WorldWideScience

Sample records for mesophyll cells proteins

  1. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  2. Evidence for a specific glutamate/H+ cotransport in isolated mesophyll cells

    McCutcheon, S.L.; Bown, A.W.

    1987-01-01

    Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO 4 . Immediate alkalinization of the medium occurred on the addition of 1 millimolar concentrations of L-glutamate (Glu) and its analog L-methionine-D,L-sulfoximine (L-MSO). D-Glu and the L isomers of the protein amino acids did not elicit alkalinization. L-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar L-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H + /10 6 cells minute. L-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of L-[U- 14 C]glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by L-MSO. L-Glu had no influence on K + efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific L-Glu/proton uptake process is present in Asparagus mesophyll cells

  3. FUNCTION OF MALATDEHYDROGENASE COMPLEX OF MAIZE MESOPHYLL AND BUNDLE SHEATH CELLS UNDER SALT STRESS CONDITION

    Еprintsev А.Т.

    2006-12-01

    Full Text Available Salt-induced changes in malatdehydrogenase system activity make the essential contribution to cell adaptation to stress condition. The enzyme systems of C4-plants are most interesting due to their ability for adaptation to environment conditions. The role of separate components of malatdehydrogenase complex of mesophyll and bundle sheath cells of corn in formation of adaptive reaction in stressful conditions is investigated in presented work.The activation of all enzymes of malatdehydrogenase system and the subsequent decrease in their activity was observed in mesophyll durring the first stage of adaptation to salt influence. In bundle sheath cells such parameters are differed from control less essentially. Fast accumulation of piruvate in cells and malate in both investigated tissues was induced. The further salinity led to falling of concentration this intermediate. The concentration of piruvate was below control level, and it was raised by the end of an exposition.The results show that sodium chloride causes induction of Krebs-cycle in mesophyll and bundle sheath cells of corn and intensification of Hatch-Slack cycle. The described differences in function malatdehydrogenase systems of mesophyll and bundle sheath cells of leaves of corn under salinity mainly consist of the activity of enzymes of a studied complex in bundle sheath cells is subject to the minimal changes in comparison with mesophyll. Role of this enzymesystem in mechanisms of adaptive reaction of various tissues of corn to salt stress is discussed.

  4. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.

    Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka

    2017-07-01

    Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll

  5. Characterization of a light-controlled anion channel in the plasma membrane of mesophyll cells of pea

    Elzenga, J.T.M.; Volkenburgh Van, E

    In leaf mesophyll cells of pea (Pisum sativum) light induces a transient depolarization that is at least partly due to an increased plasma membrane conductance for anions. Several channel types were identified in the plasma membrane of protoplasts from mesophyll cells using the patch-clamp

  6. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  7. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  8. Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass

    2014-01-01

    Background Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge. Previously, lower accumulation levels of the short side chain polyhydroxyalkanoate, polyhydroxybutyrate (PHB), were observed in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells in transgenic maize (Zea mays), sugarcane (Saccharum sp.), and switchgrass (Panicum virgatum L.) leading to a significant decrease in the theoretical yield potential. Here we explore various factors which might affect polymer accumulation in mesophyll cells, including targeting of the PHB pathway enzymes to the mesophyll plastid and their access to substrate. Results The small subunit of Rubisco from pea effectively targeted the PHB biosynthesis enzymes to both M and BS chloroplasts of sugarcane and switchgrass. PHB enzyme activity was retained following targeting to M plastids and was equivalent to that found in the BS plastids. Leaf total fatty acid content was not affected by PHB production. However, when fatty acid synthesis was chemically inhibited, polymer accumulated in M cells. Conclusions In this study, we provide evidence that access to substrate and neither poor targeting nor insufficient activity of the PHB biosynthetic enzymes may be the limiting factor for polymer production in mesophyll chloroplasts of C4 plants. PMID:25209261

  9. Physiological implications of seasonal variation in membrane-associated calcium in red spruce mesophyll cells

    D.H. DeHayes; P.G. Schaberg; G.J. Hawley; C.H. Borer; J.R. Cumming; J.R. Strimbeck

    1997-01-01

    We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from...

  10. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK.

  11. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  12. Signal function of cytokinin 6-benzylaminopurine in the reaction of Triticum aestivum L. mesophyll cells to hyperthermia

    M. M. Musienko

    2014-12-01

    Full Text Available The signaling effect of 6-benzylaminopurine (BAP on leaf mesophyll cells of Triticum aestivum L. under hyperthermic conditions was studied­. It was found that BAP regulated photosynthetic pigment, hydrogen peroxide content and activity of antioxidant enzymes, namely superoxide dismutase, ascorbate peroxidase and catalase under high-temperature conditions. The additive effect of BAP and high temperature on the activation of cell antioxidant systems was demonstrated. BAP regulated reducing processes in mesophyll leaf cells under high-temperature conditions.

  13. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells.

    Majeran, Wojciech; Zybailov, Boris; Ytterberg, A Jimmy; Dunsmore, Jason; Sun, Qi; van Wijk, Klaas J

    2008-09-01

    Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are

  14. Uptake of /sup 86/Rb/sup +/ into photoautotrophic mesophyll cells of Papaver somniferum

    Kaiser, W.M.; Jeschke, W.D.; Hartung, W.

    1982-06-01

    Uptake of /sup 86/Rb/sup +/, used as a tracer for potassium, into isolated photoautotrophic mesophyll cells of Papaver somniferum was weakly but consistently stimulated in the light. It showed mono-phasic saturation kinetics with a pH optimum of 7.0, a Vsub(max) of 6.7 ..mu..mol mg/sup -1/ Chl x h/sup -1/ and a Ksub(m) of 2.7 mmol l/sup -1/. Different anions as Cl/sup -/, NO/sub 3//sup -/ and PO/sub 4//sup 3 -/ had no effects on /sup 86/Rb/sup +/ uptake. Sodium ions influenced Rb/sup +/-uptake very weakly, indicating a high K/sup +/ -specificity of the mesophyll cell plasmalemma. Fusicoccin stimulated /sup 86/Rb/sup +/ -uptake strongly whereas abscisic acid inhibited uptake only following preincubation for two hours. Nitrite, CCCP and Dio-9 inhibited /sup 86/Rb/sup +/-uptake which gives evidence that this process is dependent on intact pH-gradients within the cells and on ATP-formation.

  15. Air pollution effects on the ultrastructure of Phlomis fruticosa mesophyll cells

    Psaras, G.K.; Christodoulakis, N.S.

    1987-04-01

    Plant physiologists and environmental scientists suggest that a basic effect of air pollution on plants leads towards the minimization of their productivity. On the other hand the action of individual pollutants on intact plants has been studied from biochemical as well as structural viewpoint. Thus the study of plant responses to SO/sub 2/ exposure revealed that this agent causes acute and chronic injury. Chronic injury results in chlorosis and subsequent necrosis due to destruction of chlorophylls and final chloroplast lysis. It has been documented that ultrastructural characteristics of leaves are affected prior to any visible injury. Electron microscope examination of SO/sub 2/ fumigated plant-attached leaves of Vicia faba revealed chloroplast thylakoids starting to swell whilst photosynthesis rate was drastically reduced. The first light microscope-detected effects of air pollution on the leaf structure of plants common in natural ecosystems of Athens metropolitan area, have been reported. A chlorosis phenomenon in Urginea maritima leaves as well as an indication of detrimental effects of Phlomis fruticosa mesophyll chloroplasts were documented. In this work further investigation has been undertaken in order to elucidate the precise effects of air pollution on the ultrastructure of the photosynthesizing mesophyll cells.

  16. Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.

    Thayer, S S; Huffaker, R C

    1984-05-01

    The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.

  17. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals.

    van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol

    2015-04-01

    Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development.

    Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai

    2012-10-05

    The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells.

    Sharkey, T D; Badger, M R

    1982-12-01

    Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.

  20. Ultrastructural response of cabbage outer leaf mesophyll cells (Brassica oleracea L. to excess of nickel

    Jolanta Molas

    2014-01-01

    Full Text Available Changes in the structure and in the ultrastructure of cabbage outer leaf mesophyll cells [Brassica oleracea L.] cv. Sława from Enkhouizen were examined by means of light and electron microscopy. The examined plants were grown on the basic Murashige and Skoog medium with addition of excesive concentrations of nickel (added as NiSO4 x 7H2O,i.e. Ni 5, Ni 10 and Ni 20 mg/dm3. In Ni 5 mg samples mainly adaptation changes to the conditions of stress were observed. These changes were manifested by the increase of cytoplasm content and by cytoplasm vacuolization, by the increase of nucleus and nucleous volume, nucleolus vacuolization, the increase of plasmalemma invaginations and of the amount of rough ER, by the central arrangement of smooth ER and of the thylakoids of chloroplasts; it was also shown by the growth of the number of mitochondria and of peroxisomes in the cell. In Ni 10 mg samples, apart from adaptation changes, such as the increase of the nucleus volume, increase of plasmalemma invaginations, cytoplasm and nucleolus vacuolization, degeneration changes were also observed. They concerned mainly the nucleus (the increasing amount of condensed chromatin, ER (swelling and fragmentation of rER and sER, mitochondrium (swelling and reduction of cristae, Golgi apparatus (disintegration and decay and chloroplasts (changes of shape, swelling and reduction of thylakoids, disappearance of starch and presence of big plastoglobuli. In Ni 20 mg samples cell protoplasts were in different stages of degeneration and the cell organelles that were identifiable, were usually damaged.

  1. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  2. Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells.

    Sibbernsen, Erik; Mott, Keith A

    2010-07-01

    Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO(2). These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K(+) in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.

  3. Stomatal Responses to Flooding of the Intercellular Air Spaces Suggest a Vapor-Phase Signal Between the Mesophyll and the Guard Cells1[OA

    Sibbernsen, Erik; Mott, Keith A.

    2010-01-01

    Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light. PMID:20472750

  4. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  5. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule

  6. Kinetics of Ca2+- and ATP-dependent, voltage-controlled anion conductance in the plasma membrane of mesophyll cells of Pisum sativum

    Elzenga, J.T.M.; van Volkenburgh, E.

    Whole-cell patch-clamp techniques were used to measure anion currents through the plasma membrane of protoplasts of mesophyll cells of expanding pea (Pisum sativum L.) leaves. Voltage-induced changes of the currents could be modelled with single exponential activation and deactivation kinetics. The

  7. A new mechanism for the regulation of stomatal aperture size in intact leaves: accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba

    Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.; Freed, G.A.

    1997-01-01

    At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with 14CO2, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol-1) in palisade cells at 20 min. In contrast, the 14C content and Suc-specific radioactivity were very low in guard cells for 20 min, implying little CO2 incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol-1) and a high Suc influx rate (0.05 pmol stoma-1 min-1). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 micrometers. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism

  8. Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss

    Yuto Hatakeyama

    2016-10-01

    Full Text Available In C3 plants, photosynthetic efficiency is reduced by photorespiration. A part of CO2 fixed during photosynthesis in chloroplasts is lost from mitochondria during photorespiration by decarboxylation of glycine by glycine decarboxylase (GDC. Thus, the intracellular position of mitochondria in photosynthetic cells is critical to the rate of photorespiratory CO2 loss. We investigated the intracellular position of mitochondria in parenchyma sheath (PS and mesophyll cells of 10 C3 grasses from 3 subfamilies (Ehrhartoideae, Panicoideae, and Pooideae by immunostaining for GDC and light and electron microscopic observation. Immunostaining suggested that many mitochondria were located in the inner half of PS cells and on the vacuole side of chloroplasts in mesophyll cells. Organelle quantification showed that 62–75% of PS mitochondria were located in the inner half of cells, and 62–78% of PS chloroplasts were in the outer half. In mesophyll cells, 61–92% of mitochondria were positioned on the vacuole side of chloroplasts and stromules. In PS cells, such location would reduce the loss of photorespiratory CO2 by lengthening the path of CO2 diffusion and allow more efficient fixation of CO2 from intercellular spaces. In mesophyll cells, it would facilitate scavenging by chloroplasts of photorespiratory CO2 released from mitochondria. Our data suggest that the PS cells of C3 grasses have already acquired an initial structure leading to proto-Kranz and further C3–C4 intermediate anatomy. We also found that in the Pooideae, organelle positioning in PS cells on the phloem side resembles that in mesophyll cells.

  9. Cyst(e)ine Is the Transport Metabolite of Assimilated Sulfur from Bundle-Sheath to Mesophyll Cells in Maize Leaves1

    Burgener, Marta; Suter, Marianne; Jones, Stephanie; Brunold, Christian

    1998-01-01

    The intercellular distribution of the enzymes and metabolites of assimilatory sulfate reduction and glutathione synthesis was analyzed in maize (Zea mays L. cv LG 9) leaves. Mesophyll cells and strands of bundle-sheath cells from second leaves of 11-d-old maize seedlings were obtained by two different mechanical-isolation methods. Cross-contamination of cell preparations was determined using ribulose bisphosphate carboxylase (EC 4.1.1.39) and nitrate reductase (EC 1.6.6.1) as marker enzymes for bundle-sheath and mesophyll cells, respectively. ATP sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase activities were detected almost exclusively in the bundle-sheath cells, whereas GSH synthetase (EC 6.3.2.3) and cyst(e)ine, γ-glutamylcysteine, and glutathione were located predominantly in the mesophyll cells. Feeding experiments using [35S]sulfate with intact leaves indicated that cyst(e)ine was the transport metabolite of reduced sulfur from bundle-sheath to mesophyll cells. This result was corroborated by tracer experiments, which showed that isolated bundle-sheath strands fed with [35S]sulfate secreted radioactive cyst(e)ine as the sole thiol into the resuspending medium. The results presented in this paper show that assimilatory sulfate reduction is restricted to the bundle-sheath cells, whereas the formation of glutathione takes place predominantly in the mesophyll cells, with cyst(e)ine functioning as a transport metabolite between the two cell types. PMID:9536048

  10. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  11. Early H2O2 Accumulation in Mesophyll Cells Leads to Induction of Glutathione during the Hyper-Sensitive Response in the Barley-Powdery Mildew Interaction1

    Vanacker, Helene; Carver, Tim L.W.; Foyer, Christine H.

    2000-01-01

    H2O2 production and changes in glutathione, catalase, and peroxidase were followed in whole-leaf extracts from the susceptible (AlgS [Algerian/4* (F14) Man.(S)]; ml-a1 allele) and resistant (AlgR [Algerian/4* (F14) Man.(R)]; Ml-a1 allele) barley (Hordeum vulgare) isolines between 12 and 24 h after inoculation with powdery mildew (Blumeria graminis [DC]. Speer [syn. Erysiphe graminis DC] f.sp hordei Marchal). Localized papilla responses and cell death hypersensitive responses were not observed within the same cell. In hypersensitive response sites, H2O2 accumulation first occurred in the mesophyll underlying the attacked epidermal cell. Subsequently, H2O2 disappeared from the mesophyll and accumulated around attacked epidermal cells. In AlgR, transient glutathione oxidation coincided with H2O2 accumulation in the mesophyll. Subsequently, total foliar glutathione and catalase activities transiently increased in AlgR. These changes, absent from AlgS, preceded inoculation-dependent increases in peroxidase activity that were observed in both AlgR and AlgS at 18 h. An early intercellular signal precedes H2O2, and this elicits anti-oxidant responses in leaves prior to events leading to death of attacked cells. PMID:10938348

  12. Effects of herbicides on /sup 14/CO/sub 2/ fixation in isolated mesophyll cells from Beta vulgaris (sugar beet) and Chenopodium album

    Baumann, G; Guenther, G [Paedagogische Hochschule Karl Liebknecht, Potsdam (German Democratic Republic)

    1979-01-01

    10/sup -4/ - 10/sup -6/ molar solutions of herbicides (atrazine, 2,4-D, desmetryne, diallate, diquat, feuron, lenacil, NaTa, paraquat, phenmedipham, prometryne, propham, pyrazone, and simazine) cause similar inhibitory effects on the photosynthetic /sup 14/CO/sub 2/ fixation in isolated mesophyll cells from Chenopodium album and Beta vulgaris. Correlatdion between inhibition and herbicide resistance of the whole plants could be realized for lenacil only.

  13. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  14. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  15. Effect of Hf on the fine structure of mesophyll cells from Glycine max, Merr

    Wei, L.; Miller, G.W.

    1972-04-01

    A series of ultrastructural changes were observed in soybean leaves fumigated with 40 to 50 ppb of hydrogen fluoride. In the cytoplasm the presence of small vacuoles was the first noticeable initial change. The fragmentation of the vacuolar membrane occurred either simultaneously or followed immediately. Lipid-droplet-like globules and numerous vesicles occurred subsequently in the cytoplasm and increased as the injury became more severe. There was a decrease in polysomes and a detachment of ribosome from the rough endoplasmic reticulum. Free ribosome concentration also decreased as the injury became severe. Mitochondrial modifications involving dilation of outer and cristae membranes followed by reduction of both cristae number and matrix electron density and the disappearance of mitochondrial granules were observed in the chlorotic leaves. Electron dense inclusions accumulated in some mitochondria as well. The first noticeable change observed in the chloroplast was the presence of clusters of phytoferritin granules within the stoma after only 2 days of fumigation. Alterations in nuclear structures were observed in later stages of injury. Numerous small electron dense particles were found on various types of membranes in cells of severely chlorotic leaves. They were distributed on outer mitochondrial membranes, endoplasmic reticula, dictyosomes, tonoplasts, plasmalemma, nuclear envelopes, and disintegrating organelles and vesicles, but were never observed on membranes of chloroplasts and microbodies. The presence of fluoride has attracted the attention of many workers primarily in certain industrial areas where the emitted atmospheric fluoride concentrates and is accumulated by plants initiating injury. 6 references.

  16. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number

    Aryo B. Feldman

    2017-11-01

    Full Text Available Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa. A previous high throughput screen identified five mutant rice lines (cv. IR64 with increased vein densities and associated narrower leaf widths (Feldman et al., 2014. Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number is a trait that may confer increased photosynthetic efficiency without increased transpiration.

  17. Effects of potentially acidic air pollutants on the intracellular distribution and transport of plant growth regulators in mesophyll cells of leaves. Consequences on stress- and developmental physiology

    Kremer, H.; Pfanz, H.; Hartung, W.

    1987-07-11

    The influence of SO/sub 2/ on the intracellular distribution of abscisic acid (ABA) and indole-acetic acid (IAA) in mesophyll cells of Picea abies, Tsuga americana and Hordeum vulgare was investigated. The compartmentation of ABA and IAA depends on intracellular pH-gradients. The hydrophilic anions ABA and IAA are accumulated in the alkaline cell compartments cytosol and chloroplasts, which act as anion traps for weak acids. Uptake of sulfur dioxide into leaves leads to an acidification of alkaline cell compartments, thus decreasing intracellular pH-gradients. Consequently this results in an increased release of plant growth regulators from the cell interior into the apoplast. Therefore the target cells of plant hormones i.e. meristems and stomates are exposed to altered hormone concentrations. Obviously this influences the regulation of cellular metabolism plant development and growth.

  18. [Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )].

    Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang

    2018-03-01

    We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.

  19. Influence of pH on the /sup 14/C-labelling pattern after photosynthesis of suspended leaf slices and isolated mesophyll cells from chenopodium album in NaH/sup 14/CO/sub 3/

    Baumann, G; Guenther, G [Paedagogische Hochschule Karl Liebknecht, Potsdam (German Democratic Republic). Sektion Chemie/Biologie

    1983-01-01

    Photosynthetic fixation of /sup 14/C from solutions of NaH/sup 14/CO/sub 3/ (at constant concentrations of free CO/sub 2/) by suspended leaf slices or isolated mesophyll cells from Chenopodium album is increased with increasing pH. Above all, the incorporation of radioactivity into amino acids and malate is stimulated. A direct uptake of HCO/sub 3/ ions and its fixation by PEP carboxylase is suggested. Isolated mesophyll cells showed at pH 7.3 a higher rate of photosynthesis than at pH 5.0.

  20. Incorporation of uridine-H3 into healthy and tobacco necrosis virus-infected mesophyll cells of Chenopodium amaranticolor

    Faccioli, G.; Rubies-Autonel, C.

    1975-01-01

    Tritiated uridine was selectively incorporated into the nucleus, nucleolus and cytoplasm of actinomycin D-treated Chenopodium amaranticolor cells locally infected with a strain of tobacco necrosis virus (TNV), 3 days after inoculation. Healthy cells did not show such an incorporation. Chloroplasts, in both types of cells, were free of label. Treatment with pancreatic ribonuclease removed the label completely in the majority of nuclei and nucleoli of infected cells. Since infectivity tests showed that AMD treatment increased virus multiplication by 10-12%, it is conceivable to think that the incorporation observed was due to virus synthesis. Preliminary infectivity experiments also showed that treatment of the cells with cycloheximide inhibited virus multiplication up to 80%, while chloramphenicol increased such multiplication. Our results lead to the conclusion that nucleus, nucleolus and cytoplasm but not chloroplasts are the sites involved in the synthesis of TNV. (orig.) [de

  1. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. A new mechanism for the regulation of stomatal-aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba L.

    Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.; Freed, G.A.

    1996-12-31

    At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and a high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.

  2. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata

    Balachandran, Suchandra; Xiang, Yu; Schobert, Christian; Thompson, Gary A.; Lucas, William J.

