites

    OpenAIRE

    Kishan Naik; Swamy, R.P.

    2014-01-01

    Natural fibers are gaining the interest in packaging, domestic, low cost housing and other general applications. In this work the mechanical properties of randomly distributed areca fiber and maize powder reinforced phenol formaldehyde were studied. From the results Youngs modulus is maximum found in 300 ml of resin. The maximum tensile strength is for 300B composite plate. The maximum Young’s modulus for 300B is 135MPa, for bending strength of various composite plates, the co...

  14. METHODS TO IMPROVE LIGNIN’S REACTIVITY AS A PHENOL SUBSTITUTE AND AS REPLACEMENT FOR OTHER PHENOLIC COMPOUNDS: A BRIEF REVIEW

    OpenAIRE

    Yonghong Zhou; Meng Zhang; Hui Pan; Lihong Hu

    2011-01-01

    Lignin is readily available as a by-product from the pulp and paper industry. It is considered to be a promising substitute for phenol in phenol-formaldehyde (PF) resin synthesis, given the increasing concerns of the shortage of fossil resources and the environmental impact from petroleum-based products. One hurdle that prevents the commercial utilization of lignin is its low reactivity due to its chemical structure. Many efforts have been made to improve its reactivity by modification and/or...

  15. A Review of Structural Performance of Oil Palm Empty Fruit Bunch Fiber in Polymer Composites

    OpenAIRE

    Reza Mahjoub; Jamaludin Bin Mohamad Yatim; Abdul Rahman Mohd. Sam

    2013-01-01

    According to environmental concerns and financial problems, natural fibers have become interesting and fascinating nowadays to be used as an industrial material and structural material for rehabilitating of structures. Oil palm empty fruit bunch fiber (OPF) is a natural fiber which is found a lot in tropical areas. Scientists have used OPF fiber with many types of resins such as epoxy, polypropylene, polyester, and phenol formaldehyde. Therefore, this paper focused on the properties of OPF fi...

  16. WHEY PROTEIN-BASED WATER RESISTANT AND ENVIRONMENTALLY SAFE ADHESIVES FOR PLYWOOD

    OpenAIRE

    Zongyan Zhao; Wenbo Wang; Zhenhua Gao; Mingruo Guo

    2011-01-01

    Whey protein is a renewable and environmentally safe biomaterial, a by-product of cheese production. It can be utilized for non-food applications for value-added products. The substances glyoxal (GO), glutaraldehyde (GA), polymeric methylene biphenyl diisocyanate (p-MDI), urea-formaldehyde (UF) resin, and phenol-formaldehyde oligomer (PFO) that contain reactive groups were applied together with whey protein as modifier in order to increase crosslinking density and molecular weight for improvi...

  17. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  18. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    Science.gov (United States)

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-11-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed.

  19. Do resin cements influence the cuspal deflection of teeth restored with composite resin inlays?

    Science.gov (United States)

    da Rosa, Helen C V; Marcondes, Maurem L; de Souza, Niélli C; Weber, João B B; Spohr, Ana M

    2015-04-01

    The aim of this study was to evaluate the influence of different resin cements on the cuspal deflection of endodontically treated teeth restored with composite resin inlays. Sixty upper premolars were randomly divided into five groups (n=12): 1 - sound teeth; 2 - cavity; 3 - Rely X ARC; 4 - RelyX Unicem; 5 - SeT. The teeth from groups 2, 3, 4 and 5 received a MOD preparation and endodontic treatment. Impressions were made with vinyl polysiloxane and poured using type IV die stone in groups 3, 4 and 5. Inlays with composite resin were built over each cast and luted with the resin cements. A 200 N load was applied on the occlusal surface, and cuspal deflection was measured using a micrometer. After 24 h, cuspal deflection was measured again using a 300 N load. The Student t-test showed that there was no statistically significant difference between the 200 N and 300 N occlusal loads only for the sound teeth group (p = 0.389) and the RelyX ARC group (p = 0.188). ANOVA and Tukey'test showed that the sound teeth had the lowest mean cuspal deflection, differing statistically from the other groups (p<0.05). The highest cuspal deflections were obtained in the SeT group and the cavity group, with no statistical difference between them. Intermediate values were obtained in RelyX ARC group and RelyX Unicem group, which differed statistically. The self-adhesive resin cements RelyX Unicem and SeT showed less capacity to maintain the stiffness of the tooth/restoration complex than the conventional resin cement RelyX ARC. PMID:25950160

  20. Analytical applications of resins containing amide and polyamine functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Orf, G. M.

    1977-12-01

    A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from sea water.