WorldWideScience

Sample records for mesoporous clay composites

  1. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  2. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Unknown

    surfactant N-cetyl-N,N,N-trimethylammonium bromide. (CTAB). We describe the macroporous–mesoporous silica– alumina composites with satisfactory/high surface areas. 2. Experimental. Polymethylmethacrylate (PMMA) spheres of diameter. 275 nm were obtained from Soken Chemicals, Japan. These were taken as 1% ...

  3. Perspectives of micro/mesoporous composites in catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Mintova, S.

    2007-01-01

    Roč. 49, č. 4 (2007), s. 457-509 ISSN 0161-4940 R&D Projects: GA ČR GA203/05/0197; GA ČR GA104/05/0192; GA AV ČR 1QS400400560; GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : micro/mesoporous composite * zeolites * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.333, year: 2007

  4. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  5. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    WINTEC

    ratio, (ii) flocculated nanocomposites, for which intercalated and stacked silicate layers flocculated to some ... Malvern) and the results confirmed the distribution of the particle size in this clay. Particle size distribution of the ... Particle size distribution curve for clay, bentonite. Table 2. Chemical composition of bentonite clay.

  6. One-step synthesis of mesoporous silica–graphene composites by ...

    Indian Academy of Sciences (India)

    Silica–graphene oxide composites were synthesized by hydrothermal method with simultaneous functionalization and reduction of graphene oxide (GO) in the presence of mesoporous silica. Two types of silica were used in the study, mesoporous synthetic silica (MSU-F) synthesized by sol-gel method and mesoporous ...

  7. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  8. Clay nanotube composites for antibacterial nanostructured coatings

    Science.gov (United States)

    Boyer, Christen J.

    A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings. This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper (Cu) and silver (Ag) metal nanoparticles through electrochemical syntheses, and as a platform for nano-structured antibacterial polymer composites. Characterization of interfacial and material properties demonstrated the feasibility of electrolysis as a new efficient and replicable nano-scale surface modification route. Methods of encapsulating HNTs in nanofibers, three-dimensional printer filaments, and multifunctional polymer rubbers were also realized. The nanofabrication methods, nanoparticles, and polymer composites created in this work were novel, scalable, easy-to-replicate, and displayed antibacterial features with tunable properties.

  9. Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-10-15

    This study is the first report on synthesis, characterization and catalytic application of propylsulfonic acid-functionalized mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). In comparison with propylsulfonic acid-functionalized HMS (HMS-SO{sub 3}H), a series of NR/HMS-SO{sub 3}H composites were prepared via an in situ sol–gel process using tetrahydrofuran as the synthesis media. Tetraethylorthosilicate as the silica source, was simultaneously condensed with 3-mercaptopropyltrimethoxysilane in a solution of NR followed by oxidation with hydrogen peroxide to achieve the mesoporous composites containing propylsulfonic acid groups. Fourier-transform infrared spectroscopy and {sup 29}Si MAS nuclear magnetic resonance spectroscopy results verified that the silica surfaces of the NR/HMS-SO{sub 3}H composites were functionalized with propylsulfonic acid groups and covered with NR molecules. After the incorporation of NR and organo-functional group into HMS, the hexagonal mesostructure remained intact concomitantly with an increased framework wall thickness and unit cell size, as evidenced by the X-ray powder diffraction analysis. Scanning electron microscopy analysis indicated a high interparticle porosity of NR/HMS-SO{sub 3}H composites. The textural properties of NR/HMS-SO{sub 3}H were affected by the amount of MPTMS loading to a smaller extent than that of HMS-SO{sub 3}H. NR/HMS-SO{sub 3}H exhibited higher hydrophobicity than HMS-SO{sub 3}H, as revealed by H{sub 2}O adsorption–desorption measurements. Moreover, the NR/HMS-SO{sub 3}H catalysts possessed a superior specific activity to HMS-SO{sub 3}H in the esterification of lauric acid with ethanol, resulting in a higher conversion level. - Highlights: • Acidic NR/HMS-SO{sub 3}H composites were prepared by in situ sol–gel process. • Propylsulfonic acid was functionalized onto HMS surface by direct co-condensation. • NR/HMS-SO{sub 3}H exhibited a hexagonal

  10. Preparation and Electrochemical Properties of Mesoporous Manganese Dioxide-Based Composite Electrode for Supercapacitor.

    Science.gov (United States)

    Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiquin; Liu, Yanag; Xing, Guangjian

    2017-01-01

    The mesoporous manganese dioxide with high specific surface area was obtained through a one-pot prepare procedure at ambient temperature under acidic conditions. And the graphene/mesoporous manganese dioxide composite was synthesized by a simple hydrothermal approach. As a comparison, silver nanowires also as a conductor was added to the mesoporous manganese dioxide. Both of the graphene and silver nanowires can increase the capacitance of the mesoporous manganese dioxide-based composite electrode materials. Compared with the graphene/mesoporous manganese dioxide composite, the silver nanowires/mesoporous manganese dioxide mixture has a better electrochemical performance, the specific capacitance and energy density is almost 2.2 times larger than that of the composites. The morphology and detail structure were investigated by the Scanning electron microscopy, X-ray diffraction, Raman spectra, Fourier transform infrared spectrometry and Nitrogen adsorption–desorption isotherms. The electrochemical performance was assessed by the cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.

  11. Photocatalytic Cementitious Composites containing Mesoporous Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    FALIKMAN Vyacheslav Ruvimovich

    2014-02-01

    Full Text Available The advanced method to produce nanoparticles of anatase mesoporous TiO₂ with high specific surface 300 m²/g has been developed. It was shown that titanium nanodioxide can be used in cement and gypsum composites as a highly efficient photocatalyst in the conversion processes of nitric oxide and volatile organic substances. Influence of radiation intensity, relative humidity, and concentration of contaminant and its stream speed on photocatalysis was studied. It was determined that efficiency of the composites with synthesized samples is 1,5–1,7 times higher than that of the commercial sample of the titanium nanodioxide.

  12. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.

    Science.gov (United States)

    Wei, Jie; Chen, Fangping; Shin, Jung-Woog; Hong, Hua; Dai, Chenglong; Su, Jiancan; Liu, Changsheng

    2009-02-01

    A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(epsilon-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG(63) cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair.

  13. Studies of Hydrogen sorption on Mesoporous Carbon composite modified with adsorbed Palladium

    NARCIS (Netherlands)

    Telbiz, G.M.; Gerda, V.; Kobylinska, N.G.; Zaitsev, V.M.; Fraissard, J.

    2011-01-01

    Ordered mesoporous carbon composite based on the matrix synthesis protocol using mesoporous oxides as a template was prepared and step-by-step structure formation was followed by X-ray diffraction, FTIR, N2 adsorption desorption and TPD mass-spectrometry. It was shown that property of composite is

  14. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  15. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  16. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    Directory of Open Access Journals (Sweden)

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  17. The composition and origin of Ghana medicine clays.

    Science.gov (United States)

    van Dongen, Bart E; Fraser, Sharon E; Insoll, Timothy

    2011-08-01

    The mineral, organic and elemental composition of medicine clays from three shrines in the Tong Hills in northern Ghana (Gbankil, Kusanaab, and Yaane) are assessed to ascertain what additives they might contain and the implications for their recognition, for example in archaeological contexts. These are clays that are widely used for healing purposes being perceived efficacious in curing multiple ailments and which are given a divine provenance, but their collection is ascribed human agency. The Yaane clay is also supplied as part of the process of obtaining the right to operate the shrine elsewhere making it widely dispersed. Organic geochemical analyses revealed a predominance of plant-derived material with a substantial contribution of microbial origin. Based on these (supported by elemental and mineral analyses), no unnatural organic material could be detected, making an exogenous contribution to these clays unlikely. The implications are that these are wholly natural medicinal substances with no anthropogenic input into their preparation, as the traditions suggest. The very similar mineralogy of all the clays, including a non-medicine clay sampled, suggests that, unless the geology radically differed, differentiating between them analytically in an archaeological contexts would be doubtful.

  18. Evaluation of mesopores and characterization of clays of the State of Puebla, Mexico

    International Nuclear Information System (INIS)

    Hernandez, M.A.; Velasco, J.A.; Rojas, F.; Lara, V.H.; Salgado, M.A.; Tamariz, V.

    2003-01-01

    The crystalline properties of natural clays are related to the different crystallographic phases that are present in the structure of these substrates. Clays from the zone of Tehuacan, in the state of Puebla, Mexico, have been studied by means of X-Ray Diffraction (XRD), Atomic Absorption (AA), and N 2 Adsorption at 76 K. XRD analysis indicates the presence in the clay adsorbents of montmorillonite, quartz and, in some cases, of calcium carbonate. The textural properties of these porous materials of natural origin have been evaluated through the BET equation, the Langmuir equation, the single point BET method and the Gurvitsch Rule. The meso porosity that is present in each substrate has been measured via the methods of Kelvin, Barret, Jovner, and Halenda (BJH), and Kruk, Jaroniec, and Sayari as well as by the so-called differential curves of t-plots. The N 2 adsorption isotherms at 76 K that were measured on our clay adsorbents indicate that the adsorption process is carried out through a multilayer formation mechanism. The sorption hysteresis loops confirm characteristic aspects of this type of clay materials. Plots of the adsorbed volume versus the statistical thickness (t-plots) of N 2 layers adsorbed on the clay surface were also evaluated. The latter curves comprise three zones of behavior; each zone representing a different filling mechanism of the pore space. (Author)

  19. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    Tensile strength was observed to be highest in case of 5 mass % of clay loading and it was more than 14% of that of the neat PP, while toughness increased by more than 80%. Bentonite clay–PP composite (5 mass %) also showed 60% increase in impact energy value. However, no significant change was observed in case ...

  20. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    Microstructural studies were carried out using scanning electron microscope and transmission electron microscope and the thermal properties were studied using differential scanning calorimeter. Mechanical properties of the prepared composites showed highest reinforcing and toughening effects of the clay filler at a ...

  1. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Abdullahi and Audu. 35. Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and Tango Deposits in Gombe State, Nigeria. Abdullahi S.L1 and Audu A.A2. 1Kano State Polytechnic, Kano - Nigeria. 2Department of Pure and Industrial Chemistry, Bayero University Kano ...

  2. Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2012-02-01

    We fabricate epoxy composites with low thermal expansion by using mesoporous silica particles with a large pore diameter (around 10 nm) as inorganic fillers. From a simple calculation, almost all the mesopores are estimated to be completely filled with the epoxy polymer. The coefficient of linear thermal expansion (CTE) values of the obtained epoxy composites proportionally decrease with the increase of the mesoporous silica content.

  3. Elemental and Clay Mineralogical Compositions of Dustfall in the ...

    African Journals Online (AJOL)

    Although the phenomenon of harmattan dustfall in Nigeria has covered many centuries, information as to the total elemental compositions and the type of clay mineralogy in the dust are very scanty. This study was carried out in the Lower Benue Valley (Latitude 7.250N – 8.250N and Longitude 8.000E – 8.500E) to ...

  4. Particle size distribution and physico-chemical composition of clay.

    African Journals Online (AJOL)

    HP USER

    <300µm, <106µm, <63µm and <44µm respectively. There was no remarkable difference in silica (SiO2) as particle fractions reduced from <. 300µm - < 106µm - < 63µm but an observed. Table 1.0 Chemical composition of crude clay. Component wt (%). SiO2. 38.48. Al2O3. 12.46. Fe2O3. 6.18. TiO2. 1.85. MgO. 14.67. CaO.

  5. Evaluation of elemental composition of clays from Campos Gerais (MG)

    International Nuclear Information System (INIS)

    Martins, Joao P.M.; Maduar, Marcelo F.; Silva, Paulo S.C da

    2013-01-01

    There are numerous applications given to clays including oil and water adsorbent, ceramic, whitening of beverages, porcelain, waste treatment, organic carrier molecules in cosmetics and pharmaceuticals, support for catalysts. In the pharmaceutical industry, the clays are used as excipients, diluents, desiccants, emulsifiers, to mask undesirable flavors, isotonic agent such as charger and delivery of active substances. These characteristics have contributed to the expansion of the search for applications of clay minerals in the cosmetic industry. The aim of this study was to determine the elemental composition of clays from Campos Gerais, Minas Gerais, with a view to their applicability in the production of cosmetics. The elements As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th,U, Yb and Zn were determined by neutron activation analysis and radionuclide activity concentration of 226 Ra, 228 Ra, 210 Pb and 40 K were determined by gamma spectrometry. It was verified that the activity concentration of radionuclides was in the same concentration as the global average, indicating that these samples do not present a risk of increased radiation exposure. The concentration of most elements determined is less than or equal to the overall mean concentrations, indicated by the values of Continental Upper Crust. (author)

  6. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    Science.gov (United States)

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-01-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed. PMID:24248277

  7. Fabrication of block copolymer templated mesoporous metal oxide composites for energy storage applications

    Science.gov (United States)

    Bhaway, Sarang M.

    Block copolymer templated mesoporous (2 nm-50 nm) metal oxides are considered promising electrode materials for energy storage devices such as electrochemical capacitors or lithium/sodium ion batteries. The mesoporous electrode morphology offers several advantages: (1) high surface area and porosity facilitate charge transfer across the electrolyte-electrode interface, (2) nanoscale-dimension of the oxide framework minimizes the solid state ion diffusion paths, and (3) interconnected porous morphology enables rapid electrolyte transport through the electrodes, leading to overall enhancement in charge storage capabilities. This research attempts to study the effect of mesoporosity and mesopore geometry on charge storage capabilities and cycling stability of ordered mesoporous metal oxide electrodes in energy storage devices. The first part of this dissertation focuses on fabrication of ordered mesoporous metal oxide composites utilizing the Evaporation Induced Self-Assembly (EISA) and the Block Copolymer Micelle Templating (BCMT) strategy. Firstly, we demonstrate fabrication of ordered mesoporous carbon-vanadium oxide composites utilizing EISA of phenolic resin oligomer (resol), VOCl3 and an amphiphilic triblock. We illustrate that carbon yield from resol carbonization can prevent break-out crystallization of vanadia during calcination and help maintain an ordered mesostructure. The mesoporous carbon-vanadia mesostructured thin films exhibit specific capacitance 7 times higher than their non-porous analog at high scan rates when tested as electrode in aqueous supercapacitor. The second part of this thesis focuses on BCMT technique to fabricate ordered mesoporous mixed-metal oxide electrodes for battery applications. Ordered mesoporous NixCo(3-x)O4 thin films with varying chemical composition are fabricated using a metal nitrate-citric acid complex and an amphiphilic PEGMA-b-PBA block copolymer template. This templating strategy is further extended to fabricate

  8. Carbon/Clay nanostructured composite obtained by hydrothermal method

    International Nuclear Information System (INIS)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S.; Souza Filho, A.G.

    2010-01-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm -1 in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  9. The Composition and Physical Properties of Some Clays of Cross ...

    African Journals Online (AJOL)

    Administrator

    African Research Review Vol. 2 (1). Jan.,. 2008. 91. Table 2: Ph and Chemical Composition of the Clay. Minerals (%). LOI : loss-on-ignition. Sample location. SiO2. Al2O3. Fe2O. 3. TiO2. CaO. MgO. Na2O K2O. LOI. TOTAL. pH. Ovonum. 51.25. 24.50. 3.35. 0.89. 1.19. 1.67. 1.02. 1.03. 15.55. 100.45. 4.5. Ikom. 51.25. 30.01.

  10. The Composition and Physical Properties of Some Clays of Cross ...

    African Journals Online (AJOL)

    ... and quartz as the main subsidiary non-clay mineral. The high plasticity index of the clays corresponds to the more transported clays of the tertiary- to –recent environment. The percentage of linear shrinkage varied from 11-16% with the lowest shrinkage (11%), having the coarsest features. Silica (SiO2) content of the clays ...

  11. A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties

    Science.gov (United States)

    Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun

    2017-11-01

    Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.

  12. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  13. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  14. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  15. Effect of nano-clay fillers on mechanical and morphological properties of Napier/epoxy Composites

    Science.gov (United States)

    Lim, K. H.; Majid, M. S. A.; Ridzuan, M. J. M.; Basaruddin, K. S.; Afendi, M.

    2017-10-01

    The effect of nano clay filler on the mechanical and morphological properties of Napier/epoxy composites was investigated. Neat, 2 wt%, 3 wt%, 4 wt% and 5 wt% of Montmorillonite (MMT) nano clay filled Napier/epoxy composites were fabricated by vacuum infusion technique. These specimens were tested in the three points bending according to the ASTM D790. The flexural stress-strain curve, flexural strength, flexural modulus and strain to failure were then discovered based on the flexural test results. The results revealed that flexural strength and flexural modulus increased when a particular amount of nano clay was added to the epoxy matrix. 3 wt% of nano clay filler yielded the highest flexural strength with an improvement of 163% when compared to the neat Napier/epoxy composites. Moreover, a maximum of 180% increases in flexural modulus was registered at 5 wt% of nano clay filler. The enhanced properties of nano clay filled composites were highly achieved due to better dispersion and distribution of nano clay in the epoxy resin as well as an increase on the interfacial bonding. Using Scanning Electron Microscopy (SEM), morphological analysis was conducted to observe the fracture surfaces of the specimens after the flexural test. Overall, the presence of nano clay filler loading with a range of 3 wt% to 5 wt% in the Napier/epoxy composites shows the significant improvement in mechanical and morphological properties.

  16. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    Science.gov (United States)

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  17. Mineralogical composition and functionality of clays used for pottery ...

    African Journals Online (AJOL)

    The suitability is alluded to the fact that the clays have undergone basic beneficiation which include grinding, removal of unwanted materials through sieving, prior to their usage. The clays were mineralogically characterised using Munsell Soil Color Chart, X-ray powder diffractometry (XRPD) and optical microscopy. Results ...

  18. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    WINTEC

    a crystallographically regular fashion, with a repeat dis- tance of few nanometers, regardless of polymer to clay ratio, (ii) ... stirrer keeping the beaker in heating condition. The clay dispersed in xylene was added slowly to PP and xylene .... Similar trend is exhibited in the toughness value plot and the increase in toughness.

  19. Characterization and analysis of epoxy/clay nanotubes composites

    International Nuclear Information System (INIS)

    Sene, Tarcisio S.; Kock, Thyago; Coelho, Luiz A.F.; Becker, Daniela

    2011-01-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2Θ = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  20. Elemental, mineralogical, and pore-solution compositions of selected Canadian clays

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.

    1989-03-01

    Clay materials will be an important component of a barrier and sealing system in a nuclear fuel waste disposal vault in Canada. In this report the elemental, mineralogical, and pore-solution compositions of candidate clay sealing materials for the Canadian Nuclear Fuel Waste Management Program are presented

  1. Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Z.; Yang, L.; Kabisatpathy, S.; He, J.; Lee, A.; Ron, J.; Sikha, G.; Popov, B.N.; Emrick, T.; Russell, T. P.; Wang. Q.

    2009-03-24

    A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.

  2. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application.

    Science.gov (United States)

    Li, Haipeng; Song, Xiaoqing; Li, Baoe; Kang, Jianli; Liang, Chunyong; Wang, Hongshui; Yu, Zhenyang; Qiao, Zhijun

    2017-08-01

    Carbon nanotube (CNT)-reinforced mesoporous hydroxyapatite (HA) composites with excellent mechanical and biological properties were fabricated successfully by the in situ chemical deposition of mesoporous HA on homogeneously dispersed CNTs. The CNTs are first synthesized in situ on HA nanopowders by chemical vapor deposition, and then, the HA particles with mesoporous structures are deposited in situ onto the as-grown CNTs by using cetyl trimethyl ammonium bromide as templates to form mesoporous HA encapsulated CNTs (CNT@meso-HA). The modification of CNTs by mesoporous HA leads to strong CNT-HA interfacial bonding, resulting in efficient load transfer between CNT and HA and improved mechanical properties of CNT/HA composites. More importantly, the mesoporous HA structure has a high specific surface area and large surface roughness that greatly promote the cell adhesion and proliferation, resulting in better biocompatibility and improved osteoblast viability (MC3T3-E1) compared to those fabricated by traditional methods. Therefore, the obtained CNT@meso-HA composites are expected to be promising materials for bone regeneration and implantation applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  4. Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery

    International Nuclear Information System (INIS)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu

    2014-01-01

    Highlights: • Mesoporous Fe 3 O 4 /hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe 3 O 4 /hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe 3 O 4 /hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug release behavior of Fe 3 O 4 /HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe 3 O 4 /hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery

  5. Modification of bentonite clay and application on polypropylene nano composites

    International Nuclear Information System (INIS)

    Oliveira, Akidauana D.B.; Rodrigues, Andre W.B.; Agrawal, Pankaj; Araujo, Edcleide M.; Melo, Tomas J.A.

    2009-01-01

    This work consisted on the modification of Brasgel PA clay with ionic surfactant Praepagen WB and its incorporation into polypropylene. The results of infrared and DR-X was showed that the intercalation of surfactant in the clay and the incorporation of organoclay in PP matrix resulted in the formation of an intercalated structure. The impact strength of PP increased with the incorporation of organoclay. (author)

  6. Micro/Mesoporous Zeolitic Composites: Recent Developments in Synthesis and Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2016-11-01

    Full Text Available Micro/mesoporous zeolitic composites (MZCs represent an important class of hierarchical zeolitic materials that have attracted increasing attention in recent years. By introducing an additional mesoporous phase interconnected with the microporosity of zeolites, a hierarchical porous system of MZCs is formed which facilitates molecular transport while preserving the intrinsic catalytic properties of zeolites. Thus, these materials offer novel perspectives for catalytic applications. Over the years, numerous synthesis strategies toward the formation of MZCs have been realized and their catalytic applications have been reported. In this review, the three main synthesis routes, namely direct synthesis using zeolite precursors, recrystallization of zeolites, and zeolitization of preformed mesoporous materials are thoroughly discussed, with focus on prior works and the most recent developments along with prominent examples given from the literature. In addition, the significant improvement in the catalytic properties of MZCs in a wide range of industrially relevant reactions is presented through several representative cases. Some perspectives for the future development of MZCs are also given.

  7. Mesoporous carbon composite for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence; Tour, James M. [Rice University, Houston, TX (United States); Lomeda, Jay R.; Flatt, Austen K. [Nalco Company, Naperville, IL (United States)

    2012-07-01

    Herein we report a carbon based technology that can be used to rapidly adsorb and release CO{sub 2}. CO{sub 2} uptake by the synthesized composites was determined using a gravimetric method at room temperature and atmospheric pressure. 39% polyethylenimine-mesocarbon (PEI-CMK-3) composite had {approx} 12 wt% CO{sub 2} uptake capacity and a 37% polyvinylamine meso-carbon (PVA-CMK-3) composite had {approx} 13 wt% CO{sub 2} uptake capacity. The sorbents were easily regenerated at 75 deg C and exhibit excellent stability over multiple regeneration cycles. CO{sub 2} uptake was equivalent when using 10% CO{sub 2} in 90% CH{sub 4}, C{sub 2}H{sub 6} and C{sub 3}H{sub 9} mixture, underscoring the efficacy for CO{sub 2} separation from natural gas. (author)

  8. Surface-functionalized mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  9. Electromagnetic interference (EMI) shielding of ordered mesoporous carbon (OMC)/paraffin composites.

    Science.gov (United States)

    Wu, Hongjing; Wang, Liuding; Zhang, Jiangdong; Wei, Gao; Guo, Shaoli; Shen, Zhongyuan

    2014-08-01

    The ordered mesoporous carbon (OMC)/paraffin composites were successfully prepared by a facile physical mixing method and an EMI SE of 21-23 dB was achieved at the OMC loading of 5.69 wt.% in the X band. This indicates that the composites are very suitable for an application as effective and lightweight EMI shielding materials. The EMI shielding of the composite shows an absorption-dominant mechanism, i.e., a contribution shift from reflection to absorption is observed with the increase in OMC loading and frequency. This could be explained by the intrinsic properties (electrical conductivity, complex permittivity and potential large defects) and novel structure of the composites.

  10. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  11. Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials.

    Science.gov (United States)

    Song, Yanjie; Li, Zhu; Guo, Kunkun; Shao, Ting

    2016-08-25

    Hierarchically ordered mesoporous carbon/graphene (OMC/G) composites have been fabricated by means of a solvent-evaporation-induced self-assembly (EISA) method. The structures of these composites are characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and nitrogen adsorption-desorption at 77 K. These results indicate that OMC/G composites possess the hierarchically ordered hexagonal p6mm mesostructure with the lattice unit parameter and pore diameter close to 10 nm and 3 nm, respectively. The specific surface area of OMC/G composites after KOH activation is high up to 2109.2 m(2) g(-1), which is significantly greater than OMC after activation (1474.6 m(2) g(-1)). Subsequently, the resulting OMC/G composites as supercapacitor electrode materials exhibit an outstanding capacitance as high as 329.5 F g(-1) in 6 M KOH electrolyte at a current density of 0.5 A g(-1), which is much higher than both OMC (234.2 F g(-1)) and a sample made by mechanical mixing of OMC with graphene (217.7 F g(-1)). In addition, the obtained OMC/G composites display good cyclic stability, and the final capacitance retention is approximately 96% after 5000 cycles. These ordered mesopores in the OMC/G composites are beneficial to the accessibility and rapid diffusion of the electrolyte, while graphene in OMC/G composites can also facilitate the transport of electrons during the processes of charging and discharging owing to its high conductivity, thereby leading to an excellent energy storage performance. The method demonstrated in this work would open up a new route to design and develop graphene-based architectures for supercapacitor applications.

  12. Particle size distribution and physico-chemical composition of clay ...

    African Journals Online (AJOL)

    Aliquots obtained after acid digestion of clay samples were used in determining the elements by Atomic Absorption Spectrophotometer (AAS) and flame photometry. Loss on Ignition (LOI) was by gravimetry. The data obtained on the alkaline metals, alkali metals, silica, sesquioxides/titanium, pH and Loss on ignition (LOI) ...

  13. performance evaluation of clay-sawdust composite filter for point

    African Journals Online (AJOL)

    user

    This implies that while burnout materials improve water quality, increasing burnout materials in clay filters beyond 50% does not significantly affect the performance for the filter with respect to the quality of effluent but with respect to flow rate. Keywords: Point of use, filter, water, water treatment, sawdust. 1. INTRODUCTION.

  14. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L.

    2016-01-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  15. Effect of organo clay addition on thermal properties of poly lactide/ polycaprolactone (PLA/ PCL) nano composites

    International Nuclear Information System (INIS)

    Siti Zulaiha Hairaldin; Wan Md Zin Wan Yunus; Norazoma Ibrahim

    2010-01-01

    In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites with various blends. Montmorillonite (MMT) was used as an addition to the matrix. In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites. Montmorillonite (MMT) was used as an addition to the matrix with various percentages. The other one is modified clay prepared by modifying the nature of montmorillonite with octadecylamine (ODA) to improve the characteristic of PLA/ PCL blends. X-ray diffraction (XRD) results indicated intercalation of the PLA/ PCL into silicate nano size interlayers galleries of the nano composites. The presence of modified clays in nano composite was confirmed by FTIR spectrum. TGA and DTG results show addition of MMT and modified clay ODA-MMT improved the thermal stability of the PLA/ PCL blends. (author)

  16. Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Osakoo, Nattawut, E-mail: natawut.work@gmail.com [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Pansakdanon, Chaianun [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Sosa, Narongrit; Deekamwong, Krittanun; Keawkumay, Chalermpan; Rongchapo, Wina [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Chanlek, Narong [Synchrotron Light Research Institute, Nakhon Ratchasima, 30000 (Thailand); Jitcharoen, Juthamas [Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Prayoonpokarach, Sanchai [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Wittayakun, Jatuporn, E-mail: jatuporn@g.sut.ac.th [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand)

    2017-06-01

    NaY was synthesized from fumed silica and further modified to form a composite with SBA-15. Textural properties and basicity of the composite NaY-SBA-15 were between those of the parent materials. Paraquat adsorption on NaY was 204.1 mg/g, higher than that on NaY synthesized with rice husk silica from the previous work. SBA-15 was a poor adsorbent for paraquat. Based on the weight of NaY, the adsorption capacity of analytical-grade paraquat on the NaY-SBA-15 composite was 241.5 mg/g-NaY. Moreover, the composite adsorbed blue dye from a commercial grade paraquat. Interaction between the NaY-SBA-15 and paraquat could be from C and N atoms in paraquat with oxygen atom on NaY-SBA-15. - Highlights: • Zeolite NaY/mesoporous SBA-15 composite was synthesized with a simple method. • NaY and SBA-15 coexisted in the composite confirmed by FTIR, CO{sub 2}-TPD and XPS. • Adsorption capacity of paraquat (mg/g-NaY) was improved by NaY and SBA-15 composite. • C and N atoms in paraquat could interact with oxygen atom on NaY-SBA-15 composite.

  17. Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat

    International Nuclear Information System (INIS)

    Osakoo, Nattawut; Pansakdanon, Chaianun; Sosa, Narongrit; Deekamwong, Krittanun; Keawkumay, Chalermpan; Rongchapo, Wina; Chanlek, Narong; Jitcharoen, Juthamas; Prayoonpokarach, Sanchai; Wittayakun, Jatuporn

    2017-01-01

    NaY was synthesized from fumed silica and further modified to form a composite with SBA-15. Textural properties and basicity of the composite NaY-SBA-15 were between those of the parent materials. Paraquat adsorption on NaY was 204.1 mg/g, higher than that on NaY synthesized with rice husk silica from the previous work. SBA-15 was a poor adsorbent for paraquat. Based on the weight of NaY, the adsorption capacity of analytical-grade paraquat on the NaY-SBA-15 composite was 241.5 mg/g-NaY. Moreover, the composite adsorbed blue dye from a commercial grade paraquat. Interaction between the NaY-SBA-15 and paraquat could be from C and N atoms in paraquat with oxygen atom on NaY-SBA-15. - Highlights: • Zeolite NaY/mesoporous SBA-15 composite was synthesized with a simple method. • NaY and SBA-15 coexisted in the composite confirmed by FTIR, CO 2 -TPD and XPS. • Adsorption capacity of paraquat (mg/g-NaY) was improved by NaY and SBA-15 composite. • C and N atoms in paraquat could interact with oxygen atom on NaY-SBA-15 composite.

  18. Electrical and Thermo-Mechanical properties of Irradiated Clay Nanoparticle/SBR Composites

    International Nuclear Information System (INIS)

    Ata, M.M.E.M.

    2011-01-01

    Polymer-Composites incorporating metal, semiconductors, Carbon black, nano materials and Clay materials have been widely used and studied as multifunctional materials with inherent polymer properties. Polymer-clay nano composites show remarkable property improvement when compared to conventionally scaled composites. For designing new materials with desirable, predicted properties, a better understanding of structure-property relationships is necessary. In this work, we employ dielectric relaxation spectroscopy (DRS) to investigate molecular mobility in relation to morphology in styrene butadiene rubber-SBR (treated and untreated) nano composites. In addition to the investigation of dipolar processes, special attention is paid here to the investigation of conductivity effects and mechanical as well as thermo-mechanical properties. From the stress-strain characteristics, one found that, all the compositions showed a tensile strength higher than the virgin rubber. By increasing the filler loading, the tensile strength of the prepared composites increases. The elongation at break for treated and untreated clay filed composites increases with an increase in filer loading up to 10 p hr and then followed by a decrease up to 15 p hr. The cross linking density, υ increases with both treated and untreated clay contents and treated samples have higher increasing rate of υ values than untreated one. To elucidate the tensile behavior of the test samples. The Ht model is tested by using non-Gaussian chain statistics, which give a good fitting with the experimental data.

  19. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  20. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    Science.gov (United States)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  1. High temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells

    DEFF Research Database (Denmark)

    Plackett, David; Siu, Ana; Li, Qingfeng

    2011-01-01

    dispersion of modified laponite clay was achieved in polybenzimidazole (PBI) solutions which, when cast and allowed to dry, resulted in homogeneous and transparent composite membranes containing up to 20 wt% clay in the polymer. The clay was organically modified using a series of ammonium...... and pyridinium salts with varying polarity and hydrogen-bonding capacity. Clay modification by ion-exchange reactions involving replacement of interlayer inorganic cations was confirmed using X-ray photoelectron and infrared spectroscopy techniques. The cast PBI membranes were characterized by their water uptake......-doped pristine PBI membranes. In accordance with the hydrogen permeability measurements, fuel cell tests exhibited high open circuit voltages (i.e., 1.02 V) at room temperature as well as high I–V performance compared with normal PBI membranes....

  2. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Bae, Jae Young [Department of Chemistry, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-10-15

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared by sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.

  3. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. The Dependence of the Physical Mechanical Properties of Expanded-Clay Lightweight Concrete on the Composition

    Directory of Open Access Journals (Sweden)

    Marija Vaičienė

    2011-04-01

    Full Text Available Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.Article in Lithuanian

  5. Facile synthesis of blue-emitting carbon dots@mesoporous silica composite spheres

    Science.gov (United States)

    Guo, Ziying; Zhu, Zhenpeng; Zhang, Xinguo; Chen, Yibo

    2018-02-01

    This paper reported a facile and effective approach towards high-efficient composite luminophores by embedding blue-emitting N-doped carbon dots into spherical SiO2 matrix (CDs@SiO2). Mesoporous silica microspheres (r-CDs@MSN) with strong luminescence were synthesized by removing CTAB templates in CDs@SiO2 using reflux with acetone. The r-CDs@MSN possess a spherical morphology with smooth surface and a diameter of 130 nm, while it exhibits an excitation-independent blue emission peak at 440 nm with an internal quantum yield of 21.5%. BET result shows that the corresponding surface area and adsorption total pore volume are 156.27 m2/g and 0.682 cm3/g, which is suitable for the drugs loading and release. The results indicate that r-CDs@MSN might act as a potential fluorescent drug carrier.

  6. Effect of nanoclay on optical properties of PLA/clay composite films

    CSIR Research Space (South Africa)

    Cele, HM

    2014-06-01

    Full Text Available function of the clay loading. The optical properties of the PLA/OMMT composites were studied using variable angle spectroscopic ellipsometry (VASE) and ultra-violet (UV-Vis) spectroscopy. VASE revealed that the refractive index and extinction coefficient (n...

  7. Properties of natural rubber composites with structurally different clay intercalable surfactants

    Czech Academy of Sciences Publication Activity Database

    Sedničková, M.; Jochec-Mošková, D.; Janigová, I.; Kronek, J.; Jankovič, L.; Šlouf, Miroslav; Chodák, I.

    2017-01-01

    Roč. 24, č. 7 (2017), s. 1-13, č. článku 105. ISSN 1022-9760 Institutional support: RVO:61389013 Keywords : composite * natural rubber * clay Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.615, year: 2016

  8. Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

    Directory of Open Access Journals (Sweden)

    Vassiliki Markoulaki Ι

    2015-11-01

    Full Text Available Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER. In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1 with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1 and pure mesoporous CeO2 (~1 µmol·h−1.

  9. Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

    Science.gov (United States)

    Markoulaki, Vassiliki Ι.; Papadas, Ioannis T.; Kornarakis, Ioannis; Armatas, Gerasimos S.

    2015-01-01

    Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1) and pure mesoporous CeO2 (~1 µmol·h−1). PMID:28347106

  10. Chitosan composite hydrogels reinforced with natural clay nanotubes.

    Science.gov (United States)

    Huang, Biao; Liu, Mingxian; Zhou, Changren

    2017-11-01

    Here, chitosan composites hydrogels were prepared by addition of halloysite nanotubes (HNTs) in the chitosan KOH/LiOH/urea solution. The raw chitosan and chitosan/HNTs composite hydrogels were obtained by heat treatment at 60°C for 8h and then regeneration in ethanol solution. The viscosity of the composite solution is increased with HNTs content. The Fourier transform infrared spectroscopy (FT-IR) shows that the hydrogen bonds interactions exist between the HNTs and the chitosan. X-ray diffraction (XRD) results show that the crystal structure of HNT is not changed in the composite hydrogels. The compressive property test and storage modulus determination show that the mechanical properties and anti-deformation ability of the composite hydrogel significantly increase owing to the reinforcing effect of HNTs. The composites hydrogel with 66.7% HNTs can undergo 7 times compression cycles without breaking with compressive strength of 0.71MPa at 70% deformation, while pure chitosan hydrogel is broken after bearing 5 compression cycles with compressive strength of 0.14MPa and a maximum deformation of 59%. A porous structure with pore size of 100-500μm is found in the composite hydrogels by scanning electron microscopy (SEM), and the pore size and the swelling ratio in NaCl solution decrease by the addition of HNTs and the immersing of ethanol. Chitosan/HNTs composite hydrogels show low cytotoxicity towards MC3T3-E1 cells. Also, the composite hydrogels show a maximum drug entrapment efficiency of 45.7% for doxorubicin (DOX) which is much higher than that of pure chitosan hydrogel (27.5%). All the results illustrate that the chitosan/HNTs composite hydrogels show promising applications as biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Swelling compositions based polycarboxylic acids and bentonite clays in solutions of salts of metals

    Directory of Open Access Journals (Sweden)

    A. Sarshesheva

    2012-12-01

    Full Text Available This work is devoted to the synthesis of chemical cross-linked composite materials made of natural inorganic polymer bentonite clay of Manrak deposit, and polyacrylic and polymethacrylic acids. The swelling ability of the composition in solutions of salts of heavy metals (Ni2+ and Pb2+, influence of solution of concentration, pH and temperature on the swelling ability is investigated.

  12. Perfluoropolyether-Impregnated Mesoporous Alumina Composites Overcome the Dewetting-Tribological Properties Trade-Off.