    1997-01-01

    In angiosperms, the functional enucleate sieve tube system of the phloem appears to be maintained by the surrounding companion cells. In this study, we tested the hypothesis that polypeptides present within the phloem sap traffic cell to cell from the companion cells, where they are synthesized, into the sieve tube via plasmodesmata. Coinjection of fluorescently labeled dextrans along with size-fractionated Cucurbita maxima phloem proteins, ranging in size from 10 to 200 kDa, as well as injection of individual fluorescently labeled phloem proteins, provided unambiguous evidence that these proteins have the capacity to interact with mesophyll plasmodesmata in cucurbit cotyledons to induce an increase in size exclusion limit and traffic cell to cell. Plasmodesmal size exclusion limit increased to greater than 20 kDa, but less than 40 kDa, irrespective of the size of the injected protein, indicating that partial protein unfolding may be a requirement for transport. A threshold concentration in the 20–100 nM range was required for cell-to-cell transport indicating that phloem proteins have a high affinity for the mesophyll plasmodesmal binding site(s). Parallel experiments with glutaredoxin and cystatin, phloem sap proteins from Ricinus communis, established that these proteins can also traffic through cucurbit mesophyll plasmodesmata. These results are discussed in terms of the requirements for regulated protein trafficking between companion cells and the sieve tube system. As the threshold value for plasmodesmal transport of phloem sap proteins falls within the same range as many plant hormones, the possibility is discussed that some of these proteins may act as long-distance signaling molecules. PMID:9391168

  3. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.

    Balachandran, S; Xiang, Y; Schobert, C; Thompson, G A; Lucas, W J

    1997-12-09

    In angiosperms, the functional enucleate sieve tube system of the phloem appears to be maintained by the surrounding companion cells. In this study, we tested the hypothesis that polypeptides present within the phloem sap traffic cell to cell from the companion cells, where they are synthesized, into the sieve tube via plasmodesmata. Coinjection of fluorescently labeled dextrans along with size-fractionated Cucurbita maxima phloem proteins, ranging in size from 10 to 200 kDa, as well as injection of individual fluorescently labeled phloem proteins, provided unambiguous evidence that these proteins have the capacity to interact with mesophyll plasmodesmata in cucurbit cotyledons to induce an increase in size exclusion limit and traffic cell to cell. Plasmodesmal size exclusion limit increased to greater than 20 kDa, but less than 40 kDa, irrespective of the size of the injected protein, indicating that partial protein unfolding may be a requirement for transport. A threshold concentration in the 20-100 nM range was required for cell-to-cell transport indicating that phloem proteins have a high affinity for the mesophyll plasmodesmal binding site(s). Parallel experiments with glutaredoxin and cystatin, phloem sap proteins from Ricinus communis, established that these proteins can also traffic through cucurbit mesophyll plasmodesmata. These results are discussed in terms of the requirements for regulated protein trafficking between companion cells and the sieve tube system. As the threshold value for plasmodesmal transport of phloem sap proteins falls within the same range as many plant hormones, the possibility is discussed that some of these proteins may act as long-distance signaling molecules.

  4. Carbon isotope ratios of epidermal and mesophyll tissues from leaves of C3 and CAM plants

    Nishida, K.; Roksandic, Z.; Osmond, B.

    1981-01-01

    The δ 13 C values for epidermal and mesophyll tissues of two C 3 plants, Commelina communis and Tulipa gesneriana, and a CAM plant, Kalanchoē daigremontiana, were measured. The values for the tissues of both C 3 plants were similar. In young leaves of Kalanchoē, the epidermis and the mesophyll showed S 13 C values which were nearly identical, and similar to those found in C 3 plants. However, markedly more negative values for epidermal compared to mesophyll tissue, were obtained in the mature Kalanchoē leaf. This is consistent with the facts that the epidermis in a CAM leaf is formed when leaves engage in C 3 photosynthesis and that subsequent dark CO 2 fixation in guard cells or mesophyll cells makes only a small contribution to total epidermal carbon

  5. Post-Transcriptional Regulation Prevents Accumulation of Glutathione Reductase Protein and Activity in the Bundle Sheath Cells of Maize1

    Pastori, Gabriela M.; Mullineaux, Philip M.; Foyer, Christine H.

    2000-01-01

    Glutathione reductase (GR; EC 1.6.4.2) activity was assayed in bundle sheath and mesophyll cells of maize (Zea mays L. var H99) from plants grown at 20°C, 18°C, and 15°C. The purity of each fraction was determined by measuring the associated activity of the compartment-specific marker enzymes, Rubisco and phosphoenolpyruvate carboxylase, respectively. GR activity and the abundance of GR protein and mRNA increased in plants grown at 15°C and 18°C compared with those grown at 20°C. In all cases GR activity was found only in mesophyll fractions of the leaves, with no GR activity being detectable in bundle sheath extracts. Immunogold labeling with GR-specific antibodies showed that the GR protein was exclusively localized in the mesophyll cells of leaves at all growth temperatures, whereas GR transcripts (as determined by in situ hybridization techniques) were observed in both cell types. These results indicate that post-transcriptional regulation prevents GR accumulation in the bundle sheath cells of maize leaves. The resulting limitation on the capacity for regeneration of reduced glutathione in this compartment may contribute to the extreme chilling sensitivity of maize leaves. PMID:10712529

  6. Tumor cell surface proteins

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  7. The influence of nitric oxide and mercury chloride on leaf mesophyll structure under natural drought conditions

    Mykola M. Musiyenko

    2012-03-01

    Full Text Available It is established that under natural drought conditions starch was accumulated in the central part of chloroplasts of mesophyll cells and chloroplasts were localized on the periphery of cells at plasmalemma. After treatment wheat plants by nitric oxide donor the decreasing of starch deposits number and close contacts between chloroplasts were indicated, elongated nucleus was localized in the centre of cells. After treatment wheat plant by mercury chloride chloroplasts in the cells lost their oval shape and contacts, increased eventually deposition of starch, indicating the acceleration of aging tissues. Thus, nitric oxide in drought conditions reduced the destructive effect of drought on mesophyll cells, and mercury chloride caused deformation of the membrane cell.

  8. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Reprogramming cells with synthetic proteins.

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  10. Reprogramming cells with synthetic proteins

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  11. Reprogramming cells with synthetic proteins

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  12. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.

    Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C

    2017-10-01

    Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Infection of potato mesophyll protoplasts with five plant viruses.

    Barker, H; Harrison, B D

    1982-12-01

    Methods are described for preparing potato mesophyll protoplasts that are suitable for infection with inocula of virus nucleoprotein or RNA. The protoplasts could be infected with four sap-transmissible viruses (tobacco mosaic, tobacco rattle, tobacco ringspot and tomato black ring viruses) and with potato leafroll virus, which is not saptransmissible. No differences were observed in ability to infect protoplasts with potato leafroll virus strains differing either in virulence in intact plants or in aphid transmissibility.

  14. Protein tyrosine nitration in the cell cycle

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  15. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P

  16. Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C MutantW⃞

    Leonhardt, Nathalie; Kwak, June M.; Robert, Nadia; Waner, David; Leonhardt, Guillaume; Schroeder, Julian I.

    2004-01-01

    Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell–expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription–PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)–regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type–specific genomic scale analyses of gene function. PMID:14973164

  17. Establishing in vitro Zinnia elegans cell suspension culture with high tracheary elements differentiation

    Twumasi, P.; Schel, J.H.N.; Ieperen, van W.; Woltering, E.J.; Emons, A.M.C.

    2009-01-01

    The Zinnia elegans mesophyll cell culture is a useful system for xylogenesis studies. The system is associated with highly synchronous tracheary element (TE) differentiation, making it more suitable for molecular studies requiring larger amounts of molecular isolates, such as mRNA and proteins and

  18. Arraying proteins by cell-free synthesis.

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  19. Imaging protein-protein interactions in living cells

    Hink, M.A.; Bisseling, T.; Visser, A.J.W.G.

    2002-01-01

    The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide

  20. Detecting protein-protein interactions in living cells

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C......-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...

  1. Insect Cells as Hosts for Recombinat Proteins

    Murwani, Retno

    1997-01-01

    Since the development of recombinant baculovirus expression system, insect cell culture has rapidly gain popularity as the method of choice for production of a variety of biologically active proteins. Up to date tens of recombinant protein have been produced by this method commercially or non-commercially and have been widely used for research. This review describes the basic concept of baculovirus expression vector and the use of insect cells as host for recombinant proteins. Examples of the...

  2. Interaction of E. coli DNA with tobacco mesophyll protoplasts

    Heyn, R.F.

    1975-01-01

    This chapter is part of a dissertation dealing with the interaction of DNA with protoplasts. Having established the length of time during which tobacco mesophyll protoplasts do not synthesize DNA following their isolation, it is important to know the extent of DNA uptake just before the onset of DNA synthesis (and possible integration) and to find optimal conditions for this uptake. Therefore, the association of E. coli DNA with tobacco protoplasts was studied. Care should be taken with the interpretation of ''uptake'' results: adsorption phenomena play a very important role and may do so at the plasmalemma of naked protoplasts. To solve the problems involved, the use of radiation-damaged DNA was attempted. With E. coli DNA possessing a large number of thymine containing pyrimidine dimers, the loss of dimers from DNA recovered from treated protoplasts was tested in order to obtain an indication of ''real'' uptake. The results are reported

  3. Cultivating Insect Cells To Produce Recombinant Proteins

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  4. Metabolic behavior of cell surface biotinylated proteins

    Hare, J.F.; Lee, E.

    1989-01-01

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  5. Estimation of mesophyll conductance to CO2 flux by three different methods

    Loreto, F.; Harley, P.C.; Di Marco, G.; Sharkey, T.D.

    1992-01-01

    The resistance to diffusion of CO2 from the intercellular airspaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis was measured using three different techniques, The three techniques include a method based on discrimination against the heavy stable isotope of carbon, 13C, and two modeling methods. The methods rely upon different assumptions, but the estimates of mesophyll conductance were similar with all three methods. The mesophyll conductance of leaves from a number of species was about 1.4 times the stomatal conductance for CO2 diffusion determined in unstressed plants at high light. The relatively low CO2 partial pressure inside chloroplasts of plants with a low mesophyll conductance did not lead to enhanced O2 sensitivity of photosynthesis because the low conductance caused a significant drop in the chloroplast CO2 Partial pressure upon switching to low O2. We found no correlation between mesophyll conductance and the ratio of internal leaf area to leaf surface area and only a weak correlation between mesophyll conductance and the proportion of leaf volume occupied by air. Mesophyll conductance was independent of CO2 and O2 partial pressure during the measurement, indicating that a true physical parameter, independent of biochemical effects, was being measured. No evidence for accumulating mechanisms was found. Some plants, notably Citrus aurantium and Simmondsia chinensis, had very low conductances that limit the rate of photosynthesis these plants can attain at atmospheric CO2 level

  6. Thermodynamics of protein destabilization in live cells.

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  7. Functional dynamics of cell surface membrane proteins.

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Differential gene expression and transport functionality in the bundle sheath versus mesophyll - a potential role in leaf mineral homeostasis.

    Wigoda, Noa; Pasmanik-Chor, Metsada; Yang, Tianyuan; Yu, Ling; Moshelion, Menachem; Moran, Nava

    2017-06-01

    Under fluctuating ambient conditions, the ability of plants to maintain hydromineral homeostasis requires the tight control of long distance transport. This includes the control of radial transport within leaves, from veins to mesophyll. The bundle sheath is a structure that tightly wraps around leaf vasculature. It has been suggested to act as a selective barrier in the context of radial transport. This suggestion is based on recent physiological transport assays of bundle sheath cells (BSCs), as well as the anatomy of these cells.We hypothesized that the unique transport functionality of BSCs is apparent in their transcriptome. To test this, we compared the transcriptomes of individually hand-picked protoplasts of GFP-labeled BSCs and non-labeled mesophyll cells (MCs) from the leaves of Arabidopsis thaliana. Of the 90 genes differentially expressed between BSCs and MCs, 45% are membrane related and 20% transport related, a prominent example being the proton pump AHA2. Electrophysiological assays showed that the major AKT2-like membrane K+ conductances of BSCs and MCs had different voltage dependency ranges. Taken together, these differences may cause simultaneous but oppositely directed transmembrane K+ fluxes in BSCs and MCs, in otherwise similar conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: application on acid rain-treated Norway spruce needles

    Albrechtová, Jana; Janáček, Jiří; Lhotáková, Zuzana; Radochová, Barbora; Kubínová, Lucie

    2007-01-01

    Roč. 58, č. 6 (2007), s. 1451-1461 ISSN 0022-0957 R&D Projects: GA AV ČR IAA5011810; GA AV ČR(CZ) IAA600110507; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z60050516 Keywords : mesophyll * stereology * confocal microscopy Subject RIV: EA - Cell Biology Impact factor: 3.917, year: 2007

  10. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    Haidar, Malak; de Laté , Perle Latré ; Kennedy, Eileen J.; Langsley, Gordon

    2017-01-01

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way

  11. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  12. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis.

    Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A

    2011-01-01

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis 60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.

  13. Origins of Protein Functions in Cells

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  14. ASIC proteins regulate smooth muscle cell migration.

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  15. Analysis of Nanobody-Epitope Interactions in Living Cells via Quantitative Protein Transport Assays.

    Früholz, Simone; Pimpl, Peter

    2017-01-01

    Over the past few decades, quantitative protein transport analyses have been used to elucidate the sorting and transport of proteins in the endomembrane system of plants. Here, we have applied our knowledge about transport routes and the corresponding sorting signals to establish an in vivo system for testing specific interactions between soluble proteins.Here, we describe the use of quantitative protein transport assays in tobacco mesophyll protoplasts to test for interactions occurring between a GFP-binding nanobody and its GFP epitope. For this, we use a secreted GFP-tagged α-amylase as a reporter together with a vacuolar-targeted RFP-tagged nanobody. The interaction between these proteins is then revealed by a transport alteration of the secretory reporter due to the interaction-triggered attachment of the vacuolar sorting signal.

  16. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Engineered mammalian cells for production of recombinant proteins

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins....

  18. Unconventional Protein Secretion in Animal Cells.

    Ng, Fanny; Tang, Bor Luen

    2016-01-01

    All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells.

  19. Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties.

    Tabibzadeh, S. S.; Kong, Q. F.; Kapur, S.

    1994-01-01

    In this report, we show that interaction of neoplastic epithelial cells with vesicles derived from leukocytes results in passive acquisition by tumor cells of a diverse group of leukocyte proteins. Vesicles shed from leukocytes were heterogeneous and exhibited the specific proteins expressed on leukocyte subsets. Accordingly, epithelial cells differentially acquired leukocyte proteins associated with vesicles. Ultrastructural localization demonstrated that acquired proteins were associated wi...

  20. Biological Evaluation of Single Cell Protein

    Hasan, I.A.; Mohamed, N.E.; El-Sayed, E.A.; Younis, N.A.

    2011-01-01

    In this study, the nutritional value of single cell protein (SCP) was evaluated as a non conventional protein source produced by fermenting fungal local strains of Trichoderma longibrachiatum, Aspergillus niger, Aspergillus terreus and Penicillium funiculosum with alkali treated sugar cane bagasse. Amino acid analysis revealed that the produced SCP contains essential and non essential amino acids. Male mice were fed on normal (basal) diet which contains 18% conventional protein and served as control group. In the second (T1) and the third (T2) group, the animals were fed on a diet in which 15% and 30% of conventional protein source were replaced by SCP, respectively. At intervals of 15, 30, 45 and 60 days, mice were sacrificed and the blood samples were collected for the biochemical evaluation. The daily averages of body weight were significantly higher with group T2 than group T1. Where as, the kidney weights in groups (T1) and (T2) were significantly increased as compared with control. A non significant difference between the tested groups in the enzyme activities of AST, ALT and GSH content of liver tissue were recorded. While, cholesterol and triglycerides contents showed a significant decrease in both (T1) and (T2) groups as compared with control. The recorded values of the serum hormone (T4), ALP activities, albumin and A/G ratio did not changed by the previous treatments. Serum levels of total protein, urea, creatinine and uric acid were higher for groups (T1) and (T2) than the control group. In conclusion, partial substitution of soy bean protein in mice diet with single cell protein (15%) improved the mice growth without any adverse effects on some of the physiological functions tested

  1. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  2. Cell-free protein synthesis: applications in proteomics and biotechnology.

    He, Mingyue

    2008-01-01

    Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

  3. Single cell protein from mandarin orange peel

    Mishio, M.; Magai, J.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40 degrees C, 24 h) produced 0.59 g g-1 reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120 degrees C with 0.8 N H2S04), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (g g-1) were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30 degrees C using 100g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts. (Refs. 12).

  4. Biosynthesis and release of proteins by isolated pulmonary Clara cells

    Patton, S.E.; Gilmore, L.B.; Jetten, A.M.; Nettesheim, P.; Hook, G.E.

    1986-01-01

    The major proteins synthesized and released by Clara cells were identified and compared with those synthesized and released by mixed lung cells. Highly purified Clara cells (85.9 +/- 2.4%) and mixed lung cells (Clara cells 4%, Type II cells 33%, granulocytes 18%, macrophages 2.7%, ciliated cells 1.2%) were isolated from rabbit lungs, incubated with Ham's F12 medium in collagen/fibronectin-coated plastic culture dishes in the presence of 35 S-methionine for periods of 4 and 18 hrs. Radiolabelled proteins were isolated from the cells and from the culture medium, electrophoresed on polyacrylamide gels in the presence of SDS under reducing conditions, and then autoradiographed. After 4 and 18 hr of incubation of the Clara cells the major radiolabelled cell-associated proteins were those with molecular weights of 6, 48, and 180 Kd. The major radiolabelled proteins released by Clara cells into the medium after 4 hrs of incubation had molecular weights of 6, 48, and 180 Kd, accounting for 42, 16, and 10%, respectively, of the total extracellular protein-associated radioactivity. After 18 hr of incubation the 6 and 48 Kd proteins represented 30 and 18% of the total released radioactivity, and the relative amount of the 180 Kd protein had decreased to 3%. With the mixed lung cells, the major proteins released into the medium had molecular weights of 6 and 48 Kd. Under nonreducing conditions the 6 Kd protein released by Clara cells had an apparent molecular weight of 12 Kd. Labelling isolated Clara cells with a mixture of 14 C-amino acids also identified this low molecular weight protein as the major secretory product of the Clara cell. The 6 Kd protein did not label when the cells were incubated with 14 C-glucosamine indicating that it was not a glycoprotein. Data demonstrate the release of several proteins from isolated Clara cells but the major protein had a M.W. of 6 Kd

  5. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells

    Spyros Darmanis

    2016-01-01

    Full Text Available Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.

  6. Methods for production of proteins in host cells

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  7. VP22 herpes simplex virus protein can transduce proteins into stem cells

    Gabanyi, I.; Lojudice, F.H.; Kossugue, P.M. [Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Rebelato, E. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Demasi, M.A.; Sogayar, M.C. [Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-02-01

    The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations.

  8. VP22 herpes simplex virus protein can transduce proteins into stem cells

    Gabanyi, I.; Lojudice, F.H.; Kossugue, P.M.; Rebelato, E.; Demasi, M.A.; Sogayar, M.C.

    2013-01-01

    The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations

  9. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  10. Interaction of Proteins Identified in Human Thyroid Cells

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  11. Interaction of Proteins Identified in Human Thyroid Cells

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  12. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  13. Protein dynamics in individual human cells: experiment and theory.

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  14. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-01-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with 32 PO 4 , exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ ≅ 100,000 protein and a M/sub r/ ≅ 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ ≅ 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ ≅ 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ ≅ 74,000 (IIIa) and M/sub r/ ≅ 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects

  15. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  16. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    Rottier, P.

    1980-01-01

    Some aspects of cowpea mosaic virus (CPMV) multiplication in cowpea mesophyll protoplasts were studied. The detection and characterization of proteins whose synthesis is induced or is stimulated upon virus infection was performed with the aid of radioactive labelling. (Auth.)

  17. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.

    Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep

    2018-01-29

    Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 ( gl2 ) and immutans ( im ), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2018. Published by The Company of Biologists Ltd.

  18. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  19. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  20. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Mitochondrial fission proteins regulate programmed cell death in yeast

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J.; Qi, Bing; Pevsner, Jonathan; McCaffery, J. Michael; Hill, R. Blake; Basañez, Gorka; Hardwick, J. Marie

    2004-01-01

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we fo...

  2. Effects of somatic cell count on the gross composition, protein ...

    and >265,000 cells/ml) on ewe milk composition, protein fractions and ... 6.38, true protein, true whey protein, fat, lactose, dry matter, ash, phosphorus, ... management practices, and representative of the typical ewe herd .... pasteurised before being analysed. .... Mastitis detection: current trends and future perspectives.

  3. Evaluation of yeast single cell protein (SCP) diets on growth ...

    An investigation was carried out on the possibility of replacing fishmeal with graded levels of yeast single cell protein (SCP; 10, 20, 30, 40 and 50%) in isonitrogenous feed formulations (30% protein) in the diet of Oreochromis niloticus fingerlings for a period of 12 weeks. The control diet had fishmeal as the primary protein ...

  4. Membrane Proteins : The Key Players of a Cancer Cell

    Kampen, Kim R.

    Membrane proteins are involved in the prognosis of the most common forms of cancer. Membrane proteins are the hallmark of a cancer cell. The overexpressed membrane receptors are becoming increasingly important in cancer cell therapy. Current renewing therapy approaches based on receptor

  5. Production of membrane proteins without cells or detergents.

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. MULTIFUNCTIONAL ADHESIN PROTEINS AND THEIR DISPLAY IN MICROBIAL CELLS

    1999-01-01

    Recombinant cells expressing a multifunctional adhesin protein derived from a naturally occurring adhesin, containing a binding domain that is capable of binding to an organic receptor and a binding domain that is capable of binding to a compound to which the naturally occurring adhesin protein...... substantially does not bind. The cells or modified adhesin proteins, optionally in immobilized form, are useful for separating organic and inorganic compounds including toxic or precious metals from an environment....

  7. Usher protein functions in hair cells and photoreceptors

    Cosgrove, Dominic; Zallocchi, Marisa

    2013-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber,...

  8. Different Cells Make Different Proteins: A Laboratory Exercise Illustrating Tissue-Specific Protein Expression in Animals

    Ibarguren, Izaskun; Villamarín, Antonio

    2017-01-01

    All the cells of higher organisms have the same DNA but not the same proteins. Each type of specialised cell that forms a tissue has its own pattern of gene expression and, consequently, it contains a particular set of proteins that determine its function. Here, we describe a laboratory exercise addressed to undergraduate students that aims to…

  9. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  10. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  11. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells.

    Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin; Nelander, Sven; Westermark, Bengt; Landegren, Ulf

    2016-01-12

    Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Global Conservation of Protein Status between Cell Lines and Xenografts

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  13. Protein kinase C signaling and cell cycle regulation

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  14. Protein Expression Analyses at the Single Cell Level

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  15. Purification and characterization of a soybean cell wall protein

    San Francisco, S.; Tierney, M.L.

    1989-01-01

    Plant cell wall composition is thought to reflect cellular responses to developmental and environmental signals. We have purified a 33 kDa protein from cell wall extracts of soybean seedlings which is most abundant in extracts from the hook region of the hypocotyl and is rich in proline and hydroxypyroline. In vivo 3 H-proline labelling of hypocotyl tissues indicates that the hook tissue is the predominant site for synthesis of this protein. In unwounded hook, label is incorporated into a 33 kDa protein, while in wounded hook this and additional proteins rich in proline are synthesized. Similarly treated cell wall extracts analyzed by Western blot analysis, using a polyclonal antibody raised against this 33kD protein, showed that the 33 kDa protein is most abundant in cell wall extracts from the hook region of unwounded seedlings and does not increase upon wounding. An immunologically related 35kD protein is also apparent in extracts from wounded hooks and appears to co-migrate with one of the labelled proteins extractable from this tissue. These data indicate that there are two related, proline-rich cell wall proteins in the hook region of soybean seedlings, one of which (33 kDa) is prominent during seedling development and another (35 kDa) which is wound inducible

  16. Fluorescent tags of protein function in living cells.

    Whitaker, M

    2000-02-01

    A cell's biochemistry is now known to be the biochemistry of molecular machines, that is, protein complexes that are assembled and dismantled in particular locations within the cell as needed. One important element in our understanding has been the ability to begin to see where proteins are in cells and what they are doing as they go about their business. Accordingly, there is now a strong impetus to discover new ways of looking at the workings of proteins in living cells. Although the use of fluorescent tags to track individual proteins in cells has a long history, the availability of laser-based confocal microscopes and the imaginative exploitation of the green fluorescent protein from jellyfish have provided new tools of great diversity and utility. It is now possible to watch a protein bind its substrate or its partners in real time and with submicron resolution within a single cell. The importance of processes of self-organisation represented by protein folding on the one hand and subcellular organelles on the other are well recognised. Self-organisation at the intermediate level of multimeric protein complexes is now open to inspection. BioEssays 22:180-187, 2000. Copyright 2000 John Wiley & Sons, Inc.

  17. Cell-specific monitoring of protein synthesis in vivo.

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  18. Analytical errors in measuring radioactivity in cell proteins and their effect on estimates of protein turnover in L cells

    Silverman, J.A.; Mehta, J.; Brocher, S.; Amenta, J.S.

    1985-01-01

    Previous studies on protein turnover in 3 H-labelled L-cell cultures have shown recovery of total 3 H at the end of a three-day experiment to be always significantly in excess of the 3 H recovered at the beginning of the experiment. A number of possible sources for this error in measuring radioactivity in cell proteins has been reviewed. 3 H-labelled proteins, when dissolved in NaOH and counted for radioactivity in a liquid-scintillation spectrometer, showed losses of 30-40% of the radioactivity; neither external or internal standardization compensated for this loss. Hydrolysis of these proteins with either Pronase or concentrated HCl significantly increased the measured radioactivity. In addition, 5-10% of the cell protein is left on the plastic culture dish when cells are recovered in phosphate-buffered saline. Furthermore, this surface-adherent protein, after pulse labelling, contains proteins of high radioactivity that turn over rapidly and make a major contribution to the accumulating radioactivity in the medium. These combined errors can account for up to 60% of the total radioactivity in the cell culture. Similar analytical errors have been found in studies of other cell cultures. The effect of these analytical errors on estimates of protein turnover in cell cultures is discussed. (author)

  19. 14-3-3 Proteins in Guard Cell Signaling.

    Cotelle, Valérie; Leonhardt, Nathalie

    2015-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  20. Protein thiophosphorylation associated with secretory inhibition in permeabilized chromaffin cells

    Brooks, J.C.; Brooks, M.

    1985-01-01

    Permeabilized cells treated with the adenosine triphosphate analog, ( 35 S)adenosine-5'-0-3(3-thiotriphosphate) ((γ- 35 S)ATP), showed thiophosphorylation of a small number of cellular proteins. A 54 kilodalton (kDa) protein was heavily thiophosphorylated in unstimulated control cells and a 43 kilodalton protein was more heavily thiophosphorylated in calcium stimulated cells. Intact cells incorporated 35 S into a series of higher molecular weight proteins. Stimulation of prelabelled, permeabilized cells resulted in a loss of 35 S from the cells over a 20 min period. Treatment of permeabilized cells with ATPγS inhibited secretion and 35 S incorporation into the cells. Pretreatment with ATPγS resulted in subsequent inhibition of both secretion and the ability of the cells to incorporate 35 S from (γ- 35 S)ATP. These results indicate that the sites normally available for phosphorylation were inactivated by thiophosphorylation and were unavailable to participate in the secretory process. The inhibition of secretion associated with thiophosphorylation of these proteins suggests that they may play a role in the control of secretion by chromaffin cells. 15 references, 1 figure, 3 tables

  1. Role of heat shock proteins in cell apoptosis

    Arleta Kaźmierczuk

    2010-06-01

    Full Text Available Apoptosis is, apart from necrosis and autophagy, one of the possible cell death mechanisms eliminating needless, not normal or infected cells. This process ensures quantitative and qualitative cell control of organisms. Apoptosis is tightly regulated, it requires both activation of a large number of genes and energy input. Up-to-date two main apoptotic pathways have been recognized – external/receptor and internal, processed with the participation of mitochondria. Heat shock proteins HSPs, the molecules known from their chaperone activity and molecular conservatism, play essential functions in the course of apoptosis. Among that proteins family, i.e. HSP100, 90, 70, 60, 40 and small molecular (sHSP, there are agents mainly protective against programmed cell death. However, in some conditions some of these proteins may promote apoptosis. This review describes different key apoptotic proteins interacting with main members of HSP family and the consequence of these events for cell survival or apoptosis.

  2. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  3. Systematic analysis of protein turnover in primary cells.

    Mathieson, Toby; Franken, Holger; Kosinski, Jan; Kurzawa, Nils; Zinn, Nico; Sweetman, Gavain; Poeckel, Daniel; Ratnu, Vikram S; Schramm, Maike; Becher, Isabelle; Steidel, Michael; Noh, Kyung-Min; Bergamini, Giovanna; Beck, Martin; Bantscheff, Marcus; Savitski, Mikhail M

    2018-02-15

    A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.

  4. Irradiation And Papillomavirus E2 Proteins On Hela Cells

    Abderrafi, B.

    2005-01-01

    Exposure to relatively high doses ionizing radiation activates cellular responses that impair cell survival. These responses, for which the p53 protein plays a central role, form the basis for cancer radiotherapy. However, the efficacy of radiation treatments on cell killing is often reduced as a consequence of the frequent inactivation of the p53 protein in cancer cells. Loss of p53 protein is associated with later stages of most human tumors and resistance to anticancer agents. Carcinomas are frequent malignant tumors in humans. The majority of cervical carcinomas are etiologically linked to the presence of HPV virus (Human Papillomavirus). In carcinoma tumor cells, as well as in their derived-cell lines such as HeLa cells, the p53 protein is generally not detected due to its degradation by the product of the HPV-associated oncogenic E6 gene. Another characteristic of HPV-positive cervical cancer cells is the loss of the regulatory viral E2 gene expression as a consequence of viral DNA integration into the cellular genome. Reintroduction of E2 expression in HeLa cells reactivates p53, due to a negative effect on the expression of E6 protein, with a concomitant arrest of cell proliferation at the phase G1 of the cell cycle and delay in cell division via the repression of E2F-target genes. To elucidate whether reactivation of p53 would improve the cell killing effect of ionizing radiation in cancer cells, we studied the combined effects of radiation and E2 expression on the cell cycle distribution in HeLa cells

  5. Usher protein functions in hair cells and photoreceptors.

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Protein-Mediated Interactions of Pancreatic Islet Cells

    Paolo Meda

    2013-01-01

    Full Text Available The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins and paracrine communications (pannexins between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreatic β-cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions.

  7. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.

    Shamim, Baubak; Hawley, John A; Camera, Donny M

    2018-06-01

    Human skeletal muscle satellite cells are activated in response to both resistance and endurance exercise. It was initially proposed that satellite cell proliferation and differentiation were only required to support resistance exercise-induced hypertrophy. However, satellite cells may also play a role in muscle fibre remodelling after endurance-based exercise and extracellular matrix regulation. Given the importance of dietary protein, particularly branched chain amino acids, in supporting myofibrillar and mitochondrial adaptations to both resistance and endurance-based training, a greater understanding of how protein intake impacts satellite cell activity would provide further insight into the mechanisms governing skeletal muscle remodelling with exercise. While many studies have investigated the capacity for protein ingestion to increase post-exercise rates of muscle protein synthesis, few investigations have examined the role for protein ingestion to modulate satellite cell activity. Here we review the molecular mechanisms controlling the activation of satellite cells in response to mechanical stress and protein intake in both in vitro and in vivo models. We provide a mechanistic framework that describes how protein ingestion may enhance satellite activity and promote exercise adaptations in human skeletal muscle.

  8. Recombinant protein production from stable mammalian cell lines and pools.

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. UV-induced DNA-binding proteins in human cells

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  10. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  11. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Distribution of DNA replication proteins in Drosophila cells

    Easwaran, Hariharan P; Leonhardt, Heinrich; Cardoso, M Cristina

    2007-01-01

    Background DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution. Results Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells. Conclusion We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very

  13. 3D Protein Dynamics in the Cell Nucleus.

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration.

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Athanasakis, Emmanouil; Aloisio, Michelangelo; Monasta, Lorenzo; Ricci, Giuseppe

    2016-05-01

    Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.

  15. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    Saleem, M.; Cutler, A.J.

    1986-01-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of 14 C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37 0 C. The heat shocked protoplasts incorporated 33% more 14 C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids

  16. Human neuronal cell protein responses to Nipah virus infection

    Hassan Sharifah

    2007-06-01

    Full Text Available Abstract Background Nipah virus (NiV, a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. Results Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP F, guanine nucleotide binding protein (G protein, voltage-dependent anion channel 2 (VDAC2 and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. Conclusion Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.

  17. RPE cell surface proteins in normal and dystrophic rats

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  18. Expression and analysis of exogenous proteins in epidermal cells.

    Dagnino, Lina; Ho, Ernest; Chang, Wing Y

    2010-01-01

    In this chapter we review protocols for transient transfection of primary keratinocytes. The ability to transfect primary epidermal cells regardless of their differentiation status allows the biochemical and molecular characterization of multiple proteins. We review methods to analyze exogenous protein abundance in transfected keratinocytes by immunoblot and immunoprecipitation. We also present protocols to determine the subcellular distribution of these proteins by indirect immunofluorescence microscopy approaches.

  19. Conversion of Food waste to Single Cell Protein using Aspergillus ...

    The utilization of food waste into products like single cell protein is an alternative solution to global protein shortage and to alleviate pollution problems. This investigation was carried out with food wastes such as orange, pineapple, banana, watermelon and cucumber waste as growth media for A. niger using standard ...

  20. Small GTP-binding proteins in human endothelial cells

    de Leeuw, H. P.; Koster, P. M.; Calafat, J.; Janssen, H.; van Zonneveld, A. J.; van Mourik, J. A.; Voorberg, J.

    1998-01-01

    Small GTP-binding proteins of the Ras superfamily control an extensive number of intracellular events by alternating between GDP- and GTP-bound conformation. The presence of members of this protein family was examined in human umbilical vein endothelial cells employing RT-PCR. Sequence analysis of

  1. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    BSN

    customary food and feed sources of protein (agriculnrre and fishery) to ocher sources like single cell protein (SCP); whose production from hydrocarbons is one ... origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, algae. protozoa, mid even bacterinphagcs generally cultivated on substrates ...

  2. Covalent microcontact printing of proteins fro cell patterning

    Rozkiewicz, D.I.; Kraan, Yvonne M.; Werten, Marc W.T.; de Wolf, Frits A.; Subramaniam, Vinod; Ravoo, B.J.; Reinhoudt, David

    2006-01-01

    We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An

  3. Denaturation of membrane proteins and hyperthermic cell killing

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  4. Understanding of Protein Synthesis in a Living Cell

    Mustapha, Y.; Muhammad, S.

    2006-01-01

    The assembly of proteins takes place in the cytoplasm of a cell. There are three main steps. In initiation, far left, all the necessary parts of the process are brought together by a small molecule called a ribosome. During elongation, amino acids, the building blocks of proteins, are joined to one another in a long chain. The sequence in which…

  5. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin.

    Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J

    1998-01-01

    Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226

  6. Protein synthesis and sublethal damage repair in synchronized CHO cells

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  7. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-01-01

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin domain III (R-III) and albumin domain I -RBP-albumin III (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  8. In Cell Footprinting Coupled with Mass Spectrometry for the Structural Analysis of Proteins in Live Cells.

    Espino, Jessica A; Mali, Vishaal S; Jones, Lisa M

    2015-08-04

    Protein footprinting coupled with mass spectrometry has become a widely used tool for the study of protein-protein and protein-ligand interactions and protein conformational change. These methods provide residue-level analysis on protein interaction sites and have been successful in studying proteins in vitro. The extension of these methods for in cell footprinting would open an avenue to study proteins that are not amenable for in vitro studies and would probe proteins in their native environment. Here we describe the application of an oxidative-based footprinting approach inside cells in which hydroxyl radicals are used to oxidatively modify proteins. Mass spectrometry is used to detect modification sites and to calculate modification levels. The method is probing biologically relevant proteins in live cells, and proteins in various cellular compartments can be oxdiatively modified. Several different amino acid residues are modified making the method a general labeling strategy for the study of a variety of proteins. Further, comparison of the extent of oxidative modification with solvent accessible surface area reveals the method successfully probes solvent accessibility. This marks the first time protein footprinting has been performed in live cells.

  9. Cellular Reprogramming Using Protein and Cell-Penetrating Peptides

    Bong Jong Seo

    2017-03-01

    Full Text Available Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs. Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.

  10. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  11. Gonadal cell surface receptor for plasma retinol-binding protein

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  12. Detecting Protein-Protein Interactions in the Intact Cell of Bacillus subtilis (ATCC 6633)

    Winters, Michael S.; Day, R. A.

    2003-01-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C2N2) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques a...

  13. BAG3: a multifaceted protein that regulates major cell pathways

    Rosati, A; Graziano, V; De Laurenzi, V; Pascale, M; Turco, M C

    2011-01-01

    Bcl2-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that interacts with the ATPase domain of the heat shock protein (Hsp) 70 through BAG domain (110–124 amino acids). BAG3 is the only member of the family to be induced by stressful stimuli, mainly through the activity of heat shock factor 1 on bag3 gene promoter. In addition to the BAG domain, BAG3 contains also a WW domain and a proline-rich (PXXP) repeat, that mediate binding to partners different from Hsp70. These multifaceted interactions underlie BAG3 ability to modulate major biological processes, that is, apoptosis, development, cytoskeleton organization and autophagy, thereby mediating cell adaptive responses to stressful stimuli. In normal cells, BAG3 is constitutively present in a very few cell types, including cardiomyocytes and skeletal muscle cells, in which the protein appears to contribute to cell resistance to mechanical stress. A growing body of evidence indicate that BAG3 is instead expressed in several tumor types. In different tumor contexts, BAG3 protein was reported to sustain cell survival, resistance to therapy, and/or motility and metastatization. In some tumor types, down-modulation of BAG3 levels was shown, as a proof-of-principle, to inhibit neoplastic cell growth in animal models. This review attempts to outline the emerging mechanisms that can underlie some of the biological activities of the protein, focusing on implications in tumor progression. PMID:21472004

  14. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  16. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  17. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  18. CellMap visualizes protein-protein interactions and subcellular localization

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  19. Thematic minireview series: cell biology of G protein signaling.

    Dohlman, Henrik G

    2015-03-13

    This thematic series is on the topic of cell signaling from a cell biology perspective, with a particular focus on G proteins. G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors) are typically found at the cell surface. Upon agonist binding, these receptors will activate a GTP-binding G protein at the cytoplasmic face of the plasma membrane. Additionally, there is growing evidence that G proteins can also be activated by non-receptor binding partners, and they can signal from non-plasma membrane compartments. The production of second messengers at multiple, spatially distinct locations represents a type of signal encoding that has been largely neglected. The first minireview in the series describes biosensors that are being used to monitor G protein signaling events in live cells. The second describes the implementation of antibody-based biosensors to dissect endosome signaling by G proteins and their receptors. The third describes the function of a non-receptor, cytoplasmic activator of G protein signaling, called GIV (Girdin). Collectively, the advances described in these articles provide a deeper understanding and emerging opportunities for new pharmacology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  1. Sphingolipid trafficking and protein sorting in epithelial cells

    Slimane, TA; Hoekstra, D

    2002-01-01

    Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an

  2. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  3. Nanoparticles-cell association predicted by protein corona fingerprints

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  4. Myb proteins: angels and demons in normal and transformed cells.

    Zhou, Ye; Ness, Scott A

    2011-01-01

    A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.

  5. Whey utilization for single-cell protein production

    Barraquio, V; Silverio, L G; Revilleza, R P; Fernadez, W L

    1980-01-01

    The production of single-cell protein by yeast assimilation of lactose in soft cheese whey was studied using Candida pseudotropicalis as a test organism. Under shake-flask cultivation conditions with deproteinized whey as the medium, lactose (initially 4.20%) was completely assimilated in 48h; cell mass was 5.56 mg/mL after 72h; and average protein content of the dried mass was approximately 11.8%. Batch cultivation using undeproteinized whey resulted in a faster lactose utilization rate from an initial 3.93% to a residual 0.56% in 12 h; cell mass was 8.41 mg/mL in 10 h; and average protein was approximately 37.7%. In a semicontinuous culture with 10 to the power of 7 viable cells/mL as initial cell concentration, 15.69 mg/mL cell mass with a mean protein content of approximately 21.4% could be produced and lactose could be considerably consumed (from an initial 4.75% to a residual 0.42%) within 13-14 h. Supplementation with (NH/sub 4/)/sub 2/S0/sub 4/ and KH/sub 2/P0/sub 4/ did not increase cell mass (12.47 mg/mL in 12 h) and hasten lactose assimulation (from initial 4.49% to residual 0.3% in 12 h). Average protein content was approximately 31%. Cell mass yield was established as 0.29 mg yeast cell/mg lactose consumed. Factors that might have affected protein content are also discussed.

  6. Timing the Generation of Distinct Retinal Cells by Homeobox Proteins

    Decembrini, Sarah; Andreazzoli, Massimiliano; Vignali, Robert; Barsacchi, Giuseppina; Cremisi, Federico

    2006-01-01

    The reason why different types of vertebrate nerve cells are generated in a particular sequence is still poorly understood. In the vertebrate retina, homeobox genes play a crucial role in establishing different cell identities. Here we provide evidence of a cellular clock that sequentially activates distinct homeobox genes in embryonic retinal cells, linking the identity of a retinal cell to its time of generation. By in situ expression analysis, we found that the three Xenopus homeobox genes Xotx5b, Xvsx1, and Xotx2 are initially transcribed but not translated in early retinal progenitors. Their translation requires cell cycle progression and is sequentially activated in photoreceptors (Xotx5b) and bipolar cells (Xvsx1 and Xotx2). Furthermore, by in vivo lipofection of “sensors” in which green fluorescent protein translation is under control of the 3′ untranslated region (UTR), we found that the 3′ UTRs of Xotx5b, Xvsx1, and Xotx2 are sufficient to drive a spatiotemporal pattern of translation matching that of the corresponding proteins and consistent with the time of generation of photoreceptors (Xotx5b) and bipolar cells (Xvsx1 and Xotx2). The block of cell cycle progression of single early retinal progenitors impairs their differentiation as photoreceptors and bipolar cells, but is rescued by the lipofection of Xotx5b and Xvsx1 coding sequences, respectively. This is the first evidence to our knowledge that vertebrate homeobox proteins can work as effectors of a cellular clock to establish distinct cell identities. PMID:16903786

  7. Timing the generation of distinct retinal cells by homeobox proteins.

    Sarah Decembrini

    2006-09-01

    Full Text Available The reason why different types of vertebrate nerve cells are generated in a particular sequence is still poorly understood. In the vertebrate retina, homeobox genes play a crucial role in establishing different cell identities. Here we provide evidence of a cellular clock that sequentially activates distinct homeobox genes in embryonic retinal cells, linking the identity of a retinal cell to its time of generation. By in situ expression analysis, we found that the three Xenopus homeobox genes Xotx5b, Xvsx1, and Xotx2 are initially transcribed but not translated in early retinal progenitors. Their translation requires cell cycle progression and is sequentially activated in photoreceptors (Xotx5b and bipolar cells (Xvsx1 and Xotx2. Furthermore, by in vivo lipofection of "sensors" in which green fluorescent protein translation is under control of the 3' untranslated region (UTR, we found that the 3' UTRs of Xotx5b, Xvsx1, and Xotx2 are sufficient to drive a spatiotemporal pattern of translation matching that of the corresponding proteins and consistent with the time of generation of photoreceptors (Xotx5b and bipolar cells (Xvsx1 and Xotx2. The block of cell cycle progression of single early retinal progenitors impairs their differentiation as photoreceptors and bipolar cells, but is rescued by the lipofection of Xotx5b and Xvsx1 coding sequences, respectively. This is the first evidence to our knowledge that vertebrate homeobox proteins can work as effectors of a cellular clock to establish distinct cell identities.

