WorldWideScience

Sample records for mesophase formation investigation

  1. Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    KAUST Repository

    Nevers, Douglas R.; Williamson, Curtis B.; Savitzky, Benjamin H; Hadar, Ido; Banin, Uri; Kourkoutis, Lena F.; Hanrath, Tobias; Robinson, Richard D.

    2018-01-01

    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.

  2. Mesophase Formation Stabilizes High-purity Magic-sized Clusters

    KAUST Repository

    Nevers, Douglas R.

    2018-01-27

    Magic-sized clusters (MSCs) are renowned for their identical size and closed-shell stability that inhibit conventional nanoparticle (NP) growth processes. Though MSCs have been of increasing interest, understanding the reaction pathways toward their nucleation and stabilization is an outstanding issue. In this work, we demonstrate that high concentration synthesis (1000 mM) promotes a well-defined reaction pathway to form high-purity MSCs (>99.9%). The MSCs are resistant to typical growth and dissolution processes. Based on insights from in-situ X-ray scattering analysis, we attribute this stability to the accompanying production of a large, hexagonal organic-inorganic mesophase (>100 nm grain size) that arrests growth of the MSCs and prevents NP growth. At intermediate concentrations (500 mM), the MSC mesophase forms, but is unstable, resulting in NP growth at the expense of the assemblies. These results provide an alternate explanation for the high stability of MSCs. Whereas the conventional mantra has been that the stability of MSCs derives from the precise arrangement of the inorganic structures (i.e., closed-shell atomic packing), we demonstrate that anisotropic clusters can also be stabilized by self-forming fibrous mesophase assemblies. At lower concentration (<200 mM or >16 acid-to-metal), MSCs are further destabilized and NPs formation dominates that of MSCs. Overall, the high concentration approach intensifies and showcases inherent concentration-dependent surfactant phase behavior that is not accessible in conventional (i.e., dilute) conditions. This work provides not only a robust method to synthesize, stabilize, and study identical MSC products, but also uncovers an underappreciated stabilizing interaction between surfactants and clusters.

  3. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang; Escobedo, Fernando A.

    2011-01-01

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  4. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang

    2011-02-13

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    Science.gov (United States)

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  6. HII mesophase as a drug delivery system for topical application of methyl salicylate.

    Science.gov (United States)

    Liang, Xin; Chen, Yu-Lin; Jiang, Xiao-Jing; Wang, Sheng-Mei; Zhang, Ji-Wen; Gui, Shuang-Ying

    2017-03-30

    The main objective of this study was to develop reversed hexagonal (H II ) mesophase for transdermal delivery of methyl salicylate. The formulation was prepared, characterized and evaluated for its skin penetration in vitro and skin retention in vivo. Preliminary pharmacodynamics and skin irritation were also investigated. The formulation was identified as hexagonal structure. In vitro study exhibited that H II mesophase enhanced the skin permeation by delivering 2.61 times more methyl salicylate than the commercially available cream. Meanwhile, H II mesophase presented higher bioavailability as AUC (0-24) and AUC (0-∞) were 32.894μg·mL -1 and 32.935μg·mL -1 respectively, while the cream were 12.791μg·mL -1 and 12.970μg·mL -1 . Preliminary pharmacodynamics studies demonstrated that H II mesophase possessed anti-inflammatory and analgesic effects for inhibiting paw edema, granuloma and pain. MeSa H II mesophase showed no skin irritation on the normal rat skin. Thus, H II mesophase was considered as an effective delivery system for MeSa. Copyright © 2016. Published by Elsevier B.V.

  7. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  8. Molecularly Imprinted Microrods via Mesophase Polymerization

    Directory of Open Access Journals (Sweden)

    Ortensia Ilaria Parisi

    2017-12-01

    Full Text Available The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs with a rod-like geometry via “mesophase polymerization”. The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS, water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  9. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    Science.gov (United States)

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNiacid octaester porphyrins and their metal complexes very attractive for variant applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photonic mesophases from cut rod rotators

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu [Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Avendano, Carlos [Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magnetic polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.

  11. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    Science.gov (United States)

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  12. In situ mesophase transformation by zirconium chloride in fabrication of carbon/carbon composites

    International Nuclear Information System (INIS)

    Zhang, Bo; Song, Huaihe; Chen, Xiaohong; Ma, Zhaokun; Yang, Xiaoguang; Xu, Zhenghui

    2012-01-01

    Carbon/carbon (C/C) composites were prepared using multiple cycle in situ mesophase densification in the presence of zirconium chloride. The mesophase transformation and the performance of C/C composites were investigated in detail. The results show that higher amount of ZrCl 4 and longer soaking time accelerate the condensation of aromatic hydrocarbons. Additionally, the XRD pattern and ash contents show that the ZrCl 4 is retained in the samples and transformed to t-ZrO 2 and m-ZrO 2 after carbonization. In all the composites, the bulk density increases with cycle times, and the flexural strength increases with bulk density. However, a decrease of flexural strength for low density composites was observed when increasing ZrCl 4 concentrations. This tendency is attributed to more ZrO 2 formation in the composites using 20 wt.% ZrCl 4 . Subsequently, these ZrO 2 particles produce interface defects in the matrix which decreases its strength. Attributed to the very low content of ZrO 2 in high density composites, there is no difference between the samples using 13 wt.% and 20 wt.% ZrCl 4 .

  13. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    Science.gov (United States)

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  14. Mesophase properties after anthracene thermal exposure

    Czech Academy of Sciences Publication Activity Database

    Šugárková, Věra; Plevová, Eva; Kaloč, M.

    -, - (2008), s. 62-70. ISBN 978-80-248-1939-6 Grant - others:GA ČR GA105/00/1698 Institutional research plan: CEZ:AV0Z30860518 Keywords : mesophase * anthracene * thermal behaviour * anisotropy Subject RIV: CC - Organic Chemistry

  15. Computational modeling of ring textures in mesophase carbon fibers

    Directory of Open Access Journals (Sweden)

    de Andrade Lima Luiz Rogério Pinho

    2003-01-01

    Full Text Available Carbon fibers are widely used in many industrial applications due the fact of their excellent properties. Carbonaceous mesophases are liquid crystalline precursor materials that can be spun into high performance carbon fibers using the melt spinning process, which is a flow cascade consisting of pressure driven flow-converging die flow-free surface extensional spinline flow that modifies the precursor molecular orientation structure. Carbon fiber property optimization requires a better understanding of the principles that control the structure development during the fiber formation processes and the rheological processing properties. This paper presents the elastic and continuum theory of liquid crystalsand computer simulations of structure formation for pressure-driven flow of carbonaceous liquid crystalline precursors used in the industrial carbon fiber spinning process. The simulations results capture the formation of characteristic fiber macro-textures and provide new knowledge on the role of viscous and elastic effects in the spinning process.

  16. Ionic conductivity of N-alkyl pyridinium halides mesophases

    International Nuclear Information System (INIS)

    Meftah, Ahmed

    1980-01-01

    The quasi anhydrous N-alkyl pyridinium halides undergo at a temperature T c a phase transition from a crystalline isolating state to a conducting mesophase (σ = 3.10 -2 Ω -1 cm -1 ). The transition temperature depends on the nature on counter-ion and on the aliphatic chain length. The present study is devoted to the N-alkyl pyridinium chlorides, bromides and iodides varying the number of carbon atoms in the chain from ten to twenty two. The transition temperatures T c were found to increase from 30 deg. C up to 110 deg. C by a step of 10 deg. C for two added carbon atoms in the chain. The electrical measurements have shown that the conductivity of the mesophases which is ionic in origin is due to a large mobility of counter-ions in hydrophilic parts. At high frequencies (F > 10 3 Hz) ionic conductivity predominates in the bulk and does not depend on frequency. At low frequencies (F 3 Hz) the most important are interface phenomena depending on the square root of inverse frequency (ω -1/2 ) and being due to an electronic exchange limited by diffusion velocity of counter-ions. The electrical conductivity depends weekly on the chain length and the mesophases textures. The most conducting mesophase is the optically isotropic. The conductivity increases with increasing water content of the system and decreases with increasing atomic number of counter-ion. The diffusion measurements by radioactive tracers confirm the ionic character of charge carriers although the diffusion factors obtained by this method are largely higher than the calculated ones from the conductivity values. (author) [fr

  17. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    are not ferroelectric in the ground state, but upon alignment within an electric field .... Figure 3. Molecular organisation within polar smectic phases and possible ways to escape from a macroscopic polarisation in mesophases built up by polar layers. .... in which the molecules adapt a twisted orientation from the top to bottom.

  18. Effect of dipole moment and conformation on the mesophase behavior of di-laterally substituted phenylazophenyl benzoate liquid crystals

    International Nuclear Information System (INIS)

    Naoum, M.M.; Ahmed, H.A.

    2011-01-01

    Highlights: → Four homologous series of di-laterally substituted derivatives were prepared. → Measurement of the dipole moment and comparing it with those calculated for the various planner conformations. → Binary phase diagrams were constructed for mixtures made from any two analogues of different central lateral substituents. → Mesophase behavior is related to conformation. → The two molecules in all mixtures investigated are arranged in a back-to-face pattern. - Abstract: The dipole moments of the previously prepared 4-(3'-fluoro phenylazo)-2-(or 3-) substituted phenyl-4''-alkoxybenzoates (In a-d ), have been determined in benzene at 30 o C. The data obtained were compared with those theoretically calculated by molecular modeling program to deduce the most probable conformations for each individual homologous series. Probable conformations deduced were found to vary according to type and position of the lateral substituent attached to the central benzene ring. The results were used to correlate the mesophase behavior, in pure and mixed derivatives, with the conformation deduced for each series. Each homologous series, that have in common a lateral fluorine atom on the first terminal ring, differs from the other by a second lateral group substituted on the central ring. The latter group varies between 2-CH 3 , 3-CH 3 , 2-Cl and 3-CN groups. Within each homologous series, the number of carbons in the other terminal alkoxy group varies between 8 and 16 carbons. The study aims to investigate the steric effect of the spatial orientation of the central lateral substituent, based on deduced conformations, on the mesomorphic properties in their pure or mixed states. The mesophase behavior was investigated via differential scanning calorimetry, DSC, and mesophases identified by polarized light microscopy, PLM.

  19. Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases

    Science.gov (United States)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.

  20. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    Science.gov (United States)

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  1. On the use of mesophase pitch for the preparation of hierarchical porous carbon monoliths by nanocasting

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm, Karin Cabrera and Bernd M Smarsly

    2012-01-01

    Full Text Available A detailed study is given on the synthesis of a hierarchical porous carbon, possessing both meso- and macropores, using a mesophase pitch (MP as the carbon precursor. This carbon material is prepared by the nanocasting approach involving the replication of a porous silica monolith (hard templating. While this carbon material has already been tested in energy storage applications, various detailed aspects of its formation and structure are addressed in this study. Scanning electron microscopy (SEM, Hg porosimetry and N2 physisorption are used to characterize the morphology and porosity of the carbon replica. A novel approach for the detailed analysis of wide-angle x-ray scattering (WAXS from non-graphitic carbons is applied to quantitatively compare the graphene microstructures of carbons prepared using MP and furfuryl alcohol (FA. This WAXS analysis underlines the importance of the carbon precursor in the synthesis of templated porous carbon materials via the nanocasting route. Our study demonstrates that a mesophase pitch is a superior precursor whenever a high-purity, low-micropore-content and well-developed graphene structure is desired.

  2. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    Science.gov (United States)

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Multipulse NMR study of the lamellar mesophase of some liquid crystals

    International Nuclear Information System (INIS)

    Jasinski, A.; Morris, P.G.; Mansfield, P.

    1977-01-01

    Multipulse NMR techniques have been used to investigate the dynamic jproperties of cesium perfluoro-octanoate (CsPFO) and ammonium perfluoro-octanoate (APFO) + water systems, which are liquid crystals, over a wide range of temperautre and concentration. Axially symmetric fluorine chemical shift tensors have been measured for the CF 2 and CF 3 groups by performing a rotation study of an aligned sample (50% CsPFO : 50% D 2 O) at room temperature. The order parameter S in the lamellar mesophase of 72,2% CsPFO : 27,8% D 2 O and 70% APFO : 30% D 2 O has been obtained over as temperature range 20 0 C - 85 0 C by fitting the multipulse spectra. (author)

  4. Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation.

    Science.gov (United States)

    Mugheirbi, Naila A; Tajber, Lidia

    2015-10-01

    The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Molecular motion of water molecules in lyotropic mesophases formed from fatty acid soaps

    International Nuclear Information System (INIS)

    Olszewski, K.J.; Pislewski, N.

    1980-01-01

    The results of study of self-diffusion coefficients and relaxation times for the mesophases formed from water mixtures of potassium laurate (denoted by C 12 K), myristate (C 14 K), and palmitate (C 16 K), are presented. The samples containing by weight 70% of soaps and 30% of water as well as samples containing 30% of soaps and 70% of water were examined. It allowed to obtain lamellar and middle phase respectively. (author)

  6. Molecular dynamics studies and quantification of the effect of chirality on the formation of liquid crystal mesophases

    International Nuclear Information System (INIS)

    Solymosi, Miklos

    2002-01-01

    Results are presented from theoretical studies and from a series of molecular dynamics simulations undertaken to quantify the effect of chirality on the formation of liquid crystal mesophases. In the theoretical studies we have proposed a scaled chiral index with a formulation which allows comparison to be made between molecules comprising different numbers of atoms. We have undertaken chirality calculations utilizing the proposed scaled chiral index, G 0S , for one optimized static molecular geometry for a range of liquid crystal chiral dopants and ferroelectric liquid crystal molecules. The scaled chiral index, G 0S , allows a rapid calculation to be made of a pseudoscalar quantity which shows a good correlation with the helical twisting power of liquid crystal chiral dopants in a nematic liquid crystal solvent. This could prove a powerful aid in the design of novel dopant molecules where the dopant is rigid and the helical twisting is predominantly a steric effect. The same scaled chirality index, G 0S , calculation for ferroelectric liquid crystal molecules hints at an inverse correlation with spontaneous polarization agreeing with some experimental results. The scaled chiral index is a chemically useful index that can also be decomposed into atomic or functional group contributions, thereby creating a new measure of the asymmetric potential of functional groups and their different possible substitution positions. In the molecular dynamics simulation studies we have investigated two three-site Gay-Berne models, one chiral and the other achiral, each with a rotated central site forming a zigzag shape. In the chiral model one of the end site was additionally rotated out of the plane of the other two sites by a chiral angle θ c . Results from the achiral phase simulations support the theory that steric molecular shape can be associated with a driving force that leads to the smectic A - smectic C phase transition since such a transition was observed in the achiral

  7. Higher-order-structure formation in liquid crystal epoxy thermosets investigated by synchrotron radiation-wide-angle X-ray diffraction

    International Nuclear Information System (INIS)

    Maeda, Rina; Okuhara, Kenta; Nakamura, Akihiro; Hayakawa, Teruaki; Uehara, Yasushi; Motoya, Tsukasa; Nobutoki, Hideharu

    2016-01-01

    We report the investigation of the mesophase transformations of a liquid crystalline molecule with terminal epoxy groups from the initial stages of curing with a diamine compound. The ordered arrangement of molecules within the smectic layers in the thermoset formed at the end of the curing process was characterized by synchrotron radiation-wide-angle X-ray diffraction (SR-WAXD). Data from this experiment helps us understand the phase transitions from the nematic to smectic phases of curing liquid crystalline epoxies. (author)

  8. Active Gating, Molecular Pumping, and Turnover Determination in Biomimetic Lipidic Cubic Mesophases with Reconstituted Membrane Proteins.

    Science.gov (United States)

    Speziale, Chiara; Zabara, Alexandru Florian; Drummond, Calum John; Mezzenga, Raffaele

    2017-11-28

    Understanding the mechanisms controlling molecular transport in bioinspired materials is a central topic in many branches of nanotechnology. In this work, we show that biomolecules of fundamental importance in biological processes, such as glucose, can be transported in an active, controlled, and selective manner across macroscopic lipidic cubic mesophases, by correctly reconstituting within them their corresponding membrane protein transporters, such as Staphylococcus epidermidis (GlcP Se ). Importantly, by duly exploiting the symporter properties of GlcP Se of coupled glucose/H + transport, the diffusion of glucose can further be tuned by independent physiological stimuli, such as parallel or antiparallel pH gradients, offering an important model to study molecular exchange processes in cellular machinery. We finally show that by measuring the transport properties of the lipidic mesophases with and without the GlcP Se membrane protein reconstituted within, it becomes possible to determine its intrinsic conductance. We generalize these findings to other membrane proteins from the antiporters family, such as the bacterial ClC exchanger from Escherichia coli (EcClC), providing a robust method for evaluating the turnover rate of the membrane proteins in general.

  9. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    Science.gov (United States)

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  10. Phase effects in the radiation chemistry of orientationally disordered crystals

    International Nuclear Information System (INIS)

    McCormick, D.G.; Sherman, L.R.; Klingen, T.J.

    1980-01-01

    In the investigation of the radiolysis of 1-bromoadamantane, three gaseous and six solid products were observed as a function of total dose. Although the same products were found in both the α- and β-phases of solid 1-bromo-adamantane, the G-values of these products were markedly different in the two phases, e.g. an efficient abstraction reaction for the formation of HBr in the β-phase was found to be absent in the α-phase. The results obtained in this study are discussed in terms of mechanisms based on the diffusional mobility of the reactive intermediates in the two mesophases, with the diffusional mobility of the reactive intermediates in the two mesophases being related to the entropy release in the formation of each mesophase. (author)

  11. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A comparative Tg-Ms study of the carbonization behaviour of different pitches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Arenillas, A.; Crespo, J.L.; Pis, J.J.; Moinelo, S.R. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon

    2002-08-01

    The purpose of this work was to study the formation of mesophase spherules from a low-temperature coal tar pitch under carbonization conditions. For comparison, the carbonization of a high-temperature coal tar pitch and a petroleum pitch were also considered. Different degrees of mesophase formation and development for each pitch. The results from Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and the thermogravimetric analyzer mass spectrometer (TG-MS) tests were compared with the different extents of mesophase formation, checked by optical microscopy. According to the results, several stages can be distinguished as temperature increases in the carbonization process of the pitches. In the low-temperature coal tar pitch, the devolatilization of light components, especially phenols, accounts for the most significant weight loss. Moreover, cross-linking contributes greatly to the formation and development of mesophase, resulting in the predominance of bulk mesophase in a relatively short time in the case of the low-temperature coal tar pitch. 19 refs., 10 figs., 2 tabs.