    Science.gov (United States)

    Rowthu, Sriharitha; Hoffmann, Patrik

    2018-03-28

    Conventional omniphobic surfaces suffer from wear-sensitivity due to soft apolar coatings or substrates and protruding surface features that are eroded even for mild abrasion treatments, leading to the loss of dewetting properties after wear. Evidently, there was a trade-off between dewetting and tribological properties. Here, we show the establishment of self-healing slippery properties post severe abrasion by utilizing perfluoropolyether-impregnated mesoporous Al 2 O 3 (MPA) composites. The hard polar alumina matrix provides the optimal tribological properties, and the liquid lubricant in the porous network contributes to both tribological and self-healing dewetting properties. These composites sustained normal pressures up to 350 MPa during reciprocating sliding contacts. The severely abraded surfaces are capable of self-replenishing in ambient environment, driven by capillarity and surface diffusion processes, and regained their slippery properties toward water and hexadecane after 15 h of self-healing. Eventually, a dewetting-tribology diagram has been introduced to show different regimes, namely-optimal slippery properties, optimal tribological properties, and a mixed regime). We found out that the microstructural expression [Formula: see text] is a robust guiding tool to predict the regime of interest. This dewetting-tribological diagram may be marked as an inception to designing abrasion-resistant slippery liquid impregnated composites for overcoming the dewetting tribological properties trade-off. Such surfaces may potentially find applications in paint industries and as anti-icing surfaces.

  13. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Qin, Yong; Li, Juan; Yuan, Jie; Kong, Yong; Tao, Yongxin; Lin, Furong; Li, Shan

    2014-12-01

    Hollow mesoporous carbon nitride nanosphere (HMCN) is firstly prepared via an etching route using hollow mesoporous silica as a sacrificial template. The as-obtained HMCN is a uniform spherical particle with a diameter of ∼300 nm,and possesses a high specific surface area up to 439 m2 g-1. Hollow mesoporous carbon nitride nanosphere/three-dimensional (3D) graphene composite (HMCN-G) is subsequently fabricated via a hydrothermal treatment of HMCN with graphene oxide. As an electrocatalyst for oxygen reduction reaction (ORR), the HMCN-G shows significantly enhanced electrocatalytic activity compared to bulk graphitic carbon nitride (g-C3N4) and HMCN in terms of the electron-transfer number, current density and onset potential. Increased density of catalytically active sites and improved accessibility to electrolyte enabled by the hollow and mesoporous architecture of HMCN, and high conductivity induced from graphene are considered to contribute to the remarkable electrocatalytic performance of the HMCN-G. Furthermore, HMCN-G exhibits superior methanol tolerance to Pt/C catalyst, suggesting that it is a promising metal-free electrocatalyst for polymer electrolyte membrane fuel cell (PEMFC).

  14. The composition and activation aspects of El-Fayoum clays for using as a drilling fluid

    Directory of Open Access Journals (Sweden)

    Medhat S. El-Mahllawy

    2013-12-01

    Full Text Available The local consumption and the high importation cost of imported bentonite to Egypt led to find local substitute solutions for economical aspects. Hence, this paper presents the composition and activation capability of clays collected from the claystone quarries in Kom Oshim area at El-Fayoum province, Egypt for their application as a drilling fluid (water-based mud. It is an attempt to minimize the importation cost of the imported bentonites to Egypt by a local solution and maximize the usage of the studied clay sediments. The physical, chemical, thermal and mineralogical characteristics of five Egyptian clay samples were studied. The rheological properties of the prepared slurries from these samples and their activation characterization during studying the influence of NaOH and POLYPAC-R polymer as activators were investigated. It was found that the non-activated samples cannot be used as a drilling mud but it could be after the activation process where some significant changes in the rheological properties were observed. The experimental results revealed that the activated fitted samples may express as medium grade bentonitic clay and this type of clay can be used as a drilling fluid for shallow depth wells.

  15. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    ) contents of bentonite from. Tango (GT) (49.87 wt%, .... MgO. 2.08. 2.08. K. 2. O. 1.60. 1.76. TiO. 2. 0.94. 0.87. P. 2. O. 5. 1.06. 1.01. Fig 1: Chemical Compositions of the Bentonite Samples Analysed by XRF. Fourier transform ...

  16. Gyroidal mesoporous carbon materials and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Ulrich B.; Werner, Joerg G.

    2017-07-25

    The present invention relates to, inter alia, gyroidal mesoporous carbon materials and methods of use and manufacture thereof. In one embodiment, the present invention relates to a mesoporous carbon composition comprising a gyroidal mesoporous carbon having an ordered gyroidal structure and mesopores having a pore size of greater than 2 nanometers (nm) in diameter, and more particularly greater than 11 nm in diameter.

  17. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Study of thermal properties and the dispersion state of nano composites epoxy/clay

    International Nuclear Information System (INIS)

    Paz, Juliana D.; Bertholdi, Jonas; Toledo, Tais C.; Folgueras, Marilena V.; Pezzin, Sergio H.; Coelho, Luiz A.F.

    2011-01-01

    This work investigates an exfoliation/intercalation of nano clays in an epoxy resin by means of x-rays diffraction, scanning electronic microscopy, thermal gravimetric analysis and dilatometric analysis. A comparison of two techniques for preparing nano composites is addressed: mechanical stirring and sonication. X-rays analysis showed that an exfoliation/intercalation is occurring in some samples. TG analysis indicated and increase in thermal stability of the nano composites compared to the neat resin. Finally, dilatometric analysis indicates and increase in Tg for nano composites compared to the neat resin. (author)

  19. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    Science.gov (United States)

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control

  20. Characterisation of some Clays Used for Whiteware Ceramics I. Mineralogical composition

    Directory of Open Access Journals (Sweden)

    Marcel Benea

    2002-04-01

    Full Text Available In order to obtain a semiquantitative mineralogical composition of raw materials used for whiteware ceramics, four different clay types were analysed by X-ray diffraction. Studies were carried out by using a combination of analyses of the bulk sample, and of the fine fraction. Using a well-established pre-treatment methodology (use of chemicals, ultrasonic treatment, dispersion procedures, clay mineral concentration by centrifugation and sedimentation, oriented and random powder preparation, cation saturation, expansion/dehydration methods, 12 X-ray diffractometer traces were obtained from each sample. Based on these informations it was possible to establish the qualitative mineralogical composition, and also a semiquantitative one using peak intensities and peak area corrected by various factors. Scanning electron microscopy was also used in order to illustrate the identified mineral phases.

  1. Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe2O3/CuO and α-Fe2O3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe3O4/C/Cu was obtained by calcining the tartrate precursor under N2 atmosphere at 500 °C. The Fe3O4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m2 g-1. The Fenton catalytic performance of Fe3O4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe3+ to Fe2+, which accelerated the Fe3+/Fe2+ cycles and favored H2O2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe3+ and Cu2+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe3O4/C/Cu-H2O2 system, and MB (100 mg L-1) was nearly removed within 60 min. The Fe3O4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic surfactants.

  2. Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Lv, Yi-Ju; Long, Yun-Fei; Su, Jing; Lv, Xiao-Yan; Wen, Yan-Xuan

    2014-01-01

    Mesoporous bowl-like LiFePO 4 /C composites were synthesized by a wet milling-spray drying-carbothermal reduction (WSC) using starch as the organic carbon source and reductive agent. The samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, cyclic voltammograms (CV), electrochemical impedance spectra (EIS) and galvanostatic charge–discharge testing. Most of the mesoporous bowl-like LiFePO 4 /C composites with particle size in the range 5–10 μm, coated with evenly distributed carbon, were assembled by nanoparticles ( 2 g −1 . These delivered a discharge capability of 123 mAh g −1 at 10 C, with no capacity loss after 100 cycles. The enhanced electrochemical performance was mainly ascribed to the improved ionic/electronic conductivity and structural stability arising from the interconnected mesoporous pores, carbon-coated nanoparticles and micro-sized structure

  3. Bio composites from polypropylene/ clay/eva polymers and kenaf natural fiber

    International Nuclear Information System (INIS)

    Siti Hasnah Kamarudin; Khalina Abdan; Bernard Maringgal; Wan Mohd Zin Wan Yunus

    2009-01-01

    Full text: There is an increasing need to investigate more environmental friendly, sustainable materials to replace existing materials as industry attempts to lessen dependence on petroleum based fuels and products. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. In this experiment, mixing process of polymer/nano clay composites from polypropylene, organo clay and ethylene vinyl acetate were prepared using a Brabender twin screw compounder. The composites sheets were then laminated with kenaf fibers and subjected to hot and cold press machine to form a bio composite. The mechanical properties such as flexural and impact strength are compare favourably between polymers reinforced kenaf fiber and polymers without kenaf fiber. In addition, various analysis techniques were used to characterize the dispersion and the properties of nano composites, using scanning electron micrograph (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). These results suggest that kenaf fibers are a viable alternative to inorganic mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical. (author)

  4. High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte

    Directory of Open Access Journals (Sweden)

    Zhongkai Hu

    2015-09-01

    Full Text Available The PANI/Mesoporous MnO2 composites were prepared through a simple one step method and we introduced the KI-H2SO4 solution as the electrolyte of PANI/MnO2 composites creatively. The characterization of structure, morphology, and composition are obtained by X-ray diffraction, Fourier transform infrared spectroscopy, thermal gravity analysis, Raman spectra, and scanning electron microscope. The electrochemical performances were investigated by constant-current charge–discharge, the voltammetry curve, and alternating current (AC impedance technique. The specific capacitance of composites is 1405 F/g, which is almost 10 times larger than MnO2 (158 F/g. We also find that the iodide concentration is closely related to the specific capacitance. Therefore, we explored the specific capacitance at different iodide concentration (0.05, 0.1, 0.2, 0.5, and 1 M, the results indicated that the specific capacitance reached a maximum value (1580 F/g at 0.5 mol/L. Additionally, the PANI/Mesoporous MnO2 composites not only exhibited a good ratio discharge property (857 F/g at high current density, but also revealed an excellent cycling stability after 500 cycles, which retained 90% of the original specific capacitance.

  5. A mesoporous WO3−X/graphene composite as a high-performance Li-ion battery anode

    International Nuclear Information System (INIS)

    Liu, Fei; Kim, Jong Gu; Lee, Chul Wee; Im, Ji Sun

    2014-01-01

    Graphical abstract: The highly flexible and conductive graphene layer can enhance electron transfer, protect metal oxides against disintegration and aggregation and buffer the strain induced by volume expansion during cycles. The mesoporous surface layer provides an open network for Li+ diffusion. - Highlights: • Novel cocktail effects of 2D mesoporous WO 3−X /graphene for lithium ion battery. • New approach for lithium ion battery by easy and unique synthesis method. • Mechanism study with proper data for understanding a reaction on anode surface. - Abstract: A novel mesoporous WO 3−X /graphene composite was developed. This material allowed rapid electron and Li + ion diffusion when used as a Li-ion battery (LIB) anode material. Remarkably, the graphene support protected WO 3−X from changing volume during the electrochemical cycling process; this process generally induces capacity loss. The current work describes a high-performance anode material for LIB that has highly dense WO 3−X , as well as high capacity, rate capability and stability

  6. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    Science.gov (United States)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  7. Possibility of inferring some general features and mineralogical composition of deep clay bodies by means of superficial observations

    International Nuclear Information System (INIS)

    Anselmi, B.; Brondi, A.; Ferretti, O.; Gerini, V.

    1981-01-01

    The CNEN (Italian Nuclear Energy Commission) is highly engaged in the study of many physical features of the territory for sitological purposes. In this frame the deeply buried clay deposits represent an area of study of great interest. Direct informations on deep deposits are often lacking. The CNEN has therefore faced the problem of the possibility of superficial observations to be used in predicting some characters of underground clay bodies. Systematic investigations carried on pliocenic clays occurring in Italy have shown: 1) Pliocenic clay deposits show a clear regional distribution according well defined mineralogical provinces; 2) Mineralogy of clay deposits coarsely depends on lithological composition of ancient feeder basins. The obtained results may allow extrapolations to deep deposits

  8. Enhanced photocatalytic activity of mesoporous carbon/C3N4composite photocatalysts.

    Science.gov (United States)

    Ding, Ning; Zhang, Longshuai; Hashimoto, Muneaki; Iwasaki, Kodai; Chikamori, Noriyasu; Nakata, Kazuya; Xu, Yuzhuan; Shi, Jiangjian; Wu, Huijue; Luo, Yanhong; Li, Dongmei; Fujishima, Akira; Meng, Qingbo

    2018-02-15

    The C 3 N 4 as a cheap and clean photocatalyst shows suitable band gap to splitting water and spectral response. However the poor conductivity of C 3 N 4 limits the photocatalytic hydrogen evolution rate. The combination of C 3 N 4 and high conductivity materials will enhance the separation of photo-generated carriers and thus enhance the photocatalytic activity. As many carbon materials have been tried, the mesoporous carbon should be a good candidate to solve this problem. A photocatalytic system with C 3 N 4 and mesoporous carbon has been designed to test the photocatalytic performance of both the photocatalytic hydrogen evolution and the photocatalytic degradation of methylene blue. The results of EPR, EIS and PL spectra were given to further understand the photo-generated carrier and its transfer. The enhancement of the highest hydrogen evolution rate is 48% from 69 to 102 μmol/h by mesoporous carbon/C 3 N 4 sample. The existence of small amount of mesoporous carbon can facilitate the photogenerated carrier separation, thus enhancing the photocatalytic performance. In the meantime, the introduction of mesoporous carbon into C 3 N 4 is beneficial for improving electron delocalization and conduction electrons and increasing the optical absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  10. Mesoporous silica/polyacrylamide composite: Preparation by UV-graft photopolymerization, characterization and use as Hg(II) adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Ali, E-mail: ali.saad8803@gmail.com [Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said road, B.P. 51, 2070 La Marsa (Tunisia); Faculté des Sciences de Tunis, Université El Manar, PO Box 248, El Manar II, 2092 Tunis (Tunisia); Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Bakas, Idriss [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Laboratoire AQUAMAR, Equipe Matériaux Photocatalyse et Environnement, Faculté des Sciences, Université Ibn Zohr, B.P. 8106, Cité Dakhla, Agadir (Morocco); Piquemal, Jean-Yves; Nowak, Sophie [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Abderrabba, Manef, E-mail: abderrabbamanef@gmail.com [Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said road, B.P. 51, 2070 La Marsa (Tunisia); Chehimi, Mohamed M., E-mail: chehimi@icmpe.cnrs.fr [Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, F-75013 Paris (France); Université Paris Est, ICMPE (UMR7182), CNRS, UPEC, F-94320 Thiais (France)

    2016-03-30

    Graphical abstract: - Highlights: • Mesoporous silica/polyacrylamide nanocomposite adsorbent was prepared by UV-graft polymerization. • Polyacrylamide was successfully grafted onto the silanized mesoporous silica. • The Hg(II) adsorption capacity of the nanocomposite was as high as 177 mg g{sup −1} after 1 h at RT. • Adsorption process was found to fit pseudo second order kinetics and exothermic. - Abstract: MCM-41 ordered mesoporous silica was prepared, aminosilanized and grafted with polyacrylamide (PAAM) through in situ radical photopolymerization process. The resulting composite, denoted PAAM-NH{sub 2}-MCM-41, the calcined and silanized reference MCM-41s were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} physisorption at 77 K. These complementary techniques brought strong supporting evidence for the silanization process followed by PAAM grafting. The surface composition was found to be PAAM-rich as judged by XPS. The composite was then employed for the uptake of Hg(II) from aqueous solutions. Adsorption was monitored versus pH, time, and temperature. The maximum adsorption capacity at 25 °C and pH 5.2 was 177 mg g{sup −1}. Kinetically, the equilibrium was reached within 60 min for a 100 mg L{sup −1} mercury solution. The adsorption of Hg(II) on PAAM-NH{sub 2}-MCM-41 composites followed second order kinetics. Thermodynamic parameters suggested that the favorable adsorption process is exothermic in nature and the adsorption is ascribed to a decrease in the degree of freedom of adsorbed ions which results in the entropy change. This work conclusively shows that mesoporous silica–polymer hybrid metal ion adsorbents (with robust silica–polymer interface) can be prepared in a simple way by in situ radical photopolymerization in the presence of

  11. The Effect of Brine Composition and Concentration on Strength of Expandable Clays

    Science.gov (United States)

    Lockner, D.; Solum, J.; Davatzes, N.

    2006-12-01

    Water content has a dramatic effect on the shear strength of expandable clays. For example, the coefficient of friction, μ, of dry montmorillonite (mont) is approximately 0.7, but when fully saturated with distilled water (DW) and tested at the same effective normal stress (normal stress pore pressure), μ is as low as 0.1. Apparently, structured water adsorbed on the surfaces of clay particles and penetrating between tetrahedral layers of adjacent clay platelets allows sliding at significantly reduced shear stress. Although formation fluids contain dissolved ions, which are known to have significant effects on clays and shales, systematic studies of the effects of brine on fault zone rheology are not common. To explore further the effects of fluid composition, we have measured shear strength of 4-mm-thick mont clay layers at effective normal stresses from 40 to 80 MPa and pore pressure of 1 MPa. Tests were conducted using distilled water and 1 molar chloride brines with (in order of increasing ionic radius) Mg^{+2}, Li+, Ca^{+2}, Na+, Sr^{+2}, Ba^{+2}, K+, Rb+, and Cs+. The starting Na-mont was repeatedly washed with each brine solution before testing to replace existing exchangeable surface cations. Addition of cations to the pore fluid neutralizes the surface charge on the clay particles and collapses the interfacial double layer, thereby reducing the amount of structured water adjacent to the particles. Since this same adsorbed water provides lubrication, increased salinity should lead to increased frictional strength. Furthermore, montmorillonite is a 2:1 layered clay with Si-O tetrahedra forming a hexagonal oxygen structure exposed to the pore fluid. Exchange cations on these surfaces occupy hexagonal holes with diameter of approximately 0.14 nm. Small exchange ions can drop down into these surface sites, while larger ions protrude above the surface and may increase resistance to shearing. Na-, Ca- and K-mont + DW have friction of 0.11, 0.11 and 0

  12. Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials

    Science.gov (United States)

    Deng, Yonghui; Cai, Yue; Sun, Zhenkun; Zhao, Dongyuan

    2011-06-01

    Magnetic mesoporous materials, as a family of novel functional nanomaterials, have attracted increasing attention due to their unique properties. Much work has been done to synthesize these materials and to explore applications in various fields, such as catalysis, separation, hyperthermia, drug delivery, and MR imaging. This Letter reviews the synthesis approaches, which can be grouped into three categories, i.e. sol-gel coating, post-loading, and nanocasting approaches. Emphasis is placed on the elucidation of the design principles, synthesis strategies and the properties-applications relationship of the mesoporous materials.

  13. Alteration of chemical composition and the oxidative stability of bleached pomace-olive oil on activated clays.

    Science.gov (United States)

    Jahouach, W; Essid, K; Trabelsi, M; Frikha, M H

    2006-09-20

    This work is a contribution to the study of the bleaching process, which is a very important stage in the refining process of vegetable oils and used to reduce or convert undesired constituents to harmless ones from fats and oils. The virgin olive oil, taken as reference, and the pomace-olive oil were bleached in the optimal conditions using Tunisian bleaching earths (South of Tunisia) which were activated in our laboratory and compared with commercial clays. It was shown that activated Tunisian clays are characterized by a very important adsorptive capacity, comparable to that of commercial clays. Also, the physicochemical stability of bleached oils was studied. The fatty acid composition (GC), the triacylglycerol composition (HPLC), and the oxidative stability (UV spectrometry) allowed us to conclude that oils, bleached with the Tunisian activated clays, do not undergo considerable physicochemical alterations and remain corresponding to the international standards for refined oils for human consumption.

  14. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno, E-mail: lcarreno@uis.edu.co [Universidad Industrial de Santander (Colombia)

    2016-07-15

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  15. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs

    International Nuclear Information System (INIS)

    Zhu Min; Zhu Yufang; Zhang Lingxia; Shi Jianlin

    2013-01-01

    We have developed composite hydrogels of chitosan (CS) and mesoporous silica nanoparticles (MSNs) in this study. The gelation rate, gel strength, drug delivery behavior and chondrocyte proliferation properties were investigated. The introduction of MSNs into CS accelerated the gelation process at body temperature and also increased the elastic modulus G′ from 1000 to 1800 Pa. When we used gentamicin (GS) and bovine serum albumin (BSA) as model small chemical drugs and biomacromolecules, respectively, the CS/MSN hydrogels released GS and BSA in a sustained manner simultaneously, but the CS hydrogels only showed sustained BSA release. Furthermore, in vitro chondrocyte culture showed that the CS/MSN composite hydrogels indeed performed much better in supporting chondrocyte growth and maintaining chondrocytic phenotype compared to the CS hydrogels. Therefore, the results suggest that the CS/MSN composite hydrogels can be potentially very useful for cartilage regeneration. (paper)

  16. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    International Nuclear Information System (INIS)

    Ortiz, A.V.; Teixeira, J.G.; Gomes, M.G.; Oliveira, R.R.; Díaz, F.R.V.; Moura, E.A.B.

    2014-01-01

    Highlights: • We examine changes in HDPE properties when waste and clay are used as reinforcement. • The addition of only 3% of clay leads to important gains in HDPE properties. • The use of electron-beam contributes to greater improvements in material properties. • We observe 85% of cross-linking degree for the HDPE when treated with e-beam. - Abstract: This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol–gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material

  17. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.V., E-mail: angelortiz@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Teixeira, J.G.; Gomes, M.G.; Oliveira, R.R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Díaz, F.R.V. [Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo Av. Prof. Mello de Morais 2463, São Paulo, SP 05508-900 (Brazil); Moura, E.A.B. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil)

    2014-08-15

    Highlights: • We examine changes in HDPE properties when waste and clay are used as reinforcement. • The addition of only 3% of clay leads to important gains in HDPE properties. • The use of electron-beam contributes to greater improvements in material properties. • We observe 85% of cross-linking degree for the HDPE when treated with e-beam. - Abstract: This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol–gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.

  18. Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating.

    Science.gov (United States)

    Abdullayev, Elshad; Sakakibara, Keita; Okamoto, Ken; Wei, Wenbo; Ariga, Katsuhiko; Lvov, Yuri

    2011-10-01

    Halloysite is naturally available clay mineral with hollow cylindrical geometry and it is available in thousands of tons. Silver nanorods were synthesized inside the lumen of the halloysite by thermal decomposition of the silver acetate, which was loaded into halloysite from an aqueous solution by vacuum cycling. Images of individual ca. 15 nm diameter silver nanorods and nanoparticles were observed with TEM. The presence of silver inside the tubes was also verified with STEM-EDX elemental mapping. Nanorods had crystalline nature with [111] axis oriented ~68° from the halloysite tubule main axis. The composite of silver nanorods encased in clay tubes with the polymer paint was prepared, and the coating antimicrobial activity combined with tensile strength increase was demonstrated. Coating containing up 5% silver loaded halloysite did not change color after light exposure contrary to the sample prepared with loading with unshelled silver nanoparticles. Halloysite tube templates have a potential for scalable manufacturing of ceramic encapsulated metal nanorods for composite materials. © 2011 American Chemical Society

  19. Fabrication of unglazed ceramic tile using dense structured sago waste and clay composite

    International Nuclear Information System (INIS)

    Aripin; S Tani; S Mitsudo; T Saito; T Idehara

    2010-01-01

    In Indonesia, the sago processing industry generates every year huge amount of sago waste, and converting this waste into a useful material is possible. In the present study, physical properties of dense structured sago waste and clay composite were investigated in order to study the feasibility of reuse this sample as raw material in the producing of ceramics. Firstly, the chemical composition of ash (obtained from the sago waste) and clay was characterized. The prepared sample was sintered at the temperature range from 800 to 1,200 °C using electric furnace. The density, linear shrinkage and water absorption of the sintered sample were determined by using the Archimedes' method. The experimental result indicated that the density of the sintered sample increased with increasing sintering temperature up to 1100°C and then slightly decreased afterward. The water absorption of the products decreased with an increase in sintering temperature. In the sintered sample at 1,100 °C, the water absorption decreased rapidly and water adsorption of less than 1 % was achieved. This water absorption was less than 5 % which was needed for unglazed floor tile. The result of water adsorption suggest that it is possible to use this sample as a raw material for producing the ceramic floor tile. (author)

  20. The Effect of Transition Metal Doping on the Photooxidation Process of Titania-Clay Composites

    Directory of Open Access Journals (Sweden)

    Judit Ménesi

    2008-01-01

    Full Text Available Montmorillonite-TiO2 composites containing various transition metal ions (silver, copper, or nickel were prepared, and their photocatalytic efficiencies were tested in the degradation of ethanol vapor at 70% relative humidity. Two light sources, UV-rich ( = 254 nm and visible ( = 435 nm, were used. The kinetics of degradation was monitored by gas chromatography. It was established that, in the case of each catalyst, ethanol degradation was more efficient in UV-C ( = 254 nm than in visible light, furthermore, these samples containing silver or copper ions were in each case about twice more efficient than P25 TiO2 (Degussa AG. used as a reference. In photooxidation by visible light, TiO2/clay samples doped with silver or copper were also more efficient than the reference sample, P25 TiO2. We show that doping metal ions can also be delivered to the surface of the support by ion exchange and significantly alters the optical characteristics of the TiO2/clay composite.

  1. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    Science.gov (United States)

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Influence of the chemical modification and content of the clay on the mechanical properties of polypropylene and national bentonite composites

    International Nuclear Information System (INIS)

    Libano, Elaine V.D.G.; Pacheco, Elen B.A.V.; Visconte, Leila L.Y.

    2011-01-01

    The polypropylene/national clay composite was prepared by melt intercalation in a counter-rotating twin screw extruder, using bentonite as filler either in the natural (BENT) form or modified with the ammonium salt, cetyltrimethylammonium chloride (BENT-org). The clay was used in 1, 3 and 5%w. The influence of the modification and content of clay on the mechanical properties of this system was analysed. The analyses of infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that clay organophilization did occur. The tensile modulus and the tensile strength at the yield point were not affected by chemical modification (BENT and BENT-org) or clay content. On the other hand, it was evidenced that the elongation at the yield point decreased with the addition of BENT and BENT-org to polypropylene. According to the thermogravimetric results, it was evidenced that the incorporation of clay into polypropylene improved thermal stability of the polymer in the composites with 5%w of BENT and 3 and 5%w of BENT-org. (author)

  3. Evaluation of mesopores and characterization of clays of the State of Puebla, Mexico; Evaluacion de materiales mesoporosos y caracterizacion de las arcillas en el Estado de Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.A.; Velasco, J.A. [Departamento de Investigaci en Zeolitas, Instituto de Ciencias de la Universidad Autonoma de Puebla. Edif. 76, Complejo de Ciencias, C. U., San Manuel, Puebla 72570 Puebla (Mexico); Rojas, F.; Lara, V.H. [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa. Apartado Postal 55-434, M ico, D.F. (Mexico); Salgado, M.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Puebla (Mexico); Tamariz, V. [Posgrado de Ciencias Ambientales, Instituto de Ciencias de la Universidad Autonoma de Puebla (Mexico)

    2003-07-01

    The crystalline properties of natural clays are related to the different crystallographic phases that are present in the structure of these substrates. Clays from the zone of Tehuacan, in the state of Puebla, Mexico, have been studied by means of X-Ray Diffraction (XRD), Atomic Absorption (AA), and N{sub 2} Adsorption at 76 K. XRD analysis indicates the presence in the clay adsorbents of montmorillonite, quartz and, in some cases, of calcium carbonate. The textural properties of these porous materials of natural origin have been evaluated through the BET equation, the Langmuir equation, the single point BET method and the Gurvitsch Rule. The meso porosity that is present in each substrate has been measured via the methods of Kelvin, Barret, Jovner, and Halenda (BJH), and Kruk, Jaroniec, and Sayari as well as by the so-called differential curves of t-plots. The N{sub 2} adsorption isotherms at 76 K that were measured on our clay adsorbents indicate that the adsorption process is carried out through a multilayer formation mechanism. The sorption hysteresis loops confirm characteristic aspects of this type of clay materials. Plots of the adsorbed volume versus the statistical thickness (t-plots) of N{sub 2} layers adsorbed on the clay surface were also evaluated. The latter curves comprise three zones of behavior; each zone representing a different filling mechanism of the pore space. (Author)

  4. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol composites with improved thermal stability, mechanical and dielectric properties

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available New composites with improved thermal stability, mechanical and dielectric properties were developed, which consist of 2,2'-diallylbisphenol A (DBA/4,4'-bismaleimidodiphenylmethane (BDM resin and a new kind of organic/inorganic mesoporous silica (MPSA. Typical properties (curing behavior and mechanism, thermal stability, mechanical and dielectric properties of the composites were systematically investigated, and their origins were discussed. Results show that MPSA/DBA/BDM composites have similar curing temperature as DBA/BDM resin does; however, they have different curing mechanisms, and thus different crosslinked networks. The content of MPSA has close relation with the integrated performance of cured composites. Compared with cured DBA/BDM resin, composites with suitable content of MPSA show obviously improved flexural strength and modulus as well as impact strength; in addition, all composites not only have lower dielectric constant and similar frequency dependence, more interestingly, they also exhibit better stability of frequency on dielectric loss. For thermal stability, the addition of MPSA to DBA/BDM resin significantly decreases the coefficient of thermal expansion, and improves the char yield at high temperature with a slightly reduced glass transition temperature. All these differences in macro-properties are attributed to the different crosslinked networks between MPSA/DBA/BDM composites and DBA/BDM resin.

  5. The utilization of trace chemical composition to correlate ceramics with clay deposits

    International Nuclear Information System (INIS)

    Nunes, Kelly P.; Toyota, Rosimeiri G.; Munita, Casimiro S.; Oliveira, Paulo M.S.; Neves, Eduardo G.; Soares, Emilio A.A.

    2007-01-01

    In this work, 22 clay samples near Hatahara and Acutuba archaeological sites, and 135 ceramic samples were analyzed by means of Instrumental Neutron Activation Analysis. INAA is the most suitable technique because it does not require mineralization of samples and has high sensitivity, accuracy and precision. The samples were irradiated in IEA-R1 reactor at IPEN-CNEN-SP at thermal neutron flux of 8,92x10 12 cm -2 s -1 during one hour. The elementary concentration results were studied using multivariate statistical methods. The compositions group classification was done through cluster analysis and the similarity/dissimilarity among the samples was studied by means of discriminant analysis. (author)

  6. Calcium montmorillonite clay in dairy feed reduces aflatoxin concentrations in milk without interfering with milk quality, composition or yield

    Science.gov (United States)

    This study was designed to determine if a calcium montmorillonite clay (Novasil Plus, NSP), can significantly reduce aflatoxin M1 (AFM1) concentrations in milk without affecting dry matter intake (DMI), milk yield, milk composition, vitamin A, or riboflavin concentrations. The study was designed us...

  7. Thermal and mechanical properties of compression-moulded poly(lactic acid)/gluten/clays bio(nano)composites

    Science.gov (United States)

    Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...

  8. Periodic mesoporous hydridosilica--synthesis of an "impossible" material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite.

    Science.gov (United States)

    Xie, Zhuoying; Henderson, Eric J; Dag, Ömer; Wang, Wendong; Lofgreen, Jennifer E; Kübel, Christian; Scherer, Torsten; Brodersen, Peter M; Gu, Zhong-Ze; Ozin, Geoffrey A

    2011-04-06

    There has always been a fascination with "impossible" compounds, ones that do not break any rules of chemical bonding or valence but whose structures are unstable and do not exist. This instability can usually be rationalized in terms of chemical or physical restrictions associated with valence electron shells, multiple bonding, oxidation states, catenation, and the inert pair effect. In the pursuit of these "impossible" materials, appropriate conditions have sometimes been found to overcome these instabilities and synthesize missing compounds, yet for others these tricks have yet to be uncovered and the materials remain elusive. In the scientifically and technologically important field of periodic mesoporous silicas (PMS), one such "impossible" material is periodic mesoporous hydridosilica (meso-HSiO(1.5)). It is the archetype of a completely interrupted silica open framework material: its pore walls are comprised of a three-connected three-dimensional network that should be so thermodynamically unstable that any mesopores present would immediately collapse upon removal of the mesopore template. In this study we show that meso-HSiO(1.5) can be synthesized by template-directed self-assembly of HSi(OEt)(3) under aqueous acid-catalyzed conditions and after template extraction remains stable to 300 °C. Above this temperature, bond redistribution reactions initiate a metamorphic transformation which eventually yields periodic mesoporous nanocrystalline silicon-silica, meso-ncSi/SiO(2), a nanocomposite material in which brightly photoluminescent silicon nanocrystallites are embedded within a silica matrix throughout the mesostructure. The integration of the properties of silicon nanocrystallinity with silica mesoporosity provides a wealth of new opportunities for emerging nanotechnologies. © 2011 American Chemical Society

  9. Biotemplated Mesoporous TiO2/SiO2 Composite Derived from Aquatic Plant Leaves for Efficient Dye Degradation

    Directory of Open Access Journals (Sweden)

    Zhiying Yan

    2017-03-01

    Full Text Available The biotemplating technique is an environmental-protective high-efficiency new technology by which the resulting TiO2 may simultaneously attain the duplication of structure and self-doping elements from biotemplate materials, which is highly desirable for photocatalytic applications. In this paper, aquatic plant leaves—including reed, water hyacinth, and duckweed—were used as both templates and silicon precursors to successfully synthesize biomorphic TiO2/SiO2 composite with mesoporous structures. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption, and UV–visible diffuse reflectance spectra were applied to characterize the microstructures of the samples. The results show that all TiO2/SiO2 composites are mainly composed of an anatase phase with mesoporous structure and possess high specific surface area. Compared with commercial Degussa P25 TiO2, all TiO2/SiO2 samples display intensive light-harvesting efficiency, particularly in the visible light range. The activities were evaluated by using gentian violet as a target for photocatalytic degradation experiments under simulated solar irradiation. The TiO2/SiO2 samples templated by reed and water hyacinth leaves exhibit high activity, while the TiO2/SiO2 samples obtained from duckweed are inferior to P25 in the degradation of gentian violet. A synergistic effect of SiO2 incorporation and structural construction through biotemplating is proposed to be beneficial to photocatalytic activity.

  10. Nanoindentation Characterization of a Ternary Clay-Based Composite Used in Ancient Chinese Construction

    Directory of Open Access Journals (Sweden)

    Dongwei Hou

    2016-10-01

    Full Text Available Ternary clay-based composite material (TCC, composed of lime, clay and sand, and usually modified with sticky rice and other organic compounds as additives, was widely used historically in Chinese construction and buildings due to its high mechanical performance. In this study, to gain an insight into the micromechanical mechanism of this cementitious material, the nanomechanical properties and volume fraction of mechanically different phases of the binder matrix are derived from the analysis of grid nanoindentation tests. Results show that there are five distinct mechanical phases, where the calcium silicate hydrate (C-S-H and geopolymer present in the binder matrix are almost identical to those produced in ordinary Portland cement (OPC and alkali-activated fly-ash geopolymer materials in nano-mechanical performance. The nano-mechanical behavior of calcite produced by the carbonation of lime in this binder is close to the calcite porous outer part of some sea urchin shells. Compared to OPC, the C-S-H contained in the TCC has a relatively lower ratio of indentation modulus to indentation hardness, implying a relatively lower resistance to material fracture. However, the geopolymer and calcite, at nearly the same volume content as the C-S-H, help to enhance the strength and durability of the TCC by their higher energy resistance capacity or higher strength compared to the C-S-H. Rediscovering of TCC offers a potential way to improve modern concrete’s strength and durability through synergy of multi-binders and the addition of organic materials if TCC can be advanced in terms of its workability and hardening rate.

  11. Nanoindentation Characterization of a Ternary Clay-Based Composite Used in Ancient Chinese Construction.

    Science.gov (United States)

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Shen, Jack S; Liu, Mingming; Luo, Hao

    2016-10-26

    Ternary clay-based composite material (TCC), composed of lime, clay and sand, and usually modified with sticky rice and other organic compounds as additives, was widely used historically in Chinese construction and buildings due to its high mechanical performance. In this study, to gain an insight into the micromechanical mechanism of this cementitious material, the nanomechanical properties and volume fraction of mechanically different phases of the binder matrix are derived from the analysis of grid nanoindentation tests. Results show that there are five distinct mechanical phases, where the calcium silicate hydrate (C-S-H) and geopolymer present in the binder matrix are almost identical to those produced in ordinary Portland cement (OPC) and alkali-activated fly-ash geopolymer materials in nano-mechanical performance. The nano-mechanical behavior of calcite produced by the carbonation of lime in this binder is close to the calcite porous outer part of some sea urchin shells. Compared to OPC, the C-S-H contained in the TCC has a relatively lower ratio of indentation modulus to indentation hardness, implying a relatively lower resistance to material fracture. However, the geopolymer and calcite, at nearly the same volume content as the C-S-H, help to enhance the strength and durability of the TCC by their higher energy resistance capacity or higher strength compared to the C-S-H. Rediscovering of TCC offers a potential way to improve modern concrete's strength and durability through synergy of multi-binders and the addition of organic materials if TCC can be advanced in terms of its workability and hardening rate.

  12. Synthesis of magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls for selective and efficient residue analysis of aminoglycosides in milk.

    Science.gov (United States)

    Feng, Jianan; She, Xiaojian; He, Xinying; Zhu, Jinglin; Li, Yan; Deng, Chunhui

    2018-01-15

    In this study, magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls were synthesized for the first time by a two-step post-graft method. The obtained nano-composites were proven to hold many attractive features such as large specific surface area, uniform mesopores, high magnetic responsibility, and boronic acid-functionalized inner pore-walls. Aminoglycoside residues in milk were extracted using MG@mSiO 2 -APB composites as restricted access matrix dispersive solid phase extraction adsorbents through the interaction between boronic acid groups and glucoside structures. Extraction conditions were optimized by studying the SPE parameters. Limits of detection of the method were as low as 5ngmL -1 for streptomycin) and 2ngmL -1 for dihydrostreptomycin. Finally, magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls were successfully applied to residue analysis in milk samples. Compared to the traditional extraction methods, using this nano-composites for aminoglycoside residues analysis in milk is more sensitive, effective and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synergistic removal of Pb(II, Cd(II and humic acid by Fe3O4@mesoporous silica-graphene oxide composites.