  8. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633).

    Winters, Michael S; Day, R A

    2003-07-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C(2)N(2)) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins.

  9. Is Melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells

    Chan Linda S

    2005-03-01

    Full Text Available Abstract Background Although several genes and proteins have been implicated in the development of melanomas, the molecular mechanisms involved in the development of these tumors are not well understood. To gain a better understanding of the relationship between the cell growth, tumorigenesis and differentiation, we have studied a highly malignant cat melanoma cell line that trans-differentiates into neuronal cells after exposure to a feline endogenous retrovirus RD114. Methods To define the repertoire of proteins responsible for the phenotypic differences between melanoma and its counterpart trans-differentiated neuronal cells we have applied proteomics technology and compared protein profiles of the two cell types and identified differentially expressed proteins by 2D-gel electrophoresis, image analyses and mass spectrometry. Results The melanoma and trans-differentiated neuronal cells could be distinguished by the presence of distinct sets of proteins in each. Although approximately 60–70% of the expressed proteins were shared between the two cell types, twelve proteins were induced de novo after infection of melanoma cells with RD114 virus in vitro. Expression of these proteins in trans-differentiated cells was significantly associated with concomitant down regulation of growth promoting proteins and up-regulation of neurogenic proteins (p = 95% proteins expressed in trans-differentiated cells could be associated with the development, differentiation and regulation of nervous system cells. Conclusion Our results indicate that the cat melanoma cells have the ability to differentiate into distinct neuronal cell types and they express proteins that are essential for self-renewal. Since melanocytes arise from the neural crest of the embryo, we conclude that this melanoma arose from embryonic precursor stem cells. This model system provides a unique opportunity to identify domains of interactions between the expressed proteins that halt the

  10. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Prolactin-inducible proteins in human breast cancer cells

    Shiu, R.P.; Iwasiow, B.M.

    1985-01-01

    The mechanism of action of prolactin in target cells and the role of prolactin in human breast cancer are poorly understood phenomena. The present study examines the effect of human prolactin (hPRL) on the synthesis of unique proteins by a human breast cancer cell line, T-47D, in serum-free medium containing bovine serum albumin. [ 35 S]Methionine-labeled proteins were analysed by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. Treatment of cells with hPRL (1-1000 ng/ml) and hydrocortisone (1 microgram/ml) for 36 h or longer resulted in the synthesis and secretion of three proteins having molecular weights of 11,000, 14,000, and 16,000. Neither hPRL nor hydrocortisone alone induced these proteins. Of several other peptide hormones tested, only human growth hormone, a hormone structurally and functionally similar to hPRL, could replace hPRL in causing protein induction. These three proteins were, therefore, referred to as prolactin-inducible proteins (PIP). Each of the three PIPs was purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and specific antibodies were generated to them in rabbits. By immunoprecipitation and immunoblotting (Western blot) of proteins secreted by T-47D cells, it was demonstrated that the three PIPs were immunologically identical to one another. In addition, the 16-kDa and 14-kDa proteins (PIP-16 and PIP-14), and not the 11-kDa protein (PIP-11), incorporated [ 3 H]glycosamine. Furthermore, 2-deoxyglucose (2 mM) and tunicamycin (0.5 micrograms/ml), two compounds known to inhibit glycosylation, blocked the production of PIP-16 and PIP-14, with a concomitant increase in the accumulation of PIP-11

  12. Protein biosynthesis in cultured human hair follicle cells.

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  13. Biosynthesis of proteins and radiation effects in cells

    Kolomiets, K.D.

    1982-01-01

    Critical analysis of nowadays literature and own experimental data on importance of biosynthesis of proteins, their modification and functional activity in forming radiation effects in irradiated cells is given. A special place in the development of radiation injury of cellular structures and in reduction processes is allocated to molecular recognition. The data on the role of protein synthesis and molecular recognition in the reduction of main biological cell chromatin system are presented. The dependence of postradiation changes in the cell on structural and functional chromatin state is considered

  14. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements

    Most previous analyses of leaf gas exchange measurements assumed an infinite value of mesophyll conductance (gm) and thus equaled CO2 partial pressures in the substomatal cavity and chloroplast. Yet an increasing number of studies have recognized that gm is finite and there is a drawdown of CO2 part...

  15. Stomatal conductance, mesophyll conductance, and trans piration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought

    Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang

    2017-01-01

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were

  16. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid

    Vrábl, D.; Vašková, M.; Hronková, Marie; Flexas, J.; Šantrůček, Jiří

    2009-01-01

    Roč. 60, č. 8 (2009), s. 2315-2323 ISSN 0022-0957 R&D Projects: GA AV ČR(CZ) IAA601410505 Institutional research plan: CEZ:AV0Z50510513 Keywords : Carbon dioxide * mesophyll conductance * Helianthus annuus Subject RIV: ED - Physiology Impact factor: 4.271, year: 2009

  17. Cocompartmentation of proteins and K+ within the living cell

    Kellermayer, M.; Ludany, A.; Jobst, K.; Szucs, G.; Trombitas, K.; Hazlewood, C.F.

    1986-01-01

    Monolayer H-50 tissue culture cells were treated with Triton X-100 and Brij 58 nonionic detergents, and their electron microscopic morphology along with the release of the intracellular proteins [ 35 S]methionine-labelled and 42 K-labelled K + were studied. Although Triton X-100 was more effective, both detergents removed the lipoid membranes within 5 min. The mobilization and solubilization of the cytoplasmic and nuclear proteins occurred much faster with Triton X-100 than with Brij 58. In Triton X-100-treated cells, the loss of K + was complete within 2 min. The loss of K + from the Brij 58-treated cells was complete only after 10 min and the mobilization of K + showed sigmoid-type release kinetics. These results support the view that most of K + and diffusible proteins are not freely dissolved in the cellular water, but they are cocompartmentalized inside the living cell

  18. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Addressable droplet microarrays for single cell protein analysis.

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  20. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  1. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...

  2. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  3. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    Beebe, D.P.; Wood, L.L.; Moos, M.

    1990-01-01

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between 125 I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase

  4. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  5. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination.

    Barbour, Margaret M; Warren, Charles R; Farquhar, Graham D; Forrester, Guy; Brown, Hamish

    2010-07-01

    Leaf internal, or mesophyll, conductance to CO(2) (g(m)) is a significant and variable limitation of photosynthesis that also affects leaf transpiration efficiency (TE). Genotypic variation in g(m) and the effect of g(m) on TE were assessed in six barley genotypes (four Hordeum vulgare and two H. bulbosum). Significant variation in g(m) was found between genotypes, and was correlated with photosynthetic rate. The genotype with the highest g(m) also had the highest TE and the lowest carbon isotope discrimination as recorded in leaf tissue (Delta(p)). These results suggest g(m) has unexplored potential to provide TE improvement within crop breeding programmes.

  6. Singlet oxygen-mediated formation of protein peroxides within cells

    Wright, A.; Policarpio, V.

    2003-01-01

    Full text: Singlet oxygen is generated by a number of cellular, enzymatic and chemical reactions as well as by exposure to UV, or visible light in the presence of a sensitizer; as a consequence this oxidant has been proposed as a damaging agent in a number of pathologies including photo-aging and skin cancer. Proteins are major targets for singlet oxygen as a result of their abundance and high rate constants for reaction. In this study it is shown that illumination of viable, sensitizer-loaded, THP-1 (human monocyte-like) cells with visible light gives rise to intra-cellular protein-derived peroxides. The peroxide yield increases with illumination time, requires the presence of the sensitizer, is enhanced in D 2 O, and decreased by azide; these data are consistent with the mediation of singlet oxygen. The concentration of peroxides detected, which is not affected by glucose or ascorbate loading of the cells, corresponds to ca. 1.5 nmoles peroxide per 10 6 cells using rose bengal as sensitizer, or 10 nmoles per mg cell protein and account for up to ca. 15% of the O 2 consumed by the cells. Similar peroxides have been detected on isolated cellular proteins exposed to light in the presence of rose bengal and oxygen. After cessation of illumination, the cellular protein peroxide levels decreases with t 1/2 ca. 4 hrs at 37 deg C, and this is associated with increased cell lysis. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions, gives rise to radicals as detected by EPR spin trapping. These protein peroxides, and radicals derived from them, can inactivate key cellular enzymes (including caspases, GAPDH and glutathione reductase) and induce DNA base oxidation, strand breaks and DNA-protein cross-links. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer gives rise to novel long-lived, but reactive, intra-cellular protein peroxides via singlet oxygen

  7. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  8. Nuclear transport of heat shock proteins in stressed cells

    Chughtai, Zahoor Saeed

    2001-01-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or β-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-β-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single β-importin gene. With this assay I have identified Nmd5p as a β-importin required to concentrate Star-β-galactosidase in nuclei of stationary phase cells. (author)

  9. Nuclear transport of heat shock proteins in stressed cells

    Chughtai, Zahoor Saeed

    2001-07-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or {beta}-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-{beta}-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single {beta}-importin gene. With this assay I have identified Nmd5p as a {beta}-importin required to concentrate Star-{beta}-galactosidase in nuclei of stationary phase cells. (author)

  10. Nitrosothiol signaling and protein nitrosation in cell death.

    Iyer, Anand Krishnan V; Rojanasakul, Yon; Azad, Neelam

    2014-11-15

    Nitric oxide, a reactive free radical, is an important signaling molecule that can lead to a plethora of cellular effects affecting homeostasis. A well-established mechanism by which NO manifests its effect on cellular functions is the post-translational chemical modification of cysteine thiols in substrate proteins by a process known as S-nitrosation. Studies that investigate regulation of cellular functions through NO have increasingly established S-nitrosation as the primary modulatory mechanism in their respective systems. There has been a substantial increase in the number of reports citing various candidate proteins undergoing S-nitrosation, which affects cell-death and -survival pathways in a number of tissues including heart, lung, brain and blood. With an exponentially growing list of proteins being identified as substrates for S-nitrosation, it is important to assimilate this information in different cell/tissue systems in order to gain an overall view of protein regulation of both individual proteins and a class of protein substrates. This will allow for broad mapping of proteins as a function of S-nitrosation, and help delineate their global effects on pathophysiological responses including cell death and survival. This information will not only provide a much better understanding of overall functional relevance of NO in the context of various disease states, it will also facilitate the generation of novel therapeutics to combat specific diseases that are driven by NO-mediated S-nitrosation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  12. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance.

    Wu, Honghong; Shabala, Lana; Zhou, Meixue; Shabala, Sergey

    2014-10-01

    Understanding the intrinsic mechanisms involved in the differential salinity tolerance between bread wheat and durum wheat is essential for breeding salt-tolerant varieties to cope with the global salinity issue threatening future food supply. In the past, higher salinity tolerance in bread wheat compared with durum wheat has been attributed to its better ability to exclude Na(+) from uptake. Here we show that another mechanism, namely more superior K(+) retention ability in the leaf mesophyll, also contributes to this difference. A strong positive correlation (R(2) > 0.41, P varieties. However, while the above correlation was strong in bread wheat, it was statistically insignificant in durum wheat. Consistent with these findings, a significantly higher relative leaf K(+) content was found in bread wheat than in durum wheat. In contrast to root tissues, the role of voltage-gated K(+) channels in K(+) retention in the wheat mesophyll was relatively small, and non-selective cation channels played a major role in controlling intracellular K(+) homeostasis. Moreover, a significant negative correlation between NaCl-induced mesophyll H(+) flux and mesophyll K(+) retention was found, and interpreted as a compensatory mechanism employed by sensitive varieties to regain K(+) leaked into the apoplast. It is concluded that bread wheat and durum wheat show different strategies of coping with salinity, and that targeting mechanisms conferring K(+) retention in the leaf mesophyll may be a promising way to improve the overall salinity tolerance in these species. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Silver nanoparticle protein corona composition in cell culture media.

    Shannahan, Jonathan H; Lai, Xianyin; Ke, Pu Chun; Podila, Ramakrishna; Brown, Jared M; Witzmann, Frank A

    2013-01-01

    The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic

  14. Femtosecond UV-laser pulses to unveil protein-protein interactions in living cells.

    Itri, Francesco; Monti, Daria M; Della Ventura, Bartolomeo; Vinciguerra, Roberto; Chino, Marco; Gesuele, Felice; Lombardi, Angelina; Velotta, Raffaele; Altucci, Carlo; Birolo, Leila; Piccoli, Renata; Arciello, Angela

    2016-02-01

    A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.

  15. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  16. Modulation of protein properties in living cells using nanobodies.

    Kirchhofer, Axel; Helma, Jonas; Schmidthals, Katrin; Frauer, Carina; Cui, Sheng; Karcher, Annette; Pellis, Mireille; Muyldermans, Serge; Casas-Delucchi, Corella S; Cardoso, M Cristina; Leonhardt, Heinrich; Hopfner, Karl-Peter; Rothbauer, Ulrich

    2010-01-01

    Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP-nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.

  17. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  18. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. CURCUMIN DECREASES SPECIFICITY PROTEIN (Sp) EXPRESSION IN BLADDER CANCER CELLS

    Chadalapaka, Gayathri; Jutooru, Indira; Chintharlapalli, Sudhakar; Papineni, Sabitha; Smith, Roger; Li, Xiangrong; Safe, Stephen

    2008-01-01

    Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 – 25 µM curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of...

  20. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-04-01

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  1. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  2. Visualization and targeted disruption of protein interactions in living cells

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53–HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein–protein interactions in practically any cell type and species. PMID:24154492

  3. MICROORGANISMS: A MARVELOUS SOURCE OF SINGLE CELL PROTEINS

    Agam Nangul

    2013-08-01

    Full Text Available The increasing global population living below the poverty line is driving the scientific community to search for non-conventional protein sources that can replace conventional expensive ones. Microbial proteins, or single-cell protein (SCP, represent a potential future nutrient source for human food and animal feed. These microbial proteins can be grown rapidly on substrates with minimum dependence on soil, water and climate conditions. They can be produced from algae, fungi and bacteria the chief sources of SCP. It is convenient to use microorganisms for production of SCP as they grow rapidly and have high protein content. Industrially, they can be produced from algal biomass, yeast, fungi. There are several other ways of getting SCP as well. Despite numerous advantages of SCP, they have disadvantages and toxic effects too, especially related to mycotoxins and bacterial toxins.

  4. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  5. A Versatile Method of Patterning Proteins and Cells.

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Firestein, Bonnie L; Cho, Cheul H; Townes-Anderson, Ellen

    2017-02-26

    Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.

  6. Protein and signaling networks in vertebrate photoreceptor cells

    Karl-Wilhelm eKoch

    2015-11-01

    Full Text Available Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cGMP and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase GRK1 under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases and is regulated by specific neuronal Ca2+-sensor proteins called GCAPs. At least one guanylate cyclase (ROS-GC1 was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.

  7. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    G. Natale

    2013-03-01

    Full Text Available Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-to-cell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs; mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs. The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.

  8. Two endogenous proteins that induce cell wall extension in plants

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  9. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  10. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  11. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity.

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-09-25

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.

  12. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    Haidar, Malak

    2017-09-08

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way to explore their contribution to a particular cellular phenotype in a given disease context. Cell-penetrating peptides can be synthetically constrained through various chemical modifications that stabilize a given structural fold with the potential to improve competitive binding to specific targets. Theileria-transformed leukocytes display high PKA activity, but PKAis an enzyme that plays key roles in multiple cellular processes; consequently genetic ablation of kinase activity gives rise to a myriad of confounding phenotypes. By contrast, ablation of a specific kinase-substrate interaction has the potential to give more refined information and we illustrate this here by describing how surgically ablating PKA interactions with BAD gives precise information on the type of glycolysis performed by Theileria-transformed leukocytes. In addition, we provide two other examples of how ablating specific protein-protein interactions in Theileria-infected leukocytes leads to precise phenotypes and argue that constrained penetrating peptides have great therapeutic potential to combat infectious diseases in general.

  13. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  14. Regulation, cell differentiation and protein-based inheritance.

    Malagnac, Fabienne; Silar, Philippe

    2006-11-01

    Recent research using fungi as models provide new insight into the ability of regulatory networks to generate cellular states that are sufficiently stable to be faithfully transmitted to daughter cells, thereby generating epigenetic inheritance. Such protein-based inheritance is driven by infectious factors endowed with properties usually displayed by prions. We emphasize the contribution of regulatory networks to the emerging properties displayed by cells.

  15. Multistage Magnetic Separator of Cells and Proteins

    Barton, Ken; Ainsworth, Mark; Daily, Bruce; Dunn, Scott; Metz, Bill; Vellinger, John; Taylor, Brock; Meador, Bruce

    2005-01-01

    The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility. The MAGSEP includes a processing unit and an electronic unit coupled to a personal computer. The processing unit includes upper and lower plates, a plate-rotation system, an electromagnet, an electromagnet-translation system, and a capture-magnet assembly. The plates are bolted together through a roller bearing that allows the plates to rotate with respect to each other. An interface between the plates acts as a seal for separating fluids. A lower cuvette can be aligned with as many as 15 upper cuvette stations for fraction collection during processing. A two-phase stepping motor drives the rotation system, causing the upper plate to rotate for the collection of each fraction of the sample material. The electromagnet generates a magnetic field across the lower cuvette, while the translation system translates the electromagnet upward along the lower cuvette. The current supplied to the electromagnet, and thus the magnetic flux density at the pole face of the electromagnet, can be set at a programmed value between 0 and 1,400 gauss (0.14 T). The rate of translation can be programmed between 5 and 2,000 m/s so as to align all sample particles in the same position in the cuvette. The capture magnet can be a permanent magnet. It is mounted on an arm connected to a stepping motor. The stepping motor rotates the arm to

  16. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. DAZ Family Proteins, Key Players for Germ Cell Development

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816

  18. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  19. Protein kinase C signaling and cell cycle regulation

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  20. Detection of cytoskeletal proteins in small cell lung carcinoma

    Hložánková, M.; Lukáš, Z.; Viklický, Vladimír

    1999-01-01

    Roč. 18, - (1999), s. 47-49 ISSN 0231-5882 Grant - others:MŠk1(CZ) OE10a/EU1450 Keywords : cytoskeletal proteins * small cell lung carcinoma Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.400, year: 1999

  1. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    BSN

    origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, ... Pilot plant produe1io11 of single cell proteins now take place in several centre.ii in ... animal feed but little or no information has been documented as per its ...

  2. Salinity induced changes in cell membrane stability, protein and ...

    control), 4.7, 9.4 and 14.1 dS m-1 to determine the effect of salt on vegetative growth, relative water content, cell membrane stability, protein and RNA contents in sand culture experiment. Fresh and dry weights of plants, shoots and roots decreased ...

  3. Buffalo milk: proteins electrophoretic profile and somatic cell count

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  4. Simultaneous detection of mRNA and protein stem cell markers in live cells

    Bao Gang

    2009-04-01

    Full Text Available Abstract Background Biological studies and medical application of stem cells often require the isolation of stem cells from a mixed cell population, including the detection of cancer stem cells in tumor tissue, and isolation of induced pluripotent stem cells after eliciting the expression of specific genes in adult cells. Here we report the detection of Oct-4 mRNA and SSEA-1 protein in live carcinoma stem cells using respectively molecular beacon and dye-labeled antibody, aiming to establish a new method for stem cells detection and isolation. Results Quantification of Oct-4 mRNA and protein in P19 mouse carcinoma stem cells using respectively RT-PCR and immunocytochemistry confirmed that their levels drastically decreased after differentiation. To visualize Oct-4 mRNA in live stem cells, molecular beacons were designed, synthesized and validated, and the detection specificity was confirmed using control studies. We found that the fluorescence signal from Oct-4-targeting molecular beacons provides a clear discrimination between undifferentiated and retinoic acid-induced differentiated cells. Using deconvolution fluorescence microscopy, Oct-4 mRNAs were found to reside on one side of the cytosol. We demonstrated that, using a combination of Oct-4 mRNA-targeting molecular beacon with SSEA-1 antibody in flow cytometric analysis, undifferentiated stem cells can be clearly distinguished from differentiated cells. We revealed that Oct-4 targeting molecular beacons do not seem to affect stem cell biology. Conclusion Molecular beacons have the potential to provide a powerful tool for highly specific detection and isolation of stem cells, including cancer stem cells and induced pluripotent stem (iPS cells without disturbing cell physiology. It is advantageous to perform simultaneous detection of intracellular (mRNA and cell-surface (protein stem cell markers in flow cytometric analysis, which may lead to high detection sensitivity and efficiency.

  5. Synthesis of protein in intestinal cells exposed to cholera toxin

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  6. Labeling proteins inside living cells using external fluorophores for microscopy.

    Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R

    2016-12-09

    Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.

  7. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis.

    Fujiwara, Makoto T; Yasuzawa, Mana; Kojo, Kei H; Niwa, Yasuo; Abe, Tomoko; Yoshida, Shigeo; Nakano, Takeshi; Itoh, Ryuuichi D

    2018-01-01

    Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division

  8. The Unfolded Protein Response and Cell Fate Control.

    Hetz, Claudio; Papa, Feroz R

    2018-01-18

    The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Silver nanoparticle protein corona composition in cell culture media.

    Jonathan H Shannahan

    Full Text Available The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP colloidal silver (20 or 110 nm diameter. To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively, suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index, the PC on 20 nm AgNPs (PVP and citrate consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of

  10. Light-induced protein degradation in human-derived cells.

    Sun, Wansheng; Zhang, Wenyao; Zhang, Chao; Mao, Miaowei; Zhao, Yuzheng; Chen, Xianjun; Yang, Yi

    2017-05-27

    Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Gene Delivery into Plant Cells for Recombinant Protein Production

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  12. High content screening for G protein-coupled receptors using cell-based protein translocation assays

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne

    2005-01-01

    G protein-coupled receptors (GPCRs) have been one of the most productive classes of drug targets for several decades, and new technologies for GPCR-based discovery promise to keep this field active for years to come. While molecular screens for GPCR receptor agonist- and antagonist-based drugs...... will continue to be valuable discovery tools, the most exciting developments in the field involve cell-based assays for GPCR function. Some cell-based discovery strategies, such as the use of beta-arrestin as a surrogate marker for GPCR function, have already been reduced to practice, and have been used...... as valuable discovery tools for several years. The application of high content cell-based screening to GPCR discovery has opened up additional possibilities, such as direct tracking of GPCRs, G proteins and other signaling pathway components using intracellular translocation assays. These assays provide...