  13. Unique graphitized mesophase carbon microbead@niobium carbide-derived carbon composites as high performance anode materials of lithium-ion battery

    International Nuclear Information System (INIS)

    Yuan, Xiulan; Cong, Ye; Yu, Yanyan; Li, Xuanke; Zhang, Jiang; Dong, Zhijun; Yuan, Guanming; Cui, Zhengwei; Li, Yanjun

    2017-01-01

    To meet the requirements of the energy storage materials for high energy density and high power density, unique niobium carbide-derived carbon (NbC-CDC) coated graphitized mesophase carbon microbead (GMCMB) composites (GMCMB@NbC-CDC) with core-shell structure were prepared by chlorinating the precursor of graphitization mesophase carbon microbead@niobium carbide. The microstructure of NbC-CDC was characterized as mainly amorphous carbon combined with short and curved sheets of graphene, and the order degree of carbon layers increases with the chlorination temperature. The composites exhibited a tunable specific surface area and micropore volume, with micropore size of 0.6∼0.7 nm. Compared with the pure GMCMB, the GMCMB@NbC-CDC composites manifested higher charge (726.9 mAh g"−"1) and discharge capacities (458.9 mAh g"−"1) at the first cycle, which was probably that Li ions could insert into not only carbon layers of GMCMB but also micropores of NbC-CDC. After 100 cycles, the discharge capacity of GMCMB@NbC-CDC chlorinated at 800 °C still kept 384.6 mAh g"−"1, which was much higher than that of the pure GMCMB (305.2 mAh g"−"1). Furthermore, the GMCMB@NbC-CDC composites presented better rate performance at higher current densities.

  14. Influence of chirality on the thermal and electric properties of the columnar mesophase exhibited by homomeric dipeptides

    Science.gov (United States)

    Parthasarathi, Srividhya; Shankar Rao, D. S.; Prabhu, Rashmi; Yelamaggad, C. V.; Krishna Prasad, S.

    2017-10-01

    We present the first investigation of the influence of chirality on the thermal and electric properties in a biologically important homomeric dipeptide that exhibits a hexagonal columnar liquid crystal mesophase. The peptide employed has two chiral centres, and thus the two possible enantiopures are the (R,R) and (S,S) forms having opposite chirality. The measurements reported the span of the binary phase space between these two enantiopures. Any point in the binary diagram is identified by the enantiomeric excess Xee (the excess content of the R,R enantiopure over its S,S counterpart). We observe that the magnitude of Xee plays a pivotal role in governing the properties as evidenced by X-ray diffraction (XRD), electric polarization (Ps), dielectric relaxation spectroscopy (DRS) measurements, and the isotropic-columnar transition temperature. For example, XRD shows that while other features pointing to a hexagonal columnar phase remain the same, additional short-range ordering, indicating correlated discs within the column, is present for the enantiopures (Xee = ±1) but not for the racemate (Xee = 0). Similarly, an electric-field driven switching whose profile suggests the phase structure to be antiferroelectric is seen over the entire binary space, but the magnitude is dependent on Xee; interestingly the polarization direction is axial, i.e., along the column axis. DRS studies display two dielectric modes over a limited temperature range and one mode (mode 2) connected with the antiferroelectric nature of the columnar structure covering the entire mesophase. The relaxation frequency and the thermal behaviour of mode 2 are strongly influenced by Xee. The most attractive effect of chirality is its influence on the polar order, a measure of which is the magnitude of the axial polarization. This result can be taken to be a direct evidence of the manifestation of molecular recognition and the delicate interplay between chiral perturbations and the magnitude of the

  15. Phthalocyanines with eight oligo(ethylene oxide) alkoxy units: thermotropic phase behavior, aggregate formation and ion complexation with redox-active ions

    NARCIS (Netherlands)

    Piet, D.P.; Verheij, H.J.; Zuilhof, H.

    2003-01-01

    The thermotropic phase behavior of phthalocyanines (Pc's) with eight oligo(ethylene oxide) alkoxy side chains has been investigated. An increase in the number of ethylene oxide units results in a decrease in the solid-to-mesophase and isotropization temperatures. The investigated compounds display a

  16. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    Science.gov (United States)

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of the polymerization with formaldehyde on the thermal reactivity of a low-temperature coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Jose L. Crespo; Ana Arenillas; Jose A. Vin; Roberto Garcia; Colin E. Snape; Sabino R. Moinelo [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-04-01

    The influence of polymerization with formaldehyde on the thermal reactivity of a low-temperature coal tar pitch has been investigated. The mechanism and extent of the polymerization depends on the catalyst used, the greatest extent of polymerization being achieved under basic catalytic conditions. After the polymerization treatment, samples were carbonized at 420{sup o}C and the products were characterized by optical microscopy. According to the results, polymerization with formaldehyde increases the reactivity of the pitch, giving rise to increased carbonization yields and leading to the formation of the mesophase with milder conditions. The polymerization process also affects the morphology of the resultant anisotropic material, giving rise to the formation of irregularly shaped mesophase particles and reducing the optical texture size of the anisotropic domains, giving mosaic texture, especially when basic catalysis is used. 36 refs., 11 figs., 5 tabs.

  18. Investigation of the circular random walk motion in nematic material

    International Nuclear Information System (INIS)

    Bata, L.; Tuettoe, I.

    1976-12-01

    The molecular dynamics of liquid crystalline mesophase is investigated. A new theoretical model describing the rotational motion on a sphere with two relaxation times is worked out. Quasi-elastic neutron spectra have been measured on aligned di-butyl derivative of phenylbenzoyl azoxy-benzoate at different temperatures. The results are interpreted on the basis of the author's model and the non-equivalence of the hydrogen atom is shown. (Sz.N.Z.)

  19. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  1. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2012-01-01

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  2. Obtenção de piches mesofásicos em dois estágios a partir de piche de petróleo Preparation in two stages of mesophase pitches from petroleum pitch

    Directory of Open Access Journals (Sweden)

    Carlos H. M. C. Dutra

    2008-01-01

    Full Text Available A obtenção de piches mesofásicos para a produção de fibras de carbono de alta performance foi investigada por meio de tratamento térmico de três piches de petróleo, em dois estágios em um reator com agitação magnética e capacidade de 700 g. O primeiro estágio consistiu de um pré-tratamento sob agitação e atmosfera de nitrogênio a 0,9 MPa, a 390, 410 e 430 °C, durante três horas. No segundo estágio, o tratamento térmico foi realizado por mais três horas, sob pressão atmosférica. Durante os experimentos, amostras foram recolhidas e analisadas por meio de medidas de solubilidade em tolueno e quinolina, ponto de amolecimento e o percentual de mesofase. Foi verificado que, para todos os piches produzidos, nas temperaturas de 390 e 410 °C a variação dos parâmetros físico-químicos foi muito pequena e que os tratamentos térmicos no patamar de 430 °C produziram piches com pontos de amolecimento acima de 300 °C, e percentual de mesofase próximo a 70%.Mesophase pitches, precursors of high-performance carbon fibers, were prepared from petroleum pitch by a two-stage heat treatment, in a reactor capable of heat treating 700 g of petroleum pitch under stirring. The process consisted of a pretreatment under pressure at 390, 410 and 430 °C under nitrogen atmosphere, at 0.9 MPa, for three hours, as the first stage, followed by another heat treatment under atmospheric pressure, as the second stage. To study the properties of the petroleum pitch samples, during the experiment, they were removed from the system. Quinoline insolubles, toluene insolubles, mesophase content and softening point of the samples were used to follow the pyrolysis process. The results revealed slight variations in the properties for the pitches produced at 390 and 410 °C. However, the pitch samples produced at 430 °C had softening points higher than 300 °C, and mesophase contents of around 70%.

  3. Proceedings of the workshop on formation of supermolecular structures in composite fluid

    International Nuclear Information System (INIS)

    Tanaka, Fumihiko; Ohta, Takao; Ikeda, Hironobu

    1992-10-01

    This is the report of the titled workshop held at the National Laboratory for High Energy Physics on July 2 and 3, 1992. This workshop was planned as a part of the research project on the utilization of booster neutrons in this Laboratory, and is one of the attempts to apply the technique of neutron scattering with wide visual field. Composite liquid means the solution that has the capability of forming the structure in 10-1000 nm and contains polymers, liquid crystals, micelles or films inside. The hierarchy of the concept of supermolecules, the flexibility of the form of particles, multiple composition mixture system and so on are the subjects in this field. In the workshop of this time, the themes were limited to three phenomena, that is, the formation of networks, microscopic phase separation and mesophase, and solvation and the formation of micelles. The measurement of neutron scattering by label method offers a powerful means hereafter for elucidating the structure and the dynamics of supermolecular liquid. (K.I.)

  4. Investigations on the formation of cobalt thiomolybdates

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S [Paraiba Univ., Joao Pessoa (Brazil). Dept. de Engenharia Quimica

    1984-06-01

    The reactions between Co/sup 2 +/ and different thiomolybdate anions (MoS/sup 2 -//sub 4/, Mo/sub 4/S/sup 6 -//sub 15/, Mo/sub 2/S/sup 2 -//sub 7/ and Mo/sub 4/S/sup 2 -//sub 13/) have been investigated by means of glass electrode and conductometric titrations between the reactants at several concentrations. The results provide definite evidence for the formation of CoS.MoS/sub 3/ and 3CoS.4MoS/sub 3/ around pH 7.1 and 5.9, respectively. The titrations of cobalt chloride with Na/sub 2/S.2MoS/sub 3/ and Na/sub 2/S.4MoS/sub 3/ failed to provide any dependable results for the formation of the corresponding cobalt thiomolybdates. The accuracy and reproducibility of these titrations are of high order. Analytical investigations of these compounds have also been carried out and substantiate the results of the pH and conductometric measurements.

  5. The N-salicylidene aniline mesogen: Microscopic and macroscopic properties

    International Nuclear Information System (INIS)

    Nesrullazade, A.

    2004-01-01

    The vast majority of compounds exhibiting Iiquid crystalline phases may be regarded as having a rigid molecular central group with one or two flexible terminal alkyl or alkyloxy chains. The N-saIicyIidene anilines are very interesting and important materials both from fundamental and application points of view. These materials are on the one hand the ligands used to obtain metal containing complexes and on the other hand they are materials having the thermotropic mesomorphism. In this work we present investigations of microscopic and macroscopic properties of the 4-(Octyloxy)-N-(4-hexylphenyl)-2-hydrobenzaIimine (8SA) compound which was synthesized by our group. The 8SA compound shows the smectic C and nematic mesophases. These mesophases are enantiotropic and display specific confocal and schlieren textures, respectively. Thermotropic and thermodynamical properties of the straight and reverse phase transitions between smectic C and nematic mesophases and between nematic mesophase and isotropic liquid have been investigated

  6. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  7. Exploration of coal-based pitch precursors for ultra-high thermal conductivity graphite fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, G.V. [Amoco Performance Products, Inc., Alpharetta, GA (United States)

    1996-12-27

    Goal was to explore the utility of coal-based pitch precursors for use in ultra high thermal conductivity carbon (graphite) fibers. From graphite electrode experience, it was established that coal-based pitches tend to form more highly crystalline graphite at lower temperatures. Since the funding was limited to year 1 effort of the 3 year program, the goal was only partially achieved. The coal-base pitches can form large domain mesophase in spite of high N and O contents. The mesophase reactivity test performed on one of the variants of coal-based pitch (DO84) showed that it was not a good candidate for carbon fiber processing. Optimization of WVU`s isotropic pitch process is required to tailor the pitch for carbon fiber processing. The hetero atoms in the coal pitch need to be reduced to improve mesophase formation.

  8. The investigation in the computer professional's integral formation from the year staff meeting.

    Directory of Open Access Journals (Sweden)

    Servando Martínez Hernández

    2013-09-01

    Full Text Available The investigative initial formation is an essential principle of the integral formation of the professional in the Cuban superior education, sample of it, is the presented investigation shown whose end is to describe the process of investigative formation from the year staff Meeting in the University of Sancti Spíritus, in the career of Computer Engineering. The study propitiated to observe the meetings of the fourth year communities during the course 2011-2012 and fifth year was incorporated in the 2012-2013, with eight and six professors respectively. A survey was applied to the fifth year group in the beginning of the school course 2012-2013 and also to the professors, analysis group actions were also carried out and preparatory workshops in the scientific pedagogic, to impact in the investigative formation, finally a group interview was made to the student and pedagogic communities of both years. The results showed that exist student's investigative formation weaknesses, not recognized by the professors who detected and analyzed from the year staff meeting motivated actions with satisfactory results recognized by students and professors.

  9. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  10. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  11. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures

    International Nuclear Information System (INIS)

    Pyun, Su-Il; Rhee, Chang-Kyu

    2004-01-01

    Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N 2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N 2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases

  12. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    OpenAIRE

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to ...

  13. Multi-wavelength investigations on feedback of massive star formation

    Science.gov (United States)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar

  14. Investigation of the formation process of two piracetam cocrystals during grinding

    DEFF Research Database (Denmark)

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e.,piracetam-citric acid and piracetam......-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than...... for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form...

  15. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, Mark D. [Stanford Univ., CA (United States); Kovscek, Anthony R. [Stanford Univ., CA (United States); Wilcox, Jennifer [Stanford Univ., CA (United States)

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  16. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    Science.gov (United States)

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained. PMID:24309304

  17. Experimental and Kinetic Investigation of the Influence of OH Groups on NOX Formation

    KAUST Repository

    Bohon, Myles

    2016-01-01

    the differences in NO formation. Measurements of temperature profiles and in-flame species concentrations, utilizing both probed and non-intrusive laser based techniques, allowed for the investigation of NO formation through non-thermal pathways

  18. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    Directory of Open Access Journals (Sweden)

    Keith Gordon

    2011-10-01

    Full Text Available Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e.,piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained.

  19. An Investigation of Teachers' Growing Understandings of the Picture Book Format

    Science.gov (United States)

    Martinez, Miriam G.; Harmon, Janis M.

    2015-01-01

    This study investigated the impact of a graduate course that focused on picture books on teachers' understandings of the picture book format and the ways in which these understandings influenced their self-reports of picture book use in the classroom. Findings of this qualitative investigation revealed that immersion in and analysis of the picture…

  20. Structuring of gels of zirconium oxohydrate

    International Nuclear Information System (INIS)

    Sukharev, Yu.I.; Skuratovich, L.P.

    1991-01-01

    Genetic relationship between formation of mesophase states of zirconium oxohydrate gel, coprecipitated with dimethylamine, and ordered macrocrystallites of sorption material after cryogranulation or decryptation granulating is shown. This phenomenon is followed on example of formation of flattened crystallites when preparing granules in the presence of appl. The successive polymerization growth of crystallites leads to the frame ordered aggregation or aggregation of another type

  1. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  2. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  3. [Investigation of biofilm formation properties of staphylococcus isolates].

    Science.gov (United States)

    Öcal, Duygu Nilüfer; Dolapçı, İştar; Karahan, Zeynep Ceren; Tekeli, Alper

    2017-01-01

    Biofilm production is an important virulence factor which allows staphylococci to adhere to medical devices. The principal component of biofilm is a "polysaccharide intercellular adhesin (PIA)" which is composed of a beta-1,6-N-acetylglucosamine polymer synthesized by an enzyme (N-acetylglucosamine transferase) encoded by the ica operon found on the bacterial chromosome. This operon is composed of four genes (A, B, C, and D), and a transposable element IS256. In this study, we aimed to determine the biofilm production characteristics of invasive/non-invasive staphylococcus isolates and different staphylococcus species. Biofilm production of 166 staphylococci was phenotypically investigated on Congo Red Agar (CRA); the presence of icaA, icaD and IS256 genes were investigated by polymerase chain reaction (PCR). 74 of the isolates (44.6%) were identified as methicillin resistant Staphylococcus aureus (MRSA), 25 (15.1%) as methicillin sensitive S.aureus (MSSA), 25 (37.3%) as Staphylococcus hominis, 20 (12%) as S.epidermidis, ten (15%) as Staphylococcus haemolyticus, nine (13.4%) as Staphylococcus capitis, two (3%) Staphylococcus saprophyticus and one (1.5%) as Staphylococcus warnerii. Of the MRSA strains, 52 were isolated from blood and 22 from nose; all MSSA strains were isolated from nose cultures. Coagulase-negative staphylococci (CoNS) strains were composed of invasive and non-invasive strains isolated from nose, catheter tip and blood cultures from patients with catheter. Production with CRA method was found to be statistically significant in invasive isolates (paureus isolates produced biofilm on CRA (paureus when compared with CoNS. Carriage of three genes and biofilm formation capacity of invasive isolates can cause refractory infections and the importance of carriage and hospital infections of these bacteria, it is important to prevent the spread of these isolates. A combination of phenotypic and genotypic tests is recommended for the investigation of biofilm

  4. Integrated system for investigating sub-surface features of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  5. Unusual polymorphism in new bent-shaped liquid crystals based on biphenyl as a central molecular core

    Directory of Open Access Journals (Sweden)

    Anna Kovářová

    2014-04-01

    Full Text Available Bent-shaped mesogens possessing a biphenyl as a central core have been synthesized and the role of the terminal chain and the orientation of the ester as a linkage group have been investigated. For the studied molecular core we have established that both parameters play an important role for the mesomorphic properties. The polyfluoroalkyl terminal chain supports the formation of mesophases, and the introduction of a chiral lactate terminal chain destabilizes mesophases for the first type of mutual orientation of ester groups, attached to the central core. On the contrary, for the opposite orientation of esters, the terminal chain has no effect on the mesomorphic properties, and columnar phases have been found for all compounds. A unique phase sequence has been found for the mesogen with the fluorinated chain. A generalized tilted smectics, SmCG, have been observed in a temperature interval between two different lamellar SmCP phases and characterized by X-ray and dielectric measurements. The dielectric spectroscopy data are unique and presented for the first time in the SmCG phase providing new information about the molecular dynamics.

  6. Investigation on the formation of monomethylmercury(II) in the Elbe

    International Nuclear Information System (INIS)

    Ebinghaus, R.; Wilken, R.D.; Gisder, P.