    Directory of Open Access Journals (Sweden)

    Yilong Wang

    Full Text Available The synergistic adsorption of heavy metal ions and humic acid can be very challenging. This is largely because of their competitive adsorption onto most adsorbent materials. Hierarchically structured composites containing polyethylenimine-modified magnetic mesoporous silica and graphene oxide (MMSP-GO were here prepared to address this. Magnetic mesoporous silica microspheres were synthesized and functionalized with PEI molecules, providing many amine groups for chemical conjugation with the carboxyl groups on GO sheets and enhanced the affinity between the pollutants and the mesoporous silica. The features of the composites were characterized using TEM, SEM, TGA, DLS, and VSM measurements. Series adsorption results proved that this system was suitable for simultaneous and efficient removal of heavy metal ions and humic acid using MMSP-GO composites as adsorbents. The maximum adsorption capacities of MMSP-GO for Pb(II and Cd (II were 333 and 167 mg g(-1 caculated by Langmuir model, respectively. HA enhances adsorption of heavy metals by MMSP-GO composites due to their interactions in aqueous solutions. The underlying mechanism of synergistic adsorption of heavy metal ions and humic acid were discussed. MMSP-GO composites have shown promise for use as adsorbents in the simultaneous removal of heavy metals and humic acid in wastewater treatment processes.

  14. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    Science.gov (United States)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  15. Bentonite clay purification for development of polymeric nan composites using a single screw extruder

    International Nuclear Information System (INIS)

    Carvalho, Ana C.M. de; Ito, Edson N.; Costa, Maria C.B.; Barbosa, Maria I.R.

    2011-01-01

    In this work, a bentonite clay rich in montmorillonite was purified and chemical treat to be used in the development of poly (methyl methacrylate) /clay nanocomposites via melting processes. After the clay treatment and purification, a masterbatch with 25% clay and 75% PMMA was produced by solution technique, using acetone as solvent. For produce samples with 2.5% clay, the masterbatch along with pure polymer were added and mixed in single screw extruder with a diameter of 16 mm and W/D 26. X-rays diffractometry (XRD) and X-rays fluorescence (XRF). Tests were performed to evaluate and characterizing the bentonite clay used in the development of this work and differential scanning calorimetry (DSC) tests were performed to evaluate changes in the thermal properties of the nanocomposites produced. (author)

  16. Synthesis of titania modified silica-pillared clay (SPC) with highly ordered interlayered mesoporous structure for removing toxic metal ion Cr(VI) from aqueous state

    Science.gov (United States)

    Mao, Huihui; Zhu, Kongnan; Li, Baoshan; Yao, Chao; Kong, Yong

    2014-02-01

    Titanium-functionalized silica-pillared clays synthesized through post synthetic route was utilized as adsorbers for the removal of Cr(VI) ions from aqueous solutions under different temperatures and initial concentrations. The starting mesostructured silica-pillared clay is assembled by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using cationic surfactant as gallery template, and subsequently, the formed interlayered pore walls were decorated with nano-sized TiO2 particle through organic titanium functionalization process. The kind of structural transformation has been confirmed by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, Fourier transform infrared (FT-IR) analysis, UV-vis diffuse reflectance spectroscopy (DRS), elemental analysis (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Such results indicate that most of the grafted titanium species was combined with Si-OH on the surface of gallery pores. By changing the concentration of organic titanium source during synthesis, the porous structure system is effected. Under suitable conditions, these materials exhibit high adsorption capacity and efficiency. Qualitative estimates of the thermodynamic parameters showed that the overall adsorption process is spontaneous (ΔG° 0). The adsorption isotherms of Cr(VI) on titanium-functionalized silica-pillared clay were best fitted by Redlich-Peterson models. Detail results of thermodynamics and kinetics are also presented.

  17. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei [ChinaU - Petroleum; (Chinese Aca. Sci.)

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  18. Copper supported on nanostructured mesoporous ceria-titania composites as catalysts for sustainable environmental protection: Effect of support composition

    Czech Academy of Sciences Publication Activity Database

    Issa, G. S.; Tsoncheva, T.; Mileva, A.; Dimitrov, M.D.; Kovacheva, D.; Henych, Jiří; Štengl, Václav

    2017-01-01

    Roč. 49, SI D (2017), s. 55-62 ISSN 0324-1130 Grant - others:AV ČR(CZ) BAS-17-13 Program:Bilaterální spolupráce Institutional support: RVO:61388980 Keywords : Mesoporous nanostructured ceria-titania doped with copper * template-assisted hydrothermal synthesis * ethyl acetate oxidation * methanol decomposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 0.238, year: 2016 http://www.bcc.bas.bg/BCC_Volumes/Volume_49_Special_D_2017/BCC2017-49-SE-D-055-062.pdf

  19. Investigation adding of Nano clay particles and compatibilizer on the properties of composite made of polypropylene- Haloxylon wood flour

    Directory of Open Access Journals (Sweden)

    afsaneh shahraki

    2016-12-01

    Full Text Available This study, with aim of investigation the effect of Nano clay particles and amount of compatibilizer on the physical and mechanical properties of wood-plastic composites from the polypropylene- Haloxylon wood flour was done. For this purpose, Haloxylon wood flour with 50% weight ratio with polypropylene were mixed. Maleic anhydride modified polypropylene maple to compatibilizer at two levels and Nano clay at three levels to filler were used. Mixed process of materials in extruding machine was done and test specimens were fabricated by using the injection molding machine. Then, the mechanical tests include bending, tension and impact and physical tests include water absorption and thickness swelling according to the ASTM standards was done on the samples. For investigation to how operation of compatibilizer from Fourier Transfer Infrared spectroscopy (FTIR was used. Morphological study of Nano composites with X-ray diffraction (XRD and scanning electron microscopy (SEM was done. The result showed that with addition of the amount of Nano clay particles to 4 percent, physical and mechanical properties were improved, but impact strength decreased. Also by adding the compatibilizer, physical and mechanical properties were improved. The results of Infrared spectroscopy showed that the amount of hydroxyl groups (OH Due to linkage with Maleic Anhydride and the formation of ester groups decreased with adding the compatibilizer. Also, investigation the morphology of Nano composite by X-ray diffraction showed that the distribution of clay nanoparticles in polymeric matrix was intercalation and with adding of the amount Nano clay the distance between layers increases. The results of scanning electron microscopy was also showed improvement in the interface between the fibers and the polymer matrix with adding the compatibilizer.

  20. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: k-faghihi@araku.ac.ir [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)

    2013-08-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  1. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    International Nuclear Information System (INIS)

    Faghihi, K.; Ashouri, M.; Feyzi, A.

    2013-01-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  2. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering

    International Nuclear Information System (INIS)

    Luo Yongxiang; Lode, Anja; Gelinsky, Michael; Wu Chengtie

    2013-01-01

    Constructing bioactive scaffolds with controllable architecture for bone tissue engineering and drug delivery still maintains a significant challenge. In this study, we have developed a composite material consisting of mesoporous bioactive glass (MBG) and concentrated alginate pastes for fabrication of hierarchical scaffolds by 3D plotting. The scaffold structure contains well-ordered nano-channels, micropores as well as controllable macropores beneficial for bone tissue engineering applications and drug delivery. The structural architecture of the scaffolds has been optimized by efficient designing of the plotting coordination. The effects of MBG on mechanical strength, apatite mineralization, cytocompatibility and drug delivery properties of the composite scaffolds have been systematically studied. Transmission electron microscopy, scanning electron microscopy and energy-dispersive spectrometry were used to characterize composition and microstructure of the composite scaffolds. The MBG/alginate pastes showed good processability in the 3D plotting process, in which stable MBG/alginate composite scaffolds with controllable architecture can be prepared. The incorporation of MBG particles significantly improved the mechanical properties and apatite-mineralization ability of alginate scaffolds as well as enhanced the attachment and alkaline phosphatase activity of human bone marrow-derived mesenchymal stem cells cultivated onto the scaffolds. Dexamethasone, used as a model drug, can be efficiently loaded in MBG particles and then incorporated into alginate scaffolds resulting in a more sustained release as a function of the MBG content. Our results have indicated that 3D-plotted MBG incorporated alginate scaffolds with well-ordered nano-pores, controllable large pores, and significantly improved physicochemical, biological and drug-delivery properties could be a platform for bone tissue engineering. (paper)

  3. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    OpenAIRE

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan?gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that...

  4. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  5. Potency and Cytotoxicity of a Novel Gallium-Containing Mesoporous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents.

    Science.gov (United States)

    Pourshahrestani, Sara; Zeimaran, Ehsan; Kadri, Nahrizul Adib; Gargiulo, Nicola; Jindal, Hassan Mahmood; Naveen, Sangeetha Vasudevaraj; Sekaran, Shamala Devi; Kamarul, Tunku; Towler, Mark R

    2017-09-20

    Chitosan-based hemostats are promising candidates for immediate hemorrhage control. However, they have some disadvantages and require further improvement to achieve the desired hemostatic efficiency. Here, a series of 1% Ga 2 O 3 -containing mesoporous bioactive glass-chitosan composite scaffolds (Ga-MBG/CHT) were constructed by the lyophilization process and the effect of various concentrations of Ga-MBG (10, 30, and 50 wt %) on the hemostatic function of the CHT scaffold was assessed as compared to that of Celox Rapid gauze (CXR), a current commercially available chitosan-coated hemostatic gauze. The prepared scaffolds exhibited >79% porosity and showed increased water uptake compared to that in CXR. The results of coagulation studies showed that pure CHT and composite scaffolds exhibited increased hemostatic performance with respect to CXR. Furthermore, the composite scaffold with the highest Ga-MBG content (50 wt %) had increased capability to enhancing thrombus generation, blood clotting, and platelet adhesion and aggregation than that of the scaffold made of pure CHT. The antibacterial efficacy and biocompatibility of the prepared scaffolds were also assessed by a time-killing assay and an Alamar Blue assay, respectively. Our results show that the antibacterial effect of 50% Ga-MBG/CHT was more pronounced than that of CHT and CXR. The cell viability results also demonstrated that Ga-MBG/CHT composite scaffolds had good biocompatibility, which facilitates the spreading and proliferation of human dermal fibroblast cells even with 50 wt % Ga-MBG loading. These results suggest that Ga-MBG/CHT scaffolds could be a promising hemostatic candidate for improving hemostasis in critical situations.

  6. Long-term variations of clay mineral composition in the Andaman Sea (IODP Exp. 353 Site U1447): preliminary result

    Science.gov (United States)

    Lee, J.; Khim, B. K.; Cho, H. G.; Kim, S.; 353 Scientists, I. E.

    2016-12-01

    Clay mineral studies in the Bengal Fan have allowed the reconstruction of the erosional history of the Himalayan-Tibetan complex since the Early Miocene. Several factors such as climate change and tectonic activity are important for the erosion rate of the Himalaya-Tibet complex. IODP Expedition 353 Site U1447 (10°47.4'N, 93°00'E; 1391 mbsl) was drilled on a ridge 45 km offshore Little Andaman Island in the Andaman Sea, penetrating to total depths of 738 m. Riverine sediments supplied mainly by the Irrawaddy and Salween (draining the Indo-Burman Ranges; smectite-rich) and the Ganga/Brahmaputra (draining the Himalaya; illite-rich) via the surface currents have been known to deposit in the Andaman Sea. We measured clay minerals of 38 sediment samples collected from 150 to 737 m CSF-A at Site U1447 in order to reveal long-term variation patterns of clay minerals and their controlling factors. Age reconstruction of Site U1447 aided by shipboard biostratigraphic and paleomagnetic data defined the study interval spanning from the Late Miocene ( 10 Ma) to Early Pleistocene ( 1.25 Ma). At this interval, clay minerals consist mainly of smectite (28-61% with an average of 47%) followed by illite (20-41% with an average of 29%), kaolinite (9-19% with an average of 14%), and chlorite (5-15% with an average of 10%). Variation of clay mineral compositions is divided into three stages; almost consistent variations of all clay minerals (from 750 to 570 m CSF-A; 10.0 to 7.5 Ma), gradual decrease of smectite and increase of illite and chlorite (from 570 to 400 m CSF-A; 7.5 to 4.5 Ma), and great fluctuation of all clay minerals (from 400 to 150 m CSF-A; 4.5 to 1.1 Ma). Such long-term clay mineral changes may be related to provenance switches, tectonic evolution of the source regions, climatic variations, degree of volcanism with basin evolution, sedimentation history by sea level changes or some combination of these factors.

  7. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  8. New magnetic organic inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    Science.gov (United States)

    Carja, Gabriela; Chiriac, Horia; Lupu, Nicoleta

    2007-04-01

    The structural "memory effect" of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  9. Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites

    International Nuclear Information System (INIS)

    Zhang Yufan; Bo Xiangjie; Luhana, Charles; Guo Liping

    2011-01-01

    Graphical abstract: Small Pt nanoparticles of uniform size and good dispersion are grown on the surfaces of OMCs using PDDA as a linker. The Pt nanoparticles supported on OMCs-PDDA exhibit better electrocatalytic activity than those on OMCs without PDDA modification. - Abstract: A simple approach for the synthesis of nanosized platinum particles supported on ordered mesoporous carbons (OMCs) was described. For the first time, we successfully used the positively charged poly-(diallydimethylammonium chloride, PDDA) to wrap OMCs and attached Pt nanoparticles (OMCs-PDDA/Pt) via electrostatic interaction. The obtained OMCs-PDDA/Pt nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical methods. TEM images reveal that the Pt nanoparticles with an average size of ∼2.88 nm are uniformly dispersed on the surface of OMCs-PDDA. The electrocatalytic behavior of OMCs-PDDA/Pt modified glassy carbon (GC) electrode was investigated by cyclic voltammetry, current-time and chronoamperometry methods using hydrazine as a redox probe. The electrochemical results indicate that the OMCs-PDDA/Pt exhibit a good electrocatalytic activity toward the oxidation of hydrazine than that of OMCs/Pt. All these electrochemical measurements confirm the fact that the OMCs-PDDA/Pt nanocomposites may have applications in biological and environmental sensors.

  10. Evaluation of elemental composition of clays from Campos Gerais (MG); Avaliacao da composicao elementar de argilas de Campos Gerais (MG)

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao P.M.; Maduar, Marcelo F.; Silva, Paulo S.C da, E-mail: jpmm0697@hotmail.com [Instituto de Pesquisas Energeticas e nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    There are numerous applications given to clays including oil and water adsorbent, ceramic, whitening of beverages, porcelain, waste treatment, organic carrier molecules in cosmetics and pharmaceuticals, support for catalysts. In the pharmaceutical industry, the clays are used as excipients, diluents, desiccants, emulsifiers, to mask undesirable flavors, isotonic agent such as charger and delivery of active substances. These characteristics have contributed to the expansion of the search for applications of clay minerals in the cosmetic industry. The aim of this study was to determine the elemental composition of clays from Campos Gerais, Minas Gerais, with a view to their applicability in the production of cosmetics. The elements As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th,U, Yb and Zn were determined by neutron activation analysis and radionuclide activity concentration of {sup 226}Ra, {sup 228} Ra, {sup 210}Pb and {sup 40}K were determined by gamma spectrometry. It was verified that the activity concentration of radionuclides was in the same concentration as the global average, indicating that these samples do not present a risk of increased radiation exposure. The concentration of most elements determined is less than or equal to the overall mean concentrations, indicated by the values of Continental Upper Crust. (author)

  11. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  12. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  13. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption.

    Science.gov (United States)

    Mungondori, Henry H; Mtetwa, Sandile; Tichagwa, Lilian; Katwire, David M; Nyamukamba, Pardon

    2017-05-01

    The adsorption of a multi-component system of ferrous, chromium, copper, nickel and lead on single, binary and ternary composites was studied. The aim of the study was to investigate whether a ternary composite of clay, peanut husks (PH) and saw-dust (SD) exhibited a higher adsorption capacity than that of a binary system of clay and SD as well as a single component adsorbent of PH alone. The materials were used in their raw state without any chemical modifications. This was done to retain the cost effective aspect of the naturally occurring adsorbents. The adsorption capacities of the ternary composite for the heavy metals Fe 2+ , Cr 3+ , Cu 2+ , Ni 2+ and Pb 2+ were 41.7 mg/g, 40.0 mg/g, 25.5 mg/g, 41.5 mg/g and 39.0 mg/g, respectively. It was found that the ternary composite exhibited excellent and enhanced adsorption capacity compared with both a binary and single adsorbent for the heavy metals Fe 2+ , Ni 2+ and Cr 3+ . Characterization of the ternary composites was done using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Kinetic models and adsorption isotherms were also studied. The pseudo second order kinetic model and the Langmuir adsorption isotherm best described the adsorption mechanisms for the ternary composite towards each of the heavy metal ions.

  14. Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The primary aim of this study was to synthesize cryptocrystalline magnesite–bentonite clay composite by mechanochemical activation and evaluate its usability as low cost adsorbent for neutralization and attenuation of inorganic contaminants...

  15. Synthesis of porous magnesite-bentonite clay composite and its application for neutralisation and attenuation of inorganic contaminants in acidic and metalliferous mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-08-01

    Full Text Available This paper evaluated the application of cryptocrystalline magnesite-bentonite clay composite for treatment of acid mine drainage (AMD). Bench laboratory studies were used to evaluate the treatment of AMD....

  16. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; He, Yan-Rong; Jiang, Hong; Yu, Han-Qing

    2014-12-02

    Disposal and recycling of the large scale biomass waste is of great concern. Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. In this work, we reported a scalable, "green" method for the synthesis of the nanofibers/mesoporous carbon composites through pyrolysis of the Fe(III)-preloaded biomass, which is controllable by adjustment of temperature and additive of catalyst. It is found that the coupled catalytic action of both Fe and Cl species is able to effectively catalyze the growth of the carbon nanofibers on the mesoporous carbon and form magnetic nanofibers/mesoporous carbon composites (M-NMCCs). The mechanism for the growth of the nanofibers is proposed as an in situ vapor deposition process, and confirmed by the XRD and SEM results. M-NMCCs can be directly used as electrode materials for electrochemical energy storage without further separation, and exhibit favorable energy storage performance with high EDLC capacitance, good retention capability, and excellent stability and durability (more than 98% capacitance retention after 10,000 cycles). Considering that biomass is a naturally abundant and renewable resource (over billions tons biomass produced every year globally) and pyrolysis is a proven technique, M-NMCCs can be easily produced at large scale and become a sustainable and reliable resource for clean energy storage.

  17. Facile preparation of magnetic mesoporous Fe{sub 3}O{sub 4}/C/Cu composites as high performance Fenton-like catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Keyan; Zhao, Yongqin [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Fe-Cu composites with different compositions were prepared by calcining tartrates. • Magnetic mesoporous Fe{sub 3}O{sub 4}/C/Cu was obtained by calcining tartrate under N{sub 2}. • Fe{sub 3}O{sub 4}/C/Cu exhibits excellent photo-Fenton catalytic activity and reusability. • The activity is due to the synergistic and photo-reduction effects of Fe and Cu. - Abstract: Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe{sub 2}O{sub 3}/CuO and α-Fe{sub 2}O{sub 3}/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe{sub 3}O{sub 4}/C/Cu was obtained by calcining the tartrate precursor under N{sub 2} atmosphere at 500 °C. The Fe{sub 3}O{sub 4}/C/Cu composite possessed mesoporous structure and large surface area up to 133 m{sup 2} g{sup −1}. The Fenton catalytic performance of Fe{sub 3}O{sub 4}/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe{sup 3+} to Fe{sup 2+}, which accelerated the Fe{sup 3+}/Fe{sup 2+} cycles and favored H{sub 2}O{sub 2} decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe{sup 3+} and Cu{sup 2+}, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe{sub 3}O{sub 4}/C/Cu-H{sub 2}O{sub 2} system, and MB (100 mg L{sup −1}) was nearly removed within 60 min. The Fe{sub 3}O{sub 4}/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile

  18. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.

    Science.gov (United States)

    Aydemir, Tülin; Güler, Semra

    2015-01-01

    Laccase from Trametes versicolor was immobilized on magnetic chitosan-clay composite beads by glutaraldehyde crosslinking. The physical, chemical, and biochemical properties of the immobilized laccase and its application in phenol removal were comprehensively investigated. The structure and morphology of the composite beads were characterized by SEM, TGA, and FTIR analyses. The immobilized laccase showed better storage stability and higher tolerance to the changes in pH and temperature compared with free laccase. Moreover, the immobilized laccase retained more than 75% of its original activity after 10 cycles. The efficiency of phenol removal by immobilized laccase was about 80% under the optimum conditions after 4 h.

  19. Carbon/Clay nanostructured composite obtained by hydrothermal method; Compositos nanoestruturados carbono/argila obtidos por metodo hidotermico

    Energy Technology Data Exchange (ETDEWEB)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S., E-mail: gabriela.borin@gmail.co [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Souza Filho, A.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm{sup -1} in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  20. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Ion-conducting thin film composites of polymer electrolytes were prepared by mixing high MW poly(ethylene oxide (PEO, poly(methyl methacrylate (PMMA as a polymer matrix, cetylpyridinium chloride (CPC modified MMT as filler, and different content of LiClO4 by using solution cast method. The crystallinity, ionic conductivity (σ, and mechanical properties of the composite electrolytes and blend composites were evaluated by using XRD, AC impedance, and UTM studies, respectively. The modification of clay by CPC showed enhancement in the d-spacing. The loading of clay has effect on crystallinity of PEO systems. Blend composites showed better mechanical properties. Young’s modulus and elongation at break values showed increase with salt and clay incorporation in pure PEO. The optimum composition composite of PEO with 3.5 wt% of salt and 3.3 wt% of CPMMT exhibited better performance.

  1. Preparation of Cerium (III) 12-tungstophosphoric acid/ordered mesoporous carbon composite modified electrode and its electrocatalytic properties

    International Nuclear Information System (INIS)

    Liu Lin; Ndamanisha, Jean Chrysostome; Bai Jing; Guo Liping

    2010-01-01

    In this work, a novel structured Cerium (III) 12-tungstophosphoric acid (CePW)/ordered mesoporous carbon (OMC) composite is synthesized. The characterization of the material by the Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical characterization shows that the novel CePW/OMC composite has improved properties based on the combination of CePW and OMC properties. CePW/OMC can be used to modify the glassy carbon (GC) electrode and the CePW/OMC/GC modified electrode shows an enhanced electrocatalytic activity. This property can be applied in the determination of some biomolecules. Especially, the detection and determination of the guanine (G) in the presence of adenine (A) is achieved. The catalytic current of G versus its concentration shows a good linearity with two good linear ranges from 4.0 x 10 -6 to 8.0 x 10 -5 M and from 8.0 x 10 -5 to 1.9 x 10 -3 M (correlation coefficient = 0.999 and 0.996) with a detection limit of 5.7 x 10 -9 M (S/N = 3). The linear range for adenine is 4.0 x 10 -6 -7.0 x 10 -4 M with a detection limit of 7.45 x 10 -8 M. With good stability and reproducibility, the present CePW/OMC/GC modified electrode should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.

  2. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carja, Gabriela [Department of Physical Chemistry, Faculty of Industrial Chemistry, Technical University of Iasi, 71 Mangeron Boulevard, 700050 Iasi (Romania); Chiriac, Horia [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi (Romania)]. E-mail: hchiriac@phys-iasi.ro; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi (Romania)

    2007-04-15

    The structural 'memory effect' of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  3. Influence of the stirring time on the exfoliation of the Cloisite 30 B clay in PVC composite: structural characterization by XRD

    International Nuclear Information System (INIS)

    Cabral, Andreia M.V.; Rodrigues, Meiry G.F.

    2009-01-01

    This study aims to evaluate the influence of the stirring time on the exfoliation efficiency of the montmorillonite clay in PVC composites, prepared by the polymerization 'in situ' process. The work was performed in 2 steps. In first stage: tests of expansion with Cloisite 30B clay in MVC, which was used to assess the degree of expansion in MVC of each of them at different stirring times: 2, 4 and 6 h. After stirring, each system was kept in observation for 3 days to evaluate the changes in the decanted volume of the clay in the reactor. Second stage: the Influence of the stirring time for the clay exfoliation. Cloisite 30B clay was used to compare the influence of the stirring time for exfoliation and characterized by X-ray diffraction (XRD). (author)

  4. Thermal and mechanical properties of palm oil-based polyurethane acrylate/ clay nano composites prepared by in-situ intercalative method and electron beam radiation

    International Nuclear Information System (INIS)

    Salih, A.M.; Mansor Ahmad; Nor Azowa Ibrahim; Rida Tajau; Wan Mohd Zin Wan Yunus

    2013-01-01

    Full-text: Palm oil based-polyurethane acrylate (POBUA)/ clay nano composites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4 ' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5 % wt), and then subjected to polycondensation reaction with MDI. Nano composites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nano clay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Angstrom, while the structure morphology of the nano composites was investigated by TEM and SEM. The nano composites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nano composites was significantly increased by incorporation of nano clay into the polymer matrix. DSC results reveal that the T g was shifted to higher values, gradually with increasing the amount of filler in the nano composites. Tensile strength and Young's modulus of the nano composites showed remarkable improvement compared to the neat POBUA. (author)

  5. Interference of processing variables on the mechanical behavior of nano composites HDPE/clay; Interferencia das variaveis de processamento no comportamento mecanico de nanocompositos PEAD/argila

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, R. [Universidade Federal do Piaui, Teresina, PI (Brazil); Souza, D.D.; Nobrega, K.C.; Araujo, E.M.; Melo, T.J. [Universidade Federal de Campina Grande - UAEMa Campina Grande, PB (Brazil)

    2010-07-01

    Nano composites were processed using the technique of melt intercalation, starting from a concentrated polar compatibilizer / organo clay (PE-g-MA / organo clay) prepared in an internal mixer. The concentrate was incorporated into the matrix of PEAD by two methods: (I) twin screw contrarrotational extruder and (II) twin screw corrotational extruder, using two thread profiles (ROS and 2KB90), after extrusion, the specimens of the extruded composites were injection molded. The diffraction of X-ray was used to analyze the degree of expansion of the clays prepared, and the degree of exfoliation of nano composites developed. The interference of processing variables on mechanical properties was studied by the behavior of the modulus and tensile strength of nano composite systems. Observed similar behavior in the use of thread (or 2KB90 ROS) of the nano composites, with a reduction in modulus and tensile strength. (author)

  6. Lead Sorption from Aqueous Solutions by Pseudomonas putida (p168 and its Composites with Palygorskite and Sepiolite Clays

    Directory of Open Access Journals (Sweden)

    Marzieh tavanaei

    2017-02-01

    Full Text Available Introduction: Heavy metals contamination due to natural and anthropogenic sources is a global environmental concern. Lead (Pb is one of the very toxic heavy metals. Industrial production processes and their emissions, mining operation, smelting, combustion sources and solid waste incinerators are the primary sources of lead. This heavy metal has aberrant effects on the environment and living organisms. Hence, proper treatment of lead from soil and industrial wastewaters is very important. In order to remove toxic heavy metals from contaminated water systems, conventional methods such as chemical precipitation, coagulation, ion exchange, solvent extraction and filtration, evaporation and membrane methods are being used. These conventional methods generally have high costs and technical problems. Therefore, biosorption processes, in which microorganisms are used as sorbents, have been considered as economical and environmentally friendly options for removal of heavy metals from aqueous solution. Clay minerals are another group of sorbents used in removal of heavy metals from polluted environments. Furthermore, bacterial cells can be attached on clay mineral surfaces and form bacteria-mineral composites. These composites adsorb heavy metals and convert them into forms with low mobility and bioavailability. Pseudomonas putida is a unique microorganism with a high tendency to sorb and/or degrade certain environmental pollutants. Palygorskite and sepiolite are the fibrous clay minerals of arid and semiarid regions; their structures consist of ribbons and channels. These fibrous minerals have various applications in industry and the environment because of its large surface area and high adsorption capacity. The present study was conducted in order to determine the ability of Pseudomonas putida (P168, and its composites with palygorskite and sepiolite in lead sorption. Materials and Methods: The bacterial strain used in the present study was Pseudomonas

  7. Adsorption of chromium species from industrial effluent using magnesium-bentonite clay composite: kinetics, equilibrium and risk assessment study

    CSIR Research Space (South Africa)

    Tjia, FH

    2017-07-01

    Full Text Available from industrial effluent using magnesium-bentonite clay composite: kinetics, equilibrium and risk assessment study F. H. Tjiaa, M. M. Ramakokovhua, and V. Masindi b,c* aDepartment of Chemical, Metallurgy and Materials Engineering, Tshwane... was investigated. It can be seen from Figure 1 that the rate of Cr (VI) removal from aqueous solution increased with an increase in contact time. From the first minute of equilibration, the removal was very rapid and attains equilibrium at 30 mins of shaking...

  8. Properties of Portland-Composite Cements with metakaolin: Commercial and manufactured by Thermal Activation of Serbian Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Mitrovic A.

    2012-09-01

    Full Text Available Portland-composite cements (CEM II were prepared with addition of 5 to 35% of metakaolin (MK, manufactured by thermal activation/calcination of Serbian kaolin clay, and commercial matakaolin (CMK. Performance of the composite cements was evaluated, through the setting time (initial and final, compressive strengths (for ages 2, 7, 28, 90 and 180 days and soundness, and compared with control cement (Portland cement – CEM I. Setting time (initial and final is accelerated in Portlandcomposite cements, for both metakaolins used. The acceleration is higher in cement with addition of commercial metakaolin. Lower compressive strength is obtained after 2 days of curing for all Portland-composite cements in comparison with control cement, since pozzolanic reaction still did not show its effect. After 7 days, pozzolanic reaction show its effect, manifested as compressive strength increase of Portland-composite cements with addition of up to 35% of CMK, and 25% in the case of cements with MK. After 28 days compressive strength was higher than that for control cement for cements prepared with addition of CMK, and with addition of up to 25% MK. After 90 days increased compressive strength was noticed with addition of 10 - 20% of CMK, and with 10 and 15% of MK, while after 180 days addition of both metakaolins influences compressive strength decrease. The results of the soundness, 0.5 mm for CEM I, and 1.0 mm in most Portland-composite cements indicate soundness increase with addition of metakaolins. Generally, better performance of Portland-composite cements was obtained with addition of commercial metakaolin, which may be attributed to the differences in the pozzolanic activity of the applied metakaolins, 20.5 MPa and 14.9 MPa for CMK and MK, respectively. By our previous findings pozzolanic activity of the thermally activated clay may be increased by subsequent milling of the metakaolin manufactured by thermal activation process.

  9. Ball clay

    Science.gov (United States)

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  10. Preparation of organo clays thermally stable to be employed as filler in PET nano composites

    International Nuclear Information System (INIS)

    Leite, I.F.; Soares, A.P.S.; Silva, S.M.L.; Malta, O.M.L.

    2009-01-01

    Thermal stability of organically modified clays is fundamental to melt processing polymer nanocomposites, especially, poly(terephthalate ethylene) (PET). However, the use of organic salts with high thermal stability is factor essential to obtaining of organoclays with great thermal properties. This work has as purpose to evaluate the influence of organic modifier based on alkyl ammonium, alkyl phosphonium and aryl phosphonium, in the clay organic modification visa to improve thermal properties to use as filler in nanocomposites preparation, where temperatures at about 260 deg C will be employed. The most common, and commercially available, surfactants used for cation exchange reactions with montmorillonites, rendering them organophilic, are quaternary ammonium salts, that when present as cations in montmorillonite, typically begin degradation at above 200 deg C. However, organoclays prepared with quaternary alkyl phosphonium salts may be potentially useful for the organoclays preparation stable thermally. In this study bentonite clay from Bentonit Uniao Nordeste/PB was purified and organically modified with the organic salts reported above. Organoclays were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy and analysis thermogravimetry. The results shown that the samples modified with the salts based on phosphonium presented higher thermal stability that the alkyl ammonium salt. (author)

  11. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    Science.gov (United States)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  12. Comparison between the sandy and the shaly facies of the Opalinus Clay (Mont Terri, Switzerland): mechanical properties obtained from triaxial deformation, mineralogical composition and micro fabric

    International Nuclear Information System (INIS)

    Kaufhold, Annette; Siegesmund, Siegfried; Graesle, Werner; Plischke, Ingo; Dohrmann, Reiner

    2012-01-01

    samples from both main facies of the Opalinus clay, however, is missing. In this study, therefore, the investigation of the sandy facies and shaly facies with focus on the relation between micro fabric, mineralogical composition, and mechanical deformation behavior is presented. The sandy and the shaly facies both show the same mineral inventory but different contents. The shaly facies has a clay mineral content between 60 to 70 wt% (within 10-15 wt% swellable phases), whereas the sandy facies only has a clay mineral content of 15-25% (within dev.peak approximately twice as high as it was found for the shaly facies. The results are supposed to improve the understanding of the mechanical properties of clays, particularly with respect to the variability of mineral composition, micro fabric, and mechanical behavior. (authors)

  13. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K., E-mail: kblagoev@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grozeva, M., E-mail: margo@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Malcheva, G., E-mail: bobcheva@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Neykova, S., E-mail: sevdalinaneikova@abv.bg [National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna, 1000 Sofia (Bulgaria)

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained.

  14. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    International Nuclear Information System (INIS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained

  15. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    Science.gov (United States)

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  16. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    Science.gov (United States)

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  17. New approach to obtain elastomeric nano composites with clay from lattices

    International Nuclear Information System (INIS)

    Azeredo, Luciane K. de; Jacobi, Marly M.

    2009-01-01

    Rubber-Montmorillonite nanocomposites were prepared by Continuous Dynamic Latex Compounding (CDLC). This technique, recently developed in our laboratory, permits an intensive intercalation of the polymer at very small residence times in an elongational flow reactor. The processing conditions strongly affect the morphology of nanocomposites characterized by TEM and XRD. Clay-rubber nanocomposites were prepared from the mixture of NBR-, XNBR- and SBR-latex and aqueous suspensions of Na-montmorillonite. The polarity of rubbers influences the final properties of nanocomposites. The nanocomposites obtained by CDLC showed better reinforcement and permeation resistance at far less volume fractions than the obtained with carbon black or silica by conventional methods. (author)

  18. Design and synthesis of hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth for high-performance supercapacitors

    Science.gov (United States)

    Shinde, Pragati A.; Lokhande, Vaibhav C.; Patil, Amar M.; Ji, Taeksoo; Lokhande, Chandrakant D.

    2017-12-01

    To enhance the energy density and power performance of supercapacitors, the rational design and synthesis of active electrode materials with hierarchical mesoporous structure is highly desired. In the present work, fabrication of high-performance hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth substrate via a facile hydrothermal method is reported. By varying the content of MnO2 in the composite, different WO3-MnO2 composite thin films are obtained. The formation of composite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The Brunauer-Emmett-Teller (BET) analysis reveals maximum specific surface area of 153 m2 g-1. The optimized WO3-MnO2 composite electrode demonstrates remarkable electrochemical performance with high specific capacitance of 657 F g-1 at a scan rate of 5 mV s-1 and superior longterm cycling stability (92% capacity retention over 2000 CV cycles). Furthermore, symmetric flexible solid-state supercapacitor based on WO3-MnO2 electrodes has been fabricated. The device exhibits good electrochemical performance with maximum specific capacitance of 78 F g-1 at a scan rate of 5 mV s-1 and specific energy of 10.8 Wh kg-1 at a specific power of 0.65 kW kg-1. The improved electrochemical performance could be ascribed to the unique combination of multivalence WO3 and MnO2 nanostructures and synergistic effect between them

  19. High performance of mesoporous γ-Fe2O3 nanoparticle/Ketjen Black composite as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Dong, Hui; Xu, Yunlong; Ji, Mandi; Zhang, Huang; Zhao, Zhen; Zhao, Chongjun

    2015-01-01

    Highlights: • A mesoporous γ-Fe 2 O 3 /KB composite was synthesized via solvothermal method. • KB was used as a carbon template to improve electrochemical performance of γ-Fe 2 O 3 . • 3D network structure can relieve volume change and improve the ionic transport. • The composite exhibited an ultrahigh capacity and high rate performance. - Abstract: A type of γ-Fe 2 O 3 nanoparticle/Ketjen Black (KB) composite material is synthesized by a solvothermal method combined with precursor thermal transformation. The structure and morphology are characterized by XRD, raman spectra, TG, nitrogen sorption, SEM, TEM and EDS. The results show that the composite has a uniform nanoporous network and well-dispersed γ-Fe 2 O 3 particles with a size of ca. 5 nm are embedded in the mesopores of KB. The γ-Fe 2 O 3 /KB exhibits superior eletrochemical performances to the bare γ-Fe 2 O 3 , especially at high current rate. The discharge capacity of the composite is 1100 mAh·g −1 at the first cycle and remains 988.8 mAh·g −1 after 100 cycles at 0.2 C. Moreover, it also maintains a high discharge capacity of 697.8 mAh·g −1 at 2 C and 410.1 mAh·g −1 at 5 C after 100 cycles, respectively. Such improved electrochemical performances could be attributed to the superior conductivity and favorable structure of KB, which contributes to the improvement in electronic conductivity and structure stability of γ-Fe 2 O 3 during the lithium ion insertion/desertion process

  20. Iridium concentration and noble gas composition of Cretaceous-Tertiary boundary clay from Stevens Klint, Denmark

    International Nuclear Information System (INIS)

    Osawa, Takahito; Hatsukawa, Yuichi; Nagao, Keisuke; Koizumi, Mitsuo; Oshima, Masumi; Toh, Yosuke; Kimura, Atsushi; Furutaka, Kazuyoshi

    2009-01-01

    The Cretaceous-Tertiary (K-T) boundary about 65 million years ago records a mass extinction event caused by a bolide impact. K-T boundary clay collected from Stevns Klint, Denmark was investigated in this work. Iridium concentrations of eight clays across the K-T boundary were determined using a multiple gamma-ray analysis system after neutron activation. Anomalously high Ir concentrations were detected in five marl samples, with the highest concentration being 29.9 ppb. Four samples were analyzed for all noble gases. NO extraterrestrial Ar, Kr, and Xe were discovered in any of the samples, although most of the 3 He which was detected was extraterrestrial. Solar-like Ne was observed only in the sample SK4, which had an Ir concentration of 14.3 ppb, indicating the presence of micrometeorites. The solar-like Ne clearly did not originate from an asteroid/comet associated with the bolide impact, as that asteroid is thought to have been extremely large. Also, because there was no sign of a high accretion rate of micrometeorites at the boundary it could not be ascertained whether the solar-like Ne was related to a catastrophic event that led to the extinction of the dinosaurs. (author)

  1. Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Katiane Cruz Magalhaes; Santos, Maria do Socorro Ferreira dos; Santos, Maria Rita Morais Chaves; Oliveira, Marilia Evelyn Rodrigues; Osajima, Josy Antevelli; Silva Filho, Edson Cavalcanti da [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil); Carvalho, Maria Wilma Nunes Cordeiro, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2014-08-15

    The palygorskite is an aluminum-magnesium silicate that has a fibrous morphology. Their physicochemical characteristics are the result of high surface area, porosity and thermal resistance which make it an attractive adsorbent. Its adsorption capacity can be increased through chemical reactions and/or heat treatments. The objective of this work is to verify the effects of acid activation on the palygorskite, treated with HCl at 90 °C at concentrations of 2, 4 and 6 mol L{sup -1} in 2 and 4 hours, with clay/acid solution ratio 1 g 10 mL{sup -1} and characterized by techniques: XRF, XRD and surface area. A significant increase in specific surface area was observed in the sample treated with HCl at the concentration 6 mol L{sup -1}. The changes were more pronounced at stricter concentrations of acidity, with decreasing intensity of reflection of the clay indicated in the XRD. These changes were confirmed in the XRF with the leaching of some oxides and with increasing concentration of SiO{sub 2}. (author)

  2. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    Science.gov (United States)

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  3. Mechanical properties, mineralogical composition, and micro fabric of Opalinus Clay. Sandy and shaly facies (Mont Terri, Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Annette; Graesle, Werner [BGR Hannover (Germany); Plischke, Ingo

    2015-07-01

    For the safe disposal of high-level radioactive waste, different host rocks are currently considered. The favorable properties of claystone are low permeability, retention capacity for some radionuclides, and the ability to self-seal cracks, e.g. by swelling or time-dependent compaction creep. For the understanding of the long-term behavior of clay host rocks, the interaction between mechanical behavior, micro fabric, and mineral composition has to be understood (Bock et al., 2010). In the international research project Mont Terri (Switzerland) the Opalinus Clay (Jurassic Formation) is investigated in an underground rock laboratory (URL). In the present study the relationship between mechanical, mineralogical and micro fabric properties were studied on representative samples of the sandy and shaly facies of the Opalinus Clay (OPA) from Mont Terri. The mineral composition of all samples was analysed by using a complex mineral phase analysis. Therefore, the results of the X-ray diffraction, X-ray fluoreszence, organic and inorganic carbonate analysis (LECO) were adjusted with each other. In the case of the sandy facies (OPA) the mechanical strength inrcreases with increasing carbonate content. Here small carbonate particles form the matrix and act as stabilisator. The carbonates of the shaly facies (OPA), on the other hand, are mainly fossil fragments (e.g. shells) aligned parallel to bedding. These large carbonate particles are acting as predetermined breaking surfaces. Hence, in the case of shaly facies (OPA) the mechanical strength decreases with increasing carbonate content. Image Analyses (Fiji {sup registered}) of scattering electron microscope images of polished sections proved the determined microstructural differences. Besides, carbonate particles in the sandy facies are mostly isometric, in contrast carbonates of the shaly facies show different shapes. This is explained further in terms of the aspect ratio. The mechanical tests were carried out as triaxial

  4. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  5. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  6. Formulation and characterization of polyethylenes and organo-clays. Barrier properties of the obtained nano-composites; Formulation et caracterisation de polyethylenes charges avec des argiles. Proprietes barriere des nanocomposites obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Wache, R.