  13. The anti-cell death FNK protein protects cells from death induced by freezing and thawing

    Sudo, Kentaro; Asoh, Sadamitsu; Ohsawa, Ikuroh; Ozaki, Daiya; Yamagata, Kumi; Ito, Hiromoto; Ohta, Shigeo

    2005-01-01

    The FNK protein, constructed from anti-apoptotic Bcl-x L with enhanced activity, was fused with the protein transduction domain (PTD) of the HIV/Tat protein to mediate the delivery of FNK into cells. The fusion protein PTD-FNK was introduced into chondrocytes in isolated articular cartilage-bone sections, cultured neurons, and isolated bone marrow mononuclear cells to evaluate its ability to prevent cell death induced by freezing and thawing. PTD-FNK protected the cells from freeze-thaw damage in a concentration-dependent manner. Addition of PTD-FNK with conventional cryoprotectants (dimethyl sulfoxide and hydroxyethyl starch) increased surviving cell numbers around 2-fold compared with controls treated only with the cryoprotectants. Notably, PTD-FNK allowed CD34 + cells among bone marrow mononuclear cells to survive more efficiently (12-fold more than the control cells) from two successive freeze-thaw cycles. Thus, PTD-FNK prevented cell death induced by freezing and thawing, suggesting that it provides for the successful cryopreservation of biological materials

  14. Human immune cell targeting of protein nanoparticles - caveospheres

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  15. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.

    Kwon, Kwang-Chul; Daniell, Henry

    2016-08-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.

  16. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions.

    Nagesh R Aragam

    Full Text Available Circumsporozoite protein (CS is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates and Malawi (235 isolates, we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.

  17. S1P receptor signalling and RGS proteins; expression and function in vascular smooth muscle cells and transfected CHO cells

    Hendriks-Balk, Mariëlle C.; van Loenen, Pieter B.; Hajji, Najat; Michel, Martin C.; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2009-01-01

    Sphingosine-1-phosphate (S1P) signalling via G protein-coupled receptors is important for the regulation of cell function and differentiation. Specific Regulators of G protein Signalling (RGS) proteins modulate the function of these receptors in many cell types including vascular smooth muscle cells

  18. Microencapsulation of single-cell protein from various microalgae species

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  19. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  20. Staphylococcus aureus extracellular adherence protein triggers TNFα release, promoting attachment to endothelial cells via protein A.

    Andrew M Edwards

    Full Text Available Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.

  1. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-01-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR

  2. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-01

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL

  3. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... hydrolysates obtained by enzymatic hydrolysis on cancer cell proliferation. Skin and belly flap muscle from trout were hydrolysed with the unspecific proteases Alcalase, Neutrase, or UE1 (all from Novozymes, Bagsværd, Denmark) to a hydrolysis degree of 1-15%. The hydrolysates were tested for biological...... activities affecting cell proliferation and ability to modulate caspase activity in pancreatic cancer cells COLO357 and BxPC-3 in vitro. A number of the hydrolysates showed caspase promoting activity; in particular products containing muscle tissue, i.e. belly flap, were able to stimulate caspase activity...

  4. The kin17 Protein in Murine Melanoma Cells

    Anelise C. Ramos

    2015-11-01

    Full Text Available kin17 has been described as a protein involved in the processes of DNA replication initiation, DNA recombination, and DNA repair. kin17 has been studied as a potential molecular marker of breast cancer. This work reports the detection and localization of this protein in the murine melanoma cell line B16F10-Nex2 and in two derived subclones with different metastatic potential, B16-8HR and B16-10CR. Nuclear and chromatin-associated protein fractions were analyzed, and kin17 was detected in all fractions, with an elevated concentration observed in the chromatin-associated fraction of the clone with low metastatic potential, suggesting that the kin17 expression level could be a marker of melanoma.

  5. Further characterization of protein kinase C in mouse mast cells

    White, J.R.; Ishizaka, T.

    1986-01-01

    Bridging of cell-bound IgE antibody molecules on colony stimulating factor dependent mouse mast cell line (PT-18) cells by multivalent antigen induces the mobilization and uptake of Ca 2+ monitored by Quin-2 and the production of diacylglycerol. Exposure of the sensitized cells to antigen also induces a substantial increase in protein kinase C (PKC) activity in the plasma membrane (340 units to 1375 units: 1 unit = 1 pmol of 32 P incorporated into Histone H-1/min/10 7 cells), within 30 seconds. There is also an increase in 3 H phorbol-12, 13-dibutyrate ( 3 H-PDB) binding which parallels the increase in PKC activity both in kinetics and antigen dose dependency. Determination of K/sub m/ and V/sub max/ for PKC revealed no difference between the cytosolic and membranous forms of PKC. Partial purification of PKC from the membrane of sensitized mast cells which had been labeled with 32 P and stimulated with DNP-HSA revealed a protein of 80-84,000 molecular weight, which migrated on polyacrylamide gel electrophoresis just above an authentic standard of PKC purified from rat brain. Treatment of the PKC from mouse mast cell membrane with alkaline phosphatase resulted in a reduction of phosphorylating activity and bindability of 3 H-PDB. In conclusion, the authors speculate that activation of mouse mast cells by cross-linking IgE results in the phosphorylation of a silent-pool of PKC converting it from an inactive state to an activated form

  6. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability

    Rong Lei

    2015-01-01

    • It is very convenient to change or collect the solution without mechanically disturbing the protoplasts. This simple and effective silica sol–gel/alginate two-step immobilization of protoplasts in Transwell has great potential for applications in genetic transformation, metabolite production, and migration assays.

  7. A study on the isolation of protoplasts from mesophyll cells of Dendrobium Queen Pink

    Aqeel, R.; Zehra, M.; Kazmi, S. K.; Khan, S.

    2016-01-01

    Protoplasts were successfully isolated from one month old In vitro grown plantlets of Dendrobium cultivar Queen pink. The enzyme solution used was composed of 1 percent Cellulase Onozuka R-10, 0.5 percent Macerozyme R-10, 0.1 percent Pectinase, 0.3 M mannitol, 10 mM CaCl/sub 2/.2H/sub 2/O and 10 mM 2 (N-morpholino)-ethanesulfonic acid (MES) at pH 5.8. Protoplast highest yield with 15.7x104 protoplasts per 1.5 gm freshly chopped leaves were obtained when digested in enzyme solution for 4 hrs on a rotary shaker with an agitation speed of 45 rpm in dark conditions. Protoplasts were filtered with 45 micro m nylon sieve and washed with 0.3 M mannitol solution supplemented with 10 mM CaCl/sub 2/.2H/sub 2/O and 10 mM MES, and purified with 0.3 M sucrose solution gradient. Purification of protoplasts on a sucrose mannitol gradient yielded clean protoplasts that were free from debris. (author)

  8. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Artificial acceleration of mammalian cell reprogramming by bacterial proteins.

    Ikeda, Takashi; Uchiyama, Ikuo; Iwasaki, Mio; Sasaki, Tetsuhiko; Nakagawa, Masato; Okita, Keisuke; Masui, Shinji

    2017-10-01

    The molecular mechanisms of cell reprogramming and differentiation involve various signaling factors. Small molecule compounds have been identified to artificially influence these factors through interacting cellular proteins. Although such small molecule compounds are useful to enhance reprogramming and differentiation and to show the mechanisms that underlie these events, the screening usually requires a large number of compounds to identify only a very small number of hits (e.g., one hit among several tens of thousands of compounds). Here, we show a proof of concept that xenospecific gene products can affect the efficiency of cell reprogramming to pluripotency. Thirty genes specific for the bacterium Wolbachia pipientis were forcibly expressed individually along with reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) that can generate induced pluripotent stem cells in mammalian cells, and eight were found to affect the reprogramming efficiency either positively or negatively (hit rate 26.7%). Mechanistic analysis suggested one of these proteins interacted with cytoskeleton to promote reprogramming. Our results raise the possibility that xenospecific gene products provide an alternative way to study the regulatory mechanism of cell identity. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  10. Critical protein GAPDH and its regulatory mechanisms in cancer cells

    Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described

  11. Metal binding proteins, recombinant host cells and methods

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  12. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.

    Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R

    2013-08-20

    Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald

    2010-11-01

    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  15. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis

    2006-01-01

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1 V12 or Cdc42 V12 could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA L63 decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia

  16. What befalls the proteins and water in a living cell when the cell dies?

    Ling, Gilbert N; Fu, Ya-zhen

    2005-01-01

    The solvency of solutes of varying molecular size in the intracellular water of freshly-killed Ehrlich carcinoma cells fits the same theoretical curve that describes the solvency of similar solutes in a 36% solution of native bovine hemoglobin--a protein found only in red blood cells and making up 97.3% of the red cell's total intracellular proteins. The merging of the two sets of data confirms the prediction of the AI Hypothesis that key intracellular protein(s) in dying cells undergo(es) a transition from: (1) one in which the polypeptide NHCO groups assume a fully-extended conformation with relatively strong power of polarizing and orienting the bulk-phase water in multilayers; to (2) one in which most of the polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformations (see below for definition) with much weaker power in polarizing-orienting multilayers of bulk-phase water. This concordance of the two sets of data also shows that what we now call native hemoglobin--supposedly denoting hemoglobin found in its natural state in living red blood cells--, in fact, more closely resembles the water-polarizing, and -orienting intracellular proteins in dead cells. Although in the dead Ehrlich carcinoma cells as well as in the 36% solution of native hemoglobin, much of the protein's polypeptide NHCO groups are engaged in alpha-helical and other "introvert" conformation (Perutz 1969; Weissbluth 1974), both systems produce a weak but nonetheless pervasive and "long-range" water polarization and orientation. It is suggested that in both the dead Ehrlich carcinoma ascites cells and in the 36% native bovine hemoglobin solution, enough polypeptide NHCO groups assume the fully-extended conformation to produce the weak but far-reaching multilayer water polarization and orientation observed.

  17. Synthesis of erythrocyte membrane proteins in dispersed cells from fetal rat liver

    Kitagawa, Yasuo; Murakami, Akihiko; Sugimoto, Etsuro

    1984-01-01

    Protein synthesis in dispersed cells from fetal liver was studied by fluorography of SDS-polyacrylamide gel electrophoresis of a [ 35 S] methionine labeled cell lysate. Synthesis of several proteins with molecular weights ranging from 45,000 to 220,000 was observed during erythropoiesis in fetal liver. Some of these proteins were demonstrated to be erythrocyte membrane proteins because they were immunoprecipitated with antiserum against rat red blood cells and the immunoprecipitation was competitive with non-radioactive proteins solubilized from erythrocyte ghosts. The same antiserum caused agglutination of dispered cells from fetal liver. This supported the possibility that these proteins are translocated onto plasma membranes of the dispersed cells. (author)

  18. Radiosensitizing effect of RHOB protein in melanoma cells

    Notcovich, C.; Grissi, C.; Sánchez Crespo, R.; Delgado, D.C.; Molinari, B.; Ibañez, I.L.; Durán, H.

    2015-01-01

    Melanoma cells are highly resistant to chemo or radiotherapy. DNA damage agents such as ionizing radiation induce apoptosis involving RhoB protein. In a great variety of tumors the levels of this protein decrease along tumor progression. RhoB is considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. Considering the aforementioned, the aim of this study was to characterize the radiobiological response of different human melanoma cell lines, and to evaluate the possible correlation between RhoB expression and radiosensitivity. The human melanoma cell lines A375, MELJ and SB2 were gamma-irradiated ( 137 Cs). Survival curves were obtained by clonogenic assay and fitted to the Linear-Quadratic (LQ) model. Radiosensitivity was evaluated by surviving fraction at 2 Gy (SF2). Results showed that MELJ was significantly more radioresistant (SF2=0.71) than A375 and SB2 (0.29 and 0.21 respectively. Expression levels of RhoB, evaluated by western blot, increased in all lines vs. non-irradiated control. SB2, the most radiosensitive cells, showed a greater induction (p<0.05) of RhoB. Finally, to study whether RhoB has a radiosensitizing effect, these cell lines were stably transfected with a wild type RhoB construction, a constitutively active RhoB mutant V14, or with the empty plasmid as control. For all cell lines higher expression level of this protein was found in RhoB or V14 transfected cells (p<0.05). Sensitization was evaluated by SF2. Significant radiosensitization was demonstrated in clones derived from A375 and SB2 ((p<0.05), while for MELJ cells, radio-sensitization was only found in clones overexpressing V14. In conclusion, the increase of RhoB in melanoma cell lines, either by radiation or transfection has a radiosensitizing effect. Thus, we propose RhoB modulation as a potential therapeutic tool to improve the radiation response of radioresistant melanoma. (authors)

  19. Protein kinase Cepsilon is important for migration of neuroblastoma cells

    Stensman, Helena; Larsson, Christer

    2008-01-01

    Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration

  20. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma

    Helin, K; Holm, K; Niebuhr, A

    1997-01-01

    107, or p130 leads to growth arrest in the G1 phase of the cell cycle, and this arrest is abolished by complex formation with the adenovirus E1A, human papilloma virus E7, or simian virus 40 T oncoproteins. Inactivation of pRB by gross structural alterations or point mutations in the RB-1 gene has...... been described in a variety of human tumors, including retinoblastomas, osteosarcomas, and small cell lung carcinomas. Despite the structural and functional similarity between pRB, p107, and p130, alterations in the latter two proteins have not been identified in human tumors. We have screened a panel...

  1. In vitro protein expression: an emerging alternative to cell-based approaches.

    He, Mingyue

    2011-04-30

    Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  3. Measurement of gross photosynthesis, respiration in the light, and mesophyll conductance using H218O labeling.

    Gauthier, Paul Pg; Battle, Mark O; Griffin, Kevin L; Bender, Michael L

    2018-03-27

    A fundamental challenge in plant physiology is independently determining the rates of gross O2 production by photosynthesis and O2 consumption by respiration, photorespiration, and other processes. Previous studies on isolated chloroplasts or leaves have separately constrained net and gross O2 production (NOP and GOP, respectively) by labeling ambient O2 with 18O while leaf water was unlabeled. Here, we describe a method to accurately measure GOP and NOP of whole detached leaves in a cuvette as a routine gas exchange measurement. The petiole is immersed in water enriched to a δ18O of ~9,000‰, and leaf water is labeled through the transpiration stream. Photosynthesis transfers 18O from H2O to O2. GOP is calculated from the increase in δ18O of O2 as air passes through the cuvette. NOP is determined from the increase in O2/N2. Both terms are measured by isotope ratio mass spectrometry. CO2 assimilation and other standard gas exchange parameters are also measured. Reproducible measurements are made on a single leaf for more than 15 hours. We used this method to measure the light response curve of NOP and GOP in Phaseolus vulgaris at 21% and 2% O2. We then used these data to examine the O2/CO2 ratio of net photosynthesis, the light response curve of mesophyll conductance, and the apparent inhibition of respiration in the light (Kok effect) at both oxygen levels. The results are discussed in the context of evaluating the technique as a tool to study and understand leaf physiological traits. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  4. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  5. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    Scrimale, Thomas; Didone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  6. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  7. Cell-cycle regulatory proteins in human wound healing

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  8. Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells

    Born, E J; Hartman, S V; Holstein, S A

    2013-01-01

    Multiple myeloma is characterized by the production of substantial quantities of monoclonal protein. We have previously demonstrated that select inhibitors of the isoprenoid biosynthetic pathway (IBP) induce apoptosis of myeloma cells via inhibition of Rab geranylgeranylation, leading to disruption of monoclonal protein trafficking and induction of the unfolded protein response (UPR) pathway. Heat-shock protein 90 (HSP90) inhibitors disrupt protein folding and are currently under clinical investigation in myeloma. The effects of combining IBP and HSP90 inhibitors on cell death, monoclonal protein trafficking, the UPR and chaperone regulation were investigated in monoclonal protein-producing cells. An enhanced induction of cell death was observed following treatment with IBP and HSP90 inhibitors, which occurred through both ER stress and non-ER stress pathways. The HSP90 inhibitor 17-AAG abrogated the effects of the IBP inhibitors on intracellular monoclonal protein levels and localization as well as induction of the UPR in myeloma cells. Disparate effects on chaperone expression were observed in myeloma vs amyloid light chain cells. Here we demonstrate that the novel strategy of targeting MP trafficking in concert with HSP90 enhances myeloma cell death via a complex modulation of ER stress, UPR, and cell death pathways

  9. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression

    Zhou, Tian; Wang, Shanshan; Ren, Haigang; Qi, Xin-Rui; Luchetti, Sabina; Kamphuis, Willem; Zhou, Jiang-Ning; Wang, Guanghui; Swaab, Dick F.

    2010-01-01

    The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the

  10. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  11. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.

    Divakaruni, Arun V; Baida, Cyril; White, Courtney L; Gober, James W

    2007-10-01

    MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.

  12. Metastasis suppressor proteins in cutaneous squamous cell carcinoma.

    Bozdogan, Onder; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer; Atasoy, Pınar; Yulug, Isik G

    2016-07-01

    Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  14. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. T-cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with Merkel cell carcinoma from healthy donors

    Lyngaa, Rikke; Pedersen, Natasja Wulff; Schrama, David

    2014-01-01

    Purpose: Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with strong evidence of viral carcinogenesis. The association of MCC with the Merkel cell polyomavirus (MCPyV) may explain the explicit immunogenicity of MCC. Indeed, MCPyV-encoded proteins are likely targets for cytotoxic...

  16. Single cell protein production from mandarin orange peel

    Nishio, N.; Nagai, S.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40/sup 0/C,24 h)produced 0.59 g g/sup -1/ reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120/sup 0/C with 0.8 N H/sub 2/SO/sub 4/), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (gg/sup -1/)were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30/sup 0/C using 100 g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts.

  17. Structure determination of T-cell protein-tyrosine phosphatase

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  18. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Elena Restelli

    2010-10-01

    Full Text Available A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  19. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  20. Nck adapter proteins: functional versatility in T cells

    Janssen Ottmar

    2009-02-01

    Full Text Available Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.

  1. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging

    Feng Gao

    2016-08-01

    Full Text Available Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag, by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  2. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  3. Tula hantavirus NSs protein accumulates in the perinuclear area in infected and transfected cells.

    Virtanen, Jussi Oskari; Jääskeläinen, Kirsi Maria; Djupsjöbacka, Janica; Vaheri, Antti; Plyusnin, Alexander

    2010-01-01

    The small RNA segment of some hantaviruses (family Bunyaviridae) encodes two proteins: the nucleocapsid protein and, in an overlapping reading frame, a non-structural (NSs) protein. The hantavirus NSs protein, like those of orthobunya- and phleboviruses, counteracts host innate immunity. Here, for the first time, the NSs protein of a hantavirus (Tula virus) has been observed in infected cells and shown to localize in the perinuclear area. Transiently expressed NSs protein showed similar localization, although the kinetics was slightly different, suggesting that to reach its proper location in the infected cell, the NSs protein does not have to cooperate with other viral proteins.

  4. Protein Nanoscaffolds for Delivering Toxic Inorganic Cargo to Cancer Cells

    Cioloboc, Daniela

    Targeted delivery of anticancer drugs or prodrugs to tumors can minimize systemic toxicity and side effects. This study develops platforms for targeted delivery of two potentially less systemically toxic prodrugs by exploiting the native and/or bioinorganic properties of two ferritins, both of which function naturally as iron storage proteins. Two delivery approaches were investigated. The first system was designed to serve as either an enhancement or alternative to traditional photodynamic therapy by generating hydroxyl radical in addition to singlet oxygen as the toxic reactive oxygen species. This system used Escherichia coli bacterioferritin (Bfr) loaded with 2,500 irons and multiple zinc-porphyrin (ZnP) photosensitizers. Ferrous iron was released by photoreduction of ferric iron stored within the Bfr protein shell. Hydroxyl radicals were generated via the Fenton reaction between hydrogen peroxide and the released ferrous iron. The outer surface of the Bfr protein shell was coated with peptides that specifically bind to a receptor known to be overexpressed in many tumor cells and tumor vasculature. The iron-loaded peptide-ZnP-Bfr was endocytosed by melanoma cells, where it showed photo-triggered release of iron and light-dependent cytotoxicity. The second system, built around human heavy chain ferritin (HFn), was loaded with arsenate as a less toxic "prodrug" and designed to release arsenic in its toxic, therapeutically effective reduced form, arsenic trioxide (ATO). The Hfn shell was coated with peptides targeting receptors that are hyperexpressed in triple negative breast cancers. The arsenate/iron-loaded-Hfn was endocytosed by a breast cancer cell line and showed cytotoxicity equivalent to that of free ATO on an arsenic basis, whereas the "empty" or iron-only loaded Hfn showed no cytotoxicity. Although HFn has previously been used to deliver organic drugs and imaging agents, these new results demonstrate that both Bfr and HFn can be manipulated to function

  5. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Christopher J. Petzold

    2013-10-01

    Full Text Available Cell density is the critical parameter controlling tendon morphogenesis. Knowing its neighbors allows a cell to regulate correctly its proliferation and collagen production. A missing link to understanding this process is a molecular description of the sensing mechanism. Previously, this mechanism was shown in cell culture to rely on a diffusible factor (SNZR [sensor] with an affinity for the cell layer. This led to purifying conditioned medium over 4 columns and analyzing the final column fractions for band intensity on SDS gels versus biological activity – a 16 kD band strongly correlated between assays. N-terminal sequencing – EPLAVVDL – identified a large gene (424 AA, extremely conserved between chicken and human. In this paper we probe whether this is the correct gene. Can the predicted large protein be cleaved to a smaller protein? EPLAVVDL occurs towards the C-terminus and cleavage would create a small 94 AA protein. This protein would run at ∼10 kD, so what modifications or cofactor binding accounts for its running at 16 kD on SDS gels? This protein has no prominent hydrophobic regions, so can it be secreted? To validate its role, the chicken cDNA for this gene was tagged with myc and his and transfected into a human osteosarcoma cell line (U2OS. U2OS cells expressed the gene but not passively: differentiating into structures resembling spongy bone and expressing alkaline phosphatase, an early bone marker. Intracellularly, two bands were observed by Western blotting: the full length protein and a smaller form (26 kD. Outside the cell, a small band (28 kD was detected, although it was 40% larger than expected, as well as multiple larger bands. These larger forms could be converted to the predicted smaller protein (94 AA + tags by changing salt concentrations and ultrafiltering – releasing a cofactor to the filtrate while leaving a protein factor in the retentate. Using specific degradative enzymes and mass spectrometry, the

  6. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses.

    Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela

    2017-10-07

    The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  8. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.

  9. Labeling proteins on live mammalian cells using click chemistry.

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  10. The role of Protein Kinase Cη in T cell biology

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  11. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    Straarup, EM; Schousboe, P; Hansen, HQ

    1997-01-01

    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...

  12. Expression of uncoupling protein 1 in bovine muscle cells.

    Abd Eldaim, M A; Hashimoto, O; Ohtsuki, H; Yamada, T; Murakami, M; Onda, K; Sato, R; Kanamori, Y; Qiao, Y; Tomonaga, S; Matsui, T; Funaba, M

    2016-12-01

    Uncoupling protein 1 (Ucp1) is predominantly expressed in brown/beige adipocytes in mammals. Although myogenic cells have been suggested to commit to a brown adipocyte lineage through the induction of Prdm16 expression, Prdm16 is also expressed in skeletal muscle. Thus, we examined expression of Ucp1 in bovine myogenic cells. Considering that Ucp1 is a principle molecule that induces energy expenditure in brown/beige adipocytes, expression of Ucp1 is not preferable in beef cattle because of potential decrease in energy (fattening) efficiency. The RT-PCR analyses revealed the expression of Ucp1 in the skeletal muscle of cattle; expression levels were markedly lower than those in the brown fat of calves. Immunohistochemical analyses showed that Ucp1 surrounded muscle fibers, but not adipocytes residing in skeletal muscle. Myosatellite cells cultured in myogenic medium showed an increase in the expression levels of myogenic regulatory factors ( levels were greater in cells after myogenic culture for 12 d than in those after myogenic culture for 6 d ( bovine skeletal muscle, which suggests the necessity for further studies on Ucp1-mediated energy expenditure in bovine skeletal muscle.

  13. Sertoli cell origin of testicular androgen-binding protein (ABP)

    Hagenaes, L [Pediatric Endocrinology Unit, Stockholm; Ritzen, E M; Ploeen, L; Hansson, V; French, F S; Nayfeh, S N

    1975-05-01

    In this report it is suggested that the specific androgen-binding protein (ABP), previously shown to originate in the testes of rat and other species, is produced by the Sertoli cells. This suggestion is based upon the following experimental findings: (1) ABP was found in high concentrations in testicular efferent duct fluid but only in trace amounts in inter-tubular lymph. (2) ABP could be recovered from crude preparations of testes tubules, but not from Leydig cells from the same testes. (3) Testes whose germinal epithelium had been severely damaged by gamma irradiation showed no decrease in ABP content. The transport of ABP to epididymis was also preserved as judged from the levels of ABP in caput epididymis. (4) Testes that were completely devoid of germ cells following prenatal gamma irradiation showed high levels of ABP. These high levels approached zero following hypophysectomy, but could be restored by FSH administration to the hypophysectomized animals. ABP has been well characterized and now provides a valuable experimental tool as an indicator of Sertoli cell function.

  14. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  15. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome.

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F; Gonias, Steven L

    2010-12-03

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.

  16. Finding undetected protein associations in cell signaling by belief propagation.

    Bailly-Bechet, M; Borgs, C; Braunstein, A; Chayes, J; Dagkessamanskaia, A; François, J-M; Zecchina, R

    2011-01-11

    External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.

  17. Statins and protein prenylation in cancer cell biology and therapy.

    Garcia-Ruiz, Carmen; Morales, Albert; Fernandez-Checa, Jose C

    2012-05-01

    The use of statins has scaled up to become one of the most prescribed medicines in the world and have been very useful in the manegement of cardiovascular diseases and related mortality. The disclosure of their chemical structure similar to that of hydroxy methyl glutaryl-CoA (HMG-CoA) revealed their ability to compete with and inhibit the rate-limiting enzyme HMG-CoA reductase that catalyzes the synthesis of mevalonate, which then serves as the precursor for isoprenoids and cholesterol in the mevalonate pathway. While most of the effects of statins are associated with the lowering of cellular cholesterol levels, it is clear that they also blunt the non-sterol branch of the mevalonate pathway, decreasing formation of isoprenoids and altering protein-prenylation, a critical event in the posttranslational modulation of proteins involved in the regulation of cell cycle progression, proliferation and signaling pathways. Randomized controlled trials for the prevention of cardiovascular diseases indicated that statins elicited provocative and unexpected benefits for reducing a number of different types of cancers, including colorectal carcinoma, melanoma, prostate and hepatocellular carcinoma, although in other cancer types the preclinical expectations of statins were dissapointing. In this review, we will describe the evidence and mechanisms underlying the potential beneficial use of statins and the role of protein prenylation in cancer prevention. Of relevance, the combination of statins with other anti cancer drugs may be a significant asset in malignancies resistant to current therapy.

  18. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules.

  19. Shedding light on proteins, nucleic acids, cells, humans and fish

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  20. How protein kinases co-ordinate mitosis in animal cells.

    Ma, Hoi Tang; Poon, Randy Y C

    2011-04-01

    Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.

  1. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  2. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  3. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  4. G Protein-Coupled Receptor 87 (GPR87 Promotes Cell Proliferation in Human Bladder Cancer Cells

    Xia Zhang

    2015-10-01

    Full Text Available G protein-coupled receptor 87 (GPR87 is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87 and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3, but not in the mutant p53 cells (HT1376 and J82. As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.

  5. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis.

    Andrea Perne

    2009-12-01

    Full Text Available Cardiac glycosides are Na(+/K(+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive.Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na(+/K(+-pump as they were rescued by expression of a cardiac glycoside-resistant Na(+/K(+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels.The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.

  6. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  7. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    Jennifer R. Lynch

    2016-05-01

    Full Text Available G protein-coupled receptors (GPCRs are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84 and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  8. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  9. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    Jespersen, Thomas; Grunnet, M; Angelo, K

    2002-01-01

    Both Xenopus laevis oocytes and mammalian cells are widely used for heterologous expression of several classes of proteins, and membrane proteins especially, such as ion channels or receptors, have been extensively investigated in both cell types. A full characterization of a specific protein wil...

  10. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    Williams, Kurt J.; Cruikshank, Michael K.; Plopper, Charles G.

    2003-01-01

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  11. Mesophyll conductance in Zea mays responds transiently to CO2 availability: implications for transpiration efficiency in C4 crops.

    Kolbe, Allison R; Cousins, Asaph B

    2018-03-01

    Mesophyll conductance (g m ) describes the movement of CO 2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C 3 -g m , little is currently known about the intraspecific variation in C 4 -g m or its responsiveness to environmental stimuli. To address these questions, g m was measured on five maize (Zea mays) lines in response to CO 2 , employing three different estimates of g m . Each of the methods indicated a significant response of g m to CO 2 . Estimates of g m were similar between methods at ambient and higher CO 2 , but diverged significantly at low partial pressures of CO 2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO 2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of g m and leaf anatomical traits. These results provide strong support for a CO 2 response of g m in Z. mays, and indicate that g m in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO 2 response of g m indicates a potential role for facilitated diffusion in C 4 -g m . These results also suggest that water-use efficiency could be enhanced in C 4 species by targeting g m . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Photosynthetic response of an alpine plant, Rhododendron delavayi Franch, to water stress and recovery: the role of mesophyll conductance

    Yanfei eCai

    2015-12-01

    Full Text Available Rhododendron delavayi Franch is an evergreen shrub or small tree with large scarlet flowers that makes it highly attractive as an ornamental species. The species is native to southwest China and southeast Asia, especially the Himalayan region, showing good adaptability and tolerance to drought. To understand the water stress coping mechanisms of R. delavayi, we analysed the plant’s photosynthetic performance during water stress and recovery. In particular, we looked at the regulation of stomatal (gs and mesophyll conductance (gm, and maximum rate of carboxylation (Vcmax. After four days of water stress treatment, the net CO2 assimilation rate (AN declined slightly while gs and gm were not affected and stomatal limitation (SL was therefore negligible. At this stage mesophyll conductance limitation (MCL and biochemical limitation (BL constituted the main limitation factors. After eight days of water stress treatment, AN, gs and gm had decreased notably. At this stage SL increased markedly and MCL even more so, while BL remained relatively constant. After re-watering, the recovery of AN, gs and gm was rapid, although remaining below the levels of the control plants, while Vcmax fully regained control levels after three days of re-watering. MCL remained the main limitation factor irrespective of the degree of photosynthetic recovery. In conclusion, in our experiment MCL was the main photosynthetic limitation factor of R. delavayi under water stress and during the recovery phase, with the regulation of gm probably being the result of interactions between the environment and leaf anatomical features.

  13. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-01-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni 30 and Ni 200 ). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO 2 ] than in control leaves. However chloroplastic [CO 2 ] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni 0 (control plants); 2 - Ni 200 ; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: → We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. → Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. → Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  14. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  15. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  16. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  17. Determinants of cell-to-cell variability in protein kinase signaling.

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  18. Determinants of cell-to-cell variability in protein kinase signaling.

    Matthias Jeschke

    Full Text Available Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity' and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  19. Living target of Ce(III) action on horseradish cells: proteins on/in cell membrane.

    Yang, Guangmei; Sun, Zhaoguo; Lv, Xiaofen; Deng, Yunyun; Zhou, Qing; Huang, Xiaohua

    2012-12-01

    Positive and negative effects of rare earth elements (REEs) in life have been reported in many papers, but the cellular mechanisms have not been answered, especially the action sites of REEs on plasma membrane are unknown. Proteins on/in the plasma membrane perform main functions of the plasma membrane. Cerium (Ce) is the richest REEs in crust. Thus, the interaction between Ce(III) and the proteins on/in the plasma membrane, the morphology of protoplast, and the contents of nutrient elements in protoplast of horseradish were investigated using the optimized combination of the fluorescence microscopy, fluorescence spectroscopy, circular dichroism, scanning electron microscopy, and X-ray energy dispersive spectroscopy. It was found that Ce(III) at the low concentrations (10, 30 μM) could interact with proteins on/in the plasma membrane of horseradish, leading to the improvement in the structure of membrane proteins and the plasma membrane, which accelerated the intra-/extra-cellular substance exchange and further promoted the development of cells. When horseradish was treated with Ce(III) at the high concentrations (60, 80 μM), Ce(III) also could interact with the proteins on/in the plasma membrane of horseradish, leading to the destruction in the structure of membrane proteins and the plasma membrane. These effects decelerated the intra-/extra-cellular substance exchange and further inhibited the development of cells. Thus, the interaction between Ce(III) and proteins on/in the plasma membrane in plants was an important reason of the positive and negative effects of Ce(III) on plants. The results would provide some references for understanding the cellular effect mechanisms of REEs on plants.

  20. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  1. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  2. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  3. Respiratory epithelial cell responses to cigarette smoke: the unfolded protein response.

    Kelsen, Steven G

    2012-12-01

    Cigarette smoking exposes the respiratory epithelium to highly toxic, reactive oxygen nitrogen species which damage lung proteins in the endoplasmic reticulum (ER), the cell organelle in which all secreted and membrane proteins are processed. Accumulation of damaged or misfolded proteins in the ER, a condition termed ER stress, activates a complex cellular process termed the unfolded protein responses (UPR). The UPR acts to restore cellular protein homeostasis by regulating all aspects of protein metabolism including: protein translation and syntheses; protein folding; and protein degradation. However, activation of the UPR may also induce signaling pathways which induce inflammation and cell apoptosis. This review discusses the role of UPR in the respiratory epithelial cell response to cigarette smoke and the pathogenesis of lung diseases like COPD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Algal autolysate medium to label proteins for NMR in mammalian cells.

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia; Neri, Sara; Fragai, Marco

    2016-04-01

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  5. RNA-seq based expression analysis of the CHO cell protein secretion pathway

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Kildegaard, Helene Faustrup

    The Chinese hamster ovary (CHO) cell-line is the predominant mammalian industrial cell line being used to produce recombinant therapeutic proteins. Although CHO cells have been used for more than 25 years, the genome sequence was first published in 2011. So far there have been limited studies...... of the cell biology of the CHO cell and the potential of cell line engineering. To elucidate the poorly understood cellular processes that control and limit recombinant protein production and secretion, a system-wide study was initiated to identify possible engineering targets relevant for therapeutic protein...

  6. Algal autolysate medium to label proteins for NMR in mammalian cells

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia [University of Florence, Magnetic Resonance Center (CERM) (Italy); Neri, Sara [Giotto Biotech S.R.L. (Italy); Fragai, Marco, E-mail: fragai@cerm.unifi.it [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2016-04-15

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in {sup 15}N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  7. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet ?-cell

    Kowluru, Anjaneyulu

    2008-01-01

    Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet ?-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the ?-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prok...

  8. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Alberto Miranda

    2011-04-01

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  9. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    Nilay J Lakhkar

    2015-11-01

    Full Text Available In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5 that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.

  10. Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks.

    Jia, Haiyang; Heymann, Michael; Bernhard, Frank; Schwille, Petra; Kai, Lei

    2017-10-25

    The construction of a minimal cell that exhibits the essential characteristics of life is a great challenge in the field of synthetic biology. Assembling a minimal cell requires multidisciplinary expertise from physics, chemistry and biology. Scientists from different backgrounds tend to define the essence of 'life' differently and have thus proposed different artificial cell models possessing one or several essential features of living cells. Using the tools and methods of molecular biology, the bottom-up engineering of a minimal cell appears in reach. However, several challenges still remain. In particular, the integration of individual sub-systems that is required to achieve a self-reproducing cell model presents a complex optimization challenge. For example, multiple self-organisation and self-assembly processes have to be carefully tuned. We review advances and developments of new methods and techniques, for cell-free protein synthesis as well as micro-fabrication, for their potential to resolve challenges and to accelerate the development of minimal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Screening for Glycosylphosphatidylinositol-Modified Cell Wall Proteins in Pichia pastoris and Their Recombinant Expression on the Cell Surface

    Zhang, Li; Liang, Shuli; Zhou, Xinying; Jin, Zi; Jiang, Fengchun; Han, Shuangyan; Zheng, Suiping

    2013-01-01

    Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface. PMID:23835174

  12. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  13. An experimental and computational framework to build a dynamic protein atlas of human cell division

    Kavur, Marina; Kavur, Marina; Kavur, Marina; Ellenberg, Jan; Peters, Jan-Michael; Ladurner, Rene; Martinic, Marina; Kueblbeck, Moritz; Nijmeijer, Bianca; Wachsmuth, Malte; Koch, Birgit; Walther, Nike; Politi, Antonio; Heriche, Jean-Karim; Hossain, M.

    2017-01-01

    Essential biological functions of human cells, such as division, require the tight coordination of the activity of hundreds of proteins in space and time. While live cell imaging is a powerful tool to study the distribution and dynamics of individual proteins after fluorescence tagging, it has not yet been used to map protein networks due to the lack of systematic and quantitative experimental and computational approaches. Using the cell and nuclear boundaries as landmarks, we generated a 4D ...

  14. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J.

    2006-01-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or β-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo

  15. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  17. Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-cell Communication

    Claudia Campanella

    2014-06-01

    Full Text Available Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.

  18. Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-Cell Communication

    Claudia Campanella

    2014-06-01

    Full Text Available Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.

  19. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress.

    Serrano-Fujarte, Isela; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2016-01-01

    Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  1. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  2. Direct digestion of proteins in living cells into peptides for proteomic analysis.

    Chen, Qi; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2015-01-01

    To analyze the proteome of an extremely low number of cells or even a single cell, we established a new method of digesting whole cells into mass-spectrometry-identifiable peptides in a single step within 2 h. Our sampling method greatly simplified the processes of cell lysis, protein extraction, protein purification, and overnight digestion, without compromising efficiency. We used our method to digest hundred-scale cells. As far as we know, there is no report of proteome analysis starting directly with as few as 100 cells. We identified an average of 109 proteins from 100 cells, and with three replicates, the number of proteins rose to 204. Good reproducibility was achieved, showing stability and reliability of the method. Gene Ontology analysis revealed that proteins in different cellular compartments were well represented.

  3. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.

    Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R

    2016-05-17

    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.

  4. Radiation-induced dissociation of stable DNA-protein complexes in Erlich ascites carcinoma cells

    Juhasz, P.P.; Sirota, N.P.; Gaziev, A.I.

    1982-01-01

    DNA of Ehrlich ascites carcinoma cells prepared under conditions that were highly denaturing for proteins but not for DNA, contained a group of nonhistone residual proteins. The amount of these proteins increased during DNA replication. The DNA-protein complex observed was sensitive to proteolytic enzymes and/or SH-reagents. γ-irradiation cells with moderate doses leads to a decrease in the amount of DNA-protein complexes. High-dose gamma-irradiation produces enhanced linking of chromosomal proteins with DNA. (author)

  5. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  6. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  7. Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast.

    Okada, Mitsuhiro; Kusunoki, Shunta; Ishibashi, Yuko; Kito, Keiji

    2017-06-01

    In budding yeast, a mother cell can produce a finite number of daughter cells over its life. The accumulation of a variety of types of damaged components has an impact on the aging process. Asymmetrical inheritance during cell division causes these aberrant intracellular constituents to be retained in mother cells and prevents them from segregating to daughter cells. However, the understanding of asymmetrical inheritance of individual proteins that are damaged or old age, and their relevance to the aging process, has been limited. The aim of this study is to propose a proteomics strategy for asymmetrical inheritance of preexisting proteins between mother and daughter cells. During synchronous culture for one generation, newly synthesized proteins were labeled with stable isotope amino acids to discriminate preexisting proteins originally expressed in mother cells, followed by separation of mother and daughter cells using a conventional method based on biotin labeling. Isotope incorporation ratios for individual proteins were quantified using mass spectrometry. We successfully identified 21 proteins whose preexisting versions were asymmetrically inherited in mother cells, including plasma membrane transporter involved in the aging process and organelle-anchoring proteins related to the stress response to misfolded proteins. Thus, our approach would be useful for making catalog of asymmetrically inherited proteins. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  8. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells.

    Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo

    2017-08-01

    Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.

  9. Therapeutic targeting strategies using endogenous cells and proteins.

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chinese medicine protein and peptide in gene and cell therapy.

    Feng, Yinglu; Yin, Zifei; Zhang, Daniel; Srivastava, Arun; Ling, Chen

    2018-06-11

    The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  12. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease

    Johansson, Sofie Lock; Vestbo, J.; Sorensen, G. L.

    2014-01-01

    for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary...

  13. Regulation of the vertebrate cell cycle by the cdc2 protein kinase

    Draetta, G.; Brizuela, L.; Moran, B.; Beach, D.

    1988-01-01

    A homolog of the cdc2/CDC28 protein kinase of yeast is found in all vertebrate species that have been investigated. Human cdc2 exists as a complex with a 13-kD protein that is homologous to the suc1 gene product of fission yeast. In both human and fission yeast cells, the protein kinase also exists in a complex with a 62-kD polypeptide that has not been identified genetically but acts as a substrate in vitro. The authors have studied the properties of the protein kinase in rat and human cells, as well as in Xenopus eggs. They find that in baby rat kidney (BRK) cells, which are quiescent in cell culture, the cdc2 protein is not synthesized. However, synthesis is rapidly induced in response to proliferative activation by infection with adenovirus. In human HeLa cells, the protein kinase is present continuously. It behaves as a cell-cycle oscillator that is inactive in G 1 but displays maximal enzymatic activity during mitotic metaphase. These observations indicate that in a wide variety of vertebrate cells, the cdc2 protein kinase is involved in regulating mitosis. The authors' approach taken toward study of the cdc2 protein kinase highlights the possibilities that now exist for combining the advantages of ascomycete genetics with the cell-free systems of Xenopus and the biochemical advantages of tissue culture cells to investigate fundamental problems of the cell cycle

  14. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a uni...

  15. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  16. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-01-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses. (paper)

  17. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  19. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  20. The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates

    Jayaram, Jyothi; Youn, Soonjeon; Collisson, Ellen W.