    1994-01-01

    Very little is known about transformation reactions of pollutants attached to suspended materials in the Elbe. In the present study, the influence of bacteria present in suspended particulate matter and in Elbe sediments, on dynamic transformations of mercury species was investigated. The formation of highly toxic monomethylmercury is more effective in the presence of organotin, - lead and arsenic compounds, via transmethylation reactions, than in the presence of biogenic methyldonors. Under oxic conditions, bacteria isolated from suspended particulate matter decompose methlmercury very rapidly to inorganic Hg(II), which is immobilized by the cells. In sediments, redox potential and pH value are important for the formation of methylmercury. Under anoxic conditions a pH of 6.5 is advantageous for the methylation of mercury(II)ions. (orig.) [de

  7. Experimental and Kinetic Investigation of the Influence of OH Groups on NOX Formation

    KAUST Repository

    Bohon, Myles

    2016-05-04

    This work investigates the influence of one or more OH groups present on the fuel molecule and the resultant formation of NOX emissions. Combustion of oxygenated fuels has been increasing globally and such fuels offer significant potential in the reduction of pollutant emissions. One such emission class is the oxides of nitrogen, which typically form through a combination of two regimes: the thermal and non-thermal mechanisms. While thermal NO formation can be reduced by lowering the combustion temperature, non-thermal NO formation is coupled to the fuel chemistry. An experimental and computational investigation of NOX formation in three different burner configurations and under a range of equivalence ratios and temperature regimes explored the differences in NO formation. Measurements of temperature profiles and in-flame species concentrations, utilizing both probed and non-intrusive laser based techniques, allowed for the investigation of NO formation through non-thermal pathways and the differences that exist between fuels with varying numbers of OH groups. The first burner configuration was composed of a high swirl liquid spray burner with insulted combustion chamber walls designed specifically for the combustion of low energy density fuels. In this system the combustion of alcohols and glycerol (the largest by-product of biodiesel production), along with other fuels with multiple hydroxyl groups, was studied. Measurements of the mean flame temperature and exhaust gas measurements of NOX showed significant reductions in non-thermal NO concentrations with increasing numbers of OH groups. An accompanying modeling study and detailed reaction path analysis showed that fuel decomposition pathways through formaldehyde were shown a preference due to the presence of the OH groups which resulted in reduced contributions to the hydrocarbon radical pools subsequent reductions to the Prompt NO mechanism. Two burner configurations with reduced dimensionality facilitated

  8. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  9. Investigation of Primary Recovery in Low-Permeability Oil Formations: A Look at the Cardium Formation, Alberta (Canada

    Directory of Open Access Journals (Sweden)

    Ghaderi S.M.

    2014-12-01

    Full Text Available Tight oil formations (permeability < 1 mD in Western Canada have recently emerged as a reliable resource of light oil supply owing to the use of multifractured horizontal wells. The Cardium formation, which contains 25% of Alberta’s total discovered light oil (according to Alberta Energy Resources Conservation Board, consists of conventional and unconventional (low-permeability or tight play areas. The conventional play areas have been developed since 1957. Contrarily, the development of unconventional play is a recent event, due to considerably poorer reservoir properties which increases the risk associated with capital investment. This in turn implies the need for a comprehensive and critical study of the area before planning any development strategy. This paper presents performance results from the low permeability portions of the Cardium formation where new horizontal wells have been drilled and stimulated in multiple stages to promote transverse hydraulic fractures. Development of the tight Cardium formation using primary recovery is considered. The production data of these wells was first matched using a black oil simulator. The calibrated model presented was used for performance perditions based on sensitivity studies and investigations that encompassed design factors such as well spacing, fracture properties and operational constraints.

  10. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING THE INCINERATION OF RECOVERED CFC-11

    Science.gov (United States)

    The report gives results of an investigation of the formation of products of incomplete combustion (PICS) during "recovered" trichlorofluoromethane (CFC-11) incineration. Tests involved burning the recovered CFC-11 in a propane gas flame. combustion gas samples were taken and an...

  11. Measurement of the single 100 diffraction line and evaluation of the average crystallite sizes along the fiber axis for mesophase-pitch-based carbon fiber P100

    International Nuclear Information System (INIS)

    Yoshida, Akira; Kaburagi, Yutaka; Hishiyama, Yoshihiro

    2007-01-01

    Mesophase-pitch-based carbon fiber P100 is known as a well-oriented carbon fiber in which the partially graphitized crystallites align along the fiber axis. The X-ray powder diffraction pattern for P100 measured by the X-ray diffractometer reveals the 100 diffraction line as a composite peak with the 101 diffraction line. The composite peak is usually not easy to separate into the component peaks of 100 and 101 lines. In the present article, a method to measure the single 100 diffraction line with the X-ray diffractometer using fiber samples of P100 has been developed. It has been found that there exist two types of crystallites oriented to their basal planes along the fiber axis in each of the P100 fibers; the Z-type crystallite with the zigzag boundary planes and the A-type crystallite with the armchair boundary planes, both of the boundary planes are perpendicular to the fiber axis. The average crystallite sizes along the fiber axis evaluated are 53 nm for the Z-type crystallites and 800 nm for the armchair crystallites. The average crystallite thickness for both types is about 120 nm. (author)

  12. Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Musafer, Hadeel K; Kuchma, Sherry L; Naimie, Amanda A; Schwartzman, Joseph D; Al-Mathkhury, Harith J Fahad; O'Toole, George A

    2014-07-01

    Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC ≤ 2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC ≥ 8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.

  13. Optic and electro-optic investigations on SmQ, SmCA* and L phases in highly chiral compounds

    International Nuclear Information System (INIS)

    Manai, M.; Gharbi, A.; Marcerou, J.P.; Nguyen, H.T.; Rouillon, J.C.

    2005-01-01

    Chiral molecules give rise to a large variety of mesophases. Well-known examples are cholesteric or ferroelectric smectic phases where the chirality tends to favor a macroscopic twist. Furthermore, the molecular core length (l) plays an important role on the range of the mesophases and on the temperature (T NI ) for the onset of orientational order. The tendency for T NI is to increase (going over 200 - bar C for some compounds) with increasing l. We report in this paper on a selection of compounds which have been designed in order to favor an anticlinic smectic ordering together with high chirality. As a common feature, they have a long rigid core with four benzene rings and a chiral chain (usually the same) at each end. They display a locally anisotropic liquid phase referred to as ''L phase'' in a large temperature range between T NI and the low temperature SmQ or SmC A * phase. Optical rotatory power (ORP), birefringence and electro-optic studies have been performed with these compounds

  14. Electrometric investigation of the formation of different thiotungstates of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S [Paraiba Univ., Joao Pessoa (Brazil). Dept. de Engenharia Quimica

    1983-02-01

    The reactions of nickel chloride with Na/sub 2/S.WS/sub 3/, 3Na/sub 2/S.4WS/sub 3/, Na/sub 2/S.2WS/sub 3/ and Na/sub 2/S.4WS/sub 3/ have been investigated by pH and conductance measurements. The end-points obtained from the sharp breaks and inflections in titration curves provide definite evidence for the formation of two nickel thiotungstates having molecular formulae NiS.WS/sub 3/ and 3NiS.4WS/sub 3/ in the vicinity of pH 7.6 and 6.9 respectively. The titrations of nickel chloride with Na/sub 2/S.WS/sub 3/ and Na/sub 2/S.4WS/sub 3/ failed to provide any dependable results for the formation of the corresponding nickel thiotungstates. The precipitates obtained at the end-points were analysed gravimetrically and the results support those obtained by the electrometric study.

  15. Thermal physics of gas-thermal coatings formation processes. State of investigations

    International Nuclear Information System (INIS)

    Fialko, N.M.; Prokopov, V.G.; Meranova, N.O.; Borisov, Yu.S.; Korzhik, V.N.; Sherenkovskaya, G.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The analysis of state of investigations of gas-thermal coatings formation processes in presented. Classification of approaches to mathematical simulation of thermal phenomena studies is offered. The general characteristics of three main approaches to the analysis of heat transport processes is given. Some problems of mathematical simulation of single particle thermal interaction with solid surface are considered in details. The main physical assumptions are analysed

  16. Novel Discotic Boroxines: Synthesis and Mesomorphic Properties

    Directory of Open Access Journals (Sweden)

    Tobias Wöhrle

    2014-05-01

    Full Text Available A new synthetic approach to highly substituted triphenylboroxines 11 is described. Their mesomorphic properties were investigated by differential scanning calorimetry (DSC, polarizing optical microscopy (POM and X-ray diffraction (SAXS, WAXS. The tris(3,4,5-trialkyloxyphenyl functionalized derivatives 11b–e showed broad mesophases for a minimum alkyl chain length of C9. The phase widths ranged from 110 K to 77 K near room temperature, thus decreasing with enhanced alkyl chain lengths. Textures observed under POM indicated a columnar hexagonal (Colh mesophase symmetry that was confirmed by X-ray diffraction experiments.

  17. Investigation of the formation of Fe-filled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, H [Forschungszentrum Dresden-Rossendorf, PO Box 510119, D-01314 Dresden (Germany); Mueller, C; Leonhardt, A; Kutz, M C, E-mail: reuther@fzd.d [Leibniz-Institute of Solid State and Materials Research Dresden, PO Box 270116, D-01171 Dresden (Germany)

    2010-03-01

    The formation of Fe-filled carbon nanotubes by thermal decomposition of ferrocene combined with a Fe-catalyst-nanostructuring on an oxidized Si substrate is investigated in the temperature range of 1015 - 1200 K. The optimal growth conditions for aligned and homogeneous carbon nanotubes are found at 1103 K. Moessbauer spectroscopy (both in transmission geometry and CEMS) was used to analyze and quantify the different formed Fe-phases. In general, {alpha}-Fe, {gamma}-Fe and Fe{sub 3}C are found to form within the carbon nanotubes. Depending on the growth conditions their fractions vary strongly. Moreover, an alignment of the {alpha}-Fe in the tubes could be detected.

  18. Preliminary investigation of the magnetostratigraphy of the Ringold Formation

    International Nuclear Information System (INIS)

    Packer, D.R.; Johnston, J.M.

    1979-05-01

    The Ringold Formation consists of lacustrine and fluvial deposits overlying the Columbia River Basalt. The Ringold Formation, because of its thickness, extent, and age, is an excellent unit in which to detect and possibly data the deformation that has occurred since deposition of the basalt. One objective of this study was to investigate the paleomagnetism of the upper Ringold unit exposed at one location in the White Bluffs in enough detail to resolve, with reasonable confidence, the magnetostratigraphy of the rock units sampled. The other objective was to evaluate, in a preliminary manner, the paleomagnetic favorability and magnetostratigraphy of the subsurface Ringold Formation in the Pasco Basin and at selected exposures outside the Pasco Basin. The scope of this study was the collection of 300 paleomagnetic samples, their measurement, and analysis. Samples were collected from the White Bluffs, from core recovered from six drill holes on the Hanford Site, and from two surface exposures outside the Pasco Basin. A total of 294 samples was collected, and 2928 paleomagnetic measurements were performed on these samples. The samples were measured by means of a three-axis super-conducting rock magnetometer having a sensitivity of 10 -8 emu/cm 3 and were demagnetized progressively in a 400-hertz alternating field (AF). All data were recorded and processed during measurement by an on-line computer.The declination, inclination, and intensity of magnetization of the samples from the various sections are plotted as a function of their stratigraphic position. The directions of the magnetization of the various sections are also plotted as a group on Wulff equal-angle stereonets. 22 figures, 8 tables

  19. Numerical and experimental investigation of NO{sub x} formation in lean premixed combustion of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K; Benz, P; Marti, T; Schaeren, R; Schlegel, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A high pressure jet-stirred reactor has been built and employed to investigate NO{sub x} formation in lean premixed combustion of methane/air. Experimental results are compared with numerical predictions using the model of a perfectly stirred reactor and elementary reaction mechanisms. Four reaction mechanisms are considered with respect to NO{sub x} formation. (author) 3 figs., 6 refs.

  20. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin.

    Science.gov (United States)

    Trasi, Niraj S; Boerrigter, Stephan X M; Byrn, Stephen Robert

    2010-07-01

    To gain a better understanding of the physical state and the unusual thermal behavior of milled griseofulvin. Griseofulvin crystals and amorphous melt quench samples were milled in a vibrating ball mill for different times and then analyzed using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Modulated DSC (mDSC) and annealing studies were done for the milled amorphous samples to further probe the effects of milling. Milling of griseofulvin crystals results in decrease in crystallinity and amorphization of the compound. A double peak is seen for crystallization in the DSC, which is also seen for the milled melt quench sample. Both enthalpy and temperature of crystallization decrease for the milled melt quenched sample. Tg is visible under the first peak with the mDSC, and annealing shows that increasing milling time results in faster crystallization upon storage. Milling of griseofulvin results in the formation of an amorphous form and not a mesophase. It increases the amount of surface created and the overall energy of the amorphous griseofulvin, which leads to a decreased temperature of crystallization. The two exotherms in the DSC are due to some particles having nuclei on the surface.

  1. Interest of neutron scattering for the investigation of liquid-crystalline polymers

    International Nuclear Information System (INIS)

    Noirez, L.

    1994-01-01

    Small-angle Neutron scattering is the unique method which allows the determination of polymer conformation in the bulk state. This method has been applied to several kinds of liquid crystalline polymers. Results concerning side-chain liquid-crystal polymer, main-chain liquid-crystal polymer and combined liquid-crystal polymers, are reported. It is shown that the polymer conformation is largely dependent on the insertion site of the liquid crystal molecule and of the structure of the meso-phase. (author). 11 refs

  2. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  3. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...

  4. Investigations on the Formation of Copper Polyvanadates as a Function of pH

    Directory of Open Access Journals (Sweden)

    Prasad Shiva

    2002-01-01

    Full Text Available The formation and composition of copper vanadates obtained by the interaction of copper sulfate with different sodium vanadates (ortho, pyro, meta and poly have been studied by means of electrometric techniques involving glass electrode and conductometric titrations between the reactants at several concentrations in aqueous and aqueous-ethanolic media. The well defined inflections and breaks in the titration curves provide cogent evidence for the formation and precipitation of copper ortho-3CuO.V2O5, pyro-2CuO.V2O5 and meta-CuO.V2O5 vanadates in the vicinity of pH 8.1, 7.4 and 6.2, respectively. The studies on formation of copper poly-vanadate failed to give any dependable results. Analytical investigations of the compounds formed confirm the results of the electrometric study. The precipitation of copper ortho-vanadate is almost quantitative and the glass electrode titrations ofers a simple and rapid method for determination of vanadium(V in solutions.

  5. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  6. Investigations of the Formation of Molecular Hydrogen on Dust Grain Analogues

    Science.gov (United States)

    Vidali, Gianfranco; Roser, Joseph E.; Manico, Giulio; Pirronello, Valerio

    2002-01-01

    In the last four years we have been working to investigate the formation of molecular hydrogen on surfaces of materials of astrophysical interest, such as silicates, carbonaceous particles and ices, and in conditions approximating the ones present in a variety of astrophysical environments. Our experimental studies - the first of their kind and complemented with computer simulations and theoretical analyses - have given not only hydrogen recombination rates under different ISM conditions, but they have also offered new insights into this fundamental astrophysical problem. Here we summarize our experimental methods and most significant results.

  7. In-situ Investigation of Lead-free Solder Alloy Formation Using a Hot-plate Microscope

    DEFF Research Database (Denmark)

    Bergmann, René; Tang, Peter Torben; Hansen, Hans Nørgaard

    2007-01-01

    This work presents the advantages of using a hot-plate microscope for investigation of new (high-temperature) lead- free solders as in-situ analysis tool and preparation equipment. A description of the equipment and the preparation method is given and some examples are outlined. The formation...

  8. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery

    Directory of Open Access Journals (Sweden)

    Fonseca-Santos B

    2016-09-01

    Full Text Available Bruno Fonseca-Santos, Aline Martins dos Santos, Camila Fernanda Rodero, Maria Palmira Daflon Gremião, Marlus Chorilli School of Pharmaceutical Sciences, UNESP – São Paulo State University, Araraquara, São Paulo Brazil Abstract: From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5 polyoxyethylene (20 cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1 and hexagonal mesophases (Formulations 2 and 3, which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G'', as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone. The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug

  9. Investigation of Catalytic effect sewage sludge combustion ash in the formation of HAPs

    Energy Technology Data Exchange (ETDEWEB)

    Fullana, A.; Sidhu, S.; Font, R.; Conesa, A.

    2002-07-01

    Incineration is a very important technique in the treatment of sewage sludge. In 1998 approximately 1,5 million and 2,5 million dry tons of sewage sludge were incinerated in the United States and European Union (EU), respectively. In 1985, only 10% of EU sludge was incinerated, but by 2005 approximately 40% of EU sludge is expected to be incinerated. Use of sewage sludge as agricultural fertilizer was considered the best application for sludge until it was discovered that the presence of heavy metals in sludge could contaminate farmland. The limitations facing landfills and recycling plants and the planned ban on sea disposal has led to the expectation that the role of incineration will increase in the future. The expected increase in sludge incineration has also led to increased scrutiny of the main drawback to the incineration of sewage sludge: the formation of hazard air pollutants (HAP). Sewage sludge incineration has been identified as a very important source of HAPs such as chloro benzenes, chloro phenols, and PCDD/Fs. One of the more important characteristics of sewage sludge incineration is the formation of large amounts of ash, which is rich in known HAP formation catalysts such as Cu and Fe. Thus, the sludge incineration ash is expected to play an important role in the formation of HAPs in the post-combustion zone of a sludge incinerator. in this paper, we present results of our investigation of the catalytic effect of sewage sludge ash on the formation of chloro benzenes and chloro phenols. In this study, pyrolytic gas from sewage sludge was used as reaction gas instead of the synthetic organic mix that has been used in most previous HAPs formation studies. (Author) 4 refs.

  10. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  11. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.

    Science.gov (United States)

    Liu, Liming; Wang, Honghang; Yi, Zichuan; Deng, Quanrong; Lin, Zhidong; Zhang, Xiaowen

    2018-02-01

    Bismuth (Bi) nanoparticles are prepared by using NaBi(MoO 4 ) 2 nanosheets in the beam of electrons emitted by transmission electron microscope. The formation and growth of Bi nanoparticles are investigated in situ. The sizes of Bi nanoparticles are confined within the range of 6-10nm by controlling irradiation time. It is also observed that once the diameter of nanoparticles is larger than 10nm, the Bi particles are stable as a result of the immobility of large nanoparticles. In addition, some nanoparticles on the edges form nanorods, which are explained as the result of a coalescence process, if the irradiation period is longer than 10min. The in situ research on Bi nanoparticles facilitates in-depth investigations of the physicochemical behavior and provides more potential applications in various fields such as sensors, catalysts and optical devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Supramolecular helical stacking of metallomesogens derived from enantiopure and racemic polycatenar oxazolines.

    Science.gov (United States)

    Barberá, Joaquín; Cavero, Emma; Lehmann, Matthias; Serrano, José-Luis; Sierra, Teresa; Vázquez, Jesús T

    2003-04-16

    The present report undertakes a challenge of general interest in supramolecular chemistry: the achievement of helical organizations with controlled structure. To achieve this target we considered the possibility of inducing supramolecular chirality using molecules that were designed to organize into columnar mesophases. The use of oxazoline-derived ligands and metal coordination served as tools to prepare molecules with a phasmidic-like structure, which show columnar organization in the liquid crystalline state. To ensure the formation of chiral mesophases, these complexes bear stereogenic centers in the rigid coordination environment of the metal. X-ray and circular dichroism experiments have revealed that chirality transfer does indeed take place from the chiral molecule to the columnar liquid crystal organization. This chiral columnar organization appears as a helix consisting of stacks of molecules that rotate with respect to one another along the column while maintaining their mean planes parallel to each other. In fact, it has been concluded that packing of these polycatenar molecules must be more efficient upon rotation of a molecule with respect to the adjacent one along the column. Furthermore, the same type of helical supraorganization has been found to be present in the mesophase of the racemic mixture and the mixture of diastereomers prepared from the racemic ligand. In this case, segregation of the optical isomers is proposed to occur to give rise to both types of helix (right-handed and left-handed).