    2004-10-01

    The particularity of polymer layered silicate nano-composites is based on the exfoliation of the clay platelets in the polymer matrix. Therefore properties may be dramatically modified with very low clay loading. In this work polyethylene and organo-clay have been melt blended. Due to a lack of polarity, the polymer chains do not intercalate the clay stacking. However exfoliation is achieved using maleate polyethylene. We used this polymer as a compatibilizer to promote clay exfoliation in the polyethylene matrix. Partial exfoliation is obtained. Barrier properties of these materials have been characterized. Permeability is higher for the clay reinforced products than their matrix. To understand the poor permeability results a tortuosity model has been developed. The quality of the interface seems to be involved. Several organo-clays and compatibilizers have been tested to improve it. But for the concentrations of these products used polyethylene clay interactions always exist and lead to an increase of diffusion. (author)

  7. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  8. First assessment of the pore water composition of Rupel Clay in the Netherlands and the characterisation of its reactive solids

    NARCIS (Netherlands)

    Behrends, T.; Veen, I. van der; Hoving, A.; Griffioen, J.

    2016-01-01

    The Rupel Clay member in the Netherlands largely corresponds to the Boom Formation in Belgium, and this marine, clay-rich deposit is a potential candidate to host radioactive waste disposal facilities. Prediction of the speciation of radionuclides in Rupel Clay pore water and their retardation by

  9. Corrigendum to Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite

    International Nuclear Information System (INIS)

    Bak, S. A.; Song, M. S.; Nam, I.T.; Lee, W.G.

    2015-01-01

    In the published paper entitled Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite [1], we mistakenly used Laponite in our paper. The corrected name is Laponite (BYK Corporations products). So we are making some changes from Laponite to Laponite (BYK Corporations products) in our paper.

  10. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  11. Nanopow(d)er : Clay improves the mechanical properties of fibre composites

    NARCIS (Netherlands)

    Picken, S.; Elmendorp, S.; Van de Graaf, A.

    2006-01-01

    Lighter, stronger, and best of all, cheaper these are the basic requirements for the development of new high-tech aircraft construction materials. Following the success of the composite material GLARE, Delft University of Technology is again scoring with the development of a new composite material.

  12. Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.C.G. [Federal University of Sergipe, Materials Science and Engineering Postgraduate Program P" 2CEM, São Cristovão/SE (Brazil); Pedrosa, A.M.Garrido [Federal University of Sergipe, Departament of Chemistry (DQI), São Cristovão/SE (Brazil); Souza, M.J.B., E-mail: mjbsufs@gmail.com [Federal University of Sergipe, Department of Chemical Engineering (DEQ), Av. Marechal Rondon S/N, 49100-000, São Cristovão/SE (Brazil); Cecilia, J.A.; Rodríguez-Castellón, E. [University of Málaga, Department of Inorganic Chemistry, Crystallography and Mineralogy, Faculty of Sciences, 29071, Málaga (Spain)

    2015-10-15

    Highlights: • Synthesis of the micro-mesoporous composite materials of ZSM-12/MCM-48 type. • Application of these adsorbents in the carbon dioxide adsorption. • Effects of the contents of zeolite and amino group in the material surface on the CO{sub 2} capture efficiency. - Abstract: In this study ZSM-12/MCM-48 adsorbents have been synthesized at three ZSM-12 content, and also were functionalizated with amine groups by grafting. All the adsorbents synthesized were evaluated for CO{sub 2} capture. The X-ray diffraction analysis of the ZSM-12/MCM-48 composite showed the main characteristic peaks of ZSM-12 and MCM-48, and after the functionalization, the structure of MCM-48 on the composite impregnated was affected due amine presence. For the composites without amine, the ZSM-12 content was the factor determining in the adsorption capacity of CO{sub 2} and for the composites with amine the amount of amine was that influenced in the adsorption capacity.

  13. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  14. Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material

    International Nuclear Information System (INIS)

    Clauer, N.

    1979-01-01

    The 87 Sr/ 86 Sr ratios of recent montmorillonites and kaolinites newly formed in weathering profiles of western and central Africa and of Nosy Be and La Reunion islands near Madagascar are directly related to the composition and age of the parent rocks or minerals. They may, therefore, be used as a genetic tracer. The 87 Sr/ 86 Sr ratios are about 0.704 when these clays crystallise from recent basalts and they are higher than 0.715 when the parent rocks are of sialic composition and old in age. Kaolinites newly formed in situ from feldspars contain small amounts of Sr with abnormally high 87 Sr/ 86 Sr ratios: in this study they are higher than 1.094. When these minerals crystallize from biotites, their 87 Sr/ 86 Sr ratios are much lower and can be close to the value of the primary Sr trapped in the biotites during their crystallization. On the other hand, the 87 Sr/ 86 Sr of continental montmorillonites are less scattered: they range, in this study, between 0.704 and 0.722. These low values, as well as the high adsorption capacities of these minerals in the sedimentary environment, allow the assumption that they frequently have 87 Sr/ 86 Sr ratios close to that of marine Sr during sedimentation. Therefore, montmorillonites are able to form homogeneous authigenic minerals by synsedimentary alterations. (Auth.)

  15. Mechanical and Thermal Properties and Morphology of Thermoplastic Polyurethane (TPU/Clay Composites

    Directory of Open Access Journals (Sweden)

    Leandro Pizzatto

    2015-11-01

    Full Text Available In this study, thermoplastic polyurethane (TPU composites were prepared with different nanoclay contents (1, 3 and 10 wt%. The nanoclay Cloisite ®30B (C30B was dispersed in the TPU matrix by melt processing using a twin-screw extruder. The synthesis method of TPU involved the two-step bulk polymerization of polyesterpolyol and 4,4’ diphenylmethanediisocyanate with butane-1,4-diol as the chain extender. The dispersion of the nanoclay particles and its effect on the mechanical and thermal properties of the composites was investigated. The characterization of TPU/nanoclay composites was carried out by means of scanning electron microscopy, energy dispersion microanalysis and X ray diffraction. The mechanical characterization was performed through determination of the tensile strength. The TPU 3 wt% composite showed the best improvement with increases in stress and tensile at break (28% and 35%, respectively, compared to the neat TPU (sample without nanoclay. The differential scanning calorimetry and thermogravimetry analyses for composites indicated that the nanoclay did not affect significantly the glass transition, melt, and degradation temperatures of the polymeric matrix, but reduces the molecular mobility.

  16. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  17. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives

    CSIR Research Space (South Africa)

    Kumar, R

    2010-01-01

    Full Text Available assessed from SEM micrographs of fractured specimens. Intercalation of MMT with 1.4 nm basal spacing was observed in the PLA matrix leading to the increased modulus and water resistance of the bio-composites. Results indicated that mandelic acid and dicumyl...

  19. Removal of boron from aqueous solution using magnesite and bentonite clay composite

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-03-01

    Full Text Available demonstrated that boron removal is optimum at 30 min of agitation, 1 g of dosage and 20 mg L-1 of ion concentration. Adsorption of boron by the composite was independent of pH. The adsorption data fitted well into both Langmuir adsorption isotherm...

  20. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  1. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    Science.gov (United States)

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Xu, Donghui; Liu, Weijian; Zhang, Congcong; Cai, Xin; Chen, Wenyan; Fang, Yueping; Yu, Xiaoyuan

    2017-10-01

    The development of advanced 1D/2D hierarchical nanocomposites for high-performance lithium-ion batteries is important and promising. Herein, monodispersed FeCO3 nanorods anchored on reduced graphene oxide (RGO) are prepared via a facile and efficient one-pot hydrothermal synthesis. The influence of RGO content on the morphology and electrochemical performances of the mesoporous FeCO3/reduced graphene oxide (FeCO3/RGO) composites are systematically studied. Optimized FeCO3/RGO composite shows good cycling stability. It delivers an initial discharge capacity of 1449 mAh·g-1 at the current density of 200 mA g-1 and maintained a capacity of 789 mAh·g-1 after 80 cycles. A moderate amount of RGO sheets can not only provide more conductive channels to improve the electrode conductivity, but also effectively buffer the large volume variation of FeCO3 during continuous charge/discharge process. The combination of FeCO3 nanorods with RGOs synergistically contribute to enhanced capacity and durability of the composite anode. It demonstrates that RGO anchored-FeCO3 nanorods should be an attractive candidate as anode material for high-performance lithium-ion batteries.

  3. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays.

    Science.gov (United States)

    Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji

    2013-05-06

    Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29 Si and 27 Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  4. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  5. Polymer/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrdad shokrieh

    2007-06-01

    Full Text Available Nanocomposite materials have recently attracted increasing interests in the field of modelling. Finite element modelling can be used for computation of bulk properties of polymer/clay nanocomposites. In this study, by   considering the structure of a nano-composite material, a quasi real model is proposed. The model has been used to predict the elastic constants by selection of suitable elements and boundary conditions. The effects of nano-structural parameters on the mechanical properties of a polymer/clay nano-composite are studied. The geometrical overlap of particles, horizontal distance between particles, length of particles and nano-clay volume fraction are defined as functions of the nano-structural parameters and their effects on mechanical properties of nano-composites are studied by a finite element modelling technique.

  6. Lipid-based formulations solidified via adsorption onto the mesoporous carrier Neusilin® US2: effect of drug type and formulation composition on in vitro pharmaceutical performance.

    Science.gov (United States)

    Williams, Hywel D; Van Speybroeck, Michiel; Augustijns, Patrick; Porter, Christopher J H

    2014-06-01

    The current study determined the extent to which the desorption of lipid-based formulations (LBFs) from a mesoporous magnesium aluminometasilicate (Neusilin®-US2) carrier is governed by drug properties, LBF composition, and LBF-to-adsorbent ratio. A secondary objective was to evaluate the impact of testing parameters (medium composition, pH, dilution, and agitation) on in vitro LBF performance. Two self-emulsifying LBFs, with high/low lipid-surfactant ratios were studied in detail using danazol, fenofibrate, cinnarizine, and mefenamic acid as model drugs. A wider range of 38 different danazol-containing LBF were also evaluated, where desorption was evaluated immediately after preparation and after 1 month of storage. The results revealed that incomplete desorption from Neusilin® was a feature of all drugs and LBFs tested. Desorption was insensitive to agitation but increased under conditions where ionizable drugs were charged. In addition, formulations containing a higher proportion (>30%) of hydrophilic surfactant consistently exhibited higher desorption, and were least susceptible to decreased desorption on storage. In summary, although Neusilin® is an effective vehicle for LBF solidification, its use is accompanied by a risk of incomplete desorption of the vehicle from the carrier, irrespective of the drug. Lipid Formulation Classification System (LFCS)Type IIIB LBFs comprising higher quantities of hydrophilic surfactants appear to desorb most from Neusilin®. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Kibanova, Daria [Facultad de Quimica, Universidad Nacional Autonoma de Mexico (Mexico); Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana (Mexico); Sleiman, Mohamad [Lawrence Berkeley National Laboratory, Indoor Environment Group, Environmental Energy Technologies Division (United States); Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana (Mexico); NASA Astrobiology Institute (United States); Destaillats, Hugo, E-mail: HDestaillats@lbl.gov [Lawrence Berkeley National Laboratory, Indoor Environment Group, Environmental Energy Technologies Division (United States); Arizona State University, Department of Chemistry and Biochemistry (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Formaldehyde adsorption and photocatalytic elimination on hectorite-TiO{sub 2} nanocomposites. Black-Right-Pointing-Pointer Dark adsorption in dry air >4 times higher than P25 (reference). Black-Right-Pointing-Pointer Dark adsorption in humid air dominated by adsorbed water layer. Black-Right-Pointing-Pointer Photocatalytic removal efficiency proportional to the Ti content, increased with contact time. Black-Right-Pointing-Pointer More complete elimination with 254 + 185 nm irradiation. - Abstract: We investigated the adsorption capacity and photocatalytic removal efficiency of formaldehyde using a hectorite-TiO{sub 2} composite in a bench flow reactor. The same experimental conditions were applied to pure TiO{sub 2} (Degussa P25) as a reference. The catalysts were irradiated with either a UVA lamp (365 nm) or with one of two UVC lamps of 254 nm and 254 + 185 nm, respectively. Formaldehyde was introduced upstream at concentrations of 100-500 ppb, with relative humidity (RH) in the range 0-66% and residence times between 50 and 500 ms. Under dry air and without illumination, saturation of catalyst surfaces was achieved after {approx}200 min for P25 and {approx}1000 min for hectorite-TiO{sub 2}. The formaldehyde uptake capacity by hectorite-TiO{sub 2} was 4.1 times higher than that of P25, almost twice the BET surface area ratio. In the presence of humidity, the difference in uptake efficiency between both materials disappeared, and saturation was achieved faster (after {approx}200 min at 10% RH and {approx}60 min at 65% RH). Under irradiation with each of the three UV sources, removal efficiencies were proportional to the Ti content and increased with contact time. The removal efficiency decreased at high RH. A more complete elimination of formaldehyde was observed with the 254 + 185 nm UV source.

  8. An Asymmetric Supercapacitor with Mesoporous NiCo2O4 Nanorod/Graphene Composite and N-Doped Graphene Electrodes

    Science.gov (United States)

    Mao, J. W.; He, C. H.; Qi, J. Q.; Zhang, A. B.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.

    2018-01-01

    In the present work, mesoporous NiCo2O4 nanorod/graphene oxide (NiCo2O4/GO) composite was prepared by a facile and cost-effective hydrothermal method and meanwhile, N-doped graphene (N-G) was fabricated also by a hydrothermal synthesis process. NiCo2O4/GO composite and N-G were used as positive and negative electrodes for the supercapacitor, respectively, which all displayed excellent electrochemical performances. The NiCo2O4/GO composite electrode exhibited a high specific capacitance of 709.7 F g-1 at a current density of 1 A g-1 and excellent rate capability as well as good cycling performance with 84.7% capacitance retention at 6 A g-1 after 3000 cycles. A high-voltage asymmetric supercapacitor (ASC) was successfully fabricated using NiCo2O4/GO composite and N-G as the positive and negative electrodes, respectively, in 1 M KOH aqueous electrolyte. The ASC delivered a high energy density of 34.4 Wh kg-1 at a power density of 800 W kg-1 and still maintained 28 Wh kg-1 at a power density of 8000 W kg-1. Furthermore, this ASC showed excellent cycling stability with 94.3% specific capacitance retained at 5 A g-1 after 5000 cycles. The impressive results can be ascribed to the positive synergistic effects of the two electrodes. Evidently, our work provides useful information for assembling high-performance supercapacitor devices.

  9. Clay properties

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    In this report an overview will be given of the basic properties of (suspended) clay particles. In section 2 the structure of clay minerals will be described. The forces between suspended particles (section 3) and the possible consequences of them, flocculation or deflocculation (sections 4 and 5)

  10. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors.

    Science.gov (United States)

    Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings.

  11. Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature

    OpenAIRE

    Fengdong Qu; Bo He; Rohiverth Guarecuco; Minghui Yang

    2016-01-01

    Composite materials, which can optimally use the advantages of different materials, have been studied extensively. Herein, hybrid tungsten nitride and oxide (WN/WO3) composites were prepared through a simple aqueous solution route followed by nitriding in NH3, for application as novel sensing materials. We found that the introduction of WN can improve the electrical properties of the composites, thus improving the gas sensing properties of the composites when compared with bare WO3. The highe...

  12. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold.

    Science.gov (United States)

    Chen, Xiaohui; Zhao, Yanbing; Geng, Shinan; Miron, Richard J; Zhang, Qiao; Wu, Chengtie; Zhang, Yufeng

    2015-01-01

    In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone.

  13. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Adsorption Properties of PVA/PAA/clay Composite Hydrogel Synthesized by Gamma Radiation and its Application in Removal of Crystal Violet Dye from Its Aqueous Solution

    International Nuclear Information System (INIS)

    Kamal, H.; El-Sayed, A. Hegazy; Mohamed, M.M.; Sabaa, M.W.; El-Dessouky, M.M.

    2014-01-01

    Copolymer hydrogels composed of Poly vinyl alcohol (PVA) and Poly acrylic acid (PAA) were prepared by γ-irradiation in the presence of N,N’ methylene bis acrylamide (MBAM) as crosslinking agent or bentonite clay. The copolymers were characterized by FTIR and SEM. The dye adsorption experiments for Crystal Violet dye (CV) were carried out by using bath procedure. UV-visible absorption spectroscopy was used to determine the adsorption behavior. The effect of different copolymer composition, clay concentration, ph, contact time, adsorbent dose, initial dye concentration, and adsorption temperature were investigated to obtain the best experimental conditions. The adsorption equilibrium was attained after about 24h. of contact time. It was found that the adsorption process was correlated with Freundlich isotherm equation. Kinetic and thermodynamic studies of CV dye onto the prepared hydrogels were also evaluated

  15. Physicochemical properties of poly(ethylene oxide)-based composite polymer electrolytes with a silane-modified mesoporous silica SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chen [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Wang, Jianming [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China)], E-mail: wjm@zju.edu.cn; Tang Zheng; Wang Huijuan; Lian Huiqin [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory for Corrosion and Protection of Metal, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China)

    2009-04-30

    Mesoporous silica SBA-15 was surface-modified by {gamma}-glycidoxypropyltrimethoxy silane (GPTMS), and novel poly(ethylene oxide) (PEO)-based composite polymer electrolytes (CPE) using the silane-modified SBA-15 (SBA-15-GPTMS) as filler were prepared and characterized. The results of the low-angle X-ray diffraction (XRD) patterns and Fourier-transform infrared (FT-IR) spectroscopy indicated that GPTMS has been successfully attached to the surface of SBA-15 with a high degree of mesoscopic hexagonal pore structure. The incorporation of SBA-15-GPTMS in the PEO-LiClO{sub 4} matrix effectively reduced the PEO crystallinity and obviously improved the conductivity and electrochemical stability of the CPEs. The CPE with 10 wt.% SBA-15-GPTMS provided the highest conductivity among all the tested CPEs, about 2-3 orders of magnitude higher than that of the PEO-LiClO{sub 4} matrix below the melting temperature of PEO. The reasons that the CPEs using SBA-15-GPTMS as filler showed higher conductivity than that with SBA-15 were discussed.

  16. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  17. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation.

    Directory of Open Access Journals (Sweden)

    Rahmouni Abdelkader

    2016-08-01

    Full Text Available In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite and solution of  H2SO4 (0.25 M, with the system under microwave irradiation (160 ºC for 4 min. Major factors affecting the polymerization reaction were studied with a view to discover appropriate conditions for preparation of the composite. The cationic polyacrylamide obtained is the subject of future studies of modification and transformation. The resulting polymer has been characterized by a variety of characterization techniques, such as: Fourier Transform Infrared Spectra and 1H NMR spectra.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th June 2015; Revised: 2nd September 2015; Accepted: 5th January 2016 How to Cite: Abdelkader, R., Mohammed, B. (2016. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically  Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 170-175 (doi:10.9767/bcrec.11.2.543.170-175 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.543.170-175

  18. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release

    Science.gov (United States)

    Zhang, Shengjian; Qian, Xiaoqing; Zhang, Linlin; Peng, Weijun; Chen, Yu

    2015-04-01

    The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports on a generic construction strategy to achieve a multiple stimuli-responsive theranostic system for cancer simply by optimizing the chemical compositions of inorganic nanoplatforms to avoid the tedious and complicated synthetic procedure for traditional organic or organic/inorganic nanosystems. Based on the ``breaking up'' nature of manganese oxides and specific features of the carbonaceous framework to interact with aromatic drug molecules, manganese oxide nanoparticles were elaborately integrated into hollow mesoporous carbon nanocapsules by a simple in situ framework redox strategy to realize concurrent pH-sensitive T1-weighted magnetic resonance imaging (MRI) and pH-/HIFU-responsive on-demand drug release. The ultrasensitive disease-triggered MRI performance has been successfully demonstrated by a 52.5-fold increase of longitudinal relaxivity (r1 = 10.5 mM-1 s-1) and on nude mice 4T1 xenograft. The pH- and HIFU-triggered doxorubicin release and enhanced therapeutic outcome against multidrug resistance of cancer cells were systematically confirmed. In particular, the fabricated inorganic composite nanocapsules were found to feature unique biological behaviours, such as antimetastasis effect, extremely low hemolysis against red blood cells and high in vivo histocompatibility. This report on the successful construction of a pure inorganic nanosystem with multiple stimuli-responsivenesses may pave the way to new methods for the development of intelligent nanofamilies for cancer therapy.The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports

  19. A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres.

    Science.gov (United States)

    Yang, Juan; Shen, Huawei; Zhang, Xing; Tao, Yiyi; Xiang, Hua; Xie, Guoming

    2016-03-15

    Gold nanoparticles composite graphitized mesoporous carbon nanoparticles (GMCs@AuNPs) biocomposite with the signal amplification capability was successfully synthesized for use in an immunoassay for penicillin binding protein 2 a (PbP2a). The polyamidoamine (PAMAM) dendrimers were first electrodeposited onto the Au electrode can greatly increase the amount of the captured antibodies. Protein A was used to properly orientate immobilized antibody against PbP2a, which strongly improved specificity of the antigen-antibody binding. Hollow gold nanospheres (HGNPs) as effective nanocarriers have been synthesized by sacrificial galvanic replacement of cobalt nanoparticles capable of encapsulating doxorubicin (Dox). The obtained HGNPs@Dox bionanocomposite was used for further loading of detection antibody (Ab2) to form the HGNPs@Dox@Ab2 bioconjugate. Then, the differential pulse voltammetric signals related to the concentration of PbP2a for Dox could be detected, and the immunosensor exhibited a detection limit as low as 0.65 pg mL(-1) (at an S/N ratio of 3). The proposed method with an excellent differentiation ability showed high sensitivity and specificity. The morphologies and electrochemistry properties of the composites were investigated by scanning electron microscopy, electrochemical characterization, UV-visible absorption spectroscopy, fluorescence spectrophotometer and Malvern laser particle size analyzer, respectively. In addition, the basic approach described here would be applicable towards developing biodetection assays against other important targets. Moreover, the bioconjugate of HGNPs@Dox is also a promising pattern to delivery Dox in vivo for anticancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ordered Mesoporous Nanomaterials

    Directory of Open Access Journals (Sweden)

    Eva Pellicer

    2014-12-01

    Full Text Available The Special Issue of Nanomaterials “Ordered Mesoporous Nanomaterials” covers novel synthetic aspects of mesoporous materials and explores their use in diverse areas like drug delivery, photocatalysis, filtration or electrocatalysis. The range of materials tackled includes metals and alloys, aluminosilicates, silica, alumina and transition metal oxides. The variety of materials, synthetic approaches and applications examined is vivid proof of the interest that mesoporous materials spark among researchers world-wide.[...

  1. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    Directory of Open Access Journals (Sweden)

    Chen XH

    2015-01-01

    Full Text Available Xiaohui Chen,1,2,* Yanbing Zhao,3,* Shinan Geng,3 Richard J Miron,1 Qiao Zhang,1 Chengtie Wu,4 Yufeng Zhang1,2 1State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People’s Republic of China; 2Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People’s Republic of China; 3National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 4State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate (PIB nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo.Patients and methods: To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation.Results: Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB

  2. Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature

    Directory of Open Access Journals (Sweden)

    Fengdong Qu

    2016-07-01

    Full Text Available Composite materials, which can optimally use the advantages of different materials, have been studied extensively. Herein, hybrid tungsten nitride and oxide (WN/WO3 composites were prepared through a simple aqueous solution route followed by nitriding in NH3, for application as novel sensing materials. We found that the introduction of WN can improve the electrical properties of the composites, thus improving the gas sensing properties of the composites when compared with bare WO3. The highest sensing response was up to 21.3 for 100 ppb NO2 with a fast response time of ~50 s at room temperature, and the low detection limit was 1.28 ppb, which is far below the level that is immediately dangerous to life or health (IDLH values (NO2: 20 ppm defined by the U.S. National Institute for Occupational Safety and Health (NIOSH. In addition, the composites successfully lower the optimum temperature of WO3 from 300 °C to room temperature, and the composites-based sensor presents good long-term stability for NO2 of 100 ppb. Furthermore, a possible sensing mechanism is proposed.

  3. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis; Estudo da viabilidade do uso de residuo de alumina em composicoes contendo argilas destinadas a sintese de mulita

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L., E-mail: valmir_jspb@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2016-07-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  4. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.

    Science.gov (United States)

    Qiu, Kexin; Chen, Bo; Nie, Wei; Zhou, Xiaojun; Feng, Wei; Wang, Weizhong; Chen, Liang; Mo, Xiumei; Wei, Youzhen; He, Chuanglong

    2016-02-17

    The incorporation of microcarriers as drug delivery vehicles into polymeric scaffold for bone regeneration has aroused increasing interest. In this study, the aminated mesoporous silica nanoparticles (MSNs-NH2) were prepared and used as microcarriers for dexamethasone (DEX) loading. Poly(l-lactic acid)/poly(ε-caprolactone) (PLLA/PCL) nanofibrous scaffold was fabricated via thermally induced phase separation (TIPS) and served as template, onto which the drug-loaded MSNs-NH2 nanoparticles were deposited by electrophoretic deposition (EPD). The physicochemical and release properties of the prepared scaffolds (DEX@MSNs-NH2/PLLA/PCL) were examined, and their osteogenic activities were also evaluated through in vitro and in vivo studies. The release of DEX from the scaffolds revealed an initial rapid release followed by a slower and sustained one. The in vitro results indicated that the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited good biocompatibility to rat bone marrow-derived mesenchymal stem cells (BMSCs). Also, BMSCs cultured on the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited a higher degree of osteogenic differentiation than those cultured on PLLA/PCL and MSNs-NH2/PLLA/PCL scaffolds, in terms of alkaline phosphatase (ALP) activity, mineralized matrix formation, and osteocalcin (OCN) expression. Furthermore, the in vivo results in a calvarial defect model of Sprague-Dawley (SD) rats demonstrated that the DEX@MSNs-NH2/PLLA/PCL scaffold could significantly promote calvarial defect healing compared with the PLLA/PCL scaffold. Thus, the EPD technique provides a convenient way to incorporate osteogenic agents-containing microcarriers to polymer scaffold, and thus, prepared composite scaffold could be a potential candidate for bone tissue engineering application due to its capacity for delivery of osteogenic agents.

  5. Preparation of magnetic graphene/mesoporous silica composites with phenyl-functionalized pore-walls as the restricted access matrix solid phase extraction adsorbent for the rapid extraction of parabens from water-based skin toners.

    Science.gov (United States)

    Feng, Jianan; He, Xinying; Liu, Xiaodan; Sun, Xueni; Li, Yan

    2016-09-23

    In this work, phenyl-functionalized magnetic graphene/mesoporous silica composites (MG-mSiO2-Ph) were prepared and applied as restricted access matrix solid phase extraction (RAM-SPE) adsorbents to determine the parabens in commercially available retail cosmetics. MG-mSiO2-Ph composites were synthesized by a surfactant-mediated co-condensation reaction in which mesoporous silica with phenyl-functionalized pore-walls was coated on a magnetic graphene sheet. The obtained nano-composites were proven to be of sufficient quality for an ideal RAM-SPE adsorbent with a large specific surface area of 369m(2)g(-1), uniform mesopores of 2.8nm, and special phenyl-functionalized pore-walls. Parabens, such as methyl paraben, ethyl paraben and propyl paraben, were extracted from water-based skin toners using one step of the RAM-SPE and were then analysed by a HPLC-DAD system. The SPE conditions were optimized by studying the parameters, such as the adsorbent amount, elution solvent type, adsorption time and desorption time, that influence the extraction efficiency. For each analyte, there were good linearities of approximately 0.10-120μgmL(-1) with determination coefficients (R(2))>0.995. The sensitivity was as low as 0.01-0.025μgmL(-1) for the LOD, and the percent recoveries were 98.37-105.84%. The intra-day and inter-day RSDs were 1.44-6.11% (n=6) and 3.12-11.70% (n=6), respectively. The results indicated that this method with novel RAM-SPE adsorbents is sensitive and convenient. The results also offered an attractive alternative for the extraction and determination of paraben preservatives in a complex matrix, such as cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. TUD-1-encapsulated HY zeolite: A new hierarchical microporous/mesoporous composite with extraordinary performance in benzylation reactions

    NARCIS (Netherlands)

    Saad, M.H.; Mul, Guido

    2013-01-01

    A new composite material consisting of amorphous TUD-1 encapsulating crystalline zeolite Y was synthesized. Samples with different HY zeolite loadings (10, 20, 40, and 60 wt %) were prepared, and the resulting solid products were characterized with elemental analysis, XRD, N2 physisorption, 27Al MAS

  7. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating....... In this categorization of templating methods, the nature of the interface between the zeolite crystal and the mesopore exactly when the mesopore starts to form is emphasized. In solid templating, the zeolite crystal is in intimate contact with a solid material that is being removed to produce the mesoporosity. Similarly...

  8. Templated, carbothermal reduction synthesis of mesoporous silicon ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... 1Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois. Institute of Technology, Chicago 60616, .... Schematic diagram of mesoporous silica shell synthesis on the CNT surface using self-assembly method. of the silica shell. The composition of Si ...

  9. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  10. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    International Nuclear Information System (INIS)

    Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.

    2015-01-01

    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL −1 . Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues

  11. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pelit, Füsun Okçu, E-mail: fusun.okcu@ege.edu.tr; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.

    2015-02-15

    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL{sup −1}. Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues.

  12. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    International Nuclear Information System (INIS)

    Solak, Agnieszka; Rutkowski, Piotr

    2014-01-01

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst

  13. Facile preparation of raisin-bread sandwich-structured magnetic graphene/mesoporous silica composites with C18-modified pore-walls for efficient enrichment of phthalates in environmental water.

    Science.gov (United States)

    Huang, Danni; Wang, Xianying; Deng, Chunhui; Song, Guoxin; Cheng, Hefa; Zhang, Xiangmin

    2014-01-17

    In this study, novel raisin-bread sandwich-structured magnetic graphene/mesoporous silica composites with C18-modified interior pore-walls (mag-graphene@mSiO2-C18) were synthesized by coating mesoporous silica layers onto each side of magnetic graphene through a surfactant-mediated co-condensation sol-gel process. The prepared functionalized nanocomposites possessed marvelous properties of extended plate-like morphology, fine water dispersibility, high magnetic response, large surface area (315.4cm(2)g(-1)), uniform pore size (3.3nm) and C18-modified interior pore-walls. Several kinds of phthalates were selected as model analytes to systematically evaluate the performance of adsorbents in extracting hydrophobic molecules followed by gas chromatography-mass spectrometry analyses. Various extraction parameters, including pH value of sample solution, amounts of adsorbents, adsorption time, species and volume of eluting solvent, and desorption time were optimized. The anti-interference ability to macromolecular proteins was also investigated. Method validations such as linearity, recovery, reproducibility, and limit of detection were also studied. Finally, mag-graphene@mSiO2-C18 composites were successfully applied to analyzing phthalates in environmental water samples. The results indicated that this novel approach offered an attractive alternative for rapid, convenient, efficient and selective magnetic solid-phase extraction for targeted hydrophobic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Improving device performance of perovskite solar cells by micro–nanoscale composite mesoporous TiO2

    Science.gov (United States)

    Ting, Hungkit; Zhang, Danfei; He, Yihao; Wei, Shiyuan; Li, Tieyi; Sun, Weihai; Wu, Cuncun; Chen, Zhijian; Wang, Qi; Zhang, Guoyi; Xiao, Lixin

    2018-02-01

    In perovskite solar cells, the morphology of the porous TiO2 electron transport layer (ETL) largely determines the quality of the perovskites. Here, we chose micro-scale TiO2 (0.2 µm) and compared it with the conventional nanoscale TiO2 (20 nm) in relation to the crystallinity of perovskites. The results show that the micro-scale TiO2 is favorable for increasing the grain size of the perovskites and enhancing the light scattering. However, the oversized TiO2 results in an uneven surface. The evenness of the perovskites can be improved by nanoscale TiO2, while the crystallinity and compactness are not as good as those of the films based on micro-scale TiO2. To combine the advantages of both micro-scale and nanoscale TiO2, by mixing 0.2 µm/20 nm TiO2 with a ratio of 1:2 as the composite ETL, the device average power conversion efficiency was increased to 11.2% from 9.9% in the case of only 20 nm TiO2.

  15. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  16. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    Science.gov (United States)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  17. Processing research and development of 'green' polymer nanoclay composites containing a polyhydroxybutyrate, vinyl acetates, and modified montmorillonite clay

    Science.gov (United States)

    McKirahan, James N., Jr.

    The purpose of this research was to determine the feasibility of direct melt-blending (intercalation) montmorillonite nanoclay to polyhydroxybutyrate along with vinyl acetate, at different weight percentages, to enhance plasticization using typical plastic processing equipment and typical processing methodology. The purpose was to determine and compare the specific mechanical properties of tensile strength and flexural strength developed as a result from this processing. Single screw and twin screw extrusion, Banbury mixer compounding, and compression molding were used to intercalate montmorillonite, and for sample preparation purposes, to test tensile and flexural strength of the resultant polymer clay nanocomposites (PCN). Results indicate Polyhydroxybutyrate and Ethylene vinyl acetate, and weight percentages of 70%, 65% and 60% PHB, and 15%, 20%, and 25% of EVA, respectively, influenced mechanical properties. The resultant materials remained in a mostly amorphous state. The nanoclay, at specific weight percentage of 10%, acted as an antimicrobial and preservative for the materials produced during the research. The intention of the research was to promote knowledge and understanding concerning these materials and processes so technology transfer regarding the use, mechanical properties, manufacture, and process ability of these bio-friendly materials to academia, industry, and society can occur.

  18. The clay mineral and Sr-Nd isotopic composition for fine-grained fraction of sediments from northwestern South China Sea: implications for sediment provenance

    Science.gov (United States)

    Cai, G.

    2013-12-01

    *Guanqiang Cai caiguanqiang@sina.com Guangzhou Marine Geological Survey, Guangzhou, 510760, P.R. China As the largest marginal sea in the western pacific, the South China Sea (SCS) receives large amount of terrigenous material annually through numerous rivers from surrounding continents and islands, which make it as the good place for the study of source to sink process. Yet few studies put emphasis on the northwestern continental shelf and slope in the SCS, even though most of the detrital materials derived from the Red River and Hainan Island are deposited in this area, and northwestern shelf plays a significant role in directly linking the South China, the Indochina and the South China Sea and thus controlling the source to sink process of terrestrial sediment. We presented the clay mineral and Sr-Nd isotopic composition of fine-grained fraction for sediments from northwestern SCS, in order to identify sediment source and transportation. The results show that the clay mineral of northwestern SCS sediments are mainly illite (30%~59%), smectite (20%~40%) and kaolinite (8%~35%), with minor chlorite. The illite chemical index varies between 0.19 and 0.75 with an average of 0.49, indicating an intensive hydrolysis in the source region. The 87Sr/86Sr ratios of sediments range from 0.716288 to 0.734416 (average of 0.724659), and ɛ Nd(0) values range from -10.31 to -11.62 (average of -10.93), which suggest that the source rocks of these sediments are derived from continental crust. The Hainan Island is an important source for sediments deposited in the nearshore and western shelf, especially for illite, kaolinite and smectite clay minerals. Furthermore, the relatively high contents of kaolinite and smectite in sediments from eastern shelf and southern slope of Hainan Island are also controlled by the supply of terrigenous materials from Hainan, which cannot be resulted from sedimentary differentiation of the Pearl and Red river sediments. And the correlation analysis

  19. Geological explorations of clay deposit near Pragersko and clay quality tests

    Directory of Open Access Journals (Sweden)

    Duška Rokavec

    2002-12-01

    Full Text Available A series of illite clays located near Pragersko, at the southern boundary of the Maribor – Ptuj depression, was investigated. The results of mining geological investigations showed the extension and characteristics of clay occurrences in the area. Primary characteristics of single types of raw clay from the deposit (mineral composition, grain size distribution, plasticity, etc., and the quality of biscuit were determined with laboratory tests.In a 4-9 m thick bed of clay we identified four different types of clay, which are, as a mixture, suitable for use in brick industry.

  20. Comparison of thermal analysis, micro structural and compositional of archaeological indigenous ceramic (Caninhas site of Canas - SP) with actual clay/ceramic of region

    International Nuclear Information System (INIS)

    Nakano, F.P.; Taguchi, S.P.; Matos, C.C.; Ribeiro, R.B.

    2009-01-01

    The ceramic material found at the archaeological site in Caninhas, shows funerary structures of combustion and various objects of Tupi-Guarani indigenous use. These pieces and fragments were saved and cataloged, in approximately 4000 units. The ceramics present a gradient of color, from ochre to dark gray, when from the surface to the center of the piece, indicating compositional variation caused by inefficient sintering carried out by indigenous people. The goal of this study was to observe the phase transition temperature, decomposition, mass variation and reactions that occur in the archaeological and nowadays ceramics (by DSC/TG), together with micro structural analysis (by SEM), phase analysis (by XRD) and chemical composition (by EDS). Ceramics nowadays are sintered with air, in a temperature ranging between 400-800 °C for one hour, and presents heterogeneous microstructure. The archaeological ceramics were identified by the illite, hydrated alumina, lutecite and quartz phase, and the caulinite, lutecite and quartz phase in clay produced today from that region differs in all characteristics and aspects according to time. The interaction between different areas of expertise is fundamental to aggregate knowledge: the use of ceramic material engineering to archaeological application. (author)

  1. Comparison of thermal analysis, micro structural and compositional of archaeological indigenous ceramic (Caninhas site of Canas - SP) with actual clay/ceramic of region

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, F.P.; Taguchi, S.P.; Matos, C.C.; Ribeiro, R.B., E-mail: japaum@alunos.eel.usp.br, E-mail: simone@demar.eel.usp.br, E-mail: cristhian@alunos.eel.usp.br, E-mail: baptistan@demar.eel.usp.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Departamento de Materiais; Rosa, S.J.L., E-mail: sarinhaleone@gmail.com [Centro Universitario de Volta Redonda, Volta Redonda, RJ (Brazil)

    2009-07-01

    The ceramic material found at the archaeological site in Caninhas, shows funerary structures of combustion and various objects of Tupi-Guarani indigenous use. These pieces and fragments were saved and cataloged, in approximately 4000 units. The ceramics present a gradient of color, from ochre to dark gray, when from the surface to the center of the piece, indicating compositional variation caused by inefficient sintering carried out by indigenous people. The goal of this study was to observe the phase transition temperature, decomposition, mass variation and reactions that occur in the archaeological and nowadays ceramics (by DSC/TG), together with micro structural analysis (by SEM), phase analysis (by XRD) and chemical composition (by EDS). Ceramics nowadays are sintered with air, in a temperature ranging between 400-800 °C for one hour, and presents heterogeneous microstructure. The archaeological ceramics were identified by the illite, hydrated alumina, lutecite and quartz phase, and the caulinite, lutecite and quartz phase in clay produced today from that region differs in all characteristics and aspects according to time. The interaction between different areas of expertise is fundamental to aggregate knowledge: the use of ceramic material engineering to archaeological application. (author)

  2. Preparation of intercalated polyaniline/clay nanocomposite and its

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  3. Preparation of intercalated polyaniline/clay nanocomposite and its ...

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  4. Novel organo soluble poly imides and polyimide nano composites based on 1,4-bis(4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, via BAOB-modified organo clay

    International Nuclear Information System (INIS)

    Mansoori, Y.; Darvishi, K.

    2014-01-01

    New, thermally stable poly imides (PI) containing a 1,3,4-oxadiazole ring in the polymer backbone based on 1,4-bis((4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, were synthesized. The prepared polymers were soluble in polar and aprotic solvents. The obtained results reveal that within the prepared polymers, polyimide which has been obtained from BAOB and 4,4-oxy diphthalic dianhydride, ODPA, has the most improved thermal properties. In the next part, thermally stable organophilic clay was obtained via cation exchange reaction between sodium montmorillonite (Na-MMT) and the hydrochloride salt of BAOB. Then, a series of PI/clay nano composite materials (PCNs) were synthesized from the in situ polymerization reaction of BAOB and ODPA via thermal imidization, BAOB-MMT was used as the filler at different concentrations. Intercalation of polymer chains within the organo clay galleries was confirmed by W XRD. The glass transition temperature is increased with respect to pristine PI for PCNs 1-3 wt %. At high clay loadings, the aggregation of organo clay particles results in a decrease in T g . In the Sem images of the pure polymer too many micro-cracks were observed in the background, while surface homogeneity of PCN 1 wt % is increased and micro-cracks are reduced. (Author)

  5. Novel organo soluble poly imides and polyimide nano composites based on 1,4-bis(4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, via BAOB-modified organo clay

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, Y.; Darvishi, K., E-mail: ya_mansoori@yahoo.com [University of Mohaghegh Ardabili, Faculty of Science, Department of Applied Chemistry, Daneshgah, Ardabil (Iran, Islamic Republic of)

    2014-10-01

    New, thermally stable poly imides (PI) containing a 1,3,4-oxadiazole ring in the polymer backbone based on 1,4-bis((4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, were synthesized. The prepared polymers were soluble in polar and aprotic solvents. The obtained results reveal that within the prepared polymers, polyimide which has been obtained from BAOB and 4,4-oxy diphthalic dianhydride, ODPA, has the most improved thermal properties. In the next part, thermally stable organophilic clay was obtained via cation exchange reaction between sodium montmorillonite (Na-MMT) and the hydrochloride salt of BAOB. Then, a series of PI/clay nano composite materials (PCNs) were synthesized from the in situ polymerization reaction of BAOB and ODPA via thermal imidization, BAOB-MMT was used as the filler at different concentrations. Intercalation of polymer chains within the organo clay galleries was confirmed by W XRD. The glass transition temperature is increased with respect to pristine PI for PCNs 1-3 wt %. At high clay loadings, the aggregation of organo clay particles results in a decrease in T{sub g}. In the Sem images of the pure polymer too many micro-cracks were observed in the background, while surface homogeneity of PCN 1 wt % is increased and micro-cracks are reduced. (Author)

  6. Killer clays! Natural antibacterial clay minerals

    Science.gov (United States)

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  7. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    Science.gov (United States)

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  8. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Qingde Li

    2017-01-01

    Full Text Available Red pottery clay (RPC was modified using a silane coupling agent, and the modified RPC (mRPC was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA and ultraviolet (UV-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence and ΔE* (color reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading.

  9. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  11. Synthesis of Mesoporous Titania-Silica Monolith Composites — A Comprehensive Study on their Photocatalytic Degradation of Acid Blue 113 Dye Under UV Light

    Science.gov (United States)

    Thejaswini, Thurlapathi Vl; Prabhakaran, Deivasigamani

    2016-10-01

    The present work deals with the synthesis of bi-continuous macro and mesoporous crack-free titania-silica monoliths, with well-defined structural dimensions and high surface area. The work also highlights their potential photocatalytic environmental applications. The highly ordered titania-silica monoliths are synthesized through direct surface template method using organic precursors of silica and titania in the presence of surface directing agents such as pluronic P123 and PEG, under acetic acid medium. The monoliths are synthesized with different Ti/Si ratios to obtain monolithic designs that exhibit better photocatalytic activity for dye degradation. The titania-silica monoliths are characterized using XRD, SEM, EDAX, FT-IR, TG-DTA and BET analysis. The photocatalytic activity of the synthesized monoliths is tested on the photodegradation of a textile dye (acid blue 113). It is observed that the monolith with 7:3 ratio of Ti/Si showed significant photocatalysis behavior in the presence of UV light. The influence of various physico-chemical properties such as, solution pH, photocatalyst dosage, light intensity, dye concentration, effect of oxidants, etc. are analyzed and optimized using a customized photoreactor set-up. Under optimized conditions, the monoliths exhibited superior degradation kinetics, with the dye dissipation complete within 10min of photolysis. The mesoporous catalysts are recoverable and reusable up to four cycles of repeated usage.

  12. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.

    Science.gov (United States)

    Radian, Adi; Mishael, Yael

    2012-06-05

    Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment.

  13. Characterization and analysis of epoxy/clay nanotubes composites; Cacaterizacao e analise de compositos de epoxi, argila e nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2{Theta} = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  14. Thermal and mechanical properties of polyamide 6/compatibilizer/clay nano composites; Propriedades termicas e mecanicas de nanocompositos de poliamida 6/compatibilizante/argila

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.; Brito, G.F.; Cunha, C.T.C.; Araujo, E.M.; Melo, T.J.A., E-mail: tomas@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    In this work, the thermal and mechanical properties of Polyamide 6 (PA6)/compatibilizer/clay (CL20A) nanocomposites were investigated. The nanocomposites were prepared in a counter-rotating twin screw extruder at 240 deg C and 50 rpm, and characterized by X-Ray Diffraction (XRD), Thermogravimetry (TG) and mechanical properties. XRD results showed that when the clay is mixed with PA6, the clay peak is shifted to lower 2{theta} angles, indicating that PA6 was intercalated between the clay platelets. For PA6/compatibilizer/clay system, the results indicated that a nanocomposite with exfoliated structure was formed. TG results showed that the thermal stability of PA6/CL20A and PA6/compatibilizer/CL20A was higher than that of neat PA6. The mechanical properties results showed that the addition of the compatibilizer to PA6/CL20A substantially increased the impact strength and decreased the stiffness. (author)

  15. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg Al-layered double hydroxides

    Science.gov (United States)

    Zhang, Hui; Zou, Kang; Guo, Shaohuan; Duan, Xue

    2006-06-01

    A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interaction involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45.

  16. Synthesis and characterization of cloisite-30B clay dispersed poly (acryl amide/sodium alginate)/AgNp hydrogel composites for the study of BSA protein drug delivery and antibacterial activity

    Science.gov (United States)

    Nanjunda Reddy, B. H.; Ranjan Rauta, Pradipta; Venkatalakshimi, V.; Sreenivasa, Swamy

    2018-02-01

    The aim of this research is to inspect the effect of Cloisite-30B (C30B) modified clay dispersed poly (acrylamide-co-Sodiumalginate)/AgNp hydrogel nanocomposites (PASA/C30B/Ag) for drug delivery and antibacterial activity. A novel hydrogel composite based sodium alginate (SA) and the inorganic modified clay with silver nano particle (C30B/AgNps)polymer hydrogel composites are synthesized via the graft copolymerization of acrylamide (AAm) in an aqueous medium with methylene bisacrylamide (MBA) as a crosslinking agent and ammonium per sulfate(APS) as an initiator. The UV/Visible spectroscopy of obtained composites is successfully studied, which confirms the occurrence of AgNps in the hydrogel composites. And the swelling capacity and bovine serum albumin (BSA) protein as model drug delivery study for these hydrogel nanocomposites have been carried out. The C30B/Ag filled hydrogel composites exhibit superior water absorbency or swelling capacity compared to pure samples and it is establish that the formulations with clay (C30B) dispersed silver nanocomposite hydrogels show improved and somewhat faster rate of drug delivery than other formulations(pure systems) and SEM and TEM reports suggests that the size of AgNps in the composite hydrogels is in the range of 5-10 nm with shrunken surface and the antibacterial characterizations for gram positive and gram negative bacteria are carried out by using Streptococcus faecalis (S. Faecalis) and Escherichia coli (E.coli) as model bacteria and the hydrogel composites of PASA/C30B/Ag shows exceptional antibacterial activity against both the bacteria as compared to pure hydrogel composites samples.

  17. Change effects in the land use about the mineral clay

    International Nuclear Information System (INIS)

    Cespedes Payret, C.; Gutierrez, O; Panario, D.; Pineiro, G

    2012-01-01

    The Pampas land changes during the Quaternary, left their mark on the mineralogy of soil clays. This work is oriented to compare the mineralogical composition of the clays and the value of potassium in an eucalyptus forestation. These results show that the mineralogical illite alteration is the cause of its destruction. This clay is the main reservoir of potassium for the agricultural soils

  18. Instrumental characterization of clay by XRF, XRD and FTIR

    Indian Academy of Sciences (India)

    Instrumental characterizations of the clay were performed by different techniques such as XRF, XRD and FTIR. XRF shows the chemical compositions of the clay where Al-oxide and silica oxide are present in major quantity whereas XRD confirms the presence of these minerals in clay. FTIR studies show the presence of ...

  19. Nanostructured sp2-carbon infiltration of mesoporous silicon layers.

    Science.gov (United States)

    Polini, Riccardo; Valentini, Veronica; Mattei, Giorgio

    2009-06-01

    The preparation of composite layers made of porous silicon (PS) infiltrated with nanostructured carbon is reported. These composite layers were obtained by chemical vapor infiltration (CVI) of mesoporous silicon under process conditions normally employed to grow diamond films by Hot Filament Chemical Vapour Deposition (HFCVD). Micro-Raman spectroscopy and Field Emission Gun Scanning Electron Microscopy (FEG-SEM) techniques showed that diamond nucleation density was very low whilst sp2 carbon permeated completely, even after 1 h deposition, the thickness of the PS layers that preserved their mesoporous columnar structure.

  20. Diffraction analysis of mesostructured mesoporous materials.

    Science.gov (United States)

    Solovyov, Leonid A

    2013-05-07

    Ordered mesostructured mesoporous materials, combining nano-organization with atomic disorder, are both attractive and challenging objects of investigation by X-ray and neutron diffraction. The development of diffraction mesostructure analysis methods and their applications in studies on structural characterization, formation processes and physisorption phenomena in these advanced materials are summarized in this tutorial review. The focus here is on the techniques that allow extracting mesostructure parameters and peculiarities of density distribution in the materials from the Bragg reflection positions and intensities. The investigations of mesoporous silicates, their nonsilica replicas and composites are discussed including the combined use of diffraction with electron microscopy and physisorption. The small-angle scattering curve analysis, which is also an important methodology in the field, is out of the scope of this review.

  1. Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium

    Science.gov (United States)

    Ma, Jun; Xiao, Dejian; Chen, Chang Li; Luo, Qiaomei; Yu, Yue; Zhou, Junhao; Guo, Changding; Li, Kai; Ma, Jie; Zheng, Lirong; Zuo, Xia

    2018-02-01

    In this work, a category of Fe3C-containing Fe/N/C mesoporous material has been fabricated by carbonizing the mixture of uric acid, Iron (Ⅲ) chloride anhydrous and carbon support (XC-72) under different pyrolysis temperature. Of all these samples, pyrolysis temperature (800 °C) becomes the most crucial factor in forming Fe3C active sites which synergizes with high content of graphitic N to catalyze oxygen reduction reaction (ORR). X-ray absorption fine structure spectroscopy (XAFS) is used to exhibit that the space structure around Fe atoms in the catalyst. This kind of catalyst possesses comparable ORR properties with commercial 20% Pt/C (onset potential is 0 V vs. Ag/AgCl in 0.1 M KOH), the average transfer electron number is 3.84 reflecting the 4-electron process. Moreover, superior stability and methanol tolerance deserve to be mentioned.

  2. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics

    DEFF Research Database (Denmark)

    Chakraborti, Michelle; Jackson, John K.; Plackett, David

    2012-01-01

    bone cement, used in orthopedics, release very little drug. The purpose of this study was to investigate the use of nanoparticulates composed of layered double hydroxide clays to bind various antibiotics and release them in a controlled manner. Mg–Al (carbonate) layered double hydroxides were...... and quantitation of the unbound fraction by UV/Vis absorbance or HPLC analysis. Drug release from layered double hydroxide clay/drug complexes dispersed in polymeric films was measured by incubation in phosphate-buffered saline (pH 7.4) at 37 °C using absorbance or HPLC analysis. Antimicrobial activity of drug....../clay complexes in poly(lactic-co-glycolic acid) films resulted in a reduced burst phase of release and a slow continuous release for many weeks with effective antimicrobial amounts of VAN and SF released at later time points. Layered double hydroxide clays may be useful for controlled release applications...

  3. Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition.

    Science.gov (United States)

    Werner, Jörg G; Scherer, Maik R J; Steiner, Ullrich; Wiesner, Ulrich

    2014-08-07

    We demonstrate the preparation of rationally designed, multifunctional, monolithic and periodically ordered mesoporous core-shell nanocomposites with tunable structural characteristics. Three-dimensionally (3D) co-continuous gyroidal mesoporous polymer monoliths are fabricated from a solution-based triblock terpolymer-resol co-assembly and used as the functional templates for the fabrication of free-standing core-shell carbon-titania composites using atomic layer deposition (ALD). The deposition depth into the torturous gyroidal nanonetwork is investigated as a function of ALD conditions and the resulting composites are submitted to different thermal treatments. Results suggest that ALD can homogenously coat mesoporous templates with well defined pore sizes below 50 nm and thicknesses above 10 μm. Structural tunability like titania shell thickness and pore size control is demonstrated. The ordered nanocomposites exhibit triple functionality; a 3D continuous conductive carbon core that is coated with a crystalline titania shell that in turn is in contact with a 3D continuous mesopore network in a compact monolithic architecture. This materials design is of interest for applications including energy conversion and storage. Gyroidal mesoporous titania monoliths can be obtained through simultaneous titania crystallization and template removal in air.

  4. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  5. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  6. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  7. Mesoporous metal catalysts formed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  8. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  9. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Clay mineral quaternary sediments mineralogy

    International Nuclear Information System (INIS)

    Karlsson, A.; Ayala, R.; Daziano, O.; Loyola, C.

    2007-01-01

    The subsidence is one of the geotechnical problems more important associated with Cordoba loess soils. The change of the mineral internal structure in the loess soils cause volume modification, that generate the potential danger of subsidence. The mineralogical evolution and the geotechnical behaviour in these soils are governed by the prevalent environmental hand lings in the region. A sequence of quaternary loess soils associated to a landscape with high carcavamiento has been studied. In this paper are examined the clay minerals and the calcium carbonates associated with the loess soils located in the superior basin of the Arroyo Tegua, Dto. Rio Cuarto, Prov. de Cordoba. The two-micron fraction was concentrated without previous destruction of cements and the determination of the mineral species has been carried out by means of X-Ray Diffraction methods. The clay minerals more abundant are the 2:1 non-expanded and rather crystallized ones. The 1:1non expanded mineral have disorderly structure and the 2:1 expanded are concentrated in the calcic horizons. The presence of palygoskite clay group was possible also to determine. The clay mineral composition in the studied sedimentary sequence is not homogeneous and the physical behavior of the different silts depends on the abundance and distribution of the clay minerals that carry. We can indicate that the clay minerals most unstable under humidity desiccation conditions are fireclay one and those of the palygorskite group. Recapitulating we can express that: vaterite is associated to more young silts and to a low alkaline environmental paleosoils genesis, but with a local CaCO3 supersaturation and alkalinity increase, vaterite transforms to calcite and also aragonite. (author)

  11. Clay smear: Review of mechanisms and applications

    Science.gov (United States)

    Vrolijk, Peter J.; Urai, Janos L.; Kettermann, Michael

    2016-05-01

    Clay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models.

  12. Simple Preparation of Novel Metal-Containing Mesoporous Starches †

    Science.gov (United States)

    Ojeda, Manuel; Budarin, Vitaliy; Shuttleworth, Peter S.; Clark, James H.; Pineda, Antonio; Balu, Alina M.; Romero, Antonio A.; Luque, Rafael

    2013-01-01

    Metal-containing mesoporous starches have been synthesized using a simple and efficient microwave-assisted methodology followed by metal impregnation in the porous gel network. Final materials exhibited surface areas >60 m2 g−1, being essentially mesoporous with pore sizes in the 10–15 nm range with some developed inter-particular mesoporosity. These materials characterized by several techniques including XRD, SEM, TG/DTA and DRIFTs may find promising catalytic applications due to the presence of (hydr)oxides in their composition. PMID:28809249

  13. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  14. Mesoporous materials for antihydrogen production.

    Science.gov (United States)

    Consolati, Giovanni; Ferragut, Rafael; Galarneau, Anne; Di Renzo, Francesco; Quasso, Fiorenza

    2013-05-07

    Antimatter is barely known by the chemist community and this article has the vocation to explain how antimatter, in particular antihydrogen, can be obtained, as well as to show how mesoporous materials could be used as a further improvement for the production of antimatter at very low temperatures (below 1 K). The first experiments with mesoporous materials highlighted in this review show very promising and exciting results. Mesoporous materials such as mesoporous silicon, mesoporous material films, pellets of MCM-41 and silica aerogel show remarkable features for antihydrogen formation. Yet, the characteristics for the best future mesoporous materials (e.g. pore sizes, pore connectivity, shape, surface chemistry) remain to be clearly identified. For now among the best candidates are pellets of MCM-41 and aerogel with pore sizes between 10 and 30 nm, possessing hydrophobic patches on their surface to avoid ice formation at low temperature. From a fundamental standpoint, antimatter experiments could help to shed light on open issues, such as the apparent asymmetry between matter and antimatter in our universe and the gravitational behaviour of antimatter. To this purpose, basic studies on antimatter are necessary and a convenient production of antimatter is required. It is exactly where mesoporous materials could be very useful.

  15. Differentiation between anonymous paintings of the 17th and the early 18th century by composition of clay-based grounds

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hradilová, J.; Bezdička, Petr; Švarcová, Silvie

    2015-01-01

    Roč. 118, DEC (2015), s. 8-20 ISSN 0169-1317 R&D Projects: GA ČR GA14-22984S Institutional support: RVO:61388980 Keywords : paintings * clay -based grounds * X-ray powder micro-diffraction * historical technology Subject RIV: CA - Inorganic Chemistry Impact factor: 2.586, year: 2015

  16. Analysis of a intra-Carixian clay horizon into carbonate platform of the Ouarsenis (Algeria): composition, dynamic and paleo-climatic implication

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, M.; Salhi, A. [Oran Univ., Faculte des Sciences de la Terre et de l' Amenagement du Territoire, Dpt. de Geologie (Algeria)

    2005-07-01

    During the Late Sinemurian a carbonate platform has developed on the Ouarsenis area (external Tell o f the Algerian Alpine belt) with setting deposits of the Kef Sidi Amar Carbonate Formation. A first maximum flooding materialized by a brachiopods (Zeilleriids) layer, is occurring during the Late Carixian. The Late Carixian deepening has been followed by a sea-level fall documented by several meters incisions filled by transgressive breccia and conglomerates. After this episode, this material was sealed by a pedogenic bed (0,05 to 0,20 m) which corresponds to a yellow clay deposit containing well rounded particles interpreted as pedo-genetic globules. These corpuscles are composed of reddish and hardened clay, corroded quartz grains, rhombic and zoned dolomite crystals and ankerite, monocrystalline and xeno-morphous detrital quartz grains (1-2 mm). The observed characteristics allow to recognize a typical calcrete. They are the result of pedo-genetic diagenesis developed inside the phreatic water-table near the surface: this is an alteration profile. The mineralogic fraction has been analyzed by X-Ray which show results of association clay mineral as a predominance of illite (85%) and mixed-layer illite-montmorillonite (I-M, 10%) associated with a low ration of chlorite (5%) and kaolinite trace (1%). This mineralogic clay association indicates a shallow water (hydro-morphic zone). Among these clay minerals, the illite reveals the precious indications in a source area. In this case, it comes from the decomposition of the schist paleo-relief located in the internal domain. This rock was transformed by acid leaching (action of the sour humus) into kaolinite with the presence of the quartzification. The origin of the mixed-layer clay I-M (10%) is the result of the active pedogenesis. The simultaneous presence of the illite, chlorite, kaolinite and the mixed-layer clay I-M seems to be result from the erosion exercised on the alteration product or arenitisation of the

  17. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  18. A Mesopore-Dependent Catalytic Cracking ofn-Hexane Over Mesoporous Nanostructured ZSM-5.

    Science.gov (United States)

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  19. Characterization of organophilic attapulgite clay from state of Piaui

    International Nuclear Information System (INIS)

    Silva, L.C. dos Santos; Alves, T.S.; Barbosa, R.

    2011-01-01

    The attapulgite is mineral clay typically fibrous. It owns a superficial area around 125 to 210 m²/g, cationics transfer capacity from 20 to 30 mill equivalents per 100g of clay, high capacity of sorption, considerable decolourizer capacity, chemical inertia and maintenance of thixotropics properties in the presence of electrolytes. The objective of this work was to perform the chemical modification of attapulgite original from state of Piaui - Brazil, for applications in polymeric nanocomposites. The chemical composition of clay without modification was determined by X-Ray Diffraction. The natural clay and organophilizated one were characterized by X-Ray Diffraction (XRD), by Fourier Transform Infra-Red spectroscopy (FTIR), and Foster's swelling. The obtained results indicated the presence of characteristics groups of the salt in the clay, alteration in its chemical composition, evidencing that the chemical modification in the clay was efficient, could the same be applied in preparation of polymeric nanocomposites. (author)

  20. Periodic mesoporous silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.T.; Martin, J.E.; Odinek, J.G. [and others

    1996-06-01

    We have synthesized monolithic particulate gels of periodic mesoporous silica by adding tetramethoxysilane to a homogeneous alkaline micellar precursor solution. The gels exhibit 5 characteristic length scales over 4 orders of magnitude: fractal domains larger than the particle size (>500 nm), particles that are {approximately}150 to 500 nm in diameter, interparticle pores that are on the order of the particle size, a feature in the gas adsorption measurements that indicates pores {approximately}10-50 nm, and periodic hexagonal arrays of {approximately}3 nm channels within each particle. The wet gel monoliths exhibit calculated densities as low as {approximately}0.02 g/cc; the dried and calcined gels have bulk densities that range from {approximately}0.3-0.5 g/cc. The materials possess large interparticle ({approximately}1.0-2.3 cc/g) and intraparticle ({approximately}0.6 cc/g) porosities.

  1. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    This thesis deals with a very specific class of molecular sieves known as zeolites. Zeolites are a class of crystalline aluminosilicates characterised by pores or cavities of molecular dimensions as part of their crystal structure. In this work zeolites were modified for the use and understanding...... of different catalytic applications. Primarily the zeolites were modified regarding the porosity and the introduction of metals to the framework. The obtained materials were used as solid acid catalysts, as an inert matrix for stabilising metal nanoparticles and as an anchoring material for molecular metal....... Furthermore, preliminary work was done using mesoporous ZSM-5 zeolites as support material for anchoring molecular CoMo6 species for the application as potential bi-functional catalyst in simultaneous hydrodesulfurisation (HDS) and hydrocracking. HDS activity tests revealed that the anchoring improved...

  2. Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co3O4 mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution

    DEFF Research Database (Denmark)

    Sun, Hongyu; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    in superior electrochemical properties when used as the anode materials for lithium-ion batteries and as an electrocatalyst for the oxygen evolution reaction. The excellent electrochemical performance is attributed to the synergistic effects of novel hierarchical morphology, crystal structure of the active......We developed a facile solution reductive method to simultaneously tune the surface composition, oxygen vacancies and three dimensional assembly in Co3O4 hierarchical nanostructures. The controllable surface composition, oxygen vacancies together with hierarchical micro/nanoarchitectures resulted...... materials, the improvement of intrinsic conductivity and inner surface area induced by the oxygen vacancies. The present strategy not only provides a facile method to assemble novel hierarchical architectures, but also paves a way to control surface structures (chemical composition and crystal defects...

  3. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  4. Study of reinforcement corrosion in expanded clay concrete

    OpenAIRE

    A.V. Uglyanitsa; N.V. Gilyazidinova; A.A. Zhikharev; A.A. Kargin

    2015-01-01

    Expanded clay concrete differs from heavy-weight concrete not only by the composition and performance properties, but also by modes of chemical interactions between the components. So, not the primary problem of reinforcement corrosion in heavy-weight concrete under the normal conditions and the correct protective layer, becomes in the major problem in expanded clay concrete. The issue of reinforcement corrosion in expanded clay concrete is considered in this article. The studies on the effec...

  5. Dioxins in primary kaolin and secondary kaolinitic clays.

    Science.gov (United States)

    Schmitz, Martin; Scheeder, Georg; Bernau, Sarah; Dohrmann, Reiner; Germann, Klaus

    2011-01-15

    Since 1996 dioxins have been repeatedly detected worldwide in Tertiary ball clays used as anticaking agent in the production of animal feed and a variety of other applications. The dioxins of these natural clays are very unlikely of anthropogenic source, but no model of dioxin enrichment has been established. A hypothetical model is presented which explains the highly variable dioxin loadings of the Tertiary kaolinitic clays by natural addition during clay-sedimentation. To prove this hypothesis, Tertiary primary nonsedimentary kaolin and sedimentary kaolinitic clays were collected at three profiles in Europe and analyzed for mineralogy, chemistry, organic carbon, and polychlorinated dibenzo-p-dioxins/-furans (PCDD/F). Primary kaolin, kaolinitic, and lignitic clays contained almost no PCDFs. PCDD concentration differed markedly between primary kaolin (3-91 pg/g) and secondary kaolinitic clay (711-45935 pg/g), respectively, lignitic clays (13513-1191120 pg/g). The dioxin loading of secondary kaolinitic and lignitic clays is approximately 10 to a few thousand times higher than in the primary kaolin or recent environmental settings. The dioxin concentrations decrease from octachlorodibenzo-p-dioxin to the tetrachlorodibenzo-p-dioxins and exhibit the "natural formation pattern". No correlation between PCDD/F concentration and bulk composition of clays was found. These findings support the hypothesis of the enrichment of dioxin in clays during sedimentation.

  6. Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium-sulfur cells.

    Science.gov (United States)

    Moreno, Noelia; Caballero, Alvaro; Hernán, Lourdes; Morales, Julián; Canales-Vázquez, Jesús

    2014-08-28

    Carbon materials with ordered mesoporous structures were synthesized using soft template methods and then activated by CO2 treatment. Sulfur was incorporated in these carbons via a simple chemical deposition method in aqueous solutions and the resulting composites were tested as electrodes in Li-S cells. The electrochemical results showed that well-ordered mesoporous carbons perform better than those with a random mesopore arrangement (wormhole-like mesoporous structure). The mesopore ordering yields a framework of well-connected empty sites that results in an enhancement of both the charge carrier mobility and the reversibility of the electrochemical reaction. Although the activation with CO2 partially destroys the mesopore arrangement, which adversely affects the electrode performance, it notably increases the surface area and the micropore content which improves the connectivity between the mesopores. The final observation was an irrelevant effect of the activation process at low current densities. However, at higher rates the activated carbon composite delivered higher capacities. The hierarchical pore structure formed by micro- and mesopores should guarantee the required fast mobility of the Li(+).

  7. Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material

    DEFF Research Database (Denmark)

    Huang, Wei; Xiao, Xinxin; Engelbrekt, Christian

    2017-01-01

    The discovery of new anode materials and engineering their fine structures are the core elements in the development of new-generation lithium ion batteries (LIBs). To this end, we herein report a novel nanostructured composite consisting of approximately 75% Fe3O4 nanorods and 25% reduced graphen...... with the deliverable energy of 788–541 mA h g−1 upon the application of high current densities of 1000–5000 mA g−1. Overall, we have demonstrated that Fe3O4 nanorod–rGO hybrid composite is an interesting and promising material for the fabrication of LIB anodes.......The discovery of new anode materials and engineering their fine structures are the core elements in the development of new-generation lithium ion batteries (LIBs). To this end, we herein report a novel nanostructured composite consisting of approximately 75% Fe3O4 nanorods and 25% reduced graphene...... around 20 nm and exhibits a high surface area of 152 m2 g−1, which is 76 times as high as that of conventional Fe3O4 powder. We have used the composite as an LIB anode material to fabricate coin-type prototype cells with lithium as the cathode. Systematic half-cell testing evaluations show...

  8. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres.

    Science.gov (United States)

    Fang, Xiaoliang; Chen, Cheng; Liu, Zhaohui; Liu, Pengxin; Zheng, Nanfeng

    2011-04-01

    Hollow mesoporous silica spheres have recently attracted increasing attention. However, effective synthesis of uniform hollow mesoporous spheres with controllable well-defined pore structures for fundamental research and practical applications has remained a significant challenge. In this work, a straightforward and effective "cationic surfactant assisted selective etching" synthetic strategy was developed for the preparation of high-quality hollow mesoporous silica spheres with either wormhole-like or oriented mesoporous shell. The as-prepared hollow mesoporous silica spheres have large surface area, high pore volume, and controllable structure parameters. Our experiments demonstrated that cationic surfactant plays critical roles in forming the hollow mesoporous structure. A formation mechanism involving the etching of solid SiO(2) accelerated by cationic surfactant followed by the redeposition of dissolved silica species directed by cationic surfactant is proposed. Furthermore, the strategy can be extended as a general strategy to transform silica-coated composite materials into yolk-shell structures with either wormhole-like or oriented mesoporous shell.

  9. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  10. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  11. Compositional and physical characteristics of porcelain tile bodies with clays from Teruel; Caracteristicas fisicas y composicionales de pastas de gres porcelanico con arcillas de Teruel

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A.; Garcia Portillo, C.; Torre, J. de la; Bastida, J.

    2012-11-01

    Stoneware pots were produced in the temperature range 1120-1220 using as raw materials ball clays from the mining area of Teruel (Spain) with additions of feldspars and without quartz additions. Data about water absorption, shrinkage, flexural strength and colour space (L a* b*) are provided, as well as semiquantitative estimations of the crystalline phases in the bodies using the reference intensity method. The results fulfil the norm ISO-13006 regarding water absorption and mechanical strength at 1185 degree centigrade. In addition, it is shown that the intensity reference method was a good alternative to more advanced quantitative methods.

  12. Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel

    OpenAIRE

    Keyvani, A.; Yeganeh, M.; Rezaeyan, H.

    2017-01-01

    In this study, mesoporous silica served as a host for corrosion inhibitor. This material could adsorb and release corrosion inhibitor in different aqueous media. However, the extent of corrosion inhibitor release in the alkaline media was higher. By dispersing 1 wt% mesoporous silica loaded with sodium molybdate in the epoxy layer, a protective composite coating was produced. The corrosion properties of the composite coatings were assessed by electrochemical impedance spectroscopy. Results sh...

  13. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Magnetic properties of mesoporous cobalt-silica-alumina ternary mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Nabanita [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal (India); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2013-02-15

    Mesoporous cobalt-silica-alumina mixed oxides with variable cobalt content have been synthesized through slow evaporation method by using Pluronic F127 non-ionic surfactant as template. N{sub 2} sorption analysis of the template-free mixed oxide samples revealed that these mesoporous materials have high BET surface areas together with large mesopores. Powder XRD, TEM, EDS, FT IR and EPR spectroscopic analysis have been employed to understand the nature of the mesophases, bonding and composition of the materials. Low temperature magnetic measurements of these mixed oxide materials show the presence of ferromagnetic correlation at elevated temperature though at low temperature paramagnetic to ferrimagnetic transition is observed. Highlights: Black-Right-Pointing-Pointer Mesoporous cobalt-silica-alumina ternary mixed oxides. Black-Right-Pointing-Pointer High surface area and mesoporosity in magnetic materials. Black-Right-Pointing-Pointer Ferromagnetic correlation at elevated temperature. Black-Right-Pointing-Pointer Low temperature paramagnetic to ferrimagnetic transition.

  15. Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays

    International Nuclear Information System (INIS)

    Kim, Doohyun; Ock, Hyun Geun; Ahn, Kyung Hyun; Lee, Seung Jong

    2015-01-01

    In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1-10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene- ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

  16. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.

    Science.gov (United States)

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-01

    Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 - montmorillonite K10, KSF - montmorillonite KSF, B - Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500°C with heating rate of 100°C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3-79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500°C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Synthesis, characterization and magnetic performance of Co-incorporated ordered mesoporous carbons

    International Nuclear Information System (INIS)

    Liu, Zhi; Song, Yan; Yang, Yuan; Mi, Junhua; Deng, Liping

    2012-01-01

    Highlights: ► A facile one-pot aqueous self-assembly strategy for the synthesis Co-incorporated ordered mesoporous carbons (Co-OMCs). ► Co-OMCs exhibit typical ferromagnetic characteristics. ► Saturation magnetization strength can be easily adjusted by changing the content of cobalt. ► Carbonization temperatures have significant effects on the structure and magnetic properties of Co-OMCs. -- Abstract: Co-incorporated ordered mesoporous carbon (Co-OMC) with magnetic frameworks has been synthesized via a one-pot self-assembly strategy. The effects of cobalt loading on carbon matrix, adsorption properties and magnetic properties of the resultant mesostructured cobalt/carbon composites were investigated by nitrogen sorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and magnetometer measurements. The results show that the mesoporous composites with a high cobalt content (such as 18.0 wt%) possess an ordered and uniform mesoporous structure (5.3 nm), high surface areas (up to 687 m 2 /g) and high pore volumes (up to 0.54 cm 3 /g). Cobalt nanoparticles of size 4–9 nm are confined inside the mesopores or walls of the mesoporous carbon. These materials exhibit typical ferromagnetic characteristics. The saturation magnetization strength can be easily adjusted by changing the content of cobalt. The carbonization temperatures have significant effects on the structure and magnetic properties of Co-OMC also.

  18. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    Science.gov (United States)

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  19. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores.

    Science.gov (United States)

    Wei, Jing; Wang, Hai; Deng, Yonghui; Sun, Zhenkun; Shi, Lin; Tu, Bo; Luqman, Mohammad; Zhao, Dongyuan

    2011-12-21

    A solvent evaporation induced aggregating assembly (EIAA) method has been demonstrated for synthesis of highly ordered mesoporous silicas (OMS) in the acidic tetrahydrofuran (THF)/H(2)O mixture by using poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA) as the template and tetraethylorthosilicate (TEOS) as the silica precursor. During the continuous evaporation of THF (a good solvent for PEO-b-PMMA) from the reaction solution, the template molecules, together with silicate oligomers, were driven to form composite micelles in the homogeneous solution and further assemble into large particles with ordered mesostructure. The obtained ordered mesoporous silicas possess a unique crystal-like morphology with a face centered cubic (fcc) mesostructure, large pore size up to 37.0 nm, large window size (8.7 nm), high BET surface area (508 m(2)/g), and large pore volume (1.46 cm(3)/g). Because of the large accessible mesopores, uniform gold nanoparticles (ca. 4.0 nm) can be introduced into mesopores of the OMS materials using the in situ reduction method. The obtained Au/OMS materials were successfully applied to fast catalytic reduction of 4-nitrophenol in the presence of NaHB(4) as the reductant. The supported catalysts can be reused for catalytic reactions without significant decrease in catalysis performance even after 10 cycles. © 2011 American Chemical Society

  20. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  1. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  2. Radiation synthesis and characterization of thermo-sensitive PNIPA/clay hydrogels

    International Nuclear Information System (INIS)

    Song Hongyan; He Suqin; Liu Wentao; Zhu Chengshen; Yang Mingcheng

    2007-01-01

    In this work, the thermo-sensitive hydrogels of PNIPA/Clay were synthesized by 60 Co-γ rays irradiation. The effects of organically modified clay and Na + clay, clay content, and dispersing condition on swelling behavior of PNIPA/clay hydrogels were investigated. The results showed that the equilibrium swelling ratio (SR) of the PNIPA/clay hydrogels is better than PNIPA, and the SR of PNIPA/organically modified clay hydrogels is the highest. With clay content increases, the SR of hydrogels became better. The deswelling behavior of hydrogel was improved, the deswelling ratio of the hydrogel with organically modified clay is highest, and ratio of losing water is 83%, while PNIPA is about 50%. The compressive properties of hydrogel composites were also examined. The results showed that the compressive properties of the PNIPA/clay hydrogels were improved distinctly than that of the conventional hydrogels without clay. And with increasing of clay content, the compressive properties of hydrogel composites improve rapidly. When the content of clay is 15%, the maximum compression force of the PNIPA/clay hydrogel is 5.28N, which is 14 times of PNIPA hydrogel and compression strength is 2.5 times. (authors)

  3. Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine

    Energy Technology Data Exchange (ETDEWEB)

    He, Haibo, E-mail: hbhe2006@shu.edu.cn [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Zhou, Ziqing; Dong, Chen; Wang, Xin [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Yu, Qiong-wei [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Lei, Yunyi; Luo, Liqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Feng, Yuqi [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2016-11-09

    A boronate-decorated nanomagnetic organic-inorganic hybrid material was facilely synthesized by utilizing the nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) composite (Fe{sub 3}O{sub 4}@POSS) as the base platform. A simple copolymerization occurred between 3-acrylamidophenylboronic acid (AAPBA) and the residual end vinyl groups supplied by the substrate. Here the special emphasis was placed on the octavinyl POSS, which not only acted as the building blocks for a hybrid architecture but also facilitated the process of grafting boronate groups onto the surface of POSS based nanomagnetic composite (Fe{sub 3}O{sub 4}@POSS). The successful immobilization of affinity ligand-AAPBA on the Fe{sub 3}O{sub 4}@POSS was confirmed by Fourier transform infrared (FT-IR), elemental analysis, inductively coupled plasma atomic emission spectrometer (ICP-AES), field emission scanning electron microscope. A magnetic solid-phase extraction (MSPE) for cis-diols enrichment was developed using the as-prepared Fe{sub 3}O{sub 4}@POSS-AAPBA material as an affinity sorbent and three catecholamines (CAs), namely noradrenaline, epinephrine and isoprenaline, as model analytes. Under the optimal extraction conditions, sensitive and simultaneous analysis of three CAs from the urine sample was achieved by high-performance liquid chromatography with UV detection (HPLC-UV). The limits of detection (LOD, S/N = 3) and the limits of quantitation (LOQ, S/N = 10) for the target analytes were 0.81–1.32 ng mL{sup −1} and 2.70–4.40 ng mL{sup −1}, respectively. Also good recoveries (85.5–101.7%) and repeatability (RSD≤10.1%) were obtained by this method. This work not only showed a facility for the utilization of Fe{sub 3}O{sub 4}@POSS as a substrate for constructing a boronate functionalized nanomagnetic sorbent, but also demonstrated the capability of the derived material for recognition of trace amount of cis-diols biomolecules presented in complicated biological matrices

  4. Clay Minerals: Adsorbophysical Properties

    International Nuclear Information System (INIS)

    Kotova, O

    2013-01-01

    The structure and features of surfaces of clay minerals (kaolin, montmorillonite, etc) have an important scientific and practical value. On the surface the interrelation of processes at electronic, atomic and molecular levels is realized. Availability of mineral surface to external influences opens wide scientific and technical opportunities of use of the surface phenomena, so the research of crystal-chemical and crystal-physical processes in near-surface area of clay minerals is important. After long term researches of gas-clay mineral system in physical fields the author has obtained experimental and theoretical material contributing to the creation of the surface theory of clays. A part of the researches is dedicated to studying the mechanism of crystal-chemical and crystal-physical processes in near surface area of clay mineral systems, selectivity of the surface centers to interact with gas phase molecules and adsorbophysical properties. The study of physical and chemical properties of fine clay minerals and their modification has a decisive importance for development of theory and practice of nanotechnologies: they are sorbents, membranes, ceramics and other materials with required electronic features

  5. Biocatalytic approach for polymer synthesis and polymer encapsulation in mesoporous materials

    Science.gov (United States)

    Ford, Christy

    The goal of this research is to encapsulate enzymatically synthesized polymers within the pores of mesoporous silica. In order to fully understand the effect of polymer incorporation on mesoporous silica structure, the effect of dopant and polymer on micelle shape, the effect of dopant on the final mesoporous silica structure, and the effect of incorporating polymer within mesoporous silica are investigated. Direct entrapment of aromatic molecules within cationic micelles to ultimately fabricate tailored, functional mesoporous silica/polymer composites is investigated. Specifically, the influence of 4-ethylphenol and aniline on the shape of cetyltrimethylammonium bromide (CTAB) micelles and on the structure of mesoporous silica synthesized via the micellar templating is investigated. Small angle neutron scattering indicates that the dopant affects the micellar size, micellar arrangement, and the domain size over which the arrangement extends. Cryo-TEM offers further insight into the micellar shape. The effect of the dopant-to-surfactant molar ratio on the structure of surfactant-templated mesoporous silica is characterized by x-ray diffraction, transmission electron microscopy, and nitrogen sorption techniques. The mesoporous silica undergoes a transition from hexagonal to lamellar with increasing dopant-to-surfactant molar ratio for both 4-ethylphenol and 2-naphthol, suggesting a possible change in the template morphology. A better understanding of the relation between dopant, micellar shape, and mesoporous structure plays a critical role in the development of polymer-ceramic nanocomposites with novel electrooptical, conductive, and fluorescent properties. A novel method for encapsulating polymers in mesoporous silica is presented. The method involves enzymatic synthesis of polyphenols and polyaromatic amines in micellar aggregates, and subsequently condensing silica at the surfactant-water interface. Thus, poly(4-ethylphenol), poly(2-naphthol), and polyaniline

  6. Experimental and modeling studies of clay/polydicyclopentadiene resin nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra

    Hybrid organic-inorganic nanocomposites have received considerable attention during the last five years due to their unexpected properties. This work incorporated nanodispersed organically modified montmorillonite clay into polydicyclopentadiene resin matrices. Montmorillonite consists of 1 nm platelet sheets with a 2:1 structure, consisting of an alumina octahedral layer sandwiched between two silica tetrahedral layers. The relative weak forces between platelets allow small molecules like water, solvents and monomers as well as polymers, to enter into the interlayer spacings between the platelet sheets. In-situ polymerization of highly delaminated clay/dicyclopentadiene (DCPD) dispersions was used to prepare clay/polydicyclopentadiene (polyDCPD) nanocomposites. Highly delaminated composites were characterized using X-ray diffraction, X-ray scattering and high resolution TEM. Composites with 0.5--1 weight percent of clay had higher Tg values and flexural moduli. The flow properties of the organically-modified montmorillonite/DCPD liquid dispersions were examined using a co-rotating viscometer. The dispersions with clay concentrations higher than 0.5wt% clay in DCPD showed thixotropic flow behavior. Small angle neutron scattering (SANS) experiments were performed to obtain anisotropic scattering of highly delaminated clay in DCPD due to the orientation of clay platelets and tactoids in the shear field. No anisotropic scattering was observed. The reason for this unexpected result is not yet understood. Highly delaminated organically-modified clay composites were examined using small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS). The SANS data from 0.5, 1 and 2wt% clay/polyDCPD composites with 2 different types of clay were fitted to the stacked disk model. The average number of clay layers per tactoid was predicted by fitting the experimental data to the stacked disk model. Extensive high-resolution TEM analyses were performed on

  7. Properties of fired bodies made from Tanzanian talc-clay mixes for ...

    African Journals Online (AJOL)

    Fired properties of talc-clay mixed bodies of different compositions were investigated for ceramic applications. Clays from Pugu and Malangali and talcs from two different sites in Kikombo deposits in Dodoma Region were used. Chemical analyses, X-ray analysis and Differential Thermal analysis for clays and talcs were ...

  8. Gassmann Modeling of Acoustic Properties of Sand-clay Mixtures

    Science.gov (United States)

    Gurevich, B.; Carcione, J. M.

    The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief's velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.This difference is explained by the fact

  9. Mesoporous silica with fibrous morphology: a multifunctional core–shell platform for biomedical applications

    International Nuclear Information System (INIS)

    Atabaev, Timur Sh; Hong, Nguyen Hoa; Lee, Jong Ho; Han, Dong-Wook; Lee, Jun Jae; Hwang, Yoon-Hwae; Kim, Hyung-Kook

    2013-01-01

    Multifunctional mesoporous silica nanocomposites are attractive carriers for targeted drug delivery in nanomedicine. Although promising developments have been made in the fabrication of multifunctional mesoporous silica nanocomposites, the design and mass production of novel multifunctional carriers are still challenging. This paper reports the facile one-pot fabrication of a multifunctional inorganic composite composed of superparamagnetic Fe 3 O 4 nanoparticles and coated dye-functionalized mesoporous silica with a high specific surface area. The resulting composite particles had a tunable particle size, special open pore channels with high specific surface area, which is quite favorable for drug loading and release properties, as well as luminescent and superparamagnetic properties suitable for targeted drug delivery and tracking. This composite exhibited low toxicity, suggesting potential biomedical applications. (paper)

  10. Sorption of ions Pb2+ by cryogels on the basis of polyvinyl alcohol and bentonite clay

    Directory of Open Access Journals (Sweden)

    А. Seralin

    2012-03-01

    Full Text Available Cryogels on the basis of polyvinyl alcohol and bentonite clay were synthesized. Influences of factors of environment (pH, temperature on properties of composites and them sorption ability were considered. In given article it is resulted sorption kinetics of lead ions on bentonite clay, and also composite cryogel on the basis of polyvinyl alcohol and bentonite clay. It was established that composite cryogels shows much bigger sorption ability.

  11. Magnetic mesoporous material for the sequestration of algae

    Science.gov (United States)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  12. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    Science.gov (United States)

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  13. Processing and characterization of Polystyrene/cornstarch/organophilic clay hybrids

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan R. de; Amorim, Ywrrenan C.; Andrade, Cristina T. de

    2011-01-01

    Polystyrene/cornstarch composite blends with organophilic Cloisite 15A were prepared in an internal mixer in the presence of maleic anhydride (MA). The contents of clay were 1, 3 and 5%, based on the weight of the blend. The results obtained by X-ray diffraction revealed significant intercalation and exfoliation of clay particles within the polymeric moiety, which indicate increased interaction between the components of the nanocomposites. Thermogravimetric analysis results revealed the increase in thermal stability for the compatibilized blends in relation to the noncompatibilized PS/starch blends. The composites showed better thermal stability with increasing clay content. (author)

  14. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  15. Experimental design applied optimization of a state in epoxy clay dispersion

    International Nuclear Information System (INIS)

    Paz, Juliana D'Avila; Bertholdi, Jonas; Folgueras, Marilena Valadares; Pezin, Sergio Henrique; Coelho, Luiz Antonio Ferreira

    2010-01-01

    This paper presents some analysis showed that the exfoliation / intercalation of a montmorillonite clay in epoxy resin such as viscosity, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry (TG). Increasing the viscosity of epoxy resin diglycidyl ether bisphenol A with the addition of clay associated with the sonification system at the time of dispersion is a good indication of exfoliation. The X-ray diffraction already cured composite shows a decrease of crystallinity of clay and EDS microanalysis of SEM, non-uniform dispersion of clay in epoxy resin. Thermal analysis TG composite clay / epoxy shows an increase in thermal stability relative to pure epoxy. (author)

  16. An X-ray tomography study of the influence of hydration on multiscale organization of swelling clay

    International Nuclear Information System (INIS)

    Pret, D.; Faurel, M.; Ferrage, E.; Tertre, E.; Pelletier, M.; Bihannic, I.; Villieras, F.; Robinet, J.C.

    2010-01-01

    Document available in extended abstract form only. For clay based materials, studying the organization of mineral skeleton and pore space as well as water distribution remains a key and challenging task. This is needed to fully understand and model their macroscopic hydro-mechanical or transport properties. Especially when swelling clay minerals are involved, such materials are well known to represent spatially heterogeneous and anisotropic media from the nanometre (i.e., the crystal/interlayer scale) to the centimetre scale (i.e., the sample size involved in macroscopic experiments). Probing their organization over this extremely large scale range requires the combination of different techniques providing quantitative results feeding global balances. As clay organization depends on the resin used during embedding process or on content/composition of pore water, the coupling of different techniques is possible only when similar environmental conditions are used. Moreover, constraints on data acquisition or treatment actually does not allow the quantitative study of water saturated and compacted clay samples by electron microscopy or X-ray diffraction, i.e., in the main organization state involved in nuclear waste repositories. A preliminary, technically possible but still challenging task is to couple different methods quantitatively for studying the impact of hydration on organization at different scales of unsaturated samples. In addition of the cross-validation of the methods used, constraints on organization and processes involved just below water-saturation conditions could be provided. An alternative way for the study of the impact of hydration at different organization scales is to use the same technique, here the laboratory or synchrotron-based X-ray tomography, on different controlled macroscopic samples which mimic either only one swelling crystal (here a mono-crystal of vermiculite) or one oriented clay powder grain (here a mono-aggregate of purified MX

  17. Clay mineral variations near Pennsylvanian sandstone channels

    International Nuclear Information System (INIS)

    Shaffer, N.R.; Indiana Univ., Bloomington, IN; Murray, H.H.

    1993-01-01

    Large linear sandstone bodies in the Illinois Basin have been interpreted as representing fresh water river channels that flowed through generally marine to brackish Pennsylvanian deltaic environments; fresh water from such channels could have affected deposition of adjacent coal-bearing rocks. Low-sulfur coals are commonly associated with the sandstone bodies, which may also host petroleum, uranium, fresh water, or other resources. Thus techniques to locate such channels would be economically useful. Previous studies have shown that clay mineral distributions and bulk chemistries of clay-rich sediments are affected when fresh waters mix with sea water. Such changes associated laterally with freshwater channels might have caused distinctive clay mineral or chemical patterns to develop around the channels. Mineralogies and chemical compositions of more than 500 mudrock samples taken immediately above the springfield Coal Member of the Petersburg Formation from 52 sections located from channel margins to 63 miles distant were determined to discern patterns that could aid in finding channels

  18. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  19. Microbiological characterisation of southern African medicinal and cosmetic clays.

    Science.gov (United States)

    Mpuchane, Sisai F; Ekosse, Georges-Ivo E; Gashe, Berhanu A; Morobe, Isaac; Coetzee, Stephan H

    2010-02-01

    The effects of traditionally used medicinal and cosmetic clays in southern Africa on selected microorganisms were studied using microbiological media. The clay pH, microchemical composition, kind of associated microorganisms and antimicrobial activity of clays against test microorganisms were determined. The clays contained varying numbers of microorganisms which ranged from 0 up to 105 CFU/g. Clay pH ranged from 2.3-8.9. Neither Escherichia coli, nor other faecal coliforms were detected. Clays of pH value of Clays which were active against test microorganisms had Na(2)O, Al(2)O(3), SiO(2), SO(3), CuO or Cl(2)O as major components. Microbial activity of clays was attributed mainly to low pH but cations such as Cu, Al, S or Cl and various anions might have contributed to the microbicidal effects. No antimicrobial activity was established for many of the clays commonly used in the treatment of common ailments of microbial origin.

  20. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  1. Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel

    Directory of Open Access Journals (Sweden)

    A. Keyvani

    2017-04-01

    Full Text Available In this study, mesoporous silica served as a host for corrosion inhibitor. This material could adsorb and release corrosion inhibitor in different aqueous media. However, the extent of corrosion inhibitor release in the alkaline media was higher. By dispersing 1 wt% mesoporous silica loaded with sodium molybdate in the epoxy layer, a protective composite coating was produced. The corrosion properties of the composite coatings were assessed by electrochemical impedance spectroscopy. Results showed higher corrosion resistance of epoxy/mesoporous silica loaded with inhibitor in the NaCl media for eight weeks of immersion in comparison with epoxy/mesoporous silica. Corrosion inhibitors released from nano-containers in the response to corrosion damage at the interface zone.

  2. Pd-Pt Catalysts on Mesoporous SiO2-Al2O3 with Superior Activity for HDS of 4,6-Dimethyldibenzothiophene: Effect of Metal Loading and Support Composition

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Gulková, Daniela; Kaluža, Luděk; Kupčík, Jaroslav

    2015-01-01

    Roč. 179, DEC 2015 (2015), s. 44-53 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 ; RVO:61388980 Keywords : Pd-Pt catalyst * mesoporous silica-alumina * 4,6-DMDBT Subject RIV: CF - Physical ; Theoretical Chemistry ; CA - Inorganic Chemistry (UACH-T) Impact factor: 8.328, year: 2015

  3. Mesoporous metal oxide graphene nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  4. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  5. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  6. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu

    2012-05-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review gives an introduction to recently developed mesoporous silicas with emphasis on their complicated structures and synthesis mechanisms. In addition, two powerful techniques for solving complex mesoporous structures, electron crystallography and electron tomography, are compared to elucidate their respective strength and limitations. Some critical issues and challenges regarding the development of novel mesoporous structures as well as their applications are also discussed. © 2011 Elsevier Ltd.

  7. The Clay that Cures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Hydrotalcite - The Clay that Cures. N Bejoy. General Article Volume 6 Issue 2 February 2001 pp 57-61. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/02/0057-0061. Author Affiliations.

  8. Clay and concrete brick

    CSIR Research Space (South Africa)

    Dlamini, MN

    2014-03-01

    Full Text Available Brick is one of the most used and versatile building materials in use today. Bricks can be defined as modular units connected by mortar in the formation of a building system or product. Commonly the word brick is used to refer to clay bricks, which...

  9. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks.

    Science.gov (United States)

    Chen, Yu; Shi, Jianlin

    2016-05-01

    Organic-inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state-of-art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition-performance relationship of MONs of well-defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic-inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  11. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  12. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  13. Possibility of inferring some general characters of deep clay deposits by means of superficial observations

    International Nuclear Information System (INIS)

    Anselmi, B.; Antonioli, F.; Brondi, A.; Ferretti, O.; Gerini, V.

    1984-02-01

    The aim of this work has been to infer mineralogical and sedimentological characteristics of deep clay deposits by means of low cost observations on surficial clay outcroppings. Main research objectives considered in the programme have been: a) assessing regional distribution pattern of different, if existing, clay mineralogical associations; b) assessing possible relationships between parent rock of clay formations and mineralogy of sediments derived from; c) assessing important variations of clay bodies according to the evolution of the basins. The researches have been developed on the most representative Italian clay basins, following this programme: a) systematic sampling and mineralogic analysis of the pliocenic clay formations; b) assessment and development of investigations on clay mineralogic provinces, possibly identified in the preceding general phase by means of investigations on the variations of structural and mineralogical characteristics of significative clay deposits. The final results have been: a) clay mineralogic associations show a regional distribution pattern, i.d. the existence of many mineralogic provinces at the Italian scale is demonstrated; b) besides depositional mechanisms the mineralogic differential distribution pattern is due also to the lithologic nature of parent rock of the clay. These results account for the possibility of forecasting general mineralogic composition of deep clay bodies starting from low cost observations on surficial clay outcroppings. A practical implication is the possibility of orienting detailed expensive researches only toward those situations probabilistically displaying more appropriate characters

  14. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  15. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  16. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  17. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  18. SYNTHESIS OF MESOPOROUS TITANIUM OXIDE AND ...

    African Journals Online (AJOL)

    The catalytic activity of Ru/m-TiO2 for methanol decomposition to carbon monoxide and hydrogen was investigated. It is found that synthesizing conditions of mesoporous materials affect the catalytic activity of Ru/m-TiO2. KEY WORDS: Mesoporous titanium oxide, Methanol decomposition, Ruthenium, Catalyst support, ...

  19. Mesoporous carbonates and method of making

    Science.gov (United States)

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  20. Water-clay interactions. Experimental study

    International Nuclear Information System (INIS)

    Gaucher, Eric

    1998-01-01

    Clay minerals contribute to the chemical composition of soil and sediment groundwaters via surface and dissolution/precipitation reactions. The understanding of those processes is still today fragmentary. In this context, our experimental purpose is to identify the contribution of each reaction in the chemical composition of water in a water/clay System. Kaolinite, illite, montmorillonite are the reference clays. After a fine mineralogical study, the exchange equilibria between K + and H + are characterised. Different exchange sites are identified and the exchange capacities and selectivity coefficients are quantified. Then, mixtures of the three clays are equilibrated with acidic and basic (I≤10 -2 M) solutions at 25 deg. C, 60 deg. C, 80 deg. C, during 320 days. The System evolution is observed by chemical analysis of the solutions and mineralogical analysis by TEM. We show that montmorillonite is unstable compared to the kaolinite/amorphous silica assemblage for solutions of pH<7. Aqueous silica is probably controlled by the kinetics of dissolution of the montmorillonite in moderate pH media. In more acidic solutions, amorphous silica precipitates. Al is under control of 'kaolinite' neo-formations. The use of the selectivity coefficients in a numerical simulation shows that K + concentration depends on exchange reactions. The pH has a more complicated evolution, which is not completely understood. This evolution depends on both exchange equilibria and organic acid occurrence. In this type of experiments, we have demonstrated that the equilibrium equations between smectite and kaolinite are inexact. The problem of the thermodynamic nature of clays remains and is not resolved by these solubility experiments. (author) [fr

  1. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  2. Clay characterization of Monte Alegre-RN, Brazil

    International Nuclear Information System (INIS)

    Alencar, M.I.; Ferreira, O.F.; Ren, D.G.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study aimed to characterize the clay from the municipality of Monte Alegre in Rio Grande do Norte. Clay (popularly known as tabatinga) is used in brick kilns for producing bricks and tiles. This study also verified the possibility of using this for industrial ceramics and ceramic tiles. The following techniques were used for characterization: chemical and mineralogical analysis which found the composition of this material the presence of quartz and kaolinite, plasticity index where the result was that the clay has plasticity null; solid residue content was 60, 19%, the determination of loss on ignition was 8.70% on checking the color of the burning got creamy clear. (author)

  3. Characterization of clay minerals; Caracterizacion de minerales arcillosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A. [Gerencia de Ciencias Basicas, Direccion de Investigacion Cientifica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  4. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Marc in het Panhuis

    2011-04-01

    Full Text Available The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

  5. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin

    2014-12-03

    Recently, preparation of mesoporous fibers has attracted extensive attentions because of their unique and broad applications in photocatalysis, optoelectronics, and biomaterials. However, it remains a great challenge to fabricate thoroughly mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a proof of concept, the as-fabricated mesoporous TiO2 fibers exhibit much higher photocatalytic activity and stability than both the conventional solid counterparts and the commercially available P25. The abundant vapors released from the introduced foaming agents are responsible for the creation of pores with uniform spatial distribution in the spun precursor fibers. The present work represents a critically important step in advancing the electrospinning technique for generating mesoporous fibers in a facile and universal manner.

  6. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    2013-01-01

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  7. Laboratory study of the Flandres clay swelling

    International Nuclear Information System (INIS)

    Khaddaj, Said

    1992-01-01

    The first chapter contains a survey about the swelling of soils, and about the experimental methods used to characterize this phenomenon. A classification of soils in function of their swelling potential is proposed. The second chapter deals with the properties of Flandres clay. Chemical and mineralogical compositions, mechanical properties and free swell index are given. The third chapter contains a presentation of the study of the swelling potential of Flandres clay using the oedometer. Four methods are described and used (free-swell, different pressures, pre-swell and direct-swell). A numerical simulation of free-swell tests is also given. The fourth chapter includes a presentation of the study of the swelling behaviour of Flandres clay using a triaxial cell. Three methods are used: free-swell, pre-swell and different-pressures. The last chapter contains a parametric study of the swelling behaviour of Flandres clay. The influence of some parameters such as sample thickness, initial water content, vertical load and load history is presented. (author) [fr

  8. Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases

    Science.gov (United States)

    Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng

    2016-01-12

    A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.

  9. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  10. Influence of clay organic modifier on morphology and performance of poly(ε-caprolactone/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2015-01-01

    Full Text Available Two series of poly(e-caprolactone nanocomposites with different organo-modified clays (1 to 8 wt% were prepared by the solution casting method. Organoclays with polar (Cloisite®C30B and nonpolar (Cloisite®C15A organic modifier and with different miscibility with poly(e-caprolactone matrix, were chosen. Exfoliated and/or intercalated nanocomposite’s structures were obtained by using high dilution and an ultrasonic treatment for the composite preparation. The effect of the surface modification and clay content on the morphology, mechanical and thermal properties of the nanocomposites was studied. Scanning electron microscopy excluded the formation of microcomposite. The wide-angle X-ray diffraction analysis revealed that the tendency toward exfoliated structure is higher for the Cloisite®C30B, which had better miscibility with poly(e-caprolactone matrix. Differences in spherulites’ sizes and morphology between two series of the nanocomposites were observed by the optical microscopy performed on as-casted films. Enthalpies of fusion and degrees of crystallinity were higher for nanocomposites than for neat poly(e-caprolactone and increase with the clay loading in both series, as a consequence of the clay nucleating effect. Decreased thermal stability of nanocomposites was ascribed to thermal instability of organic modifiers of the clays. The Halpin-Tsai model was used to compare the theoretically predicted values of the Young’s modulus with experimentally obtained ones in tensile tests.[Projekat Ministarstva nauke Republike Srbije, br. 172062

  11. A laboratory experiment for determining both the hydraulic and diffusive properties and the initial pore-water composition of an argillaceous rock sample: a test with the Opalinus clay (Mont Terri, Switzerland).

    Science.gov (United States)

    Savoye, S; Michelot, J-L; Matray, J-M; Wittebroodt, Ch; Mifsud, A

    2012-02-01

    Argillaceous formations are thought to be suitable natural barriers to the release of radionuclides from a radioactive waste repository. However, the safety assessment of a waste repository hosted by an argillaceous rock requires knowledge of several properties of the host rock such as the hydraulic conductivity, diffusion properties and the pore water composition. This paper presents an experimental design that allows the determination of these three types of parameters on the same cylindrical rock sample. The reliability of this method was evaluated using a core sample from a well-investigated indurated argillaceous formation, the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL) (Switzerland). In this test, deuterium- and oxygen-18-depleted water, bromide and caesium were injected as tracer pulses in a reservoir drilled in the centre of a cylindrical core sample. The evolution of these tracers was monitored by means of samplers included in a circulation circuit for a period of 204 days. Then, a hydraulic test (pulse-test type) was performed. Finally, the core sample was dismantled and analysed to determine tracer profiles. Diffusion parameters determined for the four tracers are consistent with those previously obtained from laboratory through-diffusion and in-situ diffusion experiments. The reconstructed initial pore-water composition (chloride and water stable-isotope concentrations) was also consistent with those previously reported. In addition, the hydraulic test led to an estimate of hydraulic conductivity in good agreement with that obtained from in-situ tests. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  13. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.

    Science.gov (United States)

    Park, Junsu; Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Yi, Jongheop

    2013-01-18

    Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g(-1) during 50 cycles at 2 A g(-1). The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.

  14. Characterization of Ibere and Oboro clay deposits in Abia state ...

    African Journals Online (AJOL)

    Ibere and Oboro clay deposits in Ikwuano, Abia State of Nigeria were characterized for refractory and other applications. The characteristics investigated were mineralogical composition, chemical composition, plasticity, linear shrinkage, apparent porosity, bulk density, cold crushing strength, thermal shock resistance, ...

  15. Pozzolanic properties of clays used for shelter construction in Ghana ...

    African Journals Online (AJOL)

    Pozzolanas produced from clay and bauxite wastes have been blended with Portland cement to produce Portland-Pozzolana composite cement. The production processes, including nodulization, are discussed. The mechanical properties of the composite cement, such as compressive strength and setting times, were ...

  16. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    Science.gov (United States)

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nanocomposites of poly(methyl methacrylate (PMMA and montmorillonite (MMT Brazilian clay: A tribological study

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Nanocomposites of PMMA+MMT Brazilian clays were developed by mechanical mixing in co-rotational twinscrew extrusion and injection molding with varying weight fraction of MMT Brazilian clays. The clays were purchased in crude form and then washed and purified to extract the organic materials and contaminants. Dynamic friction and wear rate of these composites were studied as a function of concentration of the Brazilian clay. With an increase in the amount of MMT Brazilian clay, the dynamic friction of the nanocomposites increases, a clear but not large effect. It can be explained by sticky nature of clay; clay in the composite is also on the surface and sticks to the partner surface. The wear rate as a function of the clay concentration passes through a minimum at 1 wt% MMT; at this concentration the clay provides a reinforcement against abrasion. At higher clay concentrations we see a dramatic increase in wear – a consequence of clay agglomeration and increased brittleness. The conclusions are confirmed by microscopy results.

  18. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation.

    Science.gov (United States)

    Serrà, Albert; Montiel, Manuel; Gómez, Elvira; Vallés, Elisa

    2014-03-28

    A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane's channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

  19. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Albert Serrà

    2014-03-01

    Full Text Available A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane’s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

  20. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    Science.gov (United States)

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  1. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Mohd Sokri

    2016-03-01

    Full Text Available Polysilazanes functionalized with alkoxy groups were designed and synthesized as single source precursors for fabrication of micro and mesoporous amorphous silica-based materials. The pyrolytic behaviors during the polymer to ceramic conversion were studied by the simultaneous thermogravimetry-mass spectrometry (TG-MS analysis. The porosity of the resulting ceramics was characterized by the N2 adsorption/desorption isotherm measurements. The Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopic analyses as well as elemental composition analysis were performed on the polymer-derived amorphous silica-based materials, and the role of the alkoxy group as a sacrificial template for the micro and mesopore formations was discussed from a viewpoint to establish novel micro and mesoporous structure controlling technologies through the polymer-derived ceramics (PDCs route.

  2. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    Science.gov (United States)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  3. Organoclays from several Latvian clays

    International Nuclear Information System (INIS)

    Freimanis, J.; Actins, A.; Stinkule, A.; Svinka, R.; Svinka, V.

    2003-01-01

    Vermiculite of the Kalkupite deposit (North-Western part of Latvia) differs significantly from its classical analogs possessing a well-known capability to form volume organo clays. This Latvian vermiculite hitherto could be used only in non-swelling surface organo clays synthesis the practical use of which is obscure. Therefore, any further organo clay investigations of Latvian vermiculites seem undesirable. On the other hand, the present study reveals the usefulness of Latvian Triassic Vadakste smectite (Western part of Latvia) in preparing of lipophilic, swelling organo clays by means of common standard procedures. For this purpose the Latvian smectite regarding its real cation exchange capacity is only slightly inferior to its arbitrary standard - Lithuanian Shaltishkiai smectite - believed to be the smectite-richest clay mineral in Baltic region. The present study also enables a prognosis of further possible organo clay investigations in Latvia. First, the quaternary ammonium cations should be varied to get Vadaksteitype organo clays possessing different rheological properties. Then, the most suited ammonium surfactants should tested also with other Latvian Triassic smectite clays compromising their commercial availability with the corresponding organo clays maximally possible practical value. As an independent theoretical investigations of the other physicochemical properties, parallel with the detailed X-ray diffractometry of the prepared organo clays. (authors)

  4. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Science.gov (United States)

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  6. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    Science.gov (United States)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  7. Mesoporous SnO2-carbon core–shell nanostructures with superior electrochemical performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, L B; Yin, X M; Mei, L; Li, C C; Lei, D N; Zhang, M; Li, Q H; Xu, Z; Xu, C M; Wang, T H

    2012-01-01

    SnO 2 -carbon nanostructure composites are prepared by a simple hydrothermal method. The composite exhibits unique structure, which consists of a mesoporous SnO 2 core assembled of very small nanoparticles and a carbon shell with 10 nm thickness. The mesoporous SnO 2 -carbon core–shell nanostructures manifest superior electrochemical performance as an anode material for lithium ion batteries. The reversible specific capacity of the composite is about 908 mAh g −1 for the first cycle and it can retain about 680 mAh g −1 after 40 charge/discharge cycles at a current density of 0.3 C. Moreover, it shows excellent rate capability even at the high rate of 4.5 C. The enhanced performance was attributed to the mesoporous structure and a suitable carbon coating. (paper)

  8. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation.

    Science.gov (United States)

    Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V

    2008-04-01

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials.

  9. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    Directory of Open Access Journals (Sweden)

    Simone P S Ribeiro et al

    2008-01-01

    Full Text Available Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI, the UL-94 rating and thermogravimetric analysis (TGA. The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials.

  10. Polyethersulfone/clay membranes and its water permeability

    International Nuclear Information System (INIS)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena; Leite, Amanda Melissa Damiao

    2017-01-01

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  11. Mesoporous silica-coated NaYF4:Yb3+, Er3+ particles for drug release

    International Nuclear Information System (INIS)

    Kong Deyan; Fan Yong; Zhang Cuimiao; Lin Jun

    2010-01-01

    NaYF 4 :Yb 3+ , Er 3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. These NaYF 4 :Yb 3+ , Er 3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO 20 PO 70 EO 20 (P 123) as structure-directing agent and other materials. The composites can load ibuprofen and release the drug in the phosphate buffer solution (PBS). The composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively. The composites have the mesoporous structure. In addition, the composites emit red fluorescence (from Er 3+ ) under 980 nm near infrared laser excitation, which can be used as fluorescent probes in the drug-delivery system.

  12. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  13. Drug Loading of Mesoporous Silicon

    Science.gov (United States)

    Moffitt, Anne; Coffer, Jeff; Wang, Mengjia

    2011-03-01

    The nanostructuring of crystalline solids with low aqueous solubilities by their incorporation into mesoporous host materials is one route to improve the bioavailability of such solids. Earlier studies suggest that mesoporous Si (PSi), with pore widths in the range of 5-50 nm, is a candidate for such an approach. In this presentation, we describe efforts to load curcumin into free-standing microparticles of PSi. Curcumin is a compound extracted from turmeric root, which is an ingredient of curry. Curucmin has shown activity against selected cancer cell lines, bacteria, and other medical conditions. However, curcumin has a very low bioavailability due to its extremely low water solubility (0.6 μ g/mL). Incorporation of curcumin was achieved by straightforward loading of the molten solid at 185circ; C. Loading experiments were performed using PSi particles of two different size ranges, 45-75 μ m and 150-250 μ m. Longer loading times and ratio of curcumin to PSi leads to a higher percentage of loaded curcumin in both PSi particle sizes (as determined by weight difference). The extent of curcumin crystallinity was assessed by x-ray diffraction (XRD). The solubility and release kinetics of loaded curcumin from the PSi was determined by extraction into water at 37circ; C, with analysis using UV-VIS spectrometry. NSF-REU and TCU.

  14. Rheological properties of sodium smectite clay

    International Nuclear Information System (INIS)

    Boergesson, L.; Hoekmark, H.; Karnland, O.

    1988-12-01

    The rheological properties of Na-smectite Mx-80 have been investigated by various laboratory tests. The investigations include determination of the hydraulic conductivity, the undrained stress-strain-strength properties, the creep properties, the compression and swelling properties in drained and undrained conditions and the undrained thermomechanical properties. Measurements have been made at different densities, clay/sand mixtures and pore water compositions. The influence of temperature, rate of strain and testing technique has also been considered. The investigation has led to a supply of basic data for the material models which will be used at performance calculations. The results have also increased the general understanding of the function of smectitic clay as buffer material. The microstructural behaviour has been considered at the validation of the different test results and the validity of the effective stress theory has been discussed. Comparisons with the properties of Ca-smectite have also been made. (orig.)

  15. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  16. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  17. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  18. Liquid Photonic Crystals for Mesopore Detection.

    Science.gov (United States)

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mesoporous Silicon Far Infrared Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make optical filters based on mesoporous silicon multilayers, for use at cold temperatures in the far infrared...

  20. Mesoporous Silicon Far Infrared Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make optical filters based on mesoporous silicon multilayers, for use at cold temperatures in the far infrared...

  1. Nanosized silver?anionic clay matrix as nanostructured ensembles with antimicrobial activity

    OpenAIRE

    2009-01-01

    Abstract Nanostructured ensembles of silver nanoparticles/zinc-substituted anionic clay matrix (Ag/ZnLDH) were obtained by a simple synthetic route in which reconstruction of the layered clay, synthesis of the silver nanoparticles and their organisation on the clay surface took place in a single step at room temperature. The morphology, composition and phase structure of the prepared powders were characterised by X-ray diffraction, infrared spectroscopy, transmission electron micro...

  2. The Effect of Sawdust Addition to Physical Body of Kidul Clay Based Earthware Ceramic

    OpenAIRE

    Sundari, Komang Nelly

    2016-01-01

    The research on "The Effect of the addition of sawdust on the physical properties of ceramic body of Kidul clay-based Earthenware " has been performed with different percentages. The sawdust used is wood shavings waste ofbuilding materials. Based on the results ofehemical analysis, sawdust is known to have a tendency as a fuser, whereas Kidul clay contain enough clay substance / loam, feldspar and quartz minerals. This study aims to determine the physical properties of the composite body peri...

  3. Numerous nanopores developed in organo-clay complexes during the shale formations

    Science.gov (United States)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  4. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption.

    Science.gov (United States)

    Xu, Hailong; Yin, Xiaowei; Zhu, Meng; Han, Meikang; Hou, Zexin; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2017-02-22

    In this work, mesoporous carbon hollow microspheres (PCHMs) with designable mesoporous shell and interior void are constructed by a facile in situ stöber templating approach and a pyrolysis-etching process. The PCHMs are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectra, Raman spectroscopy, and nitrogen adsorption and desorption system. A uniform mesoporous shell (pore size 4.7 nm) with a thickness of 55 nm and a cavity size of 345 nm is realized. The composite of paraffin mixed with 20 wt % PCHMs exhibits a minimum reflection coefficient (RC min ) of -84 dB at 8.2 GHz with a sample thickness of 3.9 mm and an effective absorption bandwidth (EAB) of 4.8 GHz below -10 dB (>90% electromagnetic wave is attenuated). Moreover, the composite of phenolic resin mixed with 20 wt % PCHMs exhibits an ultrawide EAB of 8 GHz below -10 dB with a thinner thickness of 2.15 mm. Such excellent electromagnetic wave absorption properties are ascribed to the large carbon-air interface in the mesoporous shell and interior void, which is favorable for the matching of characteristic impedance as compared with carbon hollow microspheres and carbon solid microspheres. Considering the excellent performance of PCHMs, we believe the as-fabricated PCHMs can be promising candidates as highly effective microwave absorbers, and the design philosophy can be extended to other spherical absorbers.

  5. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p...

  6. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    His work includes organic synthesis and reaction mechanisms mainly in the area of organosilicon chemistry. Presently he is also working on organic synthesis under solvent- free conditions and using clay-catalyses. Keywords. Montmorillonite, ion-exchange, clay-nanomaterials, dehydration pyrolysis, rearrangement, steric.

  7. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Organic Synthesis using Clay Catalysts - Clays for 'Green Chemistry'. Gopalpur Nagendrappa. General Article Volume 7 Issue 1 January 2002 pp 64-77. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    Science.gov (United States)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  9. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    In the northern part of Vendsyssel, Denmark, the deposits made in the late glacial time are formed by the sea. The deposits are named after two mussels: Yoldia clay and Saxicava sand. However, in the southern part of Vendsyssel and in the area of Aalborg the clay and sand deposits from the late...... glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  10. Influence of the barite tenors of the Jaicos, Piaui, Brazil, clays on the ceramic properties of electric insulator porcelains

    International Nuclear Information System (INIS)

    Correa, W.L.P.; Lima, M.B.; Carvalho, F.M.S.

    2009-01-01

    The clays of the Municipality of Jaicos, Piaui, has been used as raw materials for the manufacture of insulators for company located in the municipality of Pedreira - Sao Paulo. It can be noticed in the clay blocks and consolidated, 'lenses' of barite. The mineralogical composition of clay and the nature of these 'lenses' were studied by chemical analysis, X-ray diffraction for mineralogical characterization. The clays are composed primarily by kaolinite, quartz, and some amount of illite and orthoclase. The presence of orthoclase does believe in a recent deposition of these clays. The 'lenses' were characterized as barite, BaSO 4 . To check the influence of barite in the composition of bodies of porcelain to insulators made up six compositions with different levels of barite, obtained their own clay. It applies, then the tests of ceramic fracture to bending, water absorption, apparent porosity to determine the effect of the introduction of barite in the compositions. (author)

  11. Spectromicroscopy of Fe distributions in clay microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grundl, T. [Univ. of Wisconsin, Milwaukee, WI (United States); Cerasari, S.; Garcia, A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  12. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  13. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  14. Mesoporous carbon-vanadium oxide films by resol-assisted, triblock copolymer-templated cooperative self-assembly.

    Science.gov (United States)

    Bhaway, Sarang M; Kisslinger, Kim; Zhang, Lihua; Yager, Kevin G; Schmitt, Andrew L; Mahanthappa, Mahesh K; Karim, Alamgir; Vogt, Bryan D

    2014-11-12

    Unlike other crystalline metal oxides amenable to templating by the combined assemblies of soft and hard chemistries (CASH) method, vanadium oxide nanostructures templated by poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) triblock copolymers are not preserved upon high temperature calcination in argon. Triconstituent cooperative assembly of a phenolic resin oligomer (resol) and an OBO triblock in a VOCl3 precursor solution enhances the carbon yield and can prevent breakout crystallization of the vanadia during calcination. However, the calcination environment significantly influences the observed mesoporous morphology in these composite thin films. Use of an argon atmosphere in this processing protocol leads to nearly complete loss of carbon-vanadium oxide thin film mesostructure, due to carbothermal reduction of vanadium oxide. This reduction mechanism also explains why the CASH method is not more generally successful for the fabrication of ordered mesoporous vanadia. Carbonization under a nitrogen atmosphere at temperatures up to 800 °C instead enables formation of a block copolymer-templated mesoporous structure, which apparently stems from the formation of a minor fraction of a stabilizing vanadium oxynitride. Thus, judicious selection of the inert gas for template removal is critical for the synthesis of well-defined, mesoporous vanadia-carbon composite films. This resol-assisted assembly method may generally apply to the fabrication of other mesoporous materials, wherein inorganic framework crystallization is problematic due to kinetically competitive carbothermal reduction processes.

  15. Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites

    NARCIS (Netherlands)

    Zhang, Wei-De; Phang, In Yee; Liu, Tianxi

    2006-01-01

    High-performance composites are produced using nanostructured clay-carbon nanotube (CNT) hybrids as a reinforcing filler. The intercalation of iron particles between the clay platelets serves as the catalyst for the growth of CNTs, while the platelets are exfoliated by the CNTs, forming the unique

  16. Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Yan, Xiaodong; Jian, Panming

    2017-11-01

    Ordered mesoporous carbon (OMC)-metal composites have attracted great attention owing to their combination of high surface area, controlled pore size distribution and physicochemical properties of metals. Herein, we report the cobalt nanoparticles/ordered mesoporous carbon (CoNPs@OMC) composite prepared by a one-step carbonization/reduction process assisted by a hydrothermal pre-reaction. The CoNPs@OMC composite presents a high specific surface area of 544m 2 g -1 , and the CoNPs are uniformly imbedded or confined in the ordered mesoporous carbon matrix. When used as a non-precious metal-containing catalyst for hydrogenation reduction of p-nitrophenol and nitrobenzene, it demonstrates high efficiency and good cycling stability. Furthermore, the CoNPs@OMC composite can be directly used to catalyze the Fischer-Tropsch synthesis for the high-pressure CO hydrogenation, and presents a good catalytic selectivity for C 5 + hydrocarbons. The excellent catalytic performance of the CoNPs@OMC composite can be ascribed to synergistic effect between the high specific surface area, mesoporous structure and well-imbedded CoNPs in the carbon matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  18. To the Problem of the Clay Particles Energy Potential Assessment

    Directory of Open Access Journals (Sweden)

    V. V. Seredin

    2017-12-01

    Full Text Available Clay is a natural material, which surface of the particles is energetically active. This clay property is widely used in the industry as sorbents. However, clay sorption activity is different for various pollutants, and work aimed to increase their sorption activity is still under way. This work objective was to study the pressure influences on the activity of the clay particles surface. The experiments showed that increase of pressure results in the decrease in the content of clay minerals, while other minerals change in different manner. It has been statistically proved that pressures P = 125 MPa and P = 750 MPa are bounding values that allows identifying the three classes. The first class is related to the pressures under 125 MPa, the second comprises the range from 125 MPa to 750 MPa, and the third class is for the pressures above 750 MPa. In each class, the intensity and direction of the proceeding of processes of mineral clay composition alteration have specific features. Based on theoretical and experimental studies it was established that the less the value of indicator Mk, the higher the energy potential of the particle surface. It achieves the maximum values (Mk = 14.7 in montmorillonite clay under pressure of 125 MPa, and, conversely, with an increase in pressure up to 2200 MPa the Mk value decreases (Mk = 17.7. A different behavior was observed in kaolinite clay. The energy potential on the particle surface increases with an increase in pressure from Mk = 26.3 to Mk = 18.8 (P = 2000 MPa. Mathematical models, which make it possible to predict energy potential on the surface of montmorillonite and kaolinite particles depending on the pressure, have been developed based on the found statistical relations

  19. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...

  20. Chemical preparation of ferroelectric mesoporous barium titanate thin films: drastic enhancement of Curie temperature induced by mesopore-derived strain.

    Science.gov (United States)

    Suzuki, Norihiro; Jiang, Xiangfen; Salunkhe, Rahul R; Osada, Minoru; Yamauchi, Yusuke

    2014-09-01

    Mesoporous barium titanate (BT) thin films are synthesized by a surfactant-assisted sol-gel method. The obtained mesoporous BT thin films show enhanced ferroelectricity due to the effective strains induced by mesopores. The Curie temperature (T(c)) of the mesoporous BT reaches approximately 470 °C. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine–grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  2. Effect of red clay on diesel bioremediation and soil bacterial community.

    Science.gov (United States)

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  3. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  4. Influence of nanoclay on properties of HDPE/wood composites

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu

    2007-01-01

    Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...

  5. From clay bricks to deep underground storage; vom lehmziegel bis zum tiefenlager -- anwendung von ton

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted.

  6. Montmorillonite clay/polypropylene (HMSPP) nanocomposites: evaluation of thermal and mechanical properties

    International Nuclear Information System (INIS)

    Komatsu, L.G.H.; Oliani, W.L.; Lugao, A.B.; Parra, D.F.

    2014-01-01

    The evaluation of HMSPP (high melt strength polypropylene) properties in nanocomposites was done in composites of 0.1; 1; 3; 5; 10 wt% of Cloisite 20A clay. The PP-g-MA (polypropylene graft maleic anhydride) was the compatibilizer agent in the process of extrusion in twin-screw. Mechanical tests performed in the nanocomposites with higher clay content showed higher values of rupture in 5 and 10 wt% of Cloisite. The thermal properties were evaluate utilizing Calorimetry Differential Exploratory (DSC) and in the sample of 10 wt% of Cloisite were observed increase of the melting temperature and increase of crystallinity. The morphology was investigated by the Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared (FTIR), in which the sample with lower clay amount, 1 wt% of Cloisite showed better dispersion of the clay. X-Ray Diffraction reported the clay intercalation in the sample with 5 wt% of clay. (author)

  7. Evaluation of natural clay Brasgel as adsorbent in removal of lead in synthetic waste water

    International Nuclear Information System (INIS)

    Lima, W.S.; Rodrigues, M.G.F.; Mota, M.F.; Patricio, A.C.L.; Silva, M.M.

    2012-01-01

    The smectite clays have high adsorption capacity and cation exchange. Due to its chemical and physical characteristics, they can be effectively used as adsorbent of pollutants (such as metal ions). The initial objective of this study was to characterize the clay Brasgel through the techniques of X-Ray Diffraction (XRD), X-Ray Spectrometry by Energy Dispersive (EDX) and nitrogen adsorption (BET method), seeking its use in removing lead (Pb 2+ ) from synthetic effluents. System was used in finite bath to assess the potential removal of lead (Pb 2+ ), following a 2 2 factorial experimental design with three center point experiments, taking as input variables: pH and initial concentrations of lead (Pb 2+ ). The clay has Brasgel clay in its composition that characterize it as a smectite clay. By having a large surface area, this clay showed great potential on the adsorption of metal ions. (author)

  8. Synthesis and characterization of organophilic clay from Cuban Chiqui Gomez bentonite

    International Nuclear Information System (INIS)

    Cortes, Guillermo R. Martin; Hennies, Wildor T.; Valera, Ticiane S.; Esper, Fabio J.; Diaz, Francisco R. Valenzuela

    2009-01-01

    Smectite are clay minerals with a layered structure and nanometric thickness, high specific area and a huge variety of uses. Consisting on stacked layers of about 1nm thickness, including two silica tetrahedral and one octahedral sheet. Properties of natural Smectite can be enhanced by organic modification, due to the substitution of the exchangeable cations in the interlayer area. In fact, the properties of the modified smectite (organophilic clay) are related to its modified chemical composition and structural parameters. The interaction of smectite clays with surfactants has an important interest in the fields of drilling fluids, paints, cosmetic, ceramic industries and others. Recent applications are: remediation of contaminated areas and polymer/clay nanocomposites. The aim of this paper is to obtain organophilic clays using a bentonite from the Chiqui Gomez deposit in Central Cuba. The raw and organophilic clays were analyzed by DRX, SEM, swelling capacity in organic solvents and others. (author)

  9. Geophagic clays: Their mineralogy, chemistry and possible human ...

    African Journals Online (AJOL)

    The primary objectives of the study were to qualitatively and quantitatively identify the mineral constituents and to determine selected elemental compositions in the clay samples in order to infer on possible human health effects. Laboratory tests performed on the samples included X-ray powder diffractometry (XRPD), ...

  10. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    In this study, an attempt was made to propose an optimization method for the quantitative determination of clay minerals in soil based on bulk chemical composition data. The fundamental principles and processes of the calculation are elucidated. Some samples were used for reliability verification of the method and the ...

  11. Vitrification and neomineralisation of bentonitic and kaolinitic clays ...

    African Journals Online (AJOL)

    ... metamorphic and/or igneous rocks. Resultant fired mineral phases depicted mineral compositions of ceramic bodies, and the study suggested that these clays could be gainfully utilized in the making of ceramic wares, subject to selected beneficiation processes. Keywords: kaolin, bentonite, vitrification, neomineralization, ...

  12. Clay mineralogy of the mud banks of Cochin

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Murty, P.S.N.

    The mineralogy of the sediments constituting the mud banks formed off Cochin, Kerala, India was studied. The clay mineral composition was used as a means of understanding the nature and source of origin of the muds. Fine fraction of the mud samples...

  13. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries.

    Science.gov (United States)

    Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo

    2013-06-07

    This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.

  14. Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Jia-Ling

    2014-04-15

    Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Study of clay chemical composition in formation of new phases in crystalline materials ceramic; Estudo da composicao quimica de argilas na formacao de novas fases cristalinas em materiais ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L., E-mail: lizandralima15@gmail.com, E-mail: lisiane@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia dos Materiais

    2016-07-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  16. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  17. Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength

    NARCIS (Netherlands)

    Schmuhl, R.; Keizer, Klaas; van den Berg, Albert; ten Elshof, Johan E.; Blank, David H.A.

    2004-01-01

    The electric field-driven transport of ions through supported mesoporous γ-alumina membranes was investigated. The influence of ion concentration, ion valency, pH, ionic strength, and electrolyte composition on transport behavior was determined. The permselectivity of the membrane was found to be

  18. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    Science.gov (United States)

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  19. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction...... is increased with increasing clay content, up to 30%, beyond which the mixture of silt and clay is not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction resistant under waves....

  20. Reply to Comment by Xu et al. on "Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust" by Seo et al.

    Science.gov (United States)

    Seo, Inah; Lee, Yong Il; Yoo, Chan Min; Kim, Hyung Jeek; Hyeong, Kiseong

    2016-12-01

    Against Xu et al. (2016), who argued that East Asian Desert (EAD) dust that traveled on East Asian Winter Monsoon winds dominates over Central Asian Desert (CAD) dust in the Philippine Sea with presentation of additional data, we reconfirm Seo et al.'s (2014) conclusion that CAD dust carried on the Prevailing Westerlies and Trade Winds dominates over EAD dust in overall dust budget of the central Philippine Sea. The relative contribution of dust from EADs and CADs using clay mineral composition should be evaluated with elimination of mineralogical contribution from the volcanic end-member which is enriched in kaolinite and overestimate the contribution of EAD dust.

  1. Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons

    International Nuclear Information System (INIS)

    Zhang Taiming; Zhao Donglin; Yin Li; Shen Zengmin

    2010-01-01

    Research highlights: → We employed a simple method to synthesize the iron nanoparticles confined in highly ordered mesoporous carbons (OMCs) with different iron contents under an acidic condition generated from the self-hydrolysis of precursory salt. The iron nanoparticles confined in highly ordered mesoporous carbons have been directly synthesized through a simple soft templating method by using resorcinol-formaldehyde (RF) as a carbon precursor, triblock copolymer Pluronic F127 as a template agent and hydrated iron nitrite as an iron source. → The carbon material exhibited highly ordered mesoporous structure, and the iron nanoparticles were uniformly confined in the OMC walls, and constructed the backbone of the mesoporous structures with carbon. Such self-protected Fe/OMC composites will be promising materials for many applications in the fields of separation, catalysis and drug delivery which could be separated by an appropriate magnetic field. - Abstract: The iron nanoparticles confined in highly ordered mesoporous carbons (OMCs) have been directly synthesized through a simple soft templating method by using resorcinol-formaldehyde (RF) as a carbon precursor, triblock copolymer Pluronic F127 as a template agent and hydrated iron nitrite as an iron source. This synthesis was carried out by the carbonization of the F127/[Fe(H 2 O) 9 ](NO 3 ) 3 /RF composites self-assembled in an acidic medium, which was generated from the self-hydrolysis of precursory salt. The effects of iron loading contents on the morphology, pore feature and magnetic properties of the iron nanoparticles confined in OMCs were characterized by the X-ray diffraction, transmission electron microscopy, nitrogen sorption and vibrating-sample magnetometer measurement. It was found that Fe 3+ was captured by the network of F127/RF and further reduced into metallic Fe nanoparticles during the carbonization. The results showed that the carbon material exhibited highly ordered mesoporous structure

  2. Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Taiming [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhao Donglin, E-mail: dlzhao@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Yin Li; Shen Zengmin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-10-15

    Research highlights: {yields} We employed a simple method to synthesize the iron nanoparticles confined in highly ordered mesoporous carbons (OMCs) with different iron contents under an acidic condition generated from the self-hydrolysis of precursory salt. The iron nanoparticles confined in highly ordered mesoporous carbons have been directly synthesized through a simple soft templating method by using resorcinol-formaldehyde (RF) as a carbon precursor, triblock copolymer Pluronic F127 as a template agent and hydrated iron nitrite as an iron source. {yields} The carbon material exhibited highly ordered mesoporous structure, and the iron nanoparticles were uniformly confined in the OMC walls, and constructed the backbone of the mesoporous structures with carbon. Such self-protected Fe/OMC composites will be promising materials for many applications in the fields of separation, catalysis and drug delivery which could be separated by an appropriate magnetic field. - Abstract: The iron nanoparticles confined in highly ordered mesoporous carbons (OMCs) have been directly synthesized through a simple soft templating method by using resorcinol-formaldehyde (RF) as a carbon precursor, triblock copolymer Pluronic F127 as a template agent and hydrated iron nitrite as an iron source. This synthesis was carried out by the carbonization of the F127/[Fe(H{sub 2}O){sub 9}](NO{sub 3}){sub 3}/RF composites self-assembled in an acidic medium, which was generated from the self-hydrolysis of precursory salt. The effects of iron loading contents on the morphology, pore feature and magnetic properties of the iron nanoparticles confined in OMCs were characterized by the X-ray diffraction, transmission electron microscopy, nitrogen sorption and vibrating-sample magnetometer measurement. It was found that Fe{sup 3+} was captured by the network of F127/RF and further reduced into metallic Fe nanoparticles during the carbonization. The results showed that the carbon material exhibited

  3. Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.

    Science.gov (United States)

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-06-21

    Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

  4. Study of process variables on organophilization of Cubati-PB bentonite clays with ionic surfactants

    International Nuclear Information System (INIS)

    Silva, C.D. da; Lima, R.C.O.; Costa, J.M.R.; Silva, E.I.A.; Neves, G.A.; Ferreira, H.C.

    2012-01-01

    The organophilic clays used as agent in the composition dispersed in petroleum drilling fluids, play important roles during drilling. This work aims at the development of several varieties of smectites Cubati-PB for use in drilling fluids for oil with the use of ionic surfactants. We used the following materials: natural bentonite clay Cinza Superior and Verde Superior, from the district of Cubati-PB and ionic quaternary ammonium salt: Praepagen WB®, with 45% active matter. The organoclays were characterized by the laser diffraction, chemical composition by x-ray, differential thermal analysis, thermal gravimetric analysis and x-ray diffraction. Globally found that clays have diffraction and thermal behavior typical of bentonite clay. The results showed showed that the clay used has the potential for application in the process of organophilic and, with respect the process variables has been observed that they do not alter the process organophilization. (author)

  5. Fabrication of unique hollow silicate nanoparticles with hierarchically micro/mesoporous shell structure by a simple double template approach.

    Science.gov (United States)

    Rivera-Virtudazo, R V; Fuji, M; Takai, C; Shirai, T

    2012-12-07

    An innovative type of hollow silicate nanoparticle with a micro/mesoporous shell wall (NSHPMS) was synthesized at room temperature via an eco-friendly double template approach, followed by simple acid reflux. TEM observations of NSHPMSs showed hollow interior nanoparticles (wormhole-like shell structure. The nitrogen gas (N(2)) adsorption/desorption isotherm exhibited a unique two-step pattern: the first step (0.2 wormhole mesoporous shell wall provided sufficient spaces that contribute to high adsorption capacities and faster adsorption rates. One can envision that larger quantities of framework composition can be obtained using our NSHPMSs.

  6. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  7. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  8. The radiation response of mesoporous nanocrystalline zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce{sup 3+}-stabilized nanocrystalline zirconia (Ce{sub 0.1}Zr{sub 0.9}O{sub 2}) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60–80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8–10 nm. Films stabilized with Ce{sup 3+} contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (10{sup 13} - 10{sup 14} cm{sup −2}) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 10{sup 16} cm{sup −2}) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132–180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD

  9. Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer.

    Science.gov (United States)

    Tong, Shi Wun; Balapanuru, Janardhan; Fu, Deyi; Loh, Kian Ping

    2016-11-02

    In the short time since its discovery, perovskite solar cells (PSCs) have attained high power conversion efficiency but their lack of thermal stability remains a barrier to commercialization. Among the experimentally accessible parameter spaces for optimizing performance, identifying an electron transport layer (ETL) that forms a thermally stable interface with perovskite and which is solution-processable at low-temperature will certainly be advantageous. Herein, we developed a mesoporous graphene/polymer composite with these advantages when used as ETL in CH 3 NH 3 PbI 3 PSCs, and a high efficiency of 13.8% under AM 1.5G solar illumination could be obtained. Due to the high heat transmission coefficient and low isoelectric point of mesoporous graphene-based ETL, the PSC device enjoys good chemical and thermal stability. Our work demonstrates that the mesoporous graphene-based scaffold is a promising ETL candidate for high performance and thermally stable PSCs.

  10. How mobile are sorbed cations in clays and clay rocks?

    Science.gov (United States)

    Gimmi, T; Kosakowski, G

    2011-02-15

    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  11. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  12. Experimental design applied optimization of a state in epoxy clay dispersion; Planejamento de experimentos aplicado a otimizacao do estado de dispersao de argilas em epoxi

    Energy Technology Data Exchange (ETDEWEB)

    Paz, Juliana D' Avila; Bertholdi, Jonas; Folgueras, Marilena Valadares; Pezin, Sergio Henrique; Coelho, Luiz Antonio Ferreira, E-mail: julianadpaz@yahoo.com.b [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2010-07-01

    This paper presents some analysis showed that the exfoliation / intercalation of a montmorillonite clay in epoxy resin such as viscosity, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry (TG). Increasing the viscosity of epoxy resin diglycidyl ether bisphenol A with the addition of clay associated with the sonification system at the time of dispersion is a good indication of exfoliation. The X-ray diffraction already cured composite shows a decrease of crystallinity of clay and EDS microanalysis of SEM, non-uniform dispersion of clay in epoxy resin. Thermal analysis TG composite clay / epoxy shows an increase in thermal stability relative to pure epoxy. (author)

  13. Stiff clay masses: big storages of fossil and renewable energy

    Science.gov (United States)

    Spilotro, Giuseppe; Fidelibus, Maria Dolores; Qeraxhiu, Lydra; Argentiero, Ilenia; Pellicani, Roberta

    2016-04-01

    The crystalline structure of the clay and its behaviour at the micro and macro scale have been and are still the object of studies in different fields of earth science: mineralogy, geotechnics, etc. It has been known for several decades that the volumetric equilibrium of a well-defined clay (mono mineralogical or mineralogical melange, with or without the mixing with other fines), depends on the salinity of the interstitial fluid (in terms of concentration of one or more kind of salts) under a stress field. The mechanism is very complex involving many chemical and physical topics, but may be easy to understand: the elementary structures of a two faced crystals are electrically negative charged with the interstitial fluid as the dielectric of a capacitor. Consequently, an electrical field is generated whose intensity depends on the electric charge and the properties of the dielectric. Such electric field can produce mechanical work, enlarging the faces of the capacitor, unless external forces prevent it. If external forces exceed the internal ones, the system behaves as a loaded spring, which stores energy of deformation to give back as soon as the external force weakens. The clay of marine sedimentation incorporates interstitial salt water of composition derived and similar to those of sea water. Such type of interstitial water chemically has high concentration of dissolved ions, mainly Na, which generates in the dielectric spaces a low electrical field, compared with that given in identical situation by low salt concentration in interstitial water. In nature, as well described in geoscience, the turning between the two interstitial water types is very common and driven by ion diffusion processes like, surface fresh water interacting with salt interstitial water of old marine clays. The latter, either by the overburden of younger sedimentary layers, but mainly by very strong capillary forces activated by surface drainage and EVT from sun and dry wind, undergo

  14. Clay-based materials for engineered barriers: a review

    International Nuclear Information System (INIS)

    Lajudie, A.; Raynal, J.; Petit, J.C.; Toulhoat, P.

    1994-01-01

    The potential importance of backfilling and plugging in underground radioactive waste repositories has led different research institutions to carry out extensive studies of swelling clay materials for the development of engineered barriers in underground conditions. These materials should combine a variety of hydro-thermo-mechanical and geochemical properties: impermeability, swelling ability in order to fill all void space, heat transfer and retention capacity for the most noxious radionuclides. Smectite clays best exhibit these properties and most of the research effort has been devoted to this type of materials. In this paper, mineralogical composition, sodium or calcium content, thermo-hydro-mechanical properties, swelling pressure, hydraulic and thermal conductivity, and chemical properties of five smectite clays selected by five major nuclear countries are reviewed: Avonseal montmorillonite (Canada), MX 80 montmorillonite (Sweden), Montigel montmorillonite (Switzerland), S-2 montmorillonite (Spain), and Fo-Ca inter stratified kaolinite/beidellite (France). (J.S.). 29 refs., 5 figs., 3 tabs

  15. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1982-01-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in signficant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electroylte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1--10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subesquent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption

  16. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    Science.gov (United States)

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  17. Modelling of the thermomechanical behaviour of saturated clays: application to the radioactive wastes disposal

    International Nuclear Information System (INIS)

    Rahbaoui, A.

    1995-01-01

    During the waste disposal of containers, the clay barriers of backfill and the confining medium, which is essentially composed of clay, are submitted to heavy thermal stresses which induce volume change and can result in material failure. The clay, composed of solid skeleton, adsorbed water, and free water, is submitted to physico-chemical interactions which influence its thermomechanical behaviour, itself quits different from granular media such as sand. The principal factor responsible for this response is the effect of temperature on the clays water. Thus, the loss of special structure of adsorbed water and the increase in thickness of the diffused double-layer provoke microstructural rearrangement mechanisms of particles. Those mechanisms are strongly correlated with the mechanical state of material. When it is highly over-consolidated, an irreversible swelling occurs during thermal cycle, accompanied by a breaking up of the particles and a permanent expansion of meso-pores. The greater the OCR, the more important the thermal swelling. When the material is normally consolidated, the particles settle during heating under the external stress, which results in a denser rearrangement of the material. With a slight over-consolidated material, all the intermediate stages between the above mechanisms can be reached. However, cooling produces only a weak reversible compression characterising the thermal contraction of the components. Those microscopic phenomena have been used to elaborate a macroscopic thermomechanical model based on the Cam-Clay and the Hujeux Models. The model formulation includes a thermal softening, on one hand, by the reduction of the mechanical yield surface f c and the translation of the thermal yield surface f T (PTL), and, on the other hand, an irreversible thermal expansive volumetric strain. This approach of the problem was tested along various thermomechanical paths and especially on the laboratory tests, on the expansive and non expansive

  18. Characterization of edible clay (multani mitti) using INAA (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Fiaz, Y.

    2011-01-01

    Multani Mitti is basically clay commonly used in cosmetics, medicines. It is also used for cleansing of body and hair and eating specially women (pregnant and lactating) and children. 16 Essential major, minor and trace elements (Ba, Co, Cr, Cs, Fe, K, Mg, Mn, Mo, Na, Rb, Se Sr, Ti, V and Zn) have been determined in Multani Mitti (MM) clay using instrumental neutron activation analysis (INAA) technique were studied in collected clay samples from Rakhi Gaj located 40 Km from D. G. Khan, Pakistan. These samples were analyzed by Instrumental Neutron Activation Analysis (INAA) to detect the elemental hazard assessment. Radioassay schemes for three sets of elements after neutron irradiation and cooling were evolved to avoid matrix effects. The composition of MM clay shows major elements in descending order as Fe > K > Mg > Na > Mn > Zn > V > Rb > Cr >Ba followed by minor elements as Sr >Co > Cs with trace levels of Se. Data have been compared with clays available in literature globally. Intakes of essential elements were calculated for pregnant, lactating women and children. Intakes were found comparable to WHO levels except Fe and Cr. Risk assessment was measured using mathematical model. The quality assurance of data was performed using Standard Reference Materials (SRMs) of a similar matrix (IAEA Lake sediment SL-1 and IAEA Soil S-7). (author)

  19. Preparation of organo clays thermally stable to be employed as filler in PET nano composites; Preparacao de argilas organofilicas estaveis termicamente para serem empregadas como cargas em nanocompositos de PET

    Energy Technology Data Exchange (ETDEWEB)

    Leite, I.F. [Universidade Federal de Pernambuco (PGMTR/CCEN/UFPE), Recife, PE (Brazil). Centro de Ciencias Exatas e da Natureza. Programa de Pos-Graduacao em Ciencia de Materiais; Soares, A.P.S.; Silva, S.M.L. [Universidade Federal de Campina Grande (UAEMa/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Malta, O.M.L. [Universidade Federal de Pernambuco (UFPE), Recife PE (Brazil). Centro de Ciencias Exatas e da Natureza. Dept. de Quimica Fundamental

    2009-07-01

    Thermal stability of organically modified clays is fundamental to melt processing polymer nanocomposites, especially, poly(terephthalate ethylene) (PET). However, the use of organic salts with high thermal stability is factor essential to obtaining of organoclays with great thermal properties. This work has as purpose to evaluate the influence of organic modifier based on alkyl ammonium, alkyl phosphonium and aryl phosphonium, in the clay organic modification visa to improve thermal properties to use as filler in nanocomposites preparation, where temperatures at about 260 deg C will be employed. The most common, and commercially available, surfactants used for cation exchange reactions with montmorillonites, rendering them organophilic, are quaternary ammonium salts, that when present as cations in montmorillonite, typically begin degradation at above 200 deg C. However, organoclays prepared with quaternary alkyl phosphonium salts may be potentially useful for the organoclays preparation stable thermally. In this study bentonite clay from Bentonit Uniao Nordeste/PB was purified and organically modified with the organic salts reported above. Organoclays were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy and analysis thermogravimetry. The results shown that the samples modified with the salts based on phosphonium presented higher thermal stability that the alkyl ammonium salt. (author)

  20. Separation of components of a broad 1H-NMR composite signal by means of nutation experiments under low amplitude radiofrequency fields. Application to the water signal in synthetic clays

    International Nuclear Information System (INIS)

    Trausch, G.

    2006-11-01

    Nowadays, geologic nuclear waste storage is envisioned according to a multi-layer model which implies clays. The latter exhibit retention capacities and low permeability to water; that is why they are considered as a good candidate for engineered barriers to radioactive waste disposal. The present work here aims at studying transport phenomena which involve water molecules in three samples of synthetic clays (two of them exhibiting a Pake doublet) by means of Nuclear Magnetic Resonance (NMR). The first chapter describes structural properties of clays and presents the state-of-art of NMR and other experimental techniques used for such systems. The second chapter deals with the interpretation and the simulation of each conventional proton spectrum. These simulations allow us to evidence and to characterize a chemical exchange phenomenon. The third chapter is dedicated to original nutation experiments performed under low radiofrequency field in the case of broad NMR signal. It is shown that this type of NMR experiment can yield the number and the proportion of each species contributing to the whole signal. These results are exploited in the fourth chapter for processing relaxation and diffusion experiments. Finally, the diffusion coefficients obtained by NMR are divided by a factor 4 with respect to pure water while relaxation rates are two orders of magnitude greater. (author)

  1. Radionuclide interaction with clays in dilute and heavily compacted systems: a critical review.

    Science.gov (United States)

    Miller, Andrew W; Wang, Yifeng

    2012-02-21

    Given the unique properties of clays (i.e., low permeability and high ion sorption/exchange capacity), clays or clay formations have been proposed either as an engineered material or as a geologic medium for nuclear waste isolation and disposal. A credible evaluation of such disposal systems relies on the ability to predict the behavior of these materials under a wide range of thermal-hydrological-mechanical-chemical (THMc) conditions. Current model couplings between THM and chemical processes are simplistic and limited in scope. This review focuses on the uptake of radionuclides onto clay materials as controlled by mineral composition, structure, and texture (e.g., pore size distribution), and emphasizes the connections between sorption chemistry and mechanical compaction. Variable uptake behavior of an array of elements has been observed on various clays as a function of increasing compaction due to changes in pore size and structure, hydration energy, and overlapping electric double layers. The causes for this variability are divided between "internal" (based on the fundamental structure and composition of the clay minerals) and "external" (caused by a force external to the clay). New techniques need to be developed to exploit known variations in clay mineralogy to separate internal from external effects.

  2. Special clays: what they are, characterization and properties

    OpenAIRE

    Coelho, Antonio C. Vieira; Santos, Pérsio de Souza; Santos, Helena de Souza

    2007-01-01

    Special clays are a group of clays different from the large volume of clay mineral products named "Industrial Clays": kaolins, ball clays, refractory clays, bentonites, fuller's earths, common clays. Two groups of special clays exist: rare, as in the case of hectorite and sepiolite and restricted areas, as in the case of white bentonite, halloysite and palygorskite (attapulgite). A review is given of the most important producers of the special clays and their properties in the Western World, ...

  3. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  4. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    International Nuclear Information System (INIS)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-01-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g −1 and enhanced capacity retention of 862 mAh g −1 at 0.1 C after 100 cycles.

  5. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications.

    Science.gov (United States)

    Kaya, Seray; Cresswell, Mark; Boccaccini, Aldo R

    2018-02-01

    Bioactive glasses (BGs) are being used in several biomedical applications, one of them being as antibacterial materials. BGs can be produced via melt-quenching technique or sol-gel method. Bactericidal silver-doped sol-gel derived mesoporous silica-based bioactive glasses were reported for the first time in 2000, having the composition 76SiO 2 -19CaO-2P 2 O 5 -3Ag 2 O (wt%) and a mean pore diameter of 28nm. This review paper discusses studies carried out exploring the potential antibacterial applications of drug-free mesoporous silica-based BGs. Bioactive glasses doped with metallic elements such as silver, copper, zinc, cerium and gallium are the point of interest of this review, in which SiO 2 , SiO 2 -CaO and SiO 2 -CaO-P 2 O 5 systems are included as the parent glass compositions. Key findings are that silica-based mesoporous BGs offer a potential alternative to the systemic delivery of antibiotics for prevention against infections. The composition dependent dissolution rate and the concentration of the doped elements affect the antibacterial efficacy of BGs. A balance between antibacterial activity and biocompatibility is required, since a high dose of metallic ion addition can cause cytotoxicity. Typical applications of mesoporous BGs doped with antibacterial ions include bone tissue regeneration, multifunctional ceramic coatings for orthopedic devices and orbital implants, scaffolds with enhanced angiogenesis potential, osteostimulation and antibacterial properties for the treatment of large bone defects as well as in wound healing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  7. Study of the influence of the addition of MMT clay in the preparation of biohydrogel based natural polymers

    International Nuclear Information System (INIS)

    Costa, M.P.M.; Ferreira, I.L.M.

    2014-01-01

    In this study, biohydrogels were produced from the combination of two polysaccharides (chitosan and sodium alginate). The concentrations of polysaccharide (0.5 to 3% m / m) and clay (0.5 and 2.0%) were varied. CaCl2 was used as a crosslinking agent. The samples were characterized by thermogravimetry (thermal stability), FTIR (chemical composition), scanning electron microscopy (SEM), and X-ray diffraction. The present work aims to study the influence of different clay content in biohydrogel produced. In the presence of clay, a differentiated morphology was observed by SEM. The degree of swelling was evaluated as a function of the composition of each mixture. The presence of clay caused a significant swelling of the hydrogel on the water absorption when the clay content was increased. The FTIR spectra showed the presence of characteristic bands of each polysaccharide, and the clay. The XRD showed that the amorphous presented biohydrogel behavior. (author)

  8. Mesoporous systems for poorly soluble drugs.

    Science.gov (United States)

    Xu, Wujun; Riikonen, Joakim; Lehto, Vesa-Pekka

    2013-08-30

    Utilization of inorganic mesoporous materials in formulations of poorly water-soluble drugs to enhance their dissolution and permeation behavior is a rapidly growing area in pharmaceutical materials research. The benefits of mesoporous materials in drug delivery applications stem from their large surface area and pore volume. These properties enable the materials to accommodate large amounts of payload molecules, protect them from premature degradation, and promote controlled and fast release. As carriers with various morphologies and chemical surface properties can be produced, these materials may even promote adsorption from the gastrointestinal tract to the systemic circulation. The main concern regarding their clinical applications is still the safety aspect even though most of them have been reported to be safely excreted, and a rather extensive toxicity screening has already been conducted with the most frequently studied mesoporous materials. In addition, the production of the materials on a large scale and at a reasonable cost may be a challenge when considering the utilization of the materials in industrial processes. However, if mesoporous materials could be employed in the industrial crystallization processes to produce hybrid materials with poorly soluble compounds, and hence to enhance their oral bioavailability, this might open new avenues for the pharmaceutical industry to employ nanotechnology in their processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Mesoporous titanium phosphates and related molecular sieves ...

    Indian Academy of Sciences (India)

    Unknown

    in the surface or bridging the organic moiety in between the inorganic phosphorus precursors can enhance hydrophobicity of these materials similar to that of ... to only smaller organic molecules (C3–C7)13. Thus inorganic mesoporous materials with a framework Ti and zeolite-like ion-exchange properties are highly ...

  10. Isomeric periodic mesoporous organosilicas with controllable properties

    NARCIS (Netherlands)

    Vercaemst, C.; Ide, I.; Friedrich, H.; de Jong, K.P.; Verpoort, F.; van der Voort, P.

    2009-01-01

    The synthesis procedure for isomeric periodic mesoporous organosilicas with E-configured ethenylene bridges was investigated using the homemade pure E-isomer of 1,2-bis(triethoxysilyl)ethene. The pH, aging temperature and the presence of cosolvents played a key role in obtaining well-ordered

  11. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  12. Mesoporous titanium phosphates and related molecular sieves ...

    Indian Academy of Sciences (India)

    Unknown

    of reduction of carbon dioxide, a greenhouse gas. Synthesis of Ti-containing micro and mesoporous silica materials is also of outstanding interest because of their remarkable applicability to liquid phase partial oxidation13 reactions. However, the small pores of such highly active microporous titanium silicates (viz. TS-1 ...

  13. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  14. Chemical and mineralogical characteristics of French green clays used for healing

    Science.gov (United States)

    Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.

    2008-01-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.

  15. CHEMICAL AND MINERALOGICAL CHARACTERISTICS OF FRENCH GREEN CLAYS USED FOR HEALING.

    Science.gov (United States)

    Williams, Lynda B; Haydel, Shelley E; Giese, Rossman F; Eberl, Dennis D

    2008-08-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or 'flesh-eating' infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.

  16. Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties

    Energy Technology Data Exchange (ETDEWEB)

    Pack, S.; Kashiwagi, T; Cao, C; Korach, C; Lewin, M; Rafailovich, M

    2010-01-01

    The absorption of resorcinol di(phenyl phosphate) (RDP) oligomers on clay surfaces has been studied in detail and is being proposed as an alternative method for producing functionalized clays for nanocomposite polymers. The ability of these clays to be exfoliated or intercalated in different homopolymers was investigated using both transmission electron microscopy and small-angle X-ray scattering results, compared with contact angle measurements on Langmuir-Blodgett clay monolayers, where the interfacial energies were used as predictors of the polymer/clay interactions. We found that the contact angle between PS/RDP clay monolayer substrates was {approx}2.5{sup o}, whereas the angle for polystyrene (PS)/Cloisite 20A clays substrates was {approx}32{sup o}, consistent with the large degree of exfoliation observed in PS for the RDP-coated clays. The interfacial activity of these clays was also measured, and we found that the RDP-coated clays segregated to the interfaces of PC/poly(styrene-co-acrylonitrile) blends, while they segregated into the poly(methyl methacrylate) (PMMA) domain of PS/PMMA blends. This morphology was explained in terms of the relative energy advantage in placing the RDP versus the Cloisite clays at the interfaces. Finally, we demonstrated the effects of the relative surface energies of the clays in segregating to the blend air interface when heated to high temperatures. The segregation was shown to affect the composition and mechanical properties of the resulting chars, which in turn could determine their flame retardant response.

  17. Surface decontamination compositions and methods

    Science.gov (United States)

    Wright,; Karen, E [Idaho Falls, ID; Cooper, David C [Idaho Falls, ID; Peterman, Dean R [Idaho Falls, ID; Demmer, Ricky L [Idaho Falls, ID; Tripp, Julia L [Pocatello, ID; Hull, Laurence C [Idaho Falls, ID

    2011-03-29

    Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

  18. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization

    Science.gov (United States)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad

    2018-02-01

    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  19. Zr-doped TiO{sub 2} supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Belver, C., E-mail: carolina.belver@uam.es; Bedia, J.; Rodriguez, J.J.

    2017-01-15

    Highlights: • Novel Zr-doped TiO{sub 2} delaminated clay materials were prepared by a sol-gel process. • Zr is incorporated into the anatase lattice. • Zr-TiO{sub 2} nanoparticles are homogenously distributed over the delaminated clay. • Zr doping enhances the photoactivity by reducing the band gap. • Degradation rates were favored at low concentrations and high radiation intensities. - Abstract: Solar light-active Zr-doped TiO{sub 2} nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO{sub 2} at 65 wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO{sub 2}/clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO{sub 2} particles (15–20 nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO{sub 2}/clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay.

  20. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  1. Boron Enrichment in Martian Clay

    Science.gov (United States)

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  2. Potential Of Fired Clay Bricks Produced From Aponmu Clay Deposits

    African Journals Online (AJOL)

    The potential of fired clay obtained from Aponmu river, Ondo State. Nigeria for brick production have been investigated. Properties of produced bricks investigated was compressive strength, density and water absorption. The results shows that the Compressive strength, density and water absorption values ranged from 2.48 ...

  3. Facile fabrication of mesoporous g-C3N4/TiO2 photocatalyst for efficient degradation of DNBP under visible light irradiation

    Science.gov (United States)

    Wei, Xiao-Na; Wang, Hui-Long; Wang, Xin-Kui; Jiang, Wen-Feng

    2017-12-01

    In this paper, a novel thermal condensation method was developed for preparing mesoporous g-C3N4/TiO2 composite by using PAA-Ti/TiO2 and melamine as co-precursors. This method can not only ensure the incorporation of TiO2 nanoparticles into g-C3N4 matrix but also lead to the formation of mesoporous structures. In the heating process, polyacrylate (PAA) in the PAA-Ti/TiO2 composites can volatilize to produce carbonous gases and its volatilization temperature falls into the temperature range for melamine condensation, which makes PAA-Ti/TiO2 a suitable pore-forming agent for fabricating mesoporous g-C3N4/TiO2. The largest surface area for the fabricated mesoporous g-C3N4/TiO2 was found to be 268 m2g-1, which was approximately 7 or 12 times higher than that of TiO2 or g-C3N4. The mesoporous g-C3N4/TiO2 composite exhibited excellent reproducibility and good performance in the photocatalytic decomposition of dinitro butyl phenol (DNBP) under visible-light illumination. The enhanced photocatalytic efficiency can be attributed to the synergetic effects of large surface area and the formation of heterojunction interface between g-C3N4 and TiO2.

  4. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    Science.gov (United States)

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    theory of colloidal interactions that accurately predicts clay swelling in a narrow range of conditions (low salinity, low compaction, Na + counterion). An important feature of clay swelling that is not predicted by these models is the coexistence, in most conditions of aqueous chemistry and dry bulk density, of two types of pores between parallel smectite particles: mesopores with a pore width of >3 nm that are controlled by long-range interactions (the osmotic swelling regime) and nanopores with a pore width <1 nm that are controlled by short-range interactions (the crystalline swelling regime). Nanogeochemical characterization and simulation techniques, including coarse-grained and all-atom molecular dynamics simulations, hold significant promise for the development of advanced constitutive relations that predict this coexistence and its dependence on aqueous chemistry.

  5. High Rate Performance Nanocomposite Electrode of Mesoporous Manganese Dioxide/Silver Nanowires in KI Electrolytes

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2015-10-01

    Full Text Available In recent years, manganese dioxide has become a research hotspot as an electrode material because of its low price. However, it has also become an obstacle to industrialization due to its low ratio of capacitance and the low rate performance which is caused by the poor electrical conductivity. In this study, a KI solution with electrochemical activity was innovatively applied to the electrolyte, and we systematically investigated the rate performance of the mesoporous manganese dioxide and the composite electrode with silver nanowires in supercapacitors. The results showed that when mesoporous manganese dioxide and mesoporous manganese dioxide/silver nanowires composite were used as electrodes, the strength of the current was amplified five times (from 0.1 to 0.5 A/g, the remaining rates of specific capacitance were 95% (from 205.5 down to 197.1 F/g and 92% (from 208.1 down to 191.7 F/g in the KI electrolyte, and the rate performance was much higher than which in an Na2SO4 electrolyte with a remaining rate of 25% (from 200.3 down to 49.1 F/g and 60% (from 187.2 down to 113.1 F/g. The morphology and detail structure were investigated by Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry and Nitrogen adsorption-desorption isotherms. The electrochemical performance was assessed by cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.

  6. High Rate Performance Nanocomposite Electrode of Mesoporous Manganese Dioxide/Silver Nanowires in KI Electrolytes.

    Science.gov (United States)

    Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiqin; Liu, Yang; Xing, Guangjian

    2015-10-13

    In recent years, manganese dioxide has become a research hotspot as an electrode material because of its low price. However, it has also become an obstacle to industrialization due to its low ratio of capacitance and the low rate performance which is caused by the poor electrical conductivity. In this study, a KI solution with electrochemical activity was innovatively applied to the electrolyte, and we systematically investigated the rate performance of the mesoporous manganese dioxide and the composite electrode with silver nanowires in supercapacitors. The results showed that when mesoporous manganese dioxide and mesoporous manganese dioxide/silver nanowires composite were used as electrodes, the strength of the current was amplified five times (from 0.1 to 0.5 A/g), the remaining rates of specific capacitance were 95% (from 205.5 down to 197.1 F/g) and 92% (from 208.1 down to 191.7 F/g) in the KI electrolyte, and the rate performance was much higher than which in an Na₂SO₄ electrolyte with a remaining rate of 25% (from 200.3 down to 49.1 F/g) and 60% (from 187.2 down to 113.1 F/g). The morphology and detail structure were investigated by Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry and Nitrogen adsorption-desorption isotherms. The electrochemical performance was assessed by cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.

  7. Hierarchical Mesoporous Organosilica/Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release.

    Science.gov (United States)

    Anwander, Reiner; Liang, Yucang; Luo, Leilei; Erichsen, Egil

    2018-03-23

    A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot two-step strategy allows for a rational control over the core/shell chemical composition, topology and pore/particle size, simply by adjusting the reaction conditions in the presence of CTAB as a structure directing agent under basic conditions. The spherical ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm-3n) depending on the organosilica precursor. The hexagonal MS shell was obtained by an n-hexane-induced controlled hydrolysis of TEOS followed by a directional co-assembly/condensation process of silicate/CTAB composites at the PMO cores. The HSMSCSN feature a hierarchical pore structure with pore diameters in the range of ca. 2.7 nm and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the range of 90-275 nm and 15-50 nm, respectively, and the surface areas (max. 1300 m2/g) and pore volumes (1.83 cm3/g) belong to highest ones reported for core-shell nanoparticles. The adsorption and controlled release of fungicide propiconazole on the HSMSCSN revealed a three-stage release profile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France); Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia [Institut de Chimie et des Matériaux Paris Est, UMR 7182, CNRS-UPEC (France); Matei Ghimbeu, Camelia, E-mail: camelia.ghimbeu@uha.fr [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France)

    2016-12-15

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  9. Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template

    Science.gov (United States)

    Chatterjee, Soumi; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional sodium silicate glasses of composition 30Na2O.70SiO2 has been prepared within the pores of 5.5 nm of mesoporous silica as a template using the surfactant P123. The nanocomposite was characterized by X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. Electrical conductivity of the sample was studied by ac impedance spectroscopy. The activation energy for ionic conduction was found to be 0.13 eV with dc conductivity at room temperature of 10-6 S-cm-1. This is attributed to the creation of oxygen ion vacancies at the interface of mesoporous silica and nanoglass arising out of the presence of Si2+ species in the system. These nanocomposites are expected to be useful for applications in sodiumion battery for storage of renewable energy.

  10. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  11. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    Document available in extended abstract form only. Long-term storage of high-level radioactive waste in deep geologic formations is worldwide the only accepted solution to warranty long term safety. Besides clay and crystalline rocks, salt is one of the potential host-rock candidates, mainly favored in Germany. As salts rocks are highly soluble their barrier integrity against water inflow from the cap rock is questionable. Argillaceous cap rocks or intercalated clay layers may act as protective shield in the hanging wall above a repository, thus providing a multi-barrier system. The aims of our study are twofold: 1) to characterize the mineralogical, hydraulic and rock-mechanical properties of the so-called Red Salt Clay (T4) as natural analogue of a clay barriers represented by different states of induration corresponding to various depth of burial diagenesis; 2) to demonstrate the favoured barrier properties of an argillaceous layer in the top of a salt formation undergoing dynamic processes such as rock bursts. The so-called Red Salt Clay (T4) is deposited as clay rich clastic sediment at the base of the Aller-series forming a persistent lateral layer above the lower Zechstein-series. The thickness of the clay-formation becomes smaller with decreasing distance from the border of the basin, i.e. from ∼15 m at Rossleben, over 7 m at Bernburg to 3.5 m at Zielitz, all in Saxony-Anhalt, D). The mineralogical composition of the Red Salt Clay varies, e.g. average composition for the Teutschenthal area: clay minerals 54% (Chlorite: 8%; Illite/Muscovite: 46%); quartz: 22%; anhydrite: 15%; accessory gypsum; Halite: 6%, Hematite: ∼ 2%). The geochemical and mineralogical composition of the Red Salt Clay represents a final state of natural salt-clay-systems, thus standing as a natural analogue for bentonite-based sealing systems in contact with high-saline solutions (e.g. saturated NaCl-solution, solutions with various Mg 2+ -, K + -, SO 4 2- - concentrations). The

  12. Composites

    OpenAIRE

    Zhao, Hanqing; Guo, Yuanzheng

    2014-01-01

    This thesis was a literature study concerning composites. With composites becoming increasingly popular in various areas such as aerospace industry and construction, the research about composites has a significant meaning accordingly. This thesis was aim at introducing some basic information of polymer matrix composites including raw mate-rial, processing, testing, applications and recycling to make a rough understanding of this kind of material for readers. Polymeric matrices, fillers,...

  13. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  14. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  15. Rare earth elements distribution in clay zones of sedimentary formation, Pondicherry, south India

    International Nuclear Information System (INIS)

    Tirumalesh, K.; Gursharan Singh

    2012-01-01

    Concentrations of five rare earth elements (REE) were measured in clay samples of a deep bore hole comprising major aquifers of Pondicherry region, south India in order to investigate the geochemical variations among various litho-units. Clay samples from Cretaceous formation show distinct gray to black color whereas Tertiary deposits have clays with color varying from pale yellow to brown to gray. All measured REEs exhibit lower concentrations than Upper Continental Crust (UCC) average values. Large variations in REEs contents were observed in different sedimentary formations (Tertiary and Cretaceous). Chondrite normalized ratio of La/Lu and Eu/Eu* indicate that the clays are derived from weathering of felsic rock and possibly under humid climate. All the samples showed positive Eu anomaly in North American Shale Composite (NASC) normalized plot which shows plagioclase feldspar as the major contributor to these clays. Positive Eu anomaly is also an indication of reduced condition of the formation. (author)

  16. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  17. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  18. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  19. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  20. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  1. Restructuring of silica-pillared clay (SPC) through posthydrothermal treatment and application as phosphotungstic acid supports for cyclohexene oxidation.

    Science.gov (United States)

    Mao, Huihui; Zhu, Kongnan; Lu, Xinhao; Zhang, Guangcheng; Yao, Chao; Kong, Yong; Liu, Jia

    2015-05-15

    A facile posthydrothermal treated process has been successfully established for restructuring of silica-pillared clay. This approach involves the hydrothermal treated process utilizing octadecylamine as structural agency followed by calcination at high temperatures. The formation of expanded interlayered mesopores is a result of treatment with octadecylamine hydrothermal conditions. The following calcination at higher temperatures gives silica-pillared clay larger pore volume and conserved high surface area. The kind of pore expansion process has been confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption isotherms and transmission electron microscopy (TEM). The pore expansion mechanism of silica-pillared clay is proposed. The pore expanded silica-pillared clay has been used as the catalytic supports for H3PW12O40 loading as high as 26.9%, 35.8% and 48.2% for oxidation reaction of cyclohexene using H2O2 as oxidant. The stable charge force between H3PW12O40 and negative charged clay layers, together with big and open porous structure, large pore volume, and high loading of H3PW12O40 contributes to the efficiency conversion, high selectivity toward cyclohexene epoxide and brilliant reusability. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Seismic tomography indicates that subducting oceanic lithosphere often penetrates the transition zone and eventually the lower mantle [e.g. 1, 2]. While mineralogical changes in the mafic and ultramafic portions of slabs have been well documented experimentally, the phase relations of overlying sediments at pressures above 25 GPa remain poorly studied. This is in part because sediments are expected to partially melt at sub-arc depth (P~2.5-4.5 GPa), and contribute to the genesis of arc magmas. Sediment restites left behind after the extraction of low pressure melts undergo major chemical changes, according to the melting reaction: Coe+Phen+Cpx+H2O = Grt+Ky+Melt [3]. However, sediments may not always melt depending on the thermal regime and volatile availability and composition [3]. Hence, chemically unmodified sediments as well as restites may be entrained to greater depths and contribute to compositional heterogeneity in the deep mantle. Indeed, mineral inclusions with compositions indicative of subducted sedimentary protoliths (CAS-phase; K-hollandite; stishovite) have been reported in 'ultradeep' diamonds and suggest that deep subduction and survival of sediments occurs to at least transition zone depths [4]. With this in mind, we have performed laser heated diamond anvil cell experiments at pressures of 8-80 GPa on two anhydrous glass starting materials: a marine clay and the restite that is left after 50% melt extraction of this clay at 3 GPa and 800 °C [3]. We chose to work with an anhydrous version of the marine clay given that the investigated pressure range exceeds that of phengite stability [5], and phengite is the only hydrous phase in subducted sediments at UHP conditions. The clay was heated along a P-T path representative of a cold subduction geotherm, whereas the clay restite was heated along a hotter subduction geotherm consistent with low pressure melting. Phases were identified by synchrotron X-ray micro-diffraction at beamline I15 of the Diamond

  3. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    Science.gov (United States)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  4. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.

    1984-01-01

    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  5. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  6. The Fame of Sharkey Clay

    Science.gov (United States)

    W. M. Broadfoot

    1962-01-01

    Sharkey clay is now important to the Southern forest industry because it supports so much of the hardwood resource-more than any other soil within the Mississippi Delta-and its extent will continue to make it important to Delta forestry.

  7. Picasso Masks: Cubism in Clay

    Science.gov (United States)

    Daddino, Michelle

    2010-01-01

    This article describes an art project developed by the author which provides a way to further the children's understanding of Picasso's Cubism style in 3-D. Through this project, upper-elementary students learn a bit about the life and art of Picasso as they gain a firm understanding of the style of art known as Cubism, and apply clay techniques…

  8. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications

    International Nuclear Information System (INIS)

    Prokopowicz, Magdalena; Czarnobaj, Katarzyna; Szewczyk, Adrian; Sawicki, Wiesław

    2016-01-01

    The aim of this study was to evaluate the surface mineralization activity and in vitro drug behaviour potential of new mesoporous silica microparticles (MSM). The unmodified MSM (MSM-0%Ca) and calcium-modified MSM (MSM-5%Ca, MSM-15%Ca, MSM-25%Ca) were prepared using the self-assembling method. Calcium diethoxide was used as a calcium precursor. Doxorubicin hydrochloride (DOX), used as an anticancer model drug, was selected to the drug loading and release studies. The DOX loading into the microparticles was performed by liquid adsorption process. The self-formation of carbonate hydroxyapatite (C-Hap) on the MSM surface was examined under in vitro biomimetic conditions. The samples were characterised by means of scanning-transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption–desorption measurements. The results indicated an inverse relationship — while increasing the total amount of calcium in the MSM composition the surface area and pore volume decrease with a simultaneous increase in the pore size. This was correlated with a progressive increase in the surface mineralization ability — especially its initial promotion, and in the decrease in MSM drug loading efficiency. The release rate of the DOX can be effectively tailored by varying the amount of calcium, where the elution rate of DOX increases with an increasing amount of the Ca precursor. - Highlights: • Mesoporous silica microparticles were synthesized via self-assembling method. • Different compositions of Ca-modified mesoporous silica were obtained. • The mineralization process and drug behaviour potential of Ca-modified mesoporous silica were investigated. • The initial growth of calcium phosphate can be controlled by a calcium precursor. • The elution rate of DOX can be controlled by a calcium precursor.

  9. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, Magdalena, E-mail: mprokop@gumed.edu.pl; Czarnobaj, Katarzyna; Szewczyk, Adrian; Sawicki, Wiesław

    2016-03-01

    The aim of this study was to evaluate the surface mineralization activity and in vitro drug behaviour potential of new mesoporous silica microparticles (MSM). The unmodified MSM (MSM-0%Ca) and calcium-modified MSM (MSM-5%Ca, MSM-15%Ca, MSM-25%Ca) were prepared using the self-assembling method. Calcium diethoxide was used as a calcium precursor. Doxorubicin hydrochloride (DOX), used as an anticancer model drug, was selected to the drug loading and release studies. The DOX loading into the microparticles was performed by liquid adsorption process. The self-formation of carbonate hydroxyapatite (C-Hap) on the MSM surface was examined under in vitro biomimetic conditions. The samples were characterised by means of scanning-transmission electron microscopy (STEM) and energy dispersive X-ray spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption–desorption measurements. The results indicated an inverse relationship — while increasing the total amount of calcium in the MSM composition the surface area and pore volume decrease with a simultaneous increase in the pore size. This was correlated with a progressive increase in the surface mineralization ability — especially its initial promotion, and in the decrease in MSM drug loading efficiency. The release rate of the DOX can be effectively tailored by varying the amount of calcium, where the elution rate of DOX increases with an increasing amount of the Ca precursor. - Highlights: • Mesoporous silica microparticles were synthesized via self-assembling method. • Different compositions of Ca-modified mesoporous silica were obtained. • The mineralization process and drug behaviour potential of Ca-modified mesoporous silica were investigated. • The initial growth of calcium phosphate can be controlled by a calcium precursor. • The elution rate of DOX can be controlled by a calcium precursor.

  10. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  11. Radiation response of cubic mesoporous silicate and borosilicate thin films

    Science.gov (United States)

    Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio

    2018-01-01

    The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree

  12. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  13. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  14. Research of possibilities for use domestic kaolin clays for production of metakaolin

    Directory of Open Access Journals (Sweden)

    Mitrović Aleksandra A.

    2009-01-01

    Full Text Available Environmental concerns coming from the high energy consumption and CO2 emission associated with cement production have brought about pressures to reduce cement consumption through the use of new materials which can be applied for substitution of a part of clinker in Portland cement or a part of cement in concrete. One of the materials that satisfy requirements of sustainable development and, when added in appropriate shares, improves the properties of cement, mortars and concrete, is metakaolin (MK, a processed pozzolana. The main and widely used raw material for production of metakaolin is kaolin clay. MK is produced by calcination or 'thermal activation' of kaolin clay. The possibilities for metakaolin production are strongly related to the characteristics of the used kaolin clay. The samples of domestic kaolin clay used in this study were provided by factories Kaolin, Valjevo, and Keramika, Mladenovac. Chemical composition, mineralogical composition and thermal properties of these samples were determined. Thermal analysis (simultaneous recording of TG, DTG and DTA signals was carried out at the temperature range from 20 to 1200 °C. For both clays the results show that the loss of mass occurred in two stages. The dehydroxillation of kaolinite and formation of metakaolin occurred in the second stage. Minerals quartz and kaolinite are dominant in the clay Kaolin, Valjevo. Dehydroxillation of kaolinite and formation of metakaolin took place in the temperature range 350-800 °C. This clay does not have clearly distinct exothermic and endothermic peaks. Clay from Keramika, Mladenovac, has a higher content of the kaolinite mineral, i.e. 81.51%. The dehydroxillation of kaolinite and formation of metakaolin occurred in the temperature range 400-700 °C. This clay has two distinct endothermic peaks at 60 and 490 °C. All these results show that both clays can be used for production of metakaolin.

  15. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  16. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  17. Hydrodynamic erosion process of undisturbed clay

    NARCIS (Netherlands)

    Zhao, G.; Visser, P.J.; Vrijling, J.K.

    2011-01-01

    This paper describes the hydrodynamic erosion process of undisturbed clay due to the turbulent flow, based on theoretical analysis and experimental results. The undisturbed clay has the unique and complicated characteristics of cohesive force among clay particles, which are highly different from

  18. Synthesis of mesoporous SiO{sub 2}-ZnO nanocapsules: encapsulation of small biomolecules for drugs and 'SiOZO-plex' for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay Bhooshan [School of Engineering Sciences and Technology, University of Hyderabad (India); Annamanedi, Madhavi [School of Life Sciences, University of Hyderabad, Department of Animal Sciences (India); Prashad, Muvva Durga [University of Hyderabad, Centre for Nanoscience and Nanotechnology (India); Arunasree, Kalle M. [School of Life Sciences, University of Hyderabad, Department of Animal Sciences (India); Mastai, Yitzhak; Gedanken, Aharon, E-mail: gedanken@mail.biu.ac.il [Bar-Ilan University, Department of Chemistry, Institute for Nanotechnology and Advanced Materials (Israel); Paik, Pradip, E-mail: ppse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad (India)

    2013-09-15

    This work presents a new synthesis of mesoporous SiO{sub 2}-ZnO composite nanocapsules with sizes of 90-150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2-8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO{sub 2}-ZnO was found to be {approx}230 m{sup 2} g{sup -1}. Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles ({approx}5-7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO{sub 2}-ZnO nanoparticles for using as the carrier of drugs and formation of 'SiOZO-plex', a complex of mesoporous SiO{sub 2}-ZnO with DNA for gene delivery applications.Graphical Abstract.

  19. Synthesis of mesoporous SiO2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery

    International Nuclear Information System (INIS)

    Kumar, Vijay Bhooshan; Annamanedi, Madhavi; Prashad, Muvva Durga; Arunasree, Kalle M.; Mastai, Yitzhak; Gedanken, Aharon; Paik, Pradip

    2013-01-01

    This work presents a new synthesis of mesoporous SiO 2 –ZnO composite nanocapsules with sizes of 90–150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2–8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO 2 –ZnO was found to be ∼230 m 2 g −1 . Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles (∼5–7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO 2 –ZnO nanoparticles for using as the carrier of drugs and formation of “SiOZO-plex”, a complex of mesoporous SiO 2 –ZnO with DNA for gene delivery applications.Graphical Abstract

  20. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  1. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin, E-mail: denglinlyn@126.com; Shi, Zhou, E-mail: 369329062@qq.com

    2015-07-15

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L{sup −1}. The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g{sup −1} at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO{sub 4}{sup 2−} > NO{sub 3}{sup −} > Cl{sup −}. A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO{sub 3}{sup −} ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in

  2. Effect of organically modified clay on mechanical properties, cytotoxicity and bactericidal properties of poly(ɛ-caprolactone) nanocomposites

    Science.gov (United States)

    Kumar, Sachin; Mishra, Anupam; Chatterjee, Kaushik

    2014-12-01

    The objective of this study was to evaluate the use of organically-modified clay nanoparticles in poly(ɛ-caprolactone) (PCL) for developing biodegradable composites. PCL nanocomposites reinforced with two different types of organically-modified clay (Cloisite 30B, C30B and Cloisite 93A, C93A) were prepared by melt-mixing. Morphology of PCL/clay nanocomposites characterized by scanning electron microscopy indicated good dispersion of nanoclay in the PCL matrix. Reinforcement of nanoclay in PCL enhanced mechanical properties without affecting thermal and degradation properties of PCL. Cytocompatibility of PCL/clay nanocomposites was studied using both osteoblasts and endothelial cells in vitro. Both composites (PCL/C30B and PCL/C93A) were cytotoxic with high toxicity observed for C30B even at low content of 1 wt %. The cytotoxicity was found to arise due to leachables from PCL/clay composites. Electrical conductivity measurements of aqueous media confirmed leaching of cationic surfactant from the PCL/clay composites PCL matrix. Both composites were found to be bactericidal but C30B was more effective than C93A. Taken together, it was observed that organically-modified nanoclay as fillers in PCL improves mechanical properties and imparts bactericidal properties but with increased risk of toxicity. These PCL/clay composites may be useful as stronger packaging material with antibacterial properties but are not suited as biomedical implants or for food packaging applications.

  3. Purification and characterization of smectite clay taken from Gafsa, Tunisia: Progressive elimination of carbonates

    International Nuclear Information System (INIS)

    Mhamdi, M; Gasmi, N; Elaloui, E; Kbir-Ariguib, N; Trabelsi-Ayadi, M

    2010-01-01

    This work shows the results of various analysis on a representative clay sample from southern west of Tunisia, particularly from Oued Tfal near the town of Gafsa. The raw smectite contains some carbonate, quartz, chlorite, and anorthite. During the attack of the carbonate clay with a solution of hydrochloric acid, a change of the chemical composition and physical properties was observed. This change is dependent on several factors: the initial concentration of the acid, the nature of the clay, the ratio acid / clay...). Although treatment to 0.5 M represents a total removal of carbonates, there are probably altered layers of the clay fraction. The result shows that for a treatment with acid solutions of concentrations below 0.5 M there is gradual removal of carbonate without protonation of the clay layers. The characterization of the clay fraction shows that the sodium clay purified (OTNa) consists of a sodium montmorillonite smectite. The cation exchange capacity and the specific surface of OTNa measured using the method of methylene blue are equal to 82 meq/100g and 667 m 2 / g respectively.

  4. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  5. Modeling Radionuclide Transport in Clays

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field

  6. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  7. SYNTHESIS OF MESOPOROUS TITANIA BY POTATO STARCH TEMPLATED SOL-GEL REACTIONS AND ITS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Canggih Setya Budi

    2010-06-01

    Full Text Available Mesoporous titania powders with high-order crystalline building blocks had been synthesized through the sol-gel process using potato starch gel template. Internal spongelike pore structure of starch gel template was generated by heating the starch granules at 95 °C in water solution and freezing the starch gel at -15 °C. The synthesis routes were performed by immersing the starch gel template for 4 days into the white colloidal solution of TiO2 nanoparticles, which were prepared by hydrolyzing titanium (IV tetraisopropoxide (TTIP in ethanol at pH 1. Mesoporous TiO2 powders were obtained by two different ways of template removal, performed by calcination of the TiO2-starch composites at 600 °C for 4 h or combination of extraction with ethanol-HCl (2:1 at 80 °C and calcination at 500 °C for 4 h. Fourier Transform Infra Red (FT-IR spectra shows both of template removal methods result in decreasing of characteristic vibrational band of the starch hydrocarbon on the resulted TiO2 powders. The X-Ray Diffraction (XRD pattern imply that the concentrations of starch gel template influence the anatase crystallite peaks intensity of the synthesized TiO2 powders. TiO2 templated by 20% of starch sponges gel has highest intensity of anatase crystallite. Scherrer calculation inidicated that anatase particle size has nanoscale dimmension up to 12.96 nm. The nano-architecture feature of mesoporous TiO2 scaffolds was also evaluated by the Scanning Electron Microscope (SEM. It is shown that mesoporous TiO2 framework consist of nanocrystalline TiO2 particles as buiding blocks. The N2 adsorption-desorption isotherm curves assign that TiO2 powder resulted from extraction-calcination route has higher mesoporosity than that of only calcinated. The synthesized mesoporous TiO2 powder exhibits high Brunauer-Emmet-Teller (BET specific surface area up to 65.65 m2/g.   Keywords: mesoporous TiO2, potato starch, template

  8. Complete experimental characterization of lime mortar and clay brick masonry

    OpenAIRE

    Pelà, Luca; Canella, Elisa; Kasioumi, Konstantina; Roca Fabregat, Pedro; Marastoni, Diego

    2016-01-01

    This work investigates the mechanical behaviour of lime mortar and clay brick masonry by presenting the results of a comprehensive experimental program carried out in the laboratory. Different kinds of masonry samples were built using either aerial or moderately hydraulic lime mortar. Different tests were carried out to evaluate the compression and shear behaviour of the composite material and its constituents. An important contribution of the research is, besides the presentation of the o...

  9. Ceramic qualities of industrial clay deposits at Vimtim in Mubi ...

    African Journals Online (AJOL)

    Their average chemical composition includes 70.5% SiO2, 17.04% Al2O3, 2.58% Total Fe oxides, 0.26% Na2O, 0.92% K2O, 0.89% MgO and appreciable kaolinite content. These parameters suggest good clay raw materials for the manufacture of coarse ceramic products like earthenware, kitchenware, ornamental wares ...

  10. Acylation Reactions over Zeolites and Mesoporous Catalysts

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Vitvarová, Dana; Čejka, Jiří

    2009-01-01

    Roč. 2, č. 6 (2009), s. 486-499 ISSN 1864-5631 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032; GA MPO FT-TA5/005 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * ketones * mesoporous materials * shape-selectivity * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.767, year: 2009

  11. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  12. Nitrogen Adsorption Study of Organised Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Žilková, Naděžda; Rathouský, Jiří; Zukal, Arnošt

    2001-01-01

    Roč. 3, č. 22 (2001), s. 5076-5081 ISSN 1463-9076 R&D Projects: GA AV ČR IAA4040001; GA MŠk ME 404 Grant - others:NATO(XE) SfP 974217 Institutional research plan: CEZ:AV0Z4040901 Keywords : nitrogen adsorption study * organised mesoporous alumina * reference nonporous solid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.787, year: 2001

  13. Sorption of cesium on Latvian clays

    International Nuclear Information System (INIS)

    Viss, R.; Drille, M.

    2004-01-01

    Cesium is like potassium - good solubility and mobile in a ground, easily assimilate in organism expressly brawn woof. It is a problem if pollutant is a radioactive 137 Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas (cesium content after good elute of clays are in table). We establish, that clay treated with 25 % sulfuric acid adsorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays. (author)

  14. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  15. Low cost estimation of deep argilaceous basins characteristics from prospection of outcrops. Application to Italian clays

    International Nuclear Information System (INIS)

    Brondi, A.

    1984-01-01

    Research is carried out on the more representative italian argilaceous basins. The work includes systematic sampling and mineralogic analyses of pliocene clay formations, in the area identified variations of mineralogic and structural characteristics are studied. Results obtained show a regional distribution for mineralogic associations, mineralogic distribution comes from deposition mechanisms and lithologic nature of parent rock producing clay formations. Forecasting of mineralogic composition of deep clay formation from surface observations is possible and more expensive detailed studies can be realized on a reduced number of geologic formations suitable for radioactive waste storage

  16. Selective Clay Placement within a Silicate Clay-Epoxy Blend Nanocomposite and the Effect on Physical Properties

    Science.gov (United States)

    Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.

    2009-01-01

    Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.

  17. Mesoporous silica nanoparticles for active corrosion protection.

    Science.gov (United States)

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  18. Chemical modification of clay from the state of vermiculite Paraiba for use in nanocomposites of thermoset matrices

    International Nuclear Information System (INIS)

    Freitas, W.A.; Alves, T.S.; Barbosa, R.

    2011-01-01

    Vermiculite is a hydrated aluminosilicate of magnesium, iron and aluminum flake shape, formed by stacking cells 2:1 and feature high cation exchange capacity. In the present study was performed the treatment of an expanded vermiculite clay from Paraiba state with surfactant agent, in order to make it organophilic and allow its use in thermoset matrix nanocomposites. The natural clay and organophilizated one were characterized by X-Ray Diffraction (XRD), by Fourier Transform Infra-Red spectroscopy (FTIR) and swelling of Foster's swelling. The results indicated a change in the chemical composition of clay, related to the presence of characteristic groups of the salt in the clay and an increase of up to 124% in the basal interlayer distance. The chemical modification of the clay was efficient, indicating the possibility to apply the clay in polymeric nanocomposites. (author)

  19. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  20. Mineralogy and thermal properties of clay from Slatina (Ub, Serbia)

    Science.gov (United States)

    Milosevic, Maja; Logar, Mihovil; Kaludjerovic, Lazar; Jelic, Ivana

    2017-04-01

    The "Slatina" deposit, Ub, Serbia was opened in 1965 and represents one of few deposits exploited by "Kopovi" a.d., Ub, company. Deposit is composed of clay layers belonging to Neogene sediments that are widespread transgressive over granitoid rocks of Cer mountain and Paleozoic and Mesozoic sediments. Clay is mostly of illite-montmorillonite-kaolinite type and they are generally used as ceramic materials while some of the layers are used as fire-resistant materials. In this study we present mineralogical and thermal characterization of two samples to determine their application as industrial materials. Chemical and mineral composition was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) on powder and oriented samples, infrared spectroscopy (IR) and granulometry. Cationic exchange capacity (CEC) and specific surface area (SSA) was determined using spectrophotometry and methylene blue (MB). Thermal properties where determined by gravimetry (120, 350, 600 and 1000 oC) and differential thermal analysis (DTA). Quantitative mineral composition obtained by Rietveld refinement of combined chemical and XRD data shows that the sample 1(SC) is mainly smectite-illite (45%) and kaolinite (14%) clay with 19% of quartz, 10% feldspars and 7% of limonite, while sample 2(SV) is smectite-illite (43%) and kaolinite (11%) clay with 10% of quartz, 15% feldspars and 7% of limonite. Both samples have low content of impurities (carbonate minerals). Medium grain size (μm) goes from 1.02 (SSA = 104 m2/g) for sample 1(SC) to 0.71 (SSA = 117 m2/g) for sample 2(SV) while their CEC is 12.7 and 14.9 mmol/100g for 1(SC) and 2(SV) respectively. IR spectra of the samples shows larger amount of smectite clays with quartz and carbonate minerals for both samples which is in accordance with XRD data. DTA data shows couple of events that are endothermic. First one (100-200 oC) is associated with loss of moisture and constitutive water, second