    2005-01-01

    Because phosphorylation of the infectious bronchitis virus (IBV) nucleocapsid protein (N) may regulate its multiple roles in viral replication, the dynamics of N phosphorylation were examined. 32 P-orthophosphate labeling and Western blot analyses confirmed that N was the only viral protein that was phosphorylated. Pulse labeling with 32 P-orthophosphate indicated that the IBV N protein was phosphorylated in the virion, as well as at all times during infection in either chicken embryo kidney cells or Vero cells. Pulse-chase analyses followed by immunoprecipitation of IBV N proteins using rabbit anti-IBV N polyclonal antibody demonstrated that the phosphate on the N protein was stable for at least 1 h. Simultaneous labeling with 32 P-orthophosphate and 3 H-leucine identified a 3.5-fold increase in the 32 P: 3 H counts per minute (cpm) ratio of N in the virion as compared to the 32 P: 3 H cpm ratio of N in the cell lysates from chicken embryo kidney cells, whereas in Vero cells the 32 P: 3 H cpm ratio of N from the virion was 10.5-fold greater than the 32 P: 3 H cpm ratio of N from the cell lysates. These studies are consistent with the phosphorylation of the IBV N playing a role in assembly or maturation of the viral particle

  1. RNA and protein synthesis of irradiated Ehrlich ascites tumour cells. Pt. 2

    Skog, S.; Tribukait, B.; Nygard, O.; Wenner-Gren-Center foer Vetenskaplig Forskning, Stockholm

    1985-01-01

    Poly(A)-containing RNA (m-RNA) was studied in in vivo growing Ehrlich ascites tumour cells following a roentgen irradiation dose of 5 Gy. m-RNA increased significantly during the first 12 hours after irradiation. Thus, the observed decrease in protein synthesis rate during this time seems not to be due to radiation induced changes at the transcriptional level. The protein synthesis rate of in vivo irradiated cells incubated in vitro in culture medium was unchanged. On the other hand, the protein synthesis rate of non-irradiated cells incubated in vitro in ascites fluid from irradiated animals was decreased. We concluded that factor(s) inhibiting protein synthesis or the lack of factor(s) promoting protein synthesis in the ascites fluid is(are) of significance for the reduced protein synthesis of tumour cells found in irradiated in vivo growing cells. (orig.)

  2. In-cell thermodynamics and a new role for protein surfaces.

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  3. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Comprehensive Evaluation of Streptococcus sanguinis Cell Wall-Anchored Proteins in Early Infective Endocarditis▿ †

    Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L.; Wu, Hui; Kitten, Todd

    2009-01-01

    Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified—a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (∼2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention. PMID:19703977

  6. Comprehensive evaluation of Streptococcus sanguinis cell wall-anchored proteins in early infective endocarditis.

    Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L; Wu, Hui; Kitten, Todd

    2009-11-01

    Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified-a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (approximately 2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention.

  7. Cell-Permeable Parkin Proteins Suppress Parkinson Disease-Associated Phenotypes in Cultured Cells and Animals

    Duong, Tam; Kim, Jaetaek; Ruley, H. Earl; Jo, Daewoong

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo. PMID:25019626

  8. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...

  9. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  10. Stimulation of Hepatoma Cell Invasiveness and Metastatic Potential by Proteins Secreted From Irradiated Nonparenchymal Cells

    Zhou Leyuan [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Wang Zhiming [Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Gao Yabo [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Wang Lingyan [Experimental Research Center, Zhongshan Hospital, Fudan University, Shanghai (China); Zeng Zhaochong, E-mail: zeng.zhaochong@zs-hospital.sh.cn [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China)

    2012-11-01

    Purpose: To determine whether factors secreted by irradiated liver nonparenchymal cells (NPCs) may influence invasiveness and/or metastatic potential of hepatocellular carcinoma (HCC) cells and to elucidate a possible mechanism for such effect. Methods and Materials: Primary rat NPCs were cultured and divided into irradiated (10-Gy X-ray) and nonirradiated groups. Forty-eight hours after irradiation, conditioned medium from irradiated (SR) or nonirradiated (SnonR) cultures were collected and added to sublethally irradiated cultures of the hepatoma McA-RH7777 cell line. Then, hepatoma cells were continuously passaged for eight generations (RH10Gy-SR and RH10Gy-SnonR). The invasiveness and metastatic potential of McA-RH7777, RH10Gy-SnonR, and RH10Gy-SR cells were evaluated using an in vitro gelatinous protein (Matrigel) invasion and an in vivo metastasis assay. In addition, SR and SnonR were tested using rat cytokine antibody arrays and enzyme-linked immunosorbent assay (ELISA). Results: In vitro gelatinous protein invasion assay indicated that the numbers of invading cells was significantly higher in RH10Gy-SR (40 {+-} 4.74) than in RH10Gy-SnonR (30.6 {+-} 3.85) cells, and lowest in McA-RH7777 (11.4 {+-} 3.56) cells. The same pattern was observed in vivo in a lung metastasis assay, as evaluated by number of metastatic lung nodules seen with RH10Gy-SR (28.83 {+-} 5.38), RH10Gy-SnonR (22.17 {+-} 4.26), and McA-RH7777 (8.3 {+-} 3.8) cells. Rat cytokine antibody arrays and ELISA demonstrated that metastasis-promoting cytokines (tumor necrosis factor-{alpha} and interleukin-6), circulating growth factors (vascular endothelial growth factor and epidermal growth factor), and metalloproteinases (MMP-2 and MMP-9) were upregulated in SR compared with SnonR. Conclusions: Radiation can increase invasiveness and metastatic potential of sublethally irradiated hepatoma cells, and soluble mediators released from irradiated NPCs promote this potential. Increased secretion of

  11. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis.

    Katsura, Kazushige; Matsuda, Takayoshi; Tomabechi, Yuri; Yonemochi, Mayumi; Hanada, Kazuharu; Ohsawa, Noboru; Sakamoto, Kensaku; Takemoto, Chie; Shirouzu, Mikako

    2017-11-01

    Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  13. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells

    Cecilia Fernández-Ponce

    2018-01-01

    Full Text Available Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

  14. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  15. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio; Aina, Roberta; Varotto, Serena; Barcaccia, Gianni

    2006-01-01

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G 1 and S. It becomes concentrated in punctuate and fibrillar structures in G 2 as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death

  16. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins

    Duchrow, M.; Schlueter, C.; Key, G.; Kubbutat, H.G.; Wohlenberg, C.; Flad, H.D.; Gerdes

    1995-01-01

    A decade of studies on the human nuclear antigen defined by monoclonal antibody Ki-67 (the 'Ki-67 proteins') has made it abundantly clear that this structure is strictly associated with human cell proliferation and the expression of this protein can be used to access the growth fraction of a given cell population. Until recently the Ki-67 protein was described as a nonhistone protein that is highly susceptible to protease treatment. We have isolated and sequenced cDNAs encoding for this antigen and found two isoforms of the full length cDNA of 11.5 and 12.5 kb, respectively, sequence and structure of which are thus far unique. The gene encoding the Ki-67 protein is organized in 15 exons and is localized on chromosome 10. The center of this gene is formed by an extraordinary 6845 bp exon containing 16 successively repeated homologous segments of 366 bp ('Ki-67 repeats'), each containing a highly conserved new motif of 66 bp ('Ki-67 motif'). The deduced peptide sequence of this central exon possesses 10 ProGluSerThr (PEST) motifs which are associated with high turnover proteins such as other cell cycle-related proteins, oncogenes and transcription factors, etc. Like the latter proteins the Ki-67 antigen plays a pivotal role in maintaining cell proliferation because Ki-67 protein antisense oligonucleotides significantly inhibit 3 H-thymidine incorporation in permanent human tumor cell lines in a dose-dependent manner. (author). 30 refs, 2 figs

  17. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  18. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  19. Piwi and potency: PIWI proteins in animal stem cells and regeneration.

    van Wolfswinkel, Josien C

    2014-10-01

    PIWI proteins are well known for their roles in the animal germline. They are essential for germline development and maintenance, and together with their binding partners, the piRNAs, they mediate transposon silencing. More recently, PIWI proteins have also been identified in somatic stem cells in diverse animals. The expression of PIWI proteins in these cells could be related to the ability of such cells to contribute to the germline. However, evaluation of stem cell systems across many different animal phyla suggests that PIWI proteins have an ancestral role in somatic stem cells, irrespective of their contribution to the germ cell lineage. Moreover, the data currently available reveal a possible correlation between the differentiation potential of a cell and its PIWI levels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ.

    van der Linde, Karina; Timofejeva, Ljudmilla; Egger, Rachel L; Ilau, Birger; Hammond, Reza; Teng, Chong; Meyers, Blake C; Doehlemann, Gunther; Walbot, Virginia

    2018-03-01

    Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize ( Zea mays ), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis , to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zm mac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses. © 2018 American Society of Plant Biologists. All rights reserved.

  1. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β-cell apoptosis

    Berchtold, Lukas Adrian; Størling, Zenia Marian; Ortis, Fernanda

    2011-01-01

    Type 1 diabetes (T1D) is a complex disease characterized by the loss of insulin-secreting β-cells. Although the disease has a strong genetic component, and several loci are known to increase T1D susceptibility risk, only few causal genes have currently been identified. To identify disease...... genes in T1D, including the INS gene. An unexpected top-scoring candidate gene was huntingtin-interacting protein (HIP)-14/ZDHHC17. Immunohistochemical analysis of pancreatic sections demonstrated that HIP14 is almost exclusively expressed in insulin-positive cells in islets of Langerhans. RNAi...... knockdown experiments established that HIP14 is an antiapoptotic protein required for β-cell survival and glucose-stimulated insulin secretion. Proinflammatory cytokines (IL-1β and IFN-γ) that mediate β-cell dysfunction in T1D down-regulated HIP14 expression in insulin-secreting INS-1 cells and in isolated...

  2. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  3. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  4. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  5. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  6. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  7. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis

    Gardino, Alexandra K.; Yaffe, Michael B.

    2011-01-01

    14-3-3 proteins play critical roles in the regulation of cell fate through phospho-dependent binding to a large number of intracellular proteins that are targeted by various classes of protein kinases. 14-3-3 proteins play particularly important roles in coordinating progression of cells through the cell cycle, regulating their response to DNA damage, and influencing life-death decisions following internal injury or external cytokine-mediated cues. This review focuses on 14-3-3-dependent path...

  8. Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves

    Srivastava, A.; Zeiger, E.

    1995-01-01

    Zeaxanthin, antheraxanthin and violaxanthin concentrations in guard cells from sonicated abaxial epidermal peels of Vicia faba were measured from dawn to dusk, and compared with concentrations in mesophyll tissue of the same leaves. Measured changes in guard cell zeaxanthin and violaxanthin concentrations indicate that guard cells operate the xanthophyll cycle throughout the day. Mesophyll tissue had no detectable zeaxanthin at dawn, whereas guard cells had 30–50 mmol mol −1 chlorophyll a+b. On a chlorophyll basis, maximal zeaxanthin levels were 3–4 fold higher in guard cells than in mesophyll cells. Zeaxanthin concentrations tracked levels of photosynthetically active radiation (PAR) in both mesophyll and guard cells. In the mesophyll, most of the zeaxanthin changes occurred in mid-morning and mid-afternoon. In guard cells, zeaxanthin concentrations changed nearly linearly with PAR in the early morning and late afternoon, and closely tracked PAR levels throughout the day. Guard cell zeaxanthin concentrations were also closely correlated with stomatal apertures. The close relationship between zeaxanthin concentrations and PAR levels in guard cells indicates that zeaxanthin is well suited to function as a molecular photosensor in stomatal movements. (author)

  9. Differential Modulation of Transcription Factors and Cytoskeletal Proteins in Prostate Carcinoma Cells by a Bacterial Lactone

    Senthil R. Kumar

    2018-01-01

    Full Text Available The present study tested the effect of a bacterial lactone N-(3-oxododecanoyl-homoserine lactone (C12-HSL on the cytoskeletal and transcriptional genes and proteins in prostate adenocarcinoma (PA cells (DU145 and LNCaP and prostate small cell neuroendocrine carcinoma (SCNC PC3 cells including their cellular viability and apoptosis. Our data indicate that cell migration and colony formation were affected in the presence of C12-HSL. C12-HSL induced apoptosis and altered viability of both PA and SCNC cells in a concentration dependent manner as measured by fluorescence and chemiluminescence assays. Compared to PCa cells, noncancerous prostate epithelial cells (RWPE1 were resistant to modification by C12-HSL. Further, the viability of PC3 cells in 3D matrix was suppressed by C12-HSL treatment as detected using calcein AM fluorescence in situ. C12-HSL treatment induced cytoskeletal associated protein expression of vinculin and RhoC, which may have implications in cancer cell motility, adhesion, and metastasis. IQGAP protein expression was reduced in DU145 and RWPE1 cells in the presence of C12-HSL. C12-HSL decreased STAT3 phosphorylation in DU145 cells but increased STAT1 protein phosphorylation in PC3 and LNCaP cells. Overall, these studies indicate that C12-HSL can trigger changes in transcription factors and cytoskeletal proteins and thereby modulate growth and migration properties of PCa cells.

  10. Protein secretory patterns of rat Sertoli and peritubular cells are influenced by culture conditions

    Kierszenbaum, A.L.; Crowell, J.A.; Shabanowitz, R.B.; DePhilip, R.M.; Tres, L.L.

    1986-01-01

    An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates

  11. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells.

    Jiang, M; Pandey, S; Tran, V T; Fong, H K

    1991-01-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein alpha subunits (G alpha) including Gs alpha, Gi-1 alpha, Gi-2 alpha, Gi-3 alpha, and Gz alpha (or Gx alpha), where Gs and Gi are proteins that stimulate or inhibit adenylyl cyclase, respectively, and Gz is a protein that may mediate pertussis toxin-insensi...

  12. RNA and protein synthesis of irradiated Ehrlich ascites tumour cells. Pt. 1

    Skog, S.; Tribukait, B.; Sundius, G.

    1985-01-01

    The effects of roentgen irradiation on the incorporation of 3 H-uridine and 14 C-leucine into RNA and protein and the RNA and protein contents of in vivo growing Ehrlich ascites tumour cells were studied. The results were related to changes in the composition of cells in cell cycle and compared with the synthesis of RNA and protein in cell material from various parts of the cell cycle obtained by means of elutriator centrifuging. The incorporation expressed by the ratio between acid insoluble/acid soluble activity was unchanged for RNA during the observation period up to 24 hours after a dose of 5.0 Gy. The ratio for protein was markedly decreased between 4 and 24 hours. This decrease was partly due to a decrease of the pool size of leucine as studied by changing the amounts of 14 C leucine used. From these studies, the existence of at least two pools, an expandable and a non-expandable fixed pool can be concluded. There were no differences in the decrease of protein-synthesis between cells from the various parts of the cell cycle. The RNA and protein contents of the irradiated cells from various parts of the cell cycle corresponded to those of non-irradiated cells except for G 1 /early S-phase cells at 15 and 24 hours after irradiation. Possible reasons for this discrepancy are discussed. (orig.)

  13. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2013-11-01

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: • Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. • The nanoscale distribution of CD20 on cancer cells was characterized. • The distribution of CD20 was non-uniform on the surface of cancer cells.

  14. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  15. Disruption of endocytic trafficking protein Rab7 impairs invasiveness of cholangiocarcinoma cells.

    Suwandittakul, Nantana; Reamtong, Onrapak; Molee, Pattamaporn; Maneewatchararangsri, Santi; Sutherat, Maleerat; Chaisri, Urai; Wongkham, Sopit; Adisakwattana, Poom

    2017-09-07

    Alterations and mutations of endo-lysosomal trafficking proteins have been associated with cancer progression. Identification and characterization of endo-lysosomal trafficking proteins in invasive cholangiocarcinoma (CCA) cells may benefit prognosis and drug design for CCA. To identify and characterize endo-lysosomal trafficking proteins in invasive CCA. A lysosomal-enriched fraction was isolated from a TNF-α induced invasive CCA cell line (KKU-100) and uninduced control cells and protein identification was performed with nano-LC MS/MS. Novel lysosomal proteins that were upregulated in invasive CCA cells were validated by real-time RT-PCR. We selected Rab7 for further studies of protein level using western blotting and subcellular localization using immunofluorescence. The role of Rab7 in CCA invasion was determined by siRNA gene knockdown and matrigel transwell assay. Rab7 mRNA and protein were upregulated in invasive CCA cells compared with non-treated controls. Immunofluorescence studies demonstrated that Rab7 was expressed predominantly in invasive CCA cells and was localized in the cytoplasm and lysosomes. Suppression of Rab7 translation significantly inhibited TNF-α-induced cell invasion compared to non-treated control (p= 0.044). Overexpression of Rab7 in CCA cells was associated with cell invasion, supporting Rab7 as a novel candidate for the development of diagnostic and therapeutic strategies for CCA.

  16. Induction of Ski Protein Expression upon Luteinization in Rat Granulosa Cells

    Hyun Kim

    2012-05-01

    Full Text Available Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells; however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to locate Ski protein in the rat ovary during luteinizationto predict the possible role of Ski. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadtropin to immature female rats, and luteinization was induced by human chorionic gonadtropin treatment to mimic luteinizing hormone (LH surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of the corpus luteum (CL. Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-Ski was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggests that its expression is regulated post-transcriptionally.

  17. C-reactive protein bearing cells are a subpopulation of natural killer cell precursors

    Baum, L.L.; Krueger, N.X.

    1986-01-01

    Cell surface C-reactive protein (S-CRP) is expressed on the surface membrane of a small percentage of lymphocytes. Anti-CRP inhibits natural killer (NK) function. Since NK effectors are heterogeneous, they suspected that the cells expressing S-CRP (CRP + ) might respond differently to stimulation than the NK effectors lacking S-CRP (CRP - ). Methods were developed to separate CRP + and CRP - lymphocytes and their functional responses were examined and compared. These techniques are dependent upon the binding of CRP to its ligands, C-polysaccharide (CPS) or Phosphocholine (PC). The first method involves rosette formation with CPS coupled autologous red blood cells; the second method utilizes the binding of CRP + lymphocytes to PC-sepharose. Lymphocytes separated using either of these techniques yield similar results. CRP - lymphocytes respond to 3 day incubation with PHA or Il-2 by producing effectors which kill 51 Cr labeled K562 tumor cells, CRP + precursors do not. CRP + lymphocytes respond to a 5 day incubation with inactivated K562 by producing effectors which kill K562; CRP - precursors do not. NK functional activity of both is increased by incubation with interferon. This ability to respond differently to stimulation suggests that CRP + and CRP - cells are functionally distinct

  18. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  19. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-11-01

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Intracellular proteins produced by mammalian cells in response to environmental stress

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  1. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  2. Radiation induced formation of giant cells in Saccharomyces uvarum. Pt. 4. Macromolecular synthesis and protein patterns

    Rink, H; Baumstark-Khan, C; Partke, H J

    1986-08-01

    X-irradiated (1.0 kGy) yeast cells (Saccharomyces uvarum, ATCC 9080), grown in liquid medium stop their mitotic activities and form giant cells by development of several buds which do not separate from mother cells. Depending on the time in culture, wet and dry weights per cell, protein- RNA- and DNA- contents per cell as well as incorporation rates of /sup 14/C-leucine per cell and per hour and patterns (isoelectric focusing) of water soluble proteins were studied. Weights per cell, RNA and protein contents per cell and /sup 14/C-leucine incorporation rates increase markedly in giant cells, whereas DNA content per cell is only duplicated. Protein patterns in isoelectric focusing show one interesting difference. In samples from giant cells one protein band (IP=6.63) decreases after 8 h in culture and later on disappears completely. This finding is not due to primary damage in X-irradiated DNA but seems to be related to the control of cell cycle events.

  3. Protein blend ingestion before allogeneic stem cell transplantation improves protein-energy malnutrition in patients with leukemia.

    Ren, Guangxu; Zhang, Jianping; Li, Minghua; Yi, Suqin; Xie, Jin; Zhang, Hongru; Wang, Jing

    2017-10-01

    Severe protein-energy malnutrition (PEM) and skeletal muscle wasting are commonly observed in patients with acute leukemia. Recently, the ingestion of a soy-whey protein blend has been shown to promote muscle protein synthesis (MPS). Thus, we tested the hypothesis that the ingestion of a soy-whey blended protein (BP) may improve the PEM status and muscle mass in acute leukemia patients. In total, 24 patients from the same treatment group were randomly assigned to the natural diet plus soy-whey blended protein (BP) group and the natural diet only (ND) group. Our data showed that protein and energy intake decreased significantly (P protein) were observed in the majority (>50%) of the patients. However, 66% of the patients who ingested the BP before transplantation showed obvious increases in arm muscle area. The gripping power value (△ post-pre or △ post-baseline ) was significantly higher in the BP group than in the ND group (P protein to different extents. Notably, the average time to stem cell engraftment was significantly shorter for patients in the BP group (12.2 ± 2.0 days) than for patients in the ND group (15.1 ± 2.9 days). Collectively, our data supported that soy-whey protein can improve PEM status and muscle mass in leukemia patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Host cell proteins in biotechnology-derived products: A risk assessment framework.

    de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith

    2015-11-01

    To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.

  5. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2009-01-01

    Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  6. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  7. Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells.

    Shlomit Farkash-Amar

    2014-03-01

    Full Text Available To understand gene function, genetic analysis uses large perturbations such as gene deletion, knockdown or over-expression. Large perturbations have drawbacks: they move the cell far from its normal working point, and can thus be masked by off-target effects or compensation by other genes. Here, we offer a complementary approach, called noise genetics. We use natural cell-cell variations in protein level and localization, and correlate them to the natural variations of the phenotype of the same cells. Observing these variations is made possible by recent advances in dynamic proteomics that allow measuring proteins over time in individual living cells. Using motility of human cancer cells as a model system, and time-lapse microscopy on 566 fluorescently tagged proteins, we found 74 candidate motility genes whose level or localization strongly correlate with motility in individual cells. We recovered 30 known motility genes, and validated several novel ones by mild knockdown experiments. Noise genetics can complement standard genetics for a variety of phenotypes.

  8. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    Guilian Xu

    Full Text Available Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y and glial (CCF-STTG1 lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48 residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.

  10. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  11. Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis.

    Galdiero, Francesca; Bello, Anna Maria; Spina, Anna; Capiluongo, Anna; Liuu, Sophie; De Marco, Margot; Rosati, Alessandra; Capunzo, Mario; Napolitano, Maria; Vuttariello, Emilia; Monaco, Mario; Califano, Daniela; Turco, Maria Caterina; Chiappetta, Gennaro; Vinh, Joëlle; Chiappetta, Giovanni

    2018-01-30

    BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.

  12. Implication of the C terminus of the Prunus necrotic ringspot virus movement protein in cell-to-cell transport and in its interaction with the coat protein.

    Aparicio, Frederic; Pallás, Vicente; Sánchez-Navarro, Jesús

    2010-07-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for viral transport. Previous analysis with MPs of other members of the family Bromoviridae has shown that the C-terminal part of these MPs plays a critical role in the interaction with the cognate coat protein (CP) and in cell-to-cell transport. Bimolecular fluorescence complementation and overlay analysis confirm an interaction between the C-terminal 38 aa of PNRSV MP and its cognate CP. Mutational analysis of the C-terminal region of the PNRSV MP revealed that its C-terminal 38 aa are dispensable for virus transport, however, the 4 aa preceding the dispensable C terminus are necessary to target the MP to the plasmodesmata and for the functionality of the protein. The capacity of the PNRSV MP to use either a CP-dependent or a CP-independent cell-to-cell transport is discussed.

  13. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  14. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  15. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.

  16. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple...

  17. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.

    Zhang, Jing; Lu, Shaohua; Zhou, Ye; Meng, Kun; Chen, Zhipeng; Cui, Yizhi; Shi, Yunfeng; Wang, Tong; He, Qing-Yu

    2017-07-01

    Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterisation of the Immunomodulatory Effects of Meningococcal Opa Proteins on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells.

    Claire Jones

    Full Text Available Opa proteins are major surface-expressed proteins located in the Neisseria meningitidis outer membrane, and are potential meningococcal vaccine candidates. Although Opa proteins elicit high levels of bactericidal antibodies following immunisation in mice, progress towards human clinical trials has been delayed due to previous findings that Opa inhibits T cell proliferation in some in vitro assays. However, results from previous studies are conflicting, with different Opa preparations and culture conditions being used. We investigated the effects of various Opa+ and Opa- antigens from N. meningitidis strain H44/76 in a range of in vitro conditions using peripheral blood mononuclear cells (PBMCs and purified CD4+ T cells, measuring T cell proliferation by CFSE dilution using flow cytometry. Wild type recombinant and liposomal Opa proteins inhibited CD4+ T cell proliferation after stimulation with IL-2, anti-CD3 and anti-CD28, and these effects were reduced by mutation of the CEACAM1-binding region of Opa. These effects were not observed in culture with ex vivo PBMCs. Opa+ and Opa- OMVs did not consistently exert a stimulatory or inhibitory effect across different culture conditions. These data do not support a hypothesis that Opa proteins would be inhibitory to T cells if given as a vaccine component, and T cell immune responses to OMV vaccines are unlikely to be significantly affected by the presence of Opa proteins.

  19. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  20. R7-binding protein targets the G protein β5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain

    Zhang Jian-Hua

    2007-09-01

    Full Text Available Abstract Background Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, composed of Gα, Gβ, and Gγ subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. Gβ5 is the most structurally divergent Gβ isoform and forms tight heterodimers with regulator of G protein signalling (RGS proteins of the R7 subfamily (R7-RGS. The subcellular localization of Gβ 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP, a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of Gβ5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain. Results We show that endogenous Gβ5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated Gβ5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous Gβ5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed Gβ5/R7-RGS/R7BP proteins. A fraction of endogenous Gβ5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain. Conclusion A fraction of Gβ5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of

  1. Centrosomal protein 55 activates NF-?B signalling and promotes pancreatic cancer cells aggressiveness

    Peng, Tao; Zhou, Wei; Guo, Feng; Wu, He-shui; Wang, Chun-you; Wang, Li; Yang, Zhi-yong

    2017-01-01

    Centrosomal protein 55 (CEP55) is a microtubule-bundling protein that participants in cell mitosis. It is overexpressed in several solid tumours and promotes the growth and invasion of cancer cells. However, the role of CEP55 in pancreatic cancer (PANC) remains unclear. Herein, upregulated expression of CEP55 (associated with poor prognosis) was detected in PANC using quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry. Cell migration, colony formation...

  2. Proteomic Data From Human Cell Cultures Refine Mechanisms of Chaperone-Mediated Protein homeostasis

    Finka, Andrija; Goloubinoff, Andrija Finka and Pierre

    2013-01-01

    In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here “the chaperome,” which can prevent formation of potentially harmful misfolded protein conformers and use the...

  3. Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells.

    Jens Madsen

    Full Text Available Surfactant Protein D (SP-D is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.

  4. The Natural Killer Cell Cytotoxic Function Is Modulated by HIV-1 Accessory Proteins

    Edward Barker

    2011-07-01

    Full Text Available Natural killer (NK cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.

  5. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B. [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Bag, Jnanankur, E-mail: jbag@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  6. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-01-01

    Highlights: → Depletion of cellular PABP level arrests mRNA translation in HeLa cells. → PABP knock down leads to apoptotic cell death. → PABP depletion does not affect transcription. → PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  7. Protein profile of human hepatocarcinoma cell line SMMC-7721: Identification and functional analysis

    Yi Feng; Zhong-Min Tian; Ming-Xi Wan; Zhao-Bin Zheng

    2007-01-01

    AIM: To investigate the protein profile of human hepatocarcinoma cell line SMMC-7721, to analyze the specific functions of abundant expressed proteins in the processes of hepatocarcinoma genesis, growth and metastasis, to identify the hepatocarcinoma-specific biomarkers for the early prediction in diagnosis, and to explore the new drug targets for liver cancer therapy.METHODS: Total proteins from human hepatocarcinomacell line SMMC-7721 were separated by two-dimensional electrophoresis (2DE). The silver-stained gel was analyzed by 2DE software Image Master 2D Elite.Interesting protein spots were identified by peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)and database searching.RESULTS: We obtained protein profile of human hepatocarcinoma cell line SMMC-7721. Among the twenty-one successfully identified proteins, mitofilin,endoplasmic reticulum protein ERp29, ubiquinol-cytochrome C reductase complex core protein Ⅰ,peroxisomal enoyl CoA hydratase, peroxiredoxin-4 and probable 3-oxoacid CoA transferase 1 precursor were the six novel proteins identified in human hepatocarcinoma cells or tissues. Specific functions of the identified heat-shock proteins were analyzed in detail, and the results suggested that these proteins might promote tumorigenesis via inhibiting cell death induced by several cancer-related stresses or via inhibiting apoptosis at multiple points in the apoptotic signal pathway. Other identified chaperones and cancer-related proteins were also analyzed.CONCLUSION: Based on the protein profile of SMMC-7721 cells, functional analysis suggests that the identified chaperones and cancer-related proteins have their own pathways to contribute to the tumorigenesis, tumor growth and metastasis of liver cancer. Furthermore, proteomic analysis is indicated to be feasible in the cancer study.

  8. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  9. Protein degradation rate is the dominant mechanism accounting for the differences in protein abundance of basal p53 in a human breast and colorectal cancer cell line.

    Eszter Lakatos

    Full Text Available We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.

  10. Protein degradation rate is the dominant mechanism accounting for the differences in protein abundance of basal p53 in a human breast and colorectal cancer cell line.

    Lakatos, Eszter; Salehi-Reyhani, Ali; Barclay, Michael; Stumpf, Michael P H; Klug, David R

    2017-01-01

    We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.

  11. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate

    Jeong Y

    2015-11-01

    Full Text Available Yoon Jeong,1,2 Kwan Hong Lee,1,2 Hansoo Park,3 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, 3School of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell–cell communication and immune responses. Keywords: microwell array, antibody’s orientation, single cell analysis, secreted cytokine, protein-G-terminated surface

  12. Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells

    Gao Zhihua; Jin Jinghua; Yang Jun; Yu Yingnian

    2004-01-01

    Proteomic analysis, which combines two-dimensional electrophoresis (2-DE) and mass spectrometry (MS), is an important approach to screen proteins responsive to specific stimuli. Benzo[a]pyrene (B[a]P), a prototype of polycyclic hydrocarbons (PAHs), is a potent procarcinogen generated from the combustion of fossil fuel and cigarette smoke. To further probe the molecular mechanism of mutagenesis and carcinogenesis, and to find potential molecular markers involved in cellular responses to B[a]P exposure, we performed proteomic analysis of whole cellular proteins in human amnion epithelial cells after B[a]P-treatment. Image visualization and statistical analysis indicated that more than 40 proteins showed significant changes following B[a]P-treatment (P<0.05). Among them, 20 proteins existed only in the control groups, while six were only present in B[a]P-treated cells. In addition, the expression of 10 proteins increased whereas 11 decreased after B[a]P-treatment. These proteins were subjected to in-gel tryptic digestion followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. Using peptide mass fingerprinting (PMF) to search the nrNCBI database, we identified 22 proteins. Most of these proteins have unknown functions and have not been previously connected to a response to B[a]P exposure. To further annotate the characteristics of these proteins, GOblet analysis was carried out and results indicated that they were involved in multiple biological processes including regulation of transcription, cell proliferation, cell aging and other processes. However, expression changes were noted in a number of transcription regulators, including eight zinc finger proteins as well as SNF2L1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1), which is closely linked to the chromatin remodeling process. These data may provide new clues to further understand the implication of

  13. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  14. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  15. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display

    Mickaël Desvaux

    2018-02-01

    Full Text Available The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria is formed of a cytoplasmic membrane (CM and a cell wall (CW. While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226, i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658, i.e., the lipoproteins. At the CW (GO: 0009275, cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.

  16. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  17. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  18. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    Nielsen, Erik Etlar [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-21

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the following objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.

  19. Activation of human natural killer cells by the soluble form of cellular prion protein

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: ecshin@kaist.ac.kr [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  20. Activation of human natural killer cells by the soluble form of cellular prion protein

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-01-01

    Cellular prion protein (PrP C ) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP C in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP C protein on human natural killer (NK) cells. Recombinant soluble PrP C protein was generated by fusion of human PrP C with the Fc portion of human IgG 1 (PrP C -Fc). PrP C -Fc binds to the surface of human NK cells, particularly to CD56 dim NK cells. PrP C -Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP C -Fc facilitated the IL-15-induced proliferation of NK cells. PrP C -Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP C -Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP C (PrP C -Fc) was generated by fusion of human PrP C with IgG1 Fc portion. • PrP C -Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP C -Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways

  1. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein

    Gary R. Whittaker

    2012-06-01

    Full Text Available Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes—A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.

  2. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  3. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Formation of protein hydroperoxides in mouse myeloma cell line Sp2/0-Ag14

    Du, J.; Gebicki, J.

    2000-01-01

    Full text: Free radicals generated by normal cell metabolism or from environmental sources can cause damage to DNA, proteins and lipids-the important components of mammalian cells. As function molecules and cell constituent, the abundant and easily available nature of proteins make them the prime target of free radicals. Previous research in our lab have shown protein hydroperoxides in turn can react with other proteins, result in the lose of enzymatic function of the later, or crosslink with DNA, which may interfere gene transcription if not repaired. The formation of protein hydroperoxides in Sp2/0-Ag14 cells was induced by exposing them to peroxyl radical or gamma radiation. Cells were then washed and precipitated by tichloroacetic acid. Concentration of protein and lipid hydroperoxides were measured by FOX assay. No significant amount of lipid peroxides were detected. The effects of reducing agents dithiothreitol, glutathione, sodium borohydride identified the nature of protein hydroperoxides. The life time of cell protein hydroperoxides is about 2 hours

  5. Effect of low dose radiation on cell cycle and expression of its related proteins of HCT-8 cells

    Xu Ying; Ma Kewei; Li Wei; Wang Guanjun

    2009-01-01

    Objective: To study the effects of low dose radiation (LDR) on cell cycle and the expression of its related proteins of HCT-8 cells and provide theoretical basis for clinical application of LDR. Methods: Human colon carcinoma cells (HCT-8) cultivated in vitro were divided into seven groups: sham radiation group (0 mGy), LDR groups (25, 50, 75, 100 and 200 mGy) and high dose radiation group (1000 mGy). The proliferation rate was detected with the method of cell count and MTT, the ratios of G 0 /G 1 , S, G 2 /M in cell cycle were determined with flow cytometry after LDR, The cell cycle and expressions of related signal proteins were analyzed with protein assay system. Results: The results of cell count and MTT showed that there were no significant differences of proliferation rate of HCT-8 cells between 25, 50, 75, 100, 200 mGy LDR groups and sham radiation group (P>0.05); compared with high dose radiation group, there were significant differences (P 0 /G 1 phase of HCT-8 cells increased (P>0.05), the ratio of S phase decreased significantly (P 2 /M phase increased obviously (P 0 /G 1 , S, and G 2 /M phases of HCT-8 cells 48 h after radiation compared with sham radiation group (P>0.05). The protein assay result indicated that the expressions of AKt, PCNA, p27, CDK2, cyclin E, EGFR, ERK1/2, p-ERK, p-GSK-32/β in HCT-8 cells after LDR decreased compared with sham radiation group. Conclusion: LDR has no stimulating effect on HCT-8 cells. However, to some extent LDR suppress the expressions of some proteins related to proliferation and cell cycle. (authors)

  6. A Versatile Platform to Analyze Low-Affinity and Transient Protein-Protein Interactions in Living Cells in Real Time

    Yao-Cheng Li

    2014-12-01

    Full Text Available Summary: Protein-protein interactions (PPIs play central roles in orchestrating biological processes. While some PPIs are stable, many important ones are transient and hard to detect with conventional approaches. We developed ReBiL, a recombinase enhanced bimolecular luciferase complementation platform, to enable detection of weak PPIs in living cells. ReBiL readily identified challenging transient interactions between an E3 ubiquitin ligase and an E2 ubiquitin-conjugating enzyme. ReBiL’s ability to rapidly interrogate PPIs in diverse conditions revealed that some stapled α-helical peptides, a class of PPI antagonists, induce target-independent cytosolic leakage and cytotoxicity that is antagonized by serum. These results explain the requirement for serum-free conditions to detect stapled peptide activity, and define a required parameter to evaluate for peptide antagonist approaches. ReBiL’s ability to expedite PPI analysis, assess target specificity and cell permeability, and reveal off-target effects of PPI modifiers should facilitate the development of effective, cell-permeable PPI therapeutics and the elaboration of diverse biological mechanisms. : Li et al. developed a recombinase-enhanced bimolecular luciferase complementation platform, termed ReBiL, to evaluate low-affinity protein-protein interactions (PPIs that are not detectable by other methods and to analyze PPI antagonists in living cells. ReBiL showed that small-molecule p53-Mdm2 antagonists disrupt their intended targets effectively in cells, whereas stapled peptides did not. Stapled peptides unexpectedly induced cell membrane disruption resulting in p53-independent death associated with cytoplasmic leakage. ReBiL is also valuable for high-throughput screening and for deciphering signaling mechanisms mediated by protein interactions.

  7. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  8. Influence of Acute High Glucose on Protein Abundance Changes in Murine Glomerular Mesangial Cells

    Michelle T. Barati

    2016-01-01

    Full Text Available The effects of acute exposure to high glucose levels as experienced by glomerular mesangial cells in postprandial conditions and states such as in prediabetes were investigated using proteomic methods. Two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry methods were used to identify protein expression patterns in immortalized rat mesangial cells altered by 2 h high glucose (HG growth conditions as compared to isoosmotic/normal glucose control (NG⁎ conditions. Unique protein expression changes at 2 h HG treatment were measured for 51 protein spots. These proteins could be broadly grouped into two categories: (1 proteins involved in cell survival/cell signaling and (2 proteins involved in stress response. Immunoblot experiments for a protein belonging to both categories, prohibitin (PHB, supported a trend for increased total expression as well as significant increases in an acidic PHB isoform. Additional studies confirmed the regulation of proteasomal subunit alpha-type 2 and the endoplasmic reticulum chaperone and oxidoreductase PDI (protein disulfide isomerase, suggesting altered ER protein folding capacity and proteasomal function in response to acute HG. We conclude that short term high glucose induces subtle changes in protein abundances suggesting posttranslational modifications and regulation of pathways involved in proteostasis.

  9. The pretective effects of heat shock protein 70 on radiation injury of V79 cells

    Qin Yongchun; Zhang Baoguo; Hong Chengjiao

    2008-01-01

    Westem blot was used to detect the expression of heat shock protein 70 in V79 cells after heat shock pretreatment; V79 cells were irradiated using γ-ray after heat shock pretreatment, survival rate was observed using Colony formation assay. Our study shows that 1) the overexpression of heat shock protein 70 was observed in cells recovering for 1 hour after heat shock pretreatment, with peak expression in cells recovering for 4 hours, and could last for 24 hours; 2) heat shock pretreatment was able to elevate survival rate of V79 cells after irradiation by 60 Co γ ray (when the irradiation dose was less than 6 Gy). The results indicate that heat shock protein 70 has protective effect on radiation induced cell death of V79 cells (when the irradiation dose was less than 6 Gy). (authors)

  10. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  11. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  12. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer.

    De, Abhijit; Gambhir, Sanjiv Sam

    2005-12-01

    This study demonstrates a significant advancement of imaging of a distance-dependent physical process, known as the bioluminescent resonance energy transfer (BRET2) signal in living subjects, by using a cooled charge-coupled device (CCD) camera. A CCD camera-based spectral imaging strategy enables simultaneous visualization and quantitation of BRET signal from live cells and cells implanted in living mice. We used the BRET2 system, which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC (DBC) as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. To accomplish this objective in this proof-of-principle study, the donor and acceptor proteins were fused to FKBP12 and FRB, respectively, which are known to interact only in the presence of the small molecule mediator rapamycin. Mammalian cells expressing these fusion constructs were imaged using a cooled-CCD camera either directly from culture dishes or by implanting them into mice. By comparing the emission photon yields in the presence and absence of rapamycin, the specific BRET signal was determined. The CCD imaging approach of BRET signal is particularly appealing due to its capacity to seamlessly bridge the gap between in vitro and in vivo studies. This work validates BRET as a powerful tool for interrogating and observing protein-protein interactions directly at limited depths in living mice.

  13. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  14. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    Muscle cell culture (L/sub 6/) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 ..mu..M compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of (/sup 3/H) leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using (/sup 3/H) leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 ..mu..M level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle.

  15. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    1986-01-01

    Muscle cell culture (L 6 ) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 μM compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of [ 3 H] leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using [ 3 H] leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 μM level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle

  16. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of human protein replacement stable cell lines established using snoMEN-PR vector.

    Motoharu Ono

    Full Text Available The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR. Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.

  18. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

    Sinha, B; Francois, P; Que, Y A; Hussain, M; Heilmann, C; Moreillon, P; Lew, D; Krause, K H; Peters, Georg; Herrmann, M

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell.

  19. A Proteomic Screen Identified Stress-Induced Chaperone Proteins as Targets of Akt Phosphorylation in Mesangial Cells

    Barati, Michelle T.; Rane, Madhavi J.; Klein, Jon B.; McLeish, Kenneth R.

    2006-01-01

    The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90α, Hsp90β, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphoryl...

  20. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  1. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    Radulescu, Razvan T., E-mail: ratura@gmx.net [Molecular Concepts Research (MCR), Muenster (Germany); Duckworth, William C. [Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ (United States); Levy, Jennifer L. [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States); Fawcett, Janet, E-mail: janet.fawcett@va.gov [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States)

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  2. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna

    2013-01-01

    beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...... diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from...... the literature and presented experimental data support the notion that PTM of beta cell proteins may be involved in triggering beta cell destruction in type 1 diabetes. If the beta cell antigens recognised by the immune system foremost come from modified proteins rather than native ones, the concept of type 1...

  3. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  4. Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells

    Nadarajah Vishna

    2010-11-01

    Full Text Available Abstract Background Bacillus thuringiensis (Bt, an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa, human breast cancer (MCF-7 and colon cancer (HT-29 suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18 for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Double immunofluorescence staining showed

  5. The potential role of ribosomal protein S5 on cell cycle arrest and initiation of murine erythroleukemia cell differentiation.

    Matragkou, Christina N; Papachristou, Eleni T; Tezias, Sotirios S; Tsiftsoglou, Asterios S; Choli-Papadopoulou, Theodora; Vizirianakis, Ioannis S

    2008-07-01

    Evidence now exists to indicate that some ribosomal proteins besides being structural components of the ribosomal subunits are involved in the regulation of cell differentiation and apoptosis. As we have shown earlier, initiation of erythroid differentiation of murine erythroleukemia (MEL) cells is associated with transcriptional inactivation of genes encoding ribosomal RNAs and ribosomal proteins S5 (RPS5) and L35a. In this study, we extended these observations and investigated whether transfection of MEL cells with RPS5 cDNA affects the onset of initiation of erythroid maturation and their entrance in cell cycle arrest. Stably transfected MEL cloned cells (MEL-C14 and MEL-C56) were established and assessed for their capacity to produce RPS5 RNA transcript and its translated product. The impact of RPS5 cDNA transfection on the RPS5 gene expression patterns and the accumulation of RPS5 protein in inducible transfected MEL cells were correlated with their ability to: (a) initiate differentiation, (b) enter cell cycle arrest at G(1)/G(0) phase, and (c) modulate the level of cyclin-dependent kinases CDK2, CDK4, and CDK6. The data presented indicate that deregulation of RPS5 gene expression (constitutive expression) affects RPS5 protein level and delays both the onset of initiation of erythroid maturation and entrance in cell cycle arrest in inducer-treated MEL cells. 2008 Wiley-Liss, Inc.

  6. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37.

    Kelly, Barbara J; Diefenbach, Eve; Fraefel, Cornel; Diefenbach, Russell J

    2012-01-20

    The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Ligand binding to G protein-coupled receptors in tethered cell membranes

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud

    2003-01-01

    for the surface immobilization of membrane proteins was developed using the prototypic seven transmembrane neurokinin-1 receptor. The receptor was expressed as a biotinylated protein in mammalian cells. Membranes from cell homogenates were selectively immobilized on glass surfaces covered with streptavidin. TIRF...... measurements showed that a fluorescent agonist binds to the receptor on the sensor surface with similar affinity as to the receptor in live cells. This approach offers the possibility to investigate minute amounts of membrane protein in an active form and in its native environment without purification....

  8. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.