  13. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  14. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    Science.gov (United States)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  15. Numerical investigation of micro-pore formation during substrate impact of molten droplets in spraying processes

    International Nuclear Information System (INIS)

    Liu, H.; Lavernia, E.J.; Rangel, R.H.; Muehlberger, E.; Sickinger, A.

    1994-01-01

    The porosity that is commonly associated with discrete droplet processes, such as plasma spraying and spray deposition, effectively degrades the quality of the sprayed material. In the present study, micro-pore formation during the deformation and interaction of molten tungsten droplets impinging onto a flat substrate in spraying processes is numerically investigated. The numerical simulation is accomplished on the basis of the full Navier-Stokes equations and the Volume Of Fluid (VOF) function by using a 2-domain method for the thermal field and solidification problem and a two-phase flow continuum model for the flow problem with a growing solid layer. The possible mechanisms governing the formation of micro-pores are discussed. The effects of important processing parameters, such as droplet impact velocity, droplet temperature, substrate temperature, and droplet viscosity, on the micro-pore formation are addressed

  16. Experimental Investigation of White Layer formation in Hard Turning

    Science.gov (United States)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  17. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    Science.gov (United States)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  18. Thermochemical Properties of the 1-Ethyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid under Conditions of Equilibrium with Atmospheric Moisture

    Science.gov (United States)

    Ramenskaya, L. M.; Grishina, E. P.; Kudryakova, N. O.

    2018-01-01

    Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around -40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at -91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of -19.3°C forms upon slow cooling.

  19. Enantiodiscrimination of flexible cyclic solutes using NMR spectroscopy in polypeptide chiral mesophases: investigation of cis-decalin and THF.

    Science.gov (United States)

    Aroulanda, Christie; Lafon, Olivier; Lesot, Philippe

    2009-08-06

    The conformational dynamics and orientational behavior of two model cyclic molecules, cis-decalin (cis-dec) and tetrahydrofurane (THF), dissolved in weakly ordering, polypeptidic chiral liquid crystals (CLCs) are theoretically discussed and experimentally investigated using deuterium and carbon-13 NMR spectroscopies. The analysis of enantiomeric and enantiotopic discriminations in these compounds is shown to depend on the rate of conformational exchange regime, slow or fast. The slow exchange regime is illustrated through the case of cis-dec at low temperature (243 K). We show that the deuterium NMR spectra in this regime can be qualitatively and quantitatively interpreted by restricting the conformational pathway of cis-dec to two enantiomeric conformers of C(2)-symmetry. The orientational order parameters of these interconverting enantiomers are calculated by matching the (2)H quadrupolar splittings with calculated conformer structures. The fast exchange regime is investigated through the examples of cis-dec at high temperature (356 K) and THF at room temperature (300 K). The (2)H NMR spectra above the coalescence temperature are analyzed by introducing the concept of "average molecular structure". This fictitious structure allows easily identifying NMR equivalences of solutes dissolved in CLC. However, it cannot be applied to determine consistent orientational order parameters. This study emphasizes that enantiotopic discriminations observed for flexible molecules in the fast exchange regime can be quantitatively interpreted only by considering the orientational order of each conformer.

  20. Phase diagram of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system with application of mechanical deformation

    Science.gov (United States)

    Yavuz, Aykut Evren; Masalci, Özgür; Kazanci, Nadide

    2014-11-01

    Morphological properties of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system in different concentrations have been studied. In the process, isotropic phase (L1) and nematic calamitic (NC), nematic discotic (ND), hexagonal E and lamellar D anizotropic mesophases have been determined by polarizing microscopy method and partial ternary phase diagram of the system set up. Textural properties of the anisotropic mesophases of the system have been discussed and their birefringence values measured. Mechanical deformation has been applied to the mesophases. The textural properties and the birefringence values have been observed to be changed by the deformation, after and before which changes have been compared.

  1. Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method

    International Nuclear Information System (INIS)

    Yasumura, Yusan; Yamaji, Akifumi; Furuya, Masahiro; Ohishi, Yuji; Duan, Guangtao

    2017-01-01

    Highlights: • The new crust formation model was developed for the MPS spreading analysis code. • The VULCANO VE-U7 corium spreading experiment was analyzed by the developed code. • The termination of the spreading was governed by the crust formation at the leading edge. - Abstract: In a severe accident of a light water reactor, the corium spreading behavior on a containment floor is important as it may threaten the containment vessel integrity. The Moving Particle Semi-implicit (MPS) method is one of the Lagrangian particle methods for simulation of incompressible flow. In this study, the MPS method is further developed to simulate corium spreading involving not only flow, but also heat transfer, phase change and thermo-physical property change of corium. A new crust formation model was developed, in which, immobilization of crust was modeled by stopping the particle movement when its solid fraction is above the threshold and is in contact with the substrate or any other immobilized particles. The VULCANO VE-U7 corium spreading experiment was analyzed by the developed MPS spreading analysis code to investigate influences of different particle sizes, the corium viscosity changes, and the “immobilization solid fraction” of the crust formation model on the spreading and its termination. Viscosity change of the corium was influential to the overall progression of the spreading leading edge, whereas termination of the spreading was primarily determined by the immobilization of the leading edge (i.e., crust formation). The progression of the leading edge and termination of the spreading were well predicted, but the simulation overestimated the substrate temperature. Further investigations may be necessary for the future study to see if thermal resistance at the corium-substrate boundary has significant influence on the overall spreading behavior and its termination.

  2. Investigation of the Methane Hydrate Formation by Cavitation Jet

    Science.gov (United States)

    Morita, H.; Nagao, J.

    2015-12-01

    Methane hydrate (hereafter called "MH") is crystalline solid compound consisting of hydrogen-bonded water molecules forming cages and methane gas molecules enclosed in the cage. When using MH as an energy resource, MH is dissociated to methane gas and water and collect only the methane gas. The optimum MH production method was the "depressurization method". Here, the production of MH means dissociating MH in the geologic layers and collecting the resultant methane gas by production systems. In the production of MH by depressurization method, MH regeneration was consider to important problem for the flow assurance of MH production system. Therefore, it is necessary to clarify the effect of flow phenomena in the pipeline on hydrate regeneration. Cavitation is one of the flow phenomena which was considered a cause of MH regeneration. Large quantity of microbubbles are produced by cavitation in a moment, therefore, it is considered to promote MH formation. In order to verify the possible of MH regeneration by cavitation, it is necessary to detailed understanding the condition of MH formation by cavitation. As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on MH formation using by cavitation. The primary objective of this study is to demonstrate the formation MH by using cavitation in the various temperature and pressure condition, and to clarify the condition of MH formation by using observation results.

  3. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  4. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  5. A mechanistic investigation on the formation and rearrangement of silaspiropentane: A theoretical study.

    Science.gov (United States)

    Yildiz, Cem Burak; Azizoglu, Akin

    2016-07-01

    The formation of silaspiropentane from addition of singlet silacyclopropylidene 1 and silacyclopropylidenoid 8 to ethylene has been investigated separately at the B3LYP, X3LYP, WB97XD, and M05-2X theories using the 6-31+G(d,p) basis set. The silacycloproylidenoid addition follows a stepwise route. In contrast, a concerted mechanism occurs for silacyclopropylidene addition. Moreover, the intramolecular rearrangements of silaspiropentane 9 to methylenesilacyclobutane 11 and 2-silaallene + ethylene 12 have been studied extensively. The required energy barrier for the isomerization of 9 to 10 was determined to be 44.0 kcal mol(-1) at the B3LYP/6-31+G(d,p) level. After formation of 10, the rearrangement to methylenesilacyclobutane 12 is highly exergonic by -15.9 kcal mol(-1), which makes this reaction promising. However, the conversion of 9 to 11 is calculated to be quite endergonic, by 26.5 kcal mol(-1).

  6. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    International Nuclear Information System (INIS)

    Pushkarev, A.

    2015-01-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B r external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°

  7. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains.

    Science.gov (United States)

    Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja

    2018-05-22

    Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally packed cylinders. The achieved periods are as small as 3.0 and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the detailed phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers. The simulations reveal that the behavior of these HCBOs is a product of an interplay between both "surfactant factors" (headgroup interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored toward particular desired morphologies.

  8. Investigation of Different Droplet Formation Regimes in a T-junction Microchannel Using the VOF Technique in OpenFOAM

    Science.gov (United States)

    Malekzadeh, Shima; Roohi, Ehsan

    2015-06-01

    Here we aimed to investigate various droplet formation regimes in a two-dimensional T-junction microchannel geometry using the open source software OpenFOAM. Two incompressible fluids, continuous phase in the main channel and dispersed phase in the lateral channel, have been considered. The interFoam solver was used to simulate laminar flow with two incompressible and isothermal phases. We evaluated the capability of "Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)" volume of fluid (VOF) technique of the OpenFOAM for modeling of the droplet formation and movement in different regimes. The flow behavior in the T-junction microchannel over a wide range of capillary numbers (0.006 to 0.12), volume flow rate ratio (0.125, 0.25, 0.5), and contact angle (130° to 180°) in the squeezing, dripping and jetting regimes were examined.The importance of parameters such as contact angle, capillary number, flow rate ratio, and Reynolds number at the time of separation, as well as the formation of droplets, was investigated in different regimes. We found that droplet detachment time increases by increasing the contact angle in the squeezing regime while increasing the contact angle in the dripping regime results in a decrease in the droplet detachment time. We compare the role of pressure gradient and shear stress forces in the droplet formation process in both dripping and squeezing regimes in details. We also provide a classification of two-phase flow regimes in the investigated T-junction microchannel in terms of three main parameters of, e.g., flow rate ratio, contact angle, and capillary number.

  9. Synthesis, characterization and electro-optic properties of novel siloxane liquid crystalline with a large tilt angle

    International Nuclear Information System (INIS)

    Liao, Chien-Tung; Lee, Jiunn-Yih; Lai, Chiu-Chun

    2011-01-01

    Research highlights: → In this study we report the synthesis and characterization of new ferroelectric liquid crystal material. → We examined the influence of the addition of a trisiloxane end-group on one side-chain of an achiral alkyl chain on the phase transition. → Finally, the properties of the chiral smectic C (SmC*) phase were measured for target compounds. - Abstract: This paper presents a study of the ferroelectric behavior in low molar mass organosiloxane liquid crystal materials. A few novel series of compounds with a large tilt angle were synthesized, and the mesophases exhibited were compared. The mesophases under discussion were investigated by means of polarizing microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electro-optical experiments. The influence of the molecular structure on the occurrence of the chiral smectic C (SmC*) phase was investigated. Finally, the electro-optical properties of the SmC* phase, such as tilt angle, dielectric permittivity and switching behavior were also measured. As a consequence, the correlation between the electro-optical properties and chemical structures of these compounds was investigated.

  10. Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit.

    Science.gov (United States)

    Chang, Chia-Ling; Trimbuch, Thorsten; Chao, Hsiao-Tuan; Jordan, Julia-Christine; Herman, Melissa A; Rosenmund, Christian

    2014-01-15

    Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits.

  11. The investigation of lithium formate hydrate, sodium dithionate and N-methyl taurine as clinical EPR dosimeters

    International Nuclear Information System (INIS)

    Lelie, S.; Hole, E.O.; Duchateau, M.; Schroeyers, W.; Schreurs, S.; Verellen, D.

    2013-01-01

    Introduction: EPR-dosimetry using L-α-alanine is an established method for measuring high doses of ionizing radiation. However, since a minimum dose of approximately 4 Gy is required to achieve sufficient low uncertainties (1–2%) for clinical application, alternative dosimeter materials are being inquired. Lithium formate (LiFo) monohydrate has been studied by several groups and has revealed several promising properties in the low dose region (<4 Gy). The fading properties, however, are somewhat unpredictable, and depend on properties not yet fully uncovered. This paper reports the results from a study of lithium formate hydrate and N-methyl taurine as potential low dose EPR dosimeters. Methods and materials: Pellet shaped dosimeters of lithium formate monohydrate, lithium formate hydrate, sodium dithionate and N-methyl taurine were produced using a manual Weber press, L-α-alanine was obtained from Harwell dosimeters and irradiated using 60 kV and 6 MV X-ray beams, and Co-60 gamma-rays to a dose of 30 Gy and dose ranges of 0.5–100 Gy and 2–20 Gy respectively. The dosimeters were measured using an Electron Paramagnetic Resonance (EPR)-spectrometer. The detector responses for 6 MV and Co-60 radiation beams, the fading behaviors and signal shape in time were investigated. Results: Lithium formate monohydrate and lithium formate hydrate are apparently associated with near identical EPR-spectra (mainly one broad line), and the same spectrum arises for all radiation energies investigated. The shape of the EPR resonance remains constant with time, but the intensities decreases, and the fading is more prominent for the monohydrate than for the hydrate. The EPR resonance associated with N-methyl taurine is more complex than the resonance associated with LiFo and it changes with time, implying radical transitions and growth. Conclusions: The study showed that lithium formate hydrate is a strong candidate for EPR dosimetry with slightly better fading characteristics

  12. Laboratory Investigation of Aerosol Formation in Combustion of Biomass

    International Nuclear Information System (INIS)

    Zeuthen, Jacob; Livbjerg, Hans

    2005-01-01

    In this project the formation of aerosol particles and deposits in power plants during combustion of CO 2 -neutral fuels are investigated. For the experimental work a 173 cm long tubular furnace (diam=25 mm) with laminar flow is used. It is possible to control the temperature up to ∼ 1200 deg C in nine separate axial sections along the flue gas flow direction. In the first part of the reactor an inner tube is placed. In this inner tube a flow of inert nitrogen passes pellets of inert alumina impregnated with the salt to be volatilized (e.g. NaCl or KCl). The nitrogen gets saturated and by changing the temperature of the pellets it is possible to adjust the salt concentration in the gas. Other reactive gases (SO2, H2O, NO and O2/air) enter the reactor on the outside of the salt-containing alumina pipe. The temperature is kept constant in the first part of the reactor and is then decreased in the flow direction after a given length. The results obtained so far have shown that the homogeneous nucleation rate of pure salts depends on cooling rate, salt concentration and on the vapor pressure of the salt. Examples of results are shown at figure 1a. Here, two identical experiments are performed with two different salts. Since the vapor pressure of KCl is higher than for NaCl at the same temperature, a higher mass concentration of particles is obtained for this salt. Due to a lower salt concentration the number concentration of NaCl particles is higher, but the particles are smaller. The particles are analyzed with a number of instruments, including scanning mobility particle sizer, low pressure cascade impactor and transition electron microscopy. Experiments with introduction of nucleation seeds in the inlet gas have been performed, and it has been found that a suppression of homogeneous nucleation can be observed at rather low number concentrations of seeds. Homogeneous nucleation is favored by rapid cooling and the critical seed concentration for suppression of

  13. An investigation on platelet transport during thrombus formation at micro-scale stenosis.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Tovar-Lopez

    Full Text Available This paper reports on an investigation of mass transport of blood cells at micro-scale stenosis where local strain-rate micro-gradients trigger platelet aggregation. Using a microfluidic flow focusing platform we investigate the blood flow streams that principally contribute to platelet aggregation under shear micro-gradient conditions. We demonstrate that relatively thin surface streams located at the channel wall are the primary contributor of platelets to the developing aggregate under shear gradient conditions. Furthermore we delineate a role for red blood cell hydrodynamic lift forces in driving enhanced advection of platelets to the stenosis wall and surface of developing aggregates. We show that this novel microfluidic platform can be effectively used to study the role of mass transport phenomena driving platelet recruitment and aggregate formation and believe that this approach will lead to a greater understanding of the mechanisms underlying shear-gradient dependent discoid platelet aggregation in the context of cardiovascular diseases such as acute coronary syndromes and ischemic stroke.

  14. Investigating the Formation Process of Sn-Based Lead-Free Nanoparticles with a Chemical Reduction Method

    International Nuclear Information System (INIS)

    Zhang, W.; Zhao, B.; Gao, Y.; Zhang, W.; Zhao, B.; Zou, Ch.; Zhai, Q.; Gao, Y.; Gao, Y.; Acquah, S.F.A.

    2013-01-01

    Nanoparticles of a promising lead-free solder alloy (Sn 3.5 Ag (wt.%, Sn Ag) and Sn 3.0 Ag 0.5 Cu (wt.%, SAC)) were synthesized through a chemical reduction method by using anhydrous ethanol and 1,10-phenanthroline as the solvent and surfactant, respectively. To illustrate the formation process of Sn-Ag alloy based nanoparticles during the reaction, X-ray diffraction (XRD) was used to investigate the phases of the samples in relation to the reaction time. Different nucleation and growth mechanisms were compared on the formation process of the synthesized nanoparticles. The XRD results revealed different reaction process compared with other researchers. There were many contributing factors to the difference in the examples found in the literature, with the main focus on the formation mechanism of crystal nuclei, the solubility and ionizability of metal salts in the solvent, the solid solubility of Cu in Ag nuclei, and the role of surfactant on the growth process. This study will help define the parameters necessary for the control of both the composition and size of the nanoparticles

  15. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  16. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  17. New investigations in the USA into formation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-06-01

    This paper discusses laboratory investigations in the USA on air pollution by nitrogen oxides during coal combustion. Laboratory combustors used for combustion of black coal, anthracite and brown coal are described. Measuring systems and measuring instruments used for flue gas analyses and determining nitrogen oxide, hydrocyanic acid and ammonia content in flue gas are evaluated. Effects of excess air on nitrogen oxide formation are analyzed. Analyses show that excess air influences relation between nitrogen oxides, hydrocyanic acid and ammonia. Recommendations on the optimum excess air rate are made. In the case of all coal typs, with the exception of anthracite, the optimum excess air rate is 0.7 which guarantees the highest transformation rate of nitrogen in fuel into molecular nitrogen. Effects of excess air on oxidation of hydrocyanic acid and ammonia are described. The analyses consider effects of excess air on chemical reactions during coal combustion under laboratory conditions. (4 refs.) (In Russian)

  18. Package Formats for Preserved Digital Material

    DEFF Research Database (Denmark)

    Zierau, Eld

    2012-01-01

    This paper presents an investigation of the best suitable package formats for long term digital preservation. The choice of a package format for preservation is crucial for future access, thus a thorough analysis of choice is important. The investigation presented here covers setting up requireme......This paper presents an investigation of the best suitable package formats for long term digital preservation. The choice of a package format for preservation is crucial for future access, thus a thorough analysis of choice is important. The investigation presented here covers setting up...... requirements for package formats used for long term preserved digital material, and using these requirements as the basis for analysing a range of package formats. The result of the concrete investigation is that the WARC format is the package format best suited for the listed requirements. Fulfilling...

  19. Review of the investigation of mixture formation and combustion process using rapid compression machine and direct visualization system

    Science.gov (United States)

    Jaat, M.; Khalid, Amir; Manshoor, B.; Ramsy, Him

    2013-12-01

    This paper reviews of some applications of optical visualization systems to compute the fuel-air mixing process during early stage of mixture formation in Diesel Combustion Engines. A number of studies have contributed to the understanding of fuel air mixing in DI diesel engine. This review has shown that the mixture formation process affects initial flame development. The review also found that injection pressure has a great effect on the mixture formation then the flame development and combustion characteristics. The method of the simulation of real phenomenon of diesel combustion with optical access rapid compression machine is also reviewed and experimental results are presented. The application of these methods to the investigation of diesel sprays highlights mechanisms which govern propagation and distribution of the formation of a combustible fuel-air mixture. A summary of the implementation of constant volume chamber and optical visualization system are shown in the accompanying tables and figures. The visualization of the formation process of diesel spray and its combustion in the diesel combustion chamber of diesel engine has been recognized as one of the best ways to understand the characteristics of the mixture formation.

  20. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.

    Science.gov (United States)

    Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A

    2015-06-01

    Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  1. Investigating Computer-Based Formative Assessments in a Medical Terminology Course

    Science.gov (United States)

    Wilbanks, Jammie T.

    2012-01-01

    Research has been conducted on the effectiveness of formative assessments and on effectively teaching medical terminology; however, research had not been conducted on the use of formative assessments in a medical terminology course. A quantitative study was performed which captured data from a pretest, self-assessment, four module exams, and a…

  2. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    Science.gov (United States)

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  3. Facile preparation and formation mechanism of Sr2Si5N8:Eu2+ red-emitting phosphors

    Science.gov (United States)

    Wang, Yang; Wang, Yunli; Wang, Ming; Shao, Yiran; Zhu, Yingchun

    2018-05-01

    The red-emitting Sr2Si5N8:Eu2+ phosphors have been synthesized in a new facile process using (oxy)nitride precursors by inductive calcination under N2 atmosphere at ordinary pressure. Different from the prevailing methods, lower cost raw materials, simpler pretreatment, without harsh conditions and a shorter reaction time are achieved. It was found that red-emitting Sr2Si5N8:Eu2+ phosphors were synthesized with high crystallinity and purity after 1 h inductive calcination. The formation mechanism was characterized by XRD, SEM, TEM and Fluorescence microscopy. It was demonstrated that a hexagonal mesophase of Sr-doped α-Si3N4 was primarily formed in the reaction process, which transformed into the final product of the orthorhombic Sr2Si5N8:Eu2+ phosphors. During the reaction process, the color of the samples transforms from greenish-yellow to orange and eventually to red. The as-prepared phosphors have a wide excitation in the range of 250 ∼ 570 nm which matches blue light chips and give a red-light emission peaking at 610 nm. The results indicate a promising prospect for a simple, efficient and inexpensive way to prepare Sr2Si5N8:Eu2+ phosphors for blue/UV-based warm-white LEDs and other fluorescent applications.

  4. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING CFC INCINERATION

    Science.gov (United States)

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) th...

  5. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  6. Investigation of MeV-Cu implantation and channeling effects into porous silicon formation

    International Nuclear Information System (INIS)

    Ahmad, M.; Naddaf, M.

    2011-01-01

    P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.

  7. Investigation of MeV-Cu implantation and channeling effects into porous silicon formation

    International Nuclear Information System (INIS)

    Ahmad, M.; Naddaf, M.

    2012-01-01

    P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.(author)

  8. Investigation of MeV-Cu implantation and channeling effects into porous silicon formation

    Science.gov (United States)

    Ahmad, M.; Naddaf, M.

    2011-11-01

    P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.

  9. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.; Palatnikov, M. N. [Russian Academy of Sciences, Tananaev Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science Centre (Russian Federation)

    2017-03-15

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  10. Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea

    Science.gov (United States)

    Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.

    2014-12-01

    The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.

  11. An Agent-Based Simulation for Investigating the Impact of Stereotypes on Task-Oriented Group Formation

    Science.gov (United States)

    Maghami, Mahsa; Sukthankar, Gita

    In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.

  12. The investigation of alloy formation during InAs nanowires growth on GaAs (111)B substrate

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Muhammad; Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen, Walter-Flex-Str. 3, Siegen 57072 (Germany); Rieger, Torsten; Grap, Thomas; Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungzentrum Juelich, Juelich 52425 (Germany)

    2013-07-01

    A possible way to obtain nanowires is the growth in molecular beam epitaxy (MBE) on the (111) oriented surface of the desired substrate, covered by a thin oxide layer. A crucial parameter in this method is the initial thickness of the oxide layer, often determined by an etching procedure. In this contribution, we report on the structural investigation of two different series (etched and unetched) of NWs samples. Vertically aligned InAs nanowires (NWs) doped with Si were self-assisted grown by molecular beam epitaxy on GaAs [111]B substrates covered with a thin SiO{sub x} layer. Using a combination of symmetric and asymmetric X-ray diffraction we study the influence of Si supply on the growth process and nanostructure formation. We find that the number of parasitic crystallites grown between the NWs increases with increasing Si flux. In addition, we observe the formation of a Ga{sub 0.2}In{sub 0.8}As alloy if the growth is performed on samples covered by a defective (etched) oxide layer. This alloy formation is observed within the crystallites and not within the nanowires. The Gallium concentration is determined from the lattice mismatch of the crystallites relative to the InAs nanowires. No alloy formation is found for samples with faultless oxide layers.

  13. Experimental and modeling investigation on structure H hydrate formation kinetics

    International Nuclear Information System (INIS)

    Mazraeno, M. Seyfi; Varaminian, F.; Vafaie sefti, M.

    2013-01-01

    Highlights: • Applying affinity model for the formation kinetics of sH hydrate and two stage kinetics. • Performing the experiments of hydrate formation of sH with MCP. • A unique path for the SH hydrate formation. - Abstract: In this work, the kinetics of crystal H hydrate and two stage kinetics formation is modeled by using the chemical affinity model for the first time. The basic idea is that there is a unique path for each experiment by which the crystallization process decays the affinity. The experiments were performed at constant temperatures of 274.15, 275.15, 275.65, 276.15 and 277.15 K. The initial pressure of each experiment is up to 25 bar above equilibrium pressure of sI. Methylcyclohexane (MCH), methylcyclopentane (MCP) and tert-butyl methyl ether (TBME) are used as sH former and methane is used as a help gas. The parameters of the affinity model (A r and t k ) are determined and the results show that the parameter of (A r )/(RT) has not a constant value when temperature changes in each group of experiments. The results indicate that this model can predict experimental data very well at several conditions

  14. Investigation on the asymmetry of thermal condition and grain defect formation in the customary directional solidification process

    International Nuclear Information System (INIS)

    Ma, D; Wu, Q; Hollad, S; Bührig-Polaczek, A

    2012-01-01

    In the present study, the non-uniformity of the thermal condition and the corresponding grain defect formation in the customary Bridgman process were investigated. The casting clusters in radial alignment were directionally solidified in a Bridgman furnace. It was found that in the casting cluster, the shadow side facing the central rod was ineffectively heated in the hot zone and ineffectively cooled in the cooling zone during withdrawal, compared with the heater side facing the furnace heater. The metallographic examination of the simplified turbine blades exhibited that the platforms on the shadow side are very prone to stray grain formation, while the heater side reveals a markedly lower tendency for that. The asymmetric thermal condition causes the asymmetrical formation of these grain defects. This non-uniformity of the thermal condition should be minimized as far as possible, in order to effectively optimize the quality of the SC superalloy components.

  15. Experimental investigation on the influence of instrument settings on pixel size and nonlinearity in SEM image formation

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, Gianfranco; Cantatore, Angela

    2010-01-01

    The work deals with an experimental investigation on the influence of three Scanning Electron Microscope (SEM) instrument settings, accelerating voltage, spot size and magnification, on the image formation process. Pixel size and nonlinearity were chosen as output parameters related to image...... quality and resolution. A silicon grating calibrated artifact was employed to investigate qualitatively and quantitatively, through a designed experiment approach, the parameters relevance. SEM magnification was found to account by far for the largest contribution on both parameters under consideration...

  16. MEDICIS(ASTEC-V2) sensitivity calculations for investigation of the crust formation in VB-U5 and VB-U6 VULCANO tests

    International Nuclear Information System (INIS)

    Stefanova, A.; Grudev, P.; Gencheva, R.

    2011-01-01

    This paper presents the results from sensitivity calculations made with MEDICIS(ASTECv2) for investigation of the crust formation during the Molten Corium-Concrete Interaction(MCCI) in VB-U5 and VB-U6 VULCANO tests. All calculations are made with MEDICIS computer code. The main goal of these analyses is to assess how the assumptions for crust formation or not formation influence over the concrete ablation. Three calculations have been done for each one of the experiments with different crust thickness and lock of crust formation at the bottom, side and upper surface. (authors)

  17. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    Science.gov (United States)

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  18. Investigating formation of ‘place attachment’ at pasar lama communities, Kota Tangerang

    Science.gov (United States)

    Syahrida, O.; Sumabrata, J.

    2018-03-01

    Place attachment as bonding between people-meaningful places) has been researched quite broadly. Part of this interest stems from the awareness that people–place bonds have become fragile as urbanization, increased mobility, and encroaching environmental problems threaten the existence of/and the connections to, places influences sense of attachment in Pasar Lama, Kota Tangerang. Despite its stauts as a Chinatown, the amount of Chinese inhabitant in Pasar Lama is only 1/5 compared to then total number of Native. Therefore an investigation is needed whether the advances of Kota Tangerang and increasing number of people affecting the formation of place attachment at Pasar Lama Communities. The analysis were conducted through eight factors, such as: physical, social, cultural, personal, memories and experiences, place satisfaction, interaction and activity features, and time factor. Qualitative method (ethnography approach) participatory observation and in-depth interview used as the method of research. The informant of this research are the local figure, local citizen, and local authority. Research concludes that the rapid development of Kota Tangerang and the number of citizens do not significantly affect the formation of place attachment, since both communities in Pasar Lama are considered having high attachment. The other factor is, Place Attachment is valued in contribution, a qualitative value instead sheer number of population. These contributions can be seen in the social, cultural and religious aspect based on factors on Place Attachment.

  19. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  20. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla, Sweden and Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Sterner, Jan [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Platzer-Björkman, Charlotte [Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden)

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device. Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.

  1. Formation of silicon nanocrystals in multilayer nanoperiodic a-SiO{sub x}/insulator structures from the results of synchrotron investigations

    Energy Technology Data Exchange (ETDEWEB)

    Turishchev, S. Yu., E-mail: tsu@phys.vsu.ru; Terekhov, V. A.; Koyuda, D. A. [Voronezh State University (Russian Federation); Ershov, A. V.; Mashin, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Parinova, E. V.; Nesterov, D. N. [Voronezh State University (Russian Federation); Grachev, D. A.; Karabanova, I. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Domashevskaya, E. P. [Voronezh State University (Russian Federation)

    2017-03-15

    The problem of the efficiency of the controllable formation of arrays of silicon nanoparticles is studied on the basis of detailed investigations of the electronic structure of multilayer nanoperiodic a-SiO{sub x}/SiO{sub 2}, a-SiO{sub x}/Al{sub 2}O{sub 3}, and a-SiO{sub x}/ZrO{sub 2} compounds. Using synchrotron radiation and the X-ray absorption near edge structure (XANES) spectroscopy technique, a modification is revealed for the investigated structures under the effect of high-temperature annealing at the highest temperature of 1100°C; this modification is attributed to the formation of silicon nanocrystals in the layers of photoluminescent multilayer structures.

  2. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    Energy Technology Data Exchange (ETDEWEB)

    Kurutz, Uwe

    2017-01-19

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m{sup 2} from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the

  3. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    International Nuclear Information System (INIS)

    Kurutz, Uwe

    2017-01-01

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m 2 from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the inherently

  4. Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO30(H2O72]42− and Imidazolium Cations

    Directory of Open Access Journals (Sweden)

    Nancy Watfa

    2015-06-01

    Full Text Available A series of eight new materials based on the ionic association between 1-methyl-3-alkylimidazolium cations and the nanometric anionic Keplerate [Mo132O372(CH3COO30(H2O72]42− has been prepared and characterized in the solid state. The liquid crystal properties of these materials were investigated by the combination of Polarized Optical Microscopy, Differential Scanning Calorimetry and Small-angle X-Ray Diffraction showing a self-organization in lamellar (L mesophases for the major part of them. From the interlamellar spacing h and the intercluster distance ahex, we demonstrated that the cations are not randomly organized around the anionic cluster and that the alkyl chains of the cations are certainly folded, which limits the van der Waals interactions between the cations within the liquid crystal phase and therefore harms the quality of the mesophases.

  5. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery.

    Science.gov (United States)

    Fonseca-Santos, Bruno; Dos Santos, Aline Martins; Rodero, Camila Fernanda; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G'>G″), as evidenced by the increased G' values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.

  6. Liquid crystal europium(III) β-diketonato complex with 5,5'-di(heptadecyl)-2,2'-bipyridine

    International Nuclear Information System (INIS)

    Knyazev, A.A.; Lobkov, V.S.; Galyametdinov, Yu.G.

    2004-01-01

    Liquid crystal europium(III) complex containing β-diketone and 5,5-di(heptadecyl)-2,2'-bipyridine as ligands was prepared in ethanol solution and was isolated as a yellow precipitate with 62% yield. The product was characterized by data of elementary analysis, thermography, IR spectroscopy and luminescence spectra. Temperatures of crystal-mesophase and mesophase-isotropic liquid phase transitions amount to 95 and 130 Deg C respectively [ru

  7. Contribution to hydrogeological investigations related to the disposal of radioactive wastes in a deep argillaceous formation

    International Nuclear Information System (INIS)

    Patijn, J.

    1987-01-01

    The study deals with the development of a methodology in order to evaluate the capability of an aquifer system to be used for the disposal of radioactive wastes in deep argillaceous formations. The first part is concerned with hydrogeological investigations of a sedimentary basin. The second part is concerned with flow simulation using NEWMAN model. The limited influence of some possible geological events on radionuclide transfer is emphasized [fr

  8. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model.

    Science.gov (United States)

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-11-01

    Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent experimental studies revealed that the chlorination of the microbial carbon associated with the biofilm contributes to the total disinfection by-products (DBPs) formation with distinct mechanisms from those formed from precursors derived from natural organic matter (NOM). A multiple species reactive-transport model was developed to explain the role of biofilms in DBPs formation by accounting for the simultaneous transport and interactions of disinfectants, organic compounds, and biomass. Using parameter values from experimental studies in the literature, the model equations were solved to predict chlorine decay and microbial regrowth dynamics in an actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system simulator. The model's capability of reproducing the measured concentrations of free chlorine, suspended biomass, and THMs under different hydrodynamic and temperature conditions was demonstrated. The contribution of bacteria-derived precursors to the total THMs production was found to have a significant dependence on the system's hydraulics, seasonal variables, and the quality of the treated drinking water. Under system conditions that promoted fast bacterial re-growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms showed a noticeable effect on the kinetics of THMs formation, especially when a high initial chlorine dose was applied. These conditions included elevated water temperature and high concentrations of nutrients in the influent water. The fraction of THMs formed from microbial sources was found to reach a peak of 12% of the total produced THMs under the investigated scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in predictive DBPs formation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION

    Science.gov (United States)

    The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...

  10. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development and Initial Analysis of Experiments

    Science.gov (United States)

    Grugel, Richard N.

    2004-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMI investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMI uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMI is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity Environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station. .

  11. Investigation of a Particle into Liquid Sampler to Study the Formation & Ageing of Secondary Organic Aerosol

    Science.gov (United States)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Munoz, A.; Vazquez, M.; Rodenas, M.; Vera, T.; Borrás, E.

    2012-12-01

    The atmospheric oxidation of Volatile Organic Compounds (VOCs) in the presence of NOx results in the formation of tropospheric ozone and Secondary Organic Aerosol (SOA) [Hallquist et al., 2009]. Whilst SOA is known to affect both climate and human health, the VOC oxidation pathways leading to SOA formation are poorly understood [Solomon et al., 2007]. This is in part due to the vast number and the low concentration of SOA species present in the ambient atmosphere. It has been estimated as many as 10,000 to 100,000 VOCs have been detected in the atmosphere, all of which can undergo photo-chemical oxidation and contribute to SOA formation [Goldstein and Galbally, 2007]. Atmospheric simulation chambers such as the EUropean PHOtoREactor (EUPHORE) in Valencia, Spain, are often used to study SOA formation from a single VOC precursor under controlled conditions. SOA composition and formation can be studied using online techniques such as Aerosol Mass Spectrometry (AMS), which provide high time resolution but limited structural information [Zhang et al., 2007]. Offline techniques, such as collection onto filters, extraction and subsequent analysis, provide detailed SOA composition but only usually one or two samples per experiment. In this work we report time resolved SOA composition analysis using a Particle into Liquid Sampler (PILS) followed by Liquid Chromatography Ion-Trap Mass Spectrometry (LC-IT-MS/MS) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS/MS). Experiments were performed at EUPHORE investigating the formation and composition of Methyl Chavicol SOA. Methyl Chavicol (also known as Estragole) was identified as the highest floral emission from an oil palm plantation in Malaysian Borneo and has also been observed in US pine forests [Bouvier-Brown et al., 2009; Misztal et al., 2010]. Previous studies indicate a high SOA yield from Methyl Chavicol at around 40 % [Lee et al., 2006], however currently there have been very few literature

  12. Synthesis and characterization of gold nanoparticles in a self-assembled ionic liquid polymer nanocomposite

    Science.gov (United States)

    Magurudeniya, Harsha; Ringstrand, Bryan; Jungjohann, Katherine; Firestone, Millicent

    Incorporation of nanoparticles(NPs) into polymer matrices has attracted interest, offering a means to create multi-functional materials combining the attributes of polymers (flexibility, processability, mechanical durability) with the opto-electrical properties of NPs. Synthesis of a self-supporting, hierarchically structured Au NP-network polymer was accomplished via a ``one-pot'' reaction employing a mesophase of AuCl3 and an imidazolium based-ionic liquid (IL) containing a acrylate group. In-situ generation of NPs was achieved by reduction of Au3+which in turn yields concomitant initiation of the polymerization of the mesophase. FT-IR and thermal analysis confirmed acrylate cross-linking. X-ray scattering confirms preservation of the mesophase within the NP composite. TEM showed a distribution of the NPs within the composite of primarily non-spherical morphologies. The co-integration of a macromer, PEG diacrylate, served as a reducing agent for the Au and the amount incorporated into the mesophase allowed for manipulation of the swelling factor of the resultant nanocomposite in a ethanol, providing means to modulate the plasmonic resonance of the NPs. This methodology provides means for organizing NPs within the structured regions of the poly(IL) matrix. Such composites may be of interest for photonic/sensing applications.

  13. Nano-Channels Early Formation Investigation on Stainless Steel 316Ti after Immersion in Molten Pb-Bi

    Directory of Open Access Journals (Sweden)

    Abu Khalid Rivai

    2017-04-01

    Full Text Available Pb-Bi (lead-bismuth eutectic-LBE is a coolant of one of main candidates for the future nuclear reactor in the world (Generation IV reactors i.e. LFR (Lead alloy-cooled Fast Reactor, and also a spallation target material for ADS (Accelerator Driven Transmutation System. However, the development of fuel cladding and structural materials in LBE environment, especially at high temperature, is a critical issue for the deployment of LFR and ADS. This is because of the corrosive characteristic of LBE to metals as constituent materials of fuel cladding and structural of the reactors. In this study, corrosion test of a high-chromium austenitic steel i.e. SS316Ti in liquid Pb-Bi at 550ºC has been carried out for about 300 hours. The characterization using SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscope showed that an iron oxide as the outer layer and a chromium oxide as the inner layer on the surface of the specimen were formed which protected the steel specimen from corrosion and dissolution attack of Pb-Bi. However, small amount of Pb-Bi could penetrate into the iron oxide layer through ultra-thin channels. Atomic Force Microscopy (AFM was employed to investigate the phenomena of the channels formation. The results of the nano-scale investigation showed clearly the formation of the channels.

  14. Investigation on the formation of lonsdaleite from graphite

    Energy Technology Data Exchange (ETDEWEB)

    Greshnyakov, V. A.; Belenkov, E. A., E-mail: belenkov@csu.ru [Chelyabinsk State University (Russian Federation)

    2017-02-15

    Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility of stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.

  15. Multi-scale investigation into the mechanisms of fault mirror formation in seismically active carbonate rocks

    Science.gov (United States)

    Ohl, Markus; Chatzaras, Vasileios; Niemeijer, Andre; King, Helen; Drury, Martyn; Plümper, Oliver

    2017-04-01

    Mirror surfaces along principal slip zones in carbonate rocks have recently received considerable attention as they are thought to form during fault slip at seismic velocities and thus may be a marker for paleo-seismicity (Siman-Tov et al., 2013). Therefore, these structures represent an opportunity to improve our understanding of earthquake mechanics in carbonate faults. Recent investigations reported the formation of fault mirrors in natural rocks as well as in laboratory experiments and connected their occurrence to the development of nano-sized granular material (Spagnuolo et al., 2015). However, the underlying formation and deformation mechanisms of these fault mirrors are still poorly constrained and warrant further research. In order to understand the influence and significance of these fault products on the overall fault behavior, we analysed the micro-, and nanostructural inventory of natural fault samples containing mirror slip surfaces. Here we present first results on the possible formation mechanisms of fault mirrors and associated deformation mechanisms operating in the carbonate fault gouge from two seismically active fault zones in central Greece. Our study specifically focuses on mirror slip surfaces obtained from the Arkitsa fault in the Gulf of Evia and the Schinos fault in the Gulf of Corinth. The Schinos fault was reactivated by a magnitude 6.7 earthquake in 1981 while the Arkitsa fault is thought to have been reactivated by a magnitude 6.9 earthquake in 1894. Our investigations encompass a combination of state-of-the-art analytical techniques including X-ray computed tomography, focused ion beam scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using this multiscale analytical approach, we report decarbonation-reaction structures, considerable calcite twinning and grain welding immediately below the mirror slip surface. Grains or areas indicating decarbonation reactions show a foam

  16. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, A.D.; Nilsson, M. [Department of Chemical Engineering and Materials Science, 916 Engineering Tower, University of California-Irvine, Irvine, CA 92697-2575 (United States); Ellis, R.; Antonio, M. [Chemical Science and Engineering Division, Argonne National Laboratory, Building 200 9700 South Cass Ave, Argonne, IL 60439-4831 (United States)

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  17. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons as catalysts for Interstellar H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    , are observed. Because of relatively high H2 destruction rates in these regions, the presently accepted formation routes on dust grains cannot exclusively account for the observed abundances [1]. Therefore, new formation routes are needed and lately attention has been drawn towards molecules called polycyclic...

  18. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications

    Science.gov (United States)

    Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.

    2017-02-01

    Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29  ×  10-3 s-1 and 20  ×  10-3 s-1 respectively with an actual Pd catalyst loading of 2.665  ×  10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.

  19. Investigating of the effect of entrepreneurial orientations on formation of entrepreneurial identity

    Directory of Open Access Journals (Sweden)

    Manoochehr Parsian

    2016-10-01

    Full Text Available In today’s changing world, success belongs to the communities and organizations that make a significant relationship between scarce resources and capabilities of management and entrepreneurship of their human resource. In other words, societies and the organizations can move forward in the development path that, with creating the necessary conditions, equip their human resources to productive entrepreneurial knowledge and skills to conduct other organizations and community resources to create value and achieve the development, management. Formation of entrepreneurial identity plays an important role for the development of the entrepreneurial spirit in society. In this paper, given the importance of entrepreneurial identity, the role of entrepreneurial orientations based on Lampkin and Dess (1996 [Lumpkin, G. T., & Dess, G. G. (1996. Clarifying the entrepreneurial orientation construct and linking it to performance. Academy of Management Review, 21(1, 135-172.] is investigated on entrepreneurial identity of the municipality of Qom using a questionnaire consists of 18 items. The results show entrepreneurial orientation influences significantly on entrepreneurial identity.

  20. Geoarchaeological investigation at Al-Khiday (central Sudan): late Quaternary palaeoenvironment and site formation

    Science.gov (United States)

    Zerboni, Andrea; Usai, Donatella; Salvatori, Sandro

    2010-05-01

    The micromorphological investigation on several pluristratified archaeological sites in central Sudan (Al-Khiday, left bank of the White Nile, Khartoum region, Sudan) permitted to elucidate depositional and post-depositional processes playing a role in the formation and preservation of the archaeological record. At Al-Khiday sites are located at the top of small mounds, representing the remains of Pleistocene sandy fluvial bars, and were attended since the beginning of the Holocene. The first occupation of the area corresponds to a pre-Mesolithic cemetery; than Mesolithic groups lived upon the mounds and their occupation is testified by several archaeological features: pits filled by ash and bones and living floors. Preserved Neolithic features are scarce and limited to few graves (V millennium BC). After this phase, a long gap in human attendance is registered, during which wind continued to dismantling the mounds and the sites; at ca. 2000 years BP Meroitic/Post-Meroitic groups built their tombs at the top of the archaeological sequences and altered most of the stratigraphic record. Thanks to micromorphology, it was possible to distinguish between archaeological strata still in situ and those disturbed by natural and anthropic processes; furthermore, this approach allowed to interpret the significance of several archaeological features (living floors, fireplaces, and garbage pits). In this case micromorphology of archaeological deposits was a key tool to reconstruct the depositional and post-depositional processes that contributed to the formation and preservation of the archaeological record.

  1. Investigating the stratigraphy and palaeoenvironments for a suite of newly discovered mid-Cretaceous vertebrate fossil-localities in the Winton Formation, Queensland, Australia

    Science.gov (United States)

    Tucker, Ryan T.; Roberts, Eric M.; Darlington, Vikie; Salisbury, Steven W.

    2017-08-01

    The Winton Formation of central Queensland is recognized as a quintessential source of mid-Cretaceous terrestrial faunas and floras in Australia. However, sedimentological investigations linking fossil assemblages and palaeoenvironments across this unit remain limited. The intent of this study was to interpret depositional environments and improve stratigraphic correlations between multiple fossil localities within the preserved Winton Formation in the Eromanga Basin, including Isisford, Lark Quarry, and Bladensburg National Park. Twenty-three facies and six repeated facies associations were documented, indicating a mosaic of marginal marine to inland alluvial depositional environments. These developed synchronously with the final regression of the Eromanga Seaway from central Australia during the late Albian-early Turonian. Investigations of regional- and local-scale structural features and outcrop, core and well analysis were combined with detrital zircon provenance signatures to help correlate stratigraphy and vertebrate faunas across the basin. Significant palaeoenvironmental differences exist between the lower and upper portions of the preserved Winton Formation, warranting informal subdivisions; a lower tidally influenced fluvial-deltaic member and an upper inland alluvial member. This work further demonstrates that the Isisford fauna is part of the lower member of the preserved Winton Formation; whereas, fossil localities around Winton, including Lark Quarry and Bladensburg National Park, are part of the upper member of the Winton Formation. These results permit a more meaningful framework for both regional and global comparisons of the Winton flora and fauna.

  2. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  3. Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission

    Science.gov (United States)

    Tsuda, Yuichi

    2007-01-01

    The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.

  4. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  5. Synthesis of mesogenic phthalocyanine-C60 donor–acceptor dyads designed for molecular heterojunction photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Yves Henri Geerts

    2009-10-01

    Full Text Available A series of phthalocyanine-C60 dyads 2a–d was synthesized. Key steps in their synthesis are preparation of the low symmetry phthalocyanine intermediate by the statistical condensation of two phthalonitriles, and the final esterification of the fullerene derivative bearing a free COOH group. Structural characterization of the molecules in solution was performed by NMR spectroscopy, UV–vis spectroscopy and cyclic voltammetry. Preliminary studies suggest formation of liquid crystalline (LC mesophases for some of the prepared dyads. To the best of our knowledge, this is the first example of LC phthalocyanine-C60 dyads.

  6. An investigation of the composition of gases sampled by formation testers during drilling and well development

    Energy Technology Data Exchange (ETDEWEB)

    Kamkina, L.S.; Snezhko, M.P.

    1983-01-01

    The experience of studying samples taken by formation testers during the drilling and development of wells that penetrate Foraminifera, Cretaceous and Jurassic deposits at the fields of the Chechen-Ingush Autonomous Soviet Socialist Republic is correlated. The compositions of gases taken from oil bearing, water bearing and gas bearing deposits in exploratory and operating wells are compared. Recommendations are given for determining (estimating) the phase state of hydrocarbons in the cross section based on results from an investigation of the composition of gas taken during the drilling process. A corresponding interpretation method is proposed.

  7. Sporoderm development in Acer tataricum (Aceraceae): an interpretation.

    Science.gov (United States)

    Gabarayeva, Nina I; Grigorjeva, Valentina V; Rowley, John R

    2010-11-01

    For the first time, the developmental events in the course of complicated exine structure establishment have been traced in detail with transmission electron microscope in the representative of Acer. A new look at unfolding events is suggested using the knowledge of a boundary field, colloid science. Our purpose was to find out whether the sequence of sporoderm developmental events represents, in essence, the sequence of self-assembling micellar mesophases, initiated by genomically given physicochemical parameters and induced by surfactant glycoproteins at increasing concentration. Indeed, the first units observed in the periplasmic space are globular ones (=spherical micelles) which become arranged into rod-like units (=cylindrical micelles). Then, twisted clusters of rodlets form a layer of procolumellae (middle micellar mesophase). The tectum emerges as an untwisting and merging of distal ends of procolumellae (distal untwist of micelle clusters). In the end of tetrad period, when a hydrophilic-hydrophobic switch occurs in the periplasmic space, the contrast reversal of the columellae corresponds to the change of normal micelles to reverse ones. The initiation of the foot layer and the endexine lamellae, with their typical central "white lines", corresponds to the next-"neat"-mesophase, with its typical central gaps between layers. Aperture sites during development show all the main micellar mesophases and their transitional forms. The data received have supported our previous hypothesis.

  8. Designing for informed group formation

    DEFF Research Database (Denmark)

    Nicolajsen, Hanne Westh; Juel Jacobsen, Alice; Riis, Marianne

    2012-01-01

    A new design ―project preparation‖ preparing for the group formation in problem based project work is proposed and investigated. The main problem is to overcome group formation based on existing relations. The hypothesis is that theme development and group formation are somewhat counterproductive...

  9. Reflections about the mathematics teachers' formation

    Directory of Open Access Journals (Sweden)

    Maria José de Freitas Mendes

    2010-06-01

    Full Text Available This paper brings some reflections about the formation of the math teacher that made part of my marsters paper and that aimed to investigate the process of formation of the math teacher. The focus of this study incided at the contributions of teaching practice in the teacher's formation above the new paradigms of formation, as a professional development and as a reflexive teacher. These reflections, from the learning and teaching process and from the meaning of form a teacher analyse the crisis and the restructuration of the teacher's formation and conclude being necessary that in the graduation courses there's a character more practice to the pedagogical formation, making possible for the future teacher to develop attitudes of autonomy, reflexion and investigation

  10. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-15

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  11. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. I. Laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Rothfuchs, Tilmann; Wieczorek, Klaus

    2013-06-15

    All over the world, clay formations are being investigated as host medium for geologic disposal of radioactive waste because of their favourable properties, such as very low hydraulic conductivity against fluid transport, good sorption capacity for retardation of radionuclides, and high potential of self-sealing of fractures. The construction of a repository, the disposal of heat-emitting high-level radioactive waste (HLW), the backfilling and sealing of the remaining voids, however, will inevitably induce mechanical (M), hydraulic (H), thermal (T) and chemical (C) disturbances to the host formation and the engineered barrier system (EBS) over very long periods of time during the operation and post-closure phases of the repository. The responses and resulting property changes of the clay host rock and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repository.

  12. Development and application of photosensitive device systems to studies of biological and organic materials

    International Nuclear Information System (INIS)

    Gruner, S.M.; Reynolds, G.T.

    1990-01-01

    This report discusses the following basic research accomplishments: new x-ray structure determination methods were developed and applied to biomembrane lipid phases; a novel mechanism for general anesthesia was proposed; the elastic properties of membranes were investigated, both theoretically and experimentally; the effects of high pressures on membranes were studied; neutron diffraction was used to probe mesophase structure; and novel lipid and surfactant systems are characterized. Also discussed are instrumentation accomplishments

  13. Development and application of photosensitive device systems to studies of biological and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, S.M.; Reynolds, G.T.

    1990-07-12

    This report discusses the following basic research accomplishments: new x-ray structure determination methods were developed and applied to biomembrane lipid phases; a novel mechanism for general anesthesia was proposed; the elastic properties of membranes were investigated, both theoretically and experimentally; the effects of high pressures on membranes were studied; neutron diffraction was used to probe mesophase structure; and novel lipid and surfactant systems are characterized. Also discussed are instrumentation accomplishments.

  14. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    Science.gov (United States)

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  15. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  16. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Khalil, M A; Sonbol, F I

    2014-01-01

    The objective was to investigate the biofilm-forming capacity of methicillin resistant Staphylococcus aureus (MRSA) isolated from eye lenses of infected patients. A total of 32 MRSA isolated from contact lenses of patients with ocular infections were screened for their biofilm-forming capacity using tube method (TM), Congo red agar (CRA), and microtiter plate (MtP) methods. The effect of some stress factor on the biofilm formation was studied. The biofilm-forming related genes, icaA, icaD and 10 microbial surface components that recognize adhesive matrix molecule (MSCRAMM), of the selected MRSA were also detected using polymerase chain reaction. Of 32 MRSA isolates, 34.37%, 59.37%, and 81.25% showed positive results using CRA, TM or MtP, respectively. Biofilm production was found to be reduced in the presence of ethanol or ethylenediaminetetraacetic acid and at extreme pH values. On the other hand, glucose or heparin leads to a concentration dependent increase of biofilm production by the isolates. The selected biofilm producing MRSA isolate was found to harbor the icaA, icaD and up to nine of 10 tested MSCRAMM genes, whereas the selected non biofilm producing MRSA isolate did not carry any of the tested genes. The MtP method was found to be the most effective phenotypic screening method for detection of biofilm formation by MRSA. Furthermore, the molecular approach should be taken into consideration for the rapid and correct diagnosis of virulent bacteria associated with contact eye lenses.

  17. Investigations of Reactive Carbohydrates in Glycosidic Bond Formation and Degradation

    DEFF Research Database (Denmark)

    Heuckendorff, Mads

    The overall objective of the research described in this thesis was to explore the field of glycosidic bond formation and degradation. In more detail, the objective was to do further research in the field of highly reactive glycosyl donors. New ways of making highly reactive donors were explored...

  18. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  19. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence

    Science.gov (United States)

    Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan

    2016-05-01

    Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively.Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A

  20. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    Science.gov (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  1. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinoveva, S

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  2. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinoveva, S.

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  3. Investigation on the properties of the formation and coherence of intense fringe near nonlinear medium slab

    Science.gov (United States)

    Hu, Yonghua; Qiu, Yaqiong; Li, Yang; Shi, Lin

    2018-03-01

    Near medium intense (NMI) fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated.

  4. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts.

    Science.gov (United States)

    Arlt, Volker M; Phillips, David H; Reynisson, Jóhannes

    2011-09-07

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.

  5. Investigation of dust formations in the atmosphere on the basis of satellite observations

    Science.gov (United States)

    Ivanchik, M. V.; Kliushnikov, S. I.; Krovotyntsev, V. A.; Serebrennikov, A. N.

    1984-06-01

    A method for the computer processing of space photographs is described which makes it possible to determine dust formations in the atmosphere. Dust formations are identified according to the character of contrast-density distribution. Processed images are compared with actinometric data collected in a dust storm area (Conakry, Guinea, May 1983).

  6. Structural evolution under uniaxial drawing of Poly(D, L-lactide) Films

    Science.gov (United States)

    Stoclet, Grégory; Lefebvre, Jean-Marc; Seguela, Roland

    2009-03-01

    Aliphatic polyesters are an important class of biodegradable polymers. They have drawn particular attention in the last few years as food packaging materials because they can be derived from renewable resources. Among this family, polylactide (PLA) is considered as one of the most promising ``green'' polymer for use as a substitute to petroleum-based polymers. In the present work, we investigate the mechanical behaviour of amorphous poly(D, L-lactide) films in relation to the structural evolution upon stretching at various draw temperatures (Td) above the glass transition temperature. Examination of the drawing behaviour shows that PLA initially behaves like a rubbery material until a true strain of the order of 1. Strain hardening occurs beyond this strain level, up to film fracture. Such strain hardening is generally ascribed to a strain induced crystallization phenomenon. In the present case, it is clearly more pronounced for Td = 90 C than for Td = 70 C. The corresponding structural evolutions are investigated by means of WAXS. The diffraction patterns reveal the marked influence of draw temperature. Indeed for Td = 70 C a mesophase is induced whereas strain-induced crystallisation takes place at Td = 90 C. Further work is in progress, in order to elucidate mesophase development and mechanical response.

  7. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  8. Study of the possibilities of radioactive waste storage in crystalline formations. Investigation by deep drilling of the Auriat granite

    International Nuclear Information System (INIS)

    1982-01-01

    Various and complex scientific problems are raised in many areas by the disposal of radioactive waste in geological formations. Research works are therefore numerous, and are carried out in four basic areas: - improvement of the knowledge of geological media; - characterization of their behaviour vis a vis radioactive waste; - design of deep repositories; - long-term safety assessment of the selected disposal strategies. Aim of the present research is to develop a methodology for investigating granite formations at great depth, in order to characterize their internal structure, and to acquire data about the various physical properties of granite. This research therefore covers the first basic aspect. These goals were obtained by continuous core-drilling of two vertical boreholes at 10m pitch. The main borehole was drilled down to 1003.15m deep, the second one was stopped at 504.40m deep

  9. Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation

    Energy Technology Data Exchange (ETDEWEB)

    Bethany Kurz; Darren Schmidt; Steven Smith Christopher Beddoe; Corey Lindeman; Blaise Mibeck

    2012-07-31

    Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.

  10. Investigation of formation constant of complex of a new synthesized tripodal ligand with Cu2+ using rank annihilation factor analysis in surfactant media

    Directory of Open Access Journals (Sweden)

    R. Golbedaghi

    2014-01-01

    Full Text Available The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA. According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1. Formation constant of this complex was derived using RAFA on spectrophotometric data. The performance of the method has been evaluated by using synthetic data. Also concentration and spectral profiles of ligand and complex can be obtained by using the stability constant and appropriate equations. The effect of surfactants such as sodium dodecyl sulfate (SDS, cetyltrimethylammonium bromide (CTAB and Triton X-100 on complex formation constant of Cu2+ with the ligand was investigated.

  11. Investigation of debris bed formation, spreading and coolability

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  12. Investigation of debris bed formation, spreading and coolability

    International Nuclear Information System (INIS)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A.

    2013-08-01

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  13. A spectrophotometric investigation of the complex formation between lanthanum (III) and eriochrome cyanine R

    International Nuclear Information System (INIS)

    Boodts, J.F.C.; Saffioti, W.

    1979-01-01

    The complex formation between La(III) and Eriochrome Cyanine R has been investigated. Three complexes have been detected. A first one (Complex I) in the pH range of 5.3-5.5 with lambda sub(max) = 460nm. a second one (Complex II) in the pH range of 6.2-6.5 with lambda sub(max) = 490nm and a third one (complex III) in the pH range of 8.2 - 9.0 with lambda sub(max) = 545nm and a shoulder between 570-580nm. The composition and stability constants of the complexes, respectively: complex I: La(ECR) 2 and 4.9 x 10 7 , complex II: La(ECR) 2 and 7.0 x 10 7 , complex III: La.ECR and 1.0 x 10 4 . All measurements were taken at 25.0 +- 0.1 0 C and μ = 0.2 (NaClO 4 ). (Author) [pt

  14. Satellite Formation Control Using Atmospheric Drag

    National Research Council Canada - National Science Library

    Hajovsky, Blake B

    2007-01-01

    This study investigates the use of a linear quadratic terminal controller to reconfigure satellite formations using atmospheric drag actuated control while minimizing the loss of energy of the formation...

  15. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  16. Cluster ion formation during sputtering processes: a complementary investigation by ToF-SIMS and plasma ion mass spectrometry

    International Nuclear Information System (INIS)

    Welzel, T; Ellmer, K; Mändl, S

    2014-01-01

    Plasma ion mass spectrometry using a plasma process monitor (PPM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been complementarily employed to investigate the sputtering and ion formation processes of Al-doped zinc oxide. By comparing the mass spectra, insights on ion formation and relative cross-sections have been obtained: positive ions as measured during magnetron sputtering by PPM are originating from the plasma while those in SIMS start at the surface leading to large differences in the mass spectra. In contrast, negative ions originating at the surface will be accelerated through the plasma sheath. They arrive at the PPM after traversing the plasma nearly collisionless as seen from the rather similar spectra. Hence, it is possible to combine the high mass resolution of ToF-SIMS to obtain insight for separating cluster ions, e.g. Zn x and ZnO y , and the energy resolution of PPM to find fragmentation patterns for negative ions. While the ion formation processes during both experiments can be assumed to be similar, differences may arise due to the lower volume probed by SIMS. In the latter case, there is a chance of small target inhomogeneities being able to be enhanced and lower surface temperatures leading to less outgassing and, thus, retention of volatile compounds. (paper)

  17. Investigation on the properties of the formation and coherence of intense fringe near nonlinear medium slab

    Directory of Open Access Journals (Sweden)

    Yonghua Hu

    2018-03-01

    Full Text Available Near medium intense (NMI fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated. Keywords: High-power laser beam, Nonlinear propagation, Kerr medium, Small-scale scatterer, Nonlinear imaging

  18. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    Science.gov (United States)

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  19. Investigation of the chemical pathway of gaseous nitrogen dioxide formation during flue gas desulfurization with dry sodium bicarbonate injection

    Science.gov (United States)

    Stein, Antoinette Weil

    The chemical reaction pathway for the viable flue gas desulfurization process, dry sodium bicarbonate injection, was investigated to mitigate undesirable plume discoloration. Based on a foundation of past findings, a simplified three-step reaction pathway was hypothesized for the formation of the plume-discoloring constituent, NO2. As the first step, it was hypothesized that sodium sulfite formed by sodium bicarbonate reaction with flue gas SO 2. As the second step, it was hypothesized that sodium nitrate formed by sodium sulfite reaction with flue gas NO. And as the third step, it was hypothesized that NO2 and sodium sulfate formed by sodium nitrate reaction with SO2. The second and third hypothesized steps were experimentally investigated using an isothermal fixed bed reactor. As reported in the past, technical grade sodium sulfite was found to be un-reactive with NO and O2. Freshly prepared sodium sulfite, maintained unexposed to moist air, was shown to react with NO and O2 resulting in a mixture of sodium nitrite and sodium nitrate together with a significant temperature rise. This reaction was found to proceed only when oxygen was present in the flue gas. As reported in the past, technical grade sodium nitrate was shown to be un-reactive with SO2. But freshly formed sodium nitrate kept unexposed to humidity was found to be reactive with SO2 and O 2 resulting in the formation of NO2 and sodium sulfate polymorphic Form I. The NO2 formation by this reaction was shown to be temperature dependent with maximum formation at 175°C. Plume mitigation methods were studied based on the validated three-step reaction pathway. Mitigation of NO2 was exhibited by limiting oxygen concentration in the flue gas to a level below 5%. It was also shown that significant NO2 mitigation was achieved by operating below 110°C or above 250°C. An innovative NO2 mitigation method was patented as a result of the findings of this study. The patented process incorporated a process step of

  20. Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Roczen, Maurizio; Malguth, Enno; Barthel, Thomas; Gref, Orman; Toefflinger, Jan A.; Schoepke, Andreas; Schmidt, Manfred; Ruske, Florian; Korte, Lars; Rech, Bernd [Institute for Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Berlin (Germany); Schade, Martin; Leipner, Hartmut S. [Martin-Luther-Universitaet Halle-Wittenberg, Interdisziplinaeres Zentrum fuer Materialwissenschaften, Halle (Germany); Callsen, Gordon; Hoffmann, Axel [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Berlin (Germany); Phillips, Matthew R. [University of Technology Sydney, Department of Physics and Advanced Materials, NSW (Australia)

    2012-09-15

    The self-organized growth of crystalline silicon nanodots and their structural characteristics are investigated. For the nanodot synthesis, thin amorphous silicon (a-Si) layers with different thicknesses have been deposited onto the ultrathin (2 nm) oxidized (111) surface of Si wafers by electron beam evaporation under ultrahigh vacuum conditions. The solid phase crystallization of the initial layer is induced by a subsequent in situ annealing step at 700 C, which leads to the dewetting of the initial a-Si layer. This process results in the self-organized formation of highly crystalline Si nanodot islands. Scanning electron microscopy confirms that size, shape, and planar distribution of the nanodots depend on the thickness of the initial a-Si layer. Cross-sectional investigations reveal a single-crystalline structure of the nanodots. This characteristic is observed as long as the thickness of the initial a-Si layer remains under a certain threshold triggering coalescence. The underlying ultra-thin oxide is not structurally affected by the dewetting process. Furthermore, a method for the fabrication of close-packed stacks of nanodots is presented, in which each nanodot is covered by a 2 nm thick SiO{sub 2} shell. The chemical composition of these ensembles exhibits an abrupt Si/SiO{sub 2} interface with a low amount of suboxides. A minority charge carrier lifetime of 18 {mu}s inside of the nanodots is determined. (orig.)

  1. New Particle Formation Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, JN; McMurry, PH [University of Minnesota

    2015-01-01

    The scientific foci of the New Particle Formation Study were the formation and evolution of atmospheric aerosols and the impacts of newly formed particles on cloud processes. Specifically, we planned to: (1) to identify the species and mechanisms responsible for the initial steps of new particle formation, i.e., the formation of thermodynamically stable clusters; (2) investigate the role of acid-base chemistry in new particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; (3) investigate the contribution of other surface area or volume-controlled processes to nanoparticle formation and growth; (4) create a comprehensive dataset related to new particle formation and growth that can be used as input for our own thermodynamic models as well as the modeling efforts by our Department of Energy (DOE) Aerosol Life Cycle working group collaborators; (5) characterize the increase of the number and activity of cloud condensation nuclei (CCN) due to particle formation and growth; (6) determine the regional extent of new particle formation to address the role that atmospheric transport plays in determining the impacts, if any, of new particle formation on cloud number and properties.

  2. The investigation formation of complexes of Fe(III) and Fe(II) in the water solution of imidazole at 298 K

    International Nuclear Information System (INIS)

    Radjabov, U.R.; Yusupov, Z.N.; Sharipov, I.Kh.

    2001-01-01

    C H lm=0.1 mol/l, C F e(II)=1·10 - 4 m ol/l and iron sterns: 0.10, 0.25, 0.50 and 1.00 mol/l. It is established that in the investigated systems form at different on composition mono-, polynuclear, homo-- and heterovalent coordination compounds. In aids of the oxidation function accurate the composition, defined the constants formation and domination sphere of complex forms

  3. Investigation on the effect of THF on Nitrogen Hydrate formation under isobaric condition

    Science.gov (United States)

    Jamil, N.; Husin, H.; Aman, Z.; Hassan, Z.

    2018-03-01

    In this paper, we studied nitrogen (N2) hydrate formation in the presence of tetrahydrofuran (THF) under 3 different conditions; different concentration of THF (0, 3 and 30 %(v/v), different temperature setting (room temperature and induced temperature) and different water content (15, 35 and 55 mL) in an isobaric condition. We found that in the presence of THF which acting as an enhancer, hydrate formation kinetic is highly influenced by these parameters. We observed a striking contrast in hydrate formation behaviour observed at room temperature (RT) and induced temperature (IT) with and without the presence of THF under similar operating conditions. At the presence of 30 %(v/v) of THF in 15 mL water, it can be seen that, hydrate tend to form faster than other samples. Visual observation of N2hydrates are also conducted at 30 %(v/v) of THF in 15 mL water.

  4. In situ investigations on the impact of heat production and gamma radiation with regard to high-level radioactive waste disposal in rock salt formations

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1986-01-01

    Deep geological formations especially rock salt formations, are considered worldwide as suitable media for the final disposal of radioactive high-level waste (HLW). In the Federal Republic of Germany, the Institut fur Tieflagerung of the Gesellschaft fur Strahlen- und Umweltforschung mbH Munchen operates the Asse Salt Mine as a pilot facility for testing the behavior of an underground nuclear waste repository. The tests are performed using heat and radiation sources to simulate disposed HLW canisters. The measured data obtained since 1965 show that the thermomechanical response of the salt formation and the physical/chemical changes in the vicinity of disposal boreholes are not a serious concern and that their long-term consequences can be estimated based on theoretical considerations and in-situ investigations

  5. Electrochemical Investigation on the Formation of Cu Nanowires by Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Felizco Jenichi Clairvaux E.

    2015-01-01

    Full Text Available The growth of copper (Cu nanowires by electroless deposition in aqueous solution at 60-80 °C was studied from an electrochemical perspective using in situ mixed potential measurements and potential-pH diagrams. Scanning Electron Microscopy (SEM showed that thick and short nanowires were obtained at high temperatures, while long and thin nanowires result from low reaction temperatures. In situ mixed potential measurements reveal that Cu(II reduction is more favored at higher reaction temperatures, hastening the reduction reaction. The fast reaction leads to a high concentration of Cu atoms in the solution. As a result, Cu deposition occurs rapidly, such that they attached on both sides and ends of the primary Cu nanowires. This results to the formation of thick and short structures. On the other hand, thin and long nanowires are obtained due to the slow reduction reaction, which gives the Cu atoms more time to orderly attach in a wire-like formation.

  6. Thermodymical, optical and X-rays studies of some thermotropic liquid crystals

    International Nuclear Information System (INIS)

    Porath, M.

    1986-01-01

    The temperatures and enthalpies of transition were studied for the compound p-cyane metane-4 (trans 4'-n-pentylcyclohexyl) biphenyl as well as layer spacing (d) and intermolecular distance (as a funtion of temperature). These data together with the texture are used to identify the mesophase present. In compounds of the series p(4-n-alcoxybenzoiloxy) benzilidene 4'-n-decanoxyaniline temperature and enthalpies of transition were measured and textures observed. The intermolecular distance (D), layer spacing (d) as well as the indexes of refraction (all as a funtion of temperature) were also measured. The mesophases were identified based on these data. (author) [pt

  7. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  8. Digital Forensics Formats: Seeking a Digital Preservation Storage Container Format for Web Archiving

    Directory of Open Access Journals (Sweden)

    Yunhyong Kim

    2012-12-01

    Full Text Available In this paper we discuss archival storage container formats from the point of view of digital curation and preservation, an aspect of preservation overlooked by most other studies. Considering established approaches to data management as our jumping off point, we selected seven container format attributes that are core to the long term accessibility of digital materials. We have labeled these core preservation attributes. These attributes are then used as evaluation criteria to compare storage container formats belonging to five common categories: formats for archiving selected content (e.g. tar, WARC, disk image formats that capture data for recovery or installation (partimage, dd raw image, these two types combined with a selected compression algorithm (e.g. tar+gzip, formats that combine packing and compression (e.g. 7-zip, and forensic file formats for data analysis in criminal investigations (e.g. aff – Advanced Forensic File format. We present a general discussion of the storage container format landscape in terms of the attributes we discuss, and make a direct comparison between the three most promising archival formats: tar, WARC, and aff. We conclude by suggesting the next steps to take the research forward and to validate the observations we have made.

  9. Designing for informed group formation

    DEFF Research Database (Denmark)

    Nicolajsen, Hanne Westh; Juel Jacobsen, Alice; Riis, Marianne

    2012-01-01

    A new design ―project preparation‖ preparing for the group formation in problem based project work is proposed and investigated. The main problem is to overcome group formation based on existing relations. The hypothesis is that theme development and group formation are somewhat counterproductive....... Following research based design methodology an experiment separating the two was initiated.This was to provide for more openness and creativity in contrast to a design in which existing relations seem predominant....

  10. The Investigation of Social Media Data Thresholds for Opinion Formation

    OpenAIRE

    Asher, D.; Caylor, J.; Mittrick, M.; Richardson, J.; Heilman, E.; Bowman, E.; Korniss, G.; Szymanski, B.

    2017-01-01

    The pervasive use of social media has grown to over two billion users to date, and is commonly utilized as a means to share information and shape world events. Evidence suggests that passive social media usage (i.e., viewing without taking action) has an impact on the user's perspective. This empirical influence over perspective could have significant impact on social events. Therefore, it is important to understand how social media contributes to the formation of an individual's perspective....

  11. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  12. Fundamental investigation on influence of external heat on chip formation during thermal assisted machining

    Science.gov (United States)

    Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.

    2018-04-01

    Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.

  13. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shirotori, Tatsuya; Hirabayashi, George; Kamiya, Naoto; Kuramitz, Hideki; Tanaka, Shunitz

    2004-01-01

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 10 12 M -1 , 3.2 x 10 12 M -1 and 4.0 x 10 12 M -1 , respectively

  14. Muonium/muonic hydrogen formation in atomic hydrogen

    Indian Academy of Sciences (India)

    The muonium/muonic hydrogen atom formation in ± –H collisions is investigated, using a two-state approximation in a time dependent formalism. It is found that muonium cross-section results are similar to the cross-section results obtained for positronium formation in + –H collision. Muonic hydrogen atom formation ...

  15. New Particle Formation in an Urban Atmosphere: The Role of Various Ingredients Investigated in the CLOUD Chamber

    Science.gov (United States)

    Baltensperger, U.; Xiao, M.; Hoyle, C.; Dada, L.; Garmash, O.; Stolzenburg, D.; Molteni, U.; Lehtipalo, K.; El-Haddad, I.; Dommen, J.

    2017-12-01

    Atmospheric aerosols play an important role on climate via aerosol-radiation interaction and aerosol-cloud interaction. The latter is strongly influenced by new particle formation (NPF). The physical and chemical mechanisms behind the NPF process are still under investigation. Great advancements were made in resolving chemical and physical mechanisms of NPF with a series of experiments conducted at the CLOUD (Cosmics Leaving Outdoor Droplets) chamber facility at CERN (Geneva, Switzerland), including binary nucleation of sulfuric acid - water, ternary nucleation of sulfuric acid - water with ammonia or dimethylamine as well as oxidation products (highly oxygenated molecules, HOMs) from biogenic precursors with and without the presence of sulfuric acid. Here, we investigate possible NPF mechanisms in urban atmospheres, where large populations are exposed to high aerosol concentrations; these mechanisms are still missing and are urgently needed. Urban atmospheres are highly polluted with high concentrations of SO2, ammonia, NOx and volatile organic vapors from anthropogenic activity as well as with high particle concentrations, which provide a high condensation sink for condensable gases. Aromatic hydrocarbons from industrial activities, traffic and residential combustion are present at high concentrations and contribute significantly to photochemical smog in the urban environment.The experiments were conducted at the CLOUD chamber facility during the CLOUD11 campaign in fall 2016. Three aromatic hydrocarbons were selected: toluene, 1,2,4-trimethylbenzene (1,2,4-TMB) and naphthalene (NPT). Experiments were also conducted with mixtures of the three aromatic hydrocarbons to better represent the urban atmosphere. All the experiments were conducted in the presence of sulfuric acid concentrations with or without the addition of ammonia and NOx. New particle formation rates and early growth rates derived for each precursor and their mixture, together with sulfuric acid and

  16. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature.

    Science.gov (United States)

    Xu, Yibing; Zhang, Qiang; Lv, Longfei; Han, Wenqian; Wu, Guanhong; Yang, Dong; Dong, Angang

    2017-11-16

    Discretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr 3 clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters. Unlike conventional CsPbBr 3 nanocrystals, the as-synthesized CsPbBr 3 nanoclusters spontaneously self-assemble into a hexagonally packed columnar mesophase in solution, which can be further converted to single-crystalline CsPbBr 3 quantum nanoribbons with bright deep-blue emission at room temperature. Such a conversion of CsPbBr 3 nanoclusters to nanoribbons is found to be driven by a ligand-destabilization-induced crystallization and mesophase transition process. Our study will facilitate the investigation of perovskite nanoclusters and offer new possibilities in the low-temperature synthesis of anisotropic perovskite nanostructures.

  17. Formation, Sintering and Removal of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi

    conditions in laboratory-scale setups. Deposit formation was simulated in an Entrained Flow Reactor, to investigate the effect of operating conditions and ash chemistry on the rate of deposit formation. Experiments were performed using model biomass fly ash, prepared from mixtures of K2Si4O9, KCl, K2SO4, Ca....... Moreover, biomass ash deposits may cause severe corrosion of boiler surfaces. Therefore, reducing deposit formation and timely deposit removal are essential for optimal boiler operation. The formation, sintering and removal of boiler deposits has been investigated in this PhD project, by simulating boiler...... temperature increased the sticking probability of the fly ash particles/deposit surface, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, it was observed...

  18. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    Science.gov (United States)

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  19. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  20. Time and space resolved spectroscopic investigation during anode plume formation in a high-current vacuum arc

    Science.gov (United States)

    Khakpour, A.; Methling, R.; Uhrlandt, D.; Franke, St.; Gortschakow, S.; Popov, S.; Batrakov, A.; Weltmann, K. D.

    2017-05-01

    This paper presents time and space resolved results of spectroscopic measurements during the formation of an anode plume in the late current pulse phase of a high-current vacuum arc. The formation of the anode plume is investigated systematically based on the occurrence of high-current anode spots, depending on gap distance and current for AC 100 Hz and CuCr7525 butt contacts with a diameter of 10 mm. The anode plume is observed after the extinction of anode spot type 2 in which both the anode and cathode are active. It is concluded from the spatial profiles of the atomic and ionic radiation, parallel and perpendicular to anode surface, that the inner part of the plume is dominated by Cu I radiation, whereas a halo of light emitted by Cu II covers the plume. The radiation intensity of Cu III lines is quite low across the whole anode plume. Upper level excited state densities corresponding to Cu I lines at 510.55, 515.32, 521.82, 578.21 nm are determined. The temporal evolution of the resulting excitation temperature in the centre of the plume varies from 8500 K to 6000 K at 500 µs to 100 µs before current zero, respectively. The density calculated for Cu I at position in the plume is in the range of 1-5  ×  1019 m-3.

  1. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  2. Effect of a lanthanide ion on the micellation and self-organization of lyotropic liquid crystal systems

    International Nuclear Information System (INIS)

    Selivanova, N.M.; Osipova, V.V.; Galyametdinov, Yu.G.

    2006-01-01

    Lanthanide-containing lyotropic liquid-crystalline systems were synthesized and their phase behavior, as well as the micellar behavior of aqueous solutions of decaethylene glycol monodecyl ether in the absence and presence of a lanthanide ion, were studied. Tensimetry and conductometry were used to determine the critical micellation concentration, and the values obtained by these methods were found to be in close agreement with each other. Polarization microscopy observations showed that, in concentrated aqueous solutions, ordered lyotropic mesophases arise. The parameters of the phase transitions in the systems under study were determined. The mesophase obtained was demonstrated to have a 2D hexagonal supramolecular structure [ru

  3. Probing the Texture of the Calamitic Liquid Crystalline Dimer of 4-(4-Pentenyloxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Maher A. Qaddoura

    2010-01-01

    Full Text Available The liquid crystalline dimer of 4-(4-pentenyloxybenzoic acid, a member of the n-alkoxybenzoic acid homologous series, was synthesized using potassium carbonate supported on alumina as catalyst. The acid dimer complex exhibited three mesophases; identified as nematic, smectic X1 and smectic X2. Phase transition temperatures and the corresponding enthalpies were recorded using differential scanning calorimetry upon both heating and cooling. The mesophases were identified by detailed texture observations by variable temperature polarized light microscopy. The nematic phase was distinguished by a fluid Schlieren texture and defect points (four and two brushes while the smectic phases were distinguished by rigid marble and mosaic textures, respectively.

  4. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    Science.gov (United States)

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  5. Development of an offshore gas field - investigation of hydrate and paraffin formation potential with regard to flow assurance; Entwicklung eines Offshore-Gasfeldes: Hydrat- und Paraffinuntersuchungen zur Sicherstellung der kontinuierlichen Produktion

    Energy Technology Data Exchange (ETDEWEB)

    Zettlitzer, M.; Busch, M. [RWE Dea AG, Wietze (Germany)

    2005-11-01

    During the production of offshore gas fields, raw gas from a number of production wells is usually led to a platform or - for reservoirs located close to shore - even transported as wet gas to an onshore gas treatment plant. The pipelines are located at the sea bottom, resulting in significant cooling of the raw gas with subsequent potential for the formation of hydrates and/or precipitation of paraffin on the pipeline walls. In order to safeguard continuous production, additional installations and/or dosage of chemicals would possibly be required. On the basis of gas and condensate samples from production tests, the formation potential for paraffins was experimentally investigated while the hydrate formation potential was assessed by simulations. The very small volume of condensate available (2-3 ml of each sample) formed a special challenge and limited the number of possible analytical investigations. Nevertheless, wax appearance temperature of five condensates under investigation could successfully be determined by a combination of gas-chromatographic and rheological measurements. Two of the three gas-bearing layers turned out to produce dry gas so that paraffin problems can be excluded. However, according to the simulations, hydrate formation at temperatures {<=}+20 C has to be expected under the formation pressure of about 200 bars. The third layer contains a gas condensate, causing paraffin precipitation at {<=}0 C and forming hydrate in a temperature range similar to that of the other two sands. Hence, precautions have to taken to prevent hydrate formation in all field lines containing wet gas. Furthermore, the paraffin precipitation potential has to be taken into account in the subsequent low-temperature gas-treatment plant. (orig.)

  6. The formation mechanism of lactones in Gouda cheese

    NARCIS (Netherlands)

    Alewijn, M.; Smit, B.; Sliwinski, E.L.; Wouters, J.T.M.

    2007-01-01

    Lactones are fat-derived aroma compounds, but the formation mechanism of these compounds during ripening of Gouda cheese is unknown. Both enzymatic and chemical formation pathways were investigated in this study. Lactone formation from milk triglycerides or free fatty acids by lactic acid bacteria

  7. Investigation of the internal stresses caused by delayed ettringite formation in concrete.

    Science.gov (United States)

    2008-11-01

    Delayed ettringite formation (DEF) in concrete has been identified in recent as a significant cause of deterioration in : some of the reinforced concrete infrastructure in Texas. This report is part of a research project, TxDOT project : 5218, to inv...

  8. Device for investigation of the porosity of geological formations

    International Nuclear Information System (INIS)

    Tittman, J.; Hickman, W.J.

    1978-01-01

    A device for neutron well logging is described in which errors due to caked drilling mud on the walls of the hole are compensated for. This is achieved by using two neutron sources and two detectors. One of the neutron sources emits neutrons with so high energy, about 3 or 4 MeV, that their slowing down length is much greater than the thickness of the drilling mud, while the other emits neutrons with an energy of about 240 KeV (lithium-plutonium) or 25 KeV (antimony - beryllium), ie they have a very high probability of interacting with the material in the drilling mud. The detectors are adjusted to react selectively to neutrons of epithermal energy, and the difference in the signals represents the porosity, or hydrocarbon content of the geological formation. (JIW)

  9. Investigation of magnetic flux transport and shock formation in a staged Z-pinch

    Science.gov (United States)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Beg, F. N.

    2017-10-01

    Target preheating is an integral component of magnetized inertial fusion in reducing convergence ratio. In the staged Z-pinch concept, it is achieved via one or more shocks. Previous work [Narkis et al., Phys. Plasmas 23, 122706 (2016)] found that shock formation in the target occurred earlier in higher-Z liners due to faster flux transport to the target/liner interface. However, a corresponding increase in magnitude of magnetic pressure was not observed, and target implosion velocity (and therefore shock strength) remained unchanged. To investigate other means of increasing the magnitude of transported flux, a Korteweg-de Vries-Burgers equation from the 1-D single-fluid, resistive magnetohydrodynamic equations is obtained. Solutions to the nondispersive (i.e., Burgers) equation depend on nondimensional coefficients, whose dependence on liner density, temperature, etc., suggests an increase in target implosion velocity, and therefore shock strength, can be obtained by tailoring the mass of a single-liner gas puff to a double-liner configuration. In the selected test cases of 1-D simulated implosions of krypton on deuterium, the peak Mach number increased from ˜ 5 to ˜ 8 . While a notable increase was seen, Mach numbers exceeding 10 (implosion velocities exceeding ˜25 cm/μs) are necessary for adequate shock preheating.

  10. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  11. In-plane nuclear field formation investigated in single self-assembled quantum dots

    Science.gov (United States)

    Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.

    2018-02-01

    We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.

  12. Investigation of the phase formation from nickel coated nanostructured silicon

    Science.gov (United States)

    Shilyaeva, Yulia I.; Pyatilova, Olga V.; Berezkina, Alexandra Yu.; Sysa, Artem V.; Dudin, Alexander A.; Smirnov, Dmitry I.; Gavrilov, Sergey A.

    2016-12-01

    In this paper, the influence of the conditions of chemical and electrochemical nickel plating of nanostructured silicon and subsequent heat treatment on the phase composition of Si/Ni structures with advanced interface is studied. Nanostructured silicon formed by chemical and electrochemical etching was used for the formation of a developed interphase surface. The resulting Si/Ni samples were analyzed using scanning electron microscopy, energy dispersive X-ray analysis, and X-ray phase analysis. The experiments have revealed the differences in phase composition of the Si/Ni structures obtained by different methods, both before and after heat treatment.

  13. The Role of Trust in Costly Network Formation

    NARCIS (Netherlands)

    Gilles, R.P.; Sarangi, S.

    2003-01-01

    We consider game theoretic models of social network formation.In this paper we limit our investigation to game theoretic models of network formation that are based on individual actions only.Our approach is based on three simple and realistic principles: (1) Link formation is a binary process of

  14. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....

  15. {alpha}-Man monolayer formation via Si-C bond formation and protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Funato, Koji [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Yoshiko, E-mail: miuray@jaist.ac.j [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2009-11-30

    An acetylenyl-terminated saccharide was synthesized and the thin layer formation on the hydrogen-terminated silicon was investigated. The acetylenyl-terminated saccharide was synthesized by the condensation reaction of hexynoic acid and p-aminophenyl saccharide. This was reacted with hydrogen-terminated silicon (Si-H) by a photochemical reaction. The resulting saccharide modified substrate was analyzed by ellipsometry and X-ray photoelectron spectroscopy, which showed the formation of a uniform monolayer. The surface's ability to recognize proteins was analyzed by fluorescent microscopy, and showed specific interactions with sugar recognition proteins.

  16. Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy.

    Science.gov (United States)

    Koch, Marius; Letrun, Romain; Vauthey, Eric

    2014-03-12

    The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.

  17. Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

    Science.gov (United States)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

  18. Preliminary investigation results as applied to utilization of Ukrainian salt formations for disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Shekhunova, S.B.; Khrushchov, D.P.; Petrichenko, O.I.

    1994-01-01

    The salt-bearing formations have been investigated in five regions of Ukraine. Upper Devonian and Lower Permian evaporite formations in Dnieper-Donets Depression and in the NW part of Donets basin are considered to be promising for disposal of high-level radioactive waste (HLRW). Rock salt occurs there either as bedded salts or as salt pillows and salt diapirs. Preliminary studies have resulted in selection of several candidate sites that show promise for construction of a subsurface pilot lab. Ten salt domes and two sites in bedded salts have been proposed for further exploration. Based on microstructural studies it is possible to separate the body of a salt structure and to locate within its limits the rock salt structure and to locate within its limits the rock salt blocks of different genesis, i.e.: (a) blocks characteristic of initial undisturbed sedimentary structure; (b) flow zones; (c) sliding planes; (d) bodies of loose or uncompacted rock salt. Ultramicrochemical examination of inclusions in halite have shown that they are composed of more than 40 minerals. It is emphasized that to assess suitability of a structure for construction of subsurface lab, and also the potential construction depth intervals, account should be taken of the results of ultra microchemical and microstructural data

  19. Investigation on the formation of a third phase in the extraction of Pu(IV) nitrate with tributyl phosphate

    International Nuclear Information System (INIS)

    Yu Enjiang; Liu Liming; Huang Huaian

    1986-01-01

    The formation of a third phase is studied in the system Pu(IV) nitratenitric acid-TBP-alkane diluent (or kerosine). The maximum concentration (solubility, S Pu ) of Pu(IV) in the equilibrium organic phase at which still no third phase is formed is measured as a function of the nitric acid concentration in the equilibrium aqueous phase C H , the temperature, and the molecular size of n-alkane duluent. Results show that maxima of S Pu at 6 to 7 M nitric acid are observed at 17 deg C, 26 deg C and 35 deg C while not at 40 deg C. Minima on the S Pu vs. C H curves at 0.5 to 2 M mitric acid have been observed at 17 deg C and 26 deg C. It is found that the molecular size of n-alkane diluents has a very pronounced effect on S Pu . The effect of aqueous equilibrium Pu(IV) concentration on the formation of a third phase is investigated, when the equilibrium HNO 3 concentration is 3.5 M. It is shown that the plutonium concentration of the third phase is increased with increasing aqueous equilibrium Pu(IV) concentration. The effect of the addition of lauryl alcohol on the S Pu is preliminarily studied

  20. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation

    International Nuclear Information System (INIS)

    Monobe, Hirosato; Awazu, Kunio; Shimizu, Yo

    2008-01-01

    Infrared-induced alignment change with wavelength tunable CO 2 laser irradiation for columnar liquid crystal domains was investigated for a liquid crystalline triphenylene derivative. A uniformly aligned alignment change of domains was observed when a chopped linearly polarized infrared laser light corresponding to the wavelength of the aromatic C-O-C stretching vibration band (9.65 μm) was irradiated. The results strongly imply that the infrared irradiation is a possible technique for device fabrication by use of columnar mesophase as a liquid crystalline semiconductor

  1. Thermodynamic Fluid Equations-of-State

    Directory of Open Access Journals (Sweden)

    Leslie V. Woodcock

    2018-01-01

    Full Text Available As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc and pressure (pc and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB, critical temperature (Tc, critical pressure (pc and coexisting densities of gas (ρcG and liquid (ρcL along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρT to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region.

  2. an empirical investigation of the drivers of international strategic alliance formation

    OpenAIRE

    Nielsen, Bo B.

    2003-01-01

    Using data from a web-survey of Danish partner firms engaged in international strategic alliances, this study explores the factors that drive alliance formation between two specific firms across national borders. The relative importance of a set of partner selection criteria is identified and related to extant theory. By means of exploratory factor analysis, a more parsimonious set of selection criteria is provided and their relationships to a number of characteristics of the sample – prior i...

  3. Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Walther, Jens Honore

    2016-01-01

    n-heptane mechanism and a revised multi-step soot model using laser extinction measurements of diesel soot obtained at different ambient pressure levels in an optical accessible, constant volume chamber experiment. It is revealed that ignition delay times and liftoff lengths generated using the new......In this reported work, multi-dimensional computational fluid dynamics studies of diesel combustion and soot formation processes in a constant volume combustion chamber and a marine diesel engine are carried out. The key interest here is firstly to validate the coupling of a newly developed skeletal...... using the revised soot model agrees reasonably well with the measurements in terms of peak values. The numerical model is subsequently applied to investigate the flame development, soot/nitrogen monoxide formation and heat transfer in a two-stroke, low-speed uniflow-scavenged marine diesel engine...

  4. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.

    Science.gov (United States)

    Gikanga, Benson; Hui, Ada; Maa, Yuh-Fun

    2018-01-01

    the absence of significant high-molecular-weight species and low-molecular-weight species, in spray-dried monoclonal antibody powders. This investigation provides a mechanistic understanding of the underlying stress mechanism leading to monoclonal antibody subvisible particle formation as the result of drug product processing involving grinding of solid surfaces. LAY ABSTRACT: Subvisible particles present in therapeutic protein formulations could adversely affect drug product safety and efficacy. We previously illustrated that grinding action of the solid surfaces in some bottom-mounted mixers and piston pump is responsible for subvisible particle formation of monoclonal antibody formulations. In this study, we delved into mechanistic understanding of the stress types associated with solid surface grinding. The approach was to employ several scale-down stress models with known stress types. Protein formulations stressed in these models were analytically characterized for subvisible particles and other degradants. Some commonly known stress types-such as air-liquid interface, mechanical stress, cavitation, nucleation, and thermal effect-were assessed in this study. The stress model yielding a degradation profile matching that of bottom-mounted mixers and piston pump warranted further assessment. Localized, thermal stress proved to be the most feasible mechanism. This study, along with previously published results, may further advance our understanding of these particular drug product manufacturing processes and benefit scientists and engineers in overcoming these development challenges. © PDA, Inc. 2018.

  5. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    Science.gov (United States)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  6. Influence of Linking Group Orientation on Mesomorphism of Two Aromatic Ring Mesogens

    Directory of Open Access Journals (Sweden)

    L. K. Ong

    2013-01-01

    Full Text Available A new homologous series of alkyl 4-{[(4-chlorophenylimino]methyl}benzoates were prepared, and all the members are differentiate by the alkoxy chain length, CnH2n+1O, where n=2–7, 9, 11, 13, 15. Their phase transition behaviors and mesophase characteristics were studied by differential scanning calorimetry (DSC and optical polarizing microscopy techniques. DSC thermograms show direct isotropization and recrystallization during heating and cooling processes, respectively. The crystal phase changed directly to dark area textures (isotropic phase without displaying any mesophase. The mesomorphic properties of compounds studied are strongly dependent on the orientation of the ester linkage. Reversed ester linkage has caused depression of mesomorphic property in the compounds studied.

  7. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  8. Combinations of partners’ joint venture formation motives

    NARCIS (Netherlands)

    Klijn, E.; Reuer, J.J.; Buckley, P.J.; Glaister, K.W.

    2011-01-01

    Purpose – Prior research on joint venture (JV) formation often examines a single focal firm and assumes it has a single motive for collaboration. This study seeks to investigate how formation motives of partner firms are symmetrically coupled. It considers motives in the context of different

  9. Effect of mesoscale ordering on the density of States of polymeric semiconductors.

    Science.gov (United States)

    Gemünden, Patrick; Poelking, Carl; Kremer, Kurt; Daoulas, Kostas; Andrienko, Denis

    2015-06-01

    A multiscale simulation scheme, which incorporates both long-range conformational disorder and local molecular ordering, is proposed for predicting large-scale morphologies and charge transport properties of polymeric semiconductors. Using poly(3-hexylthiophene) as an example, it is illustrated how the energy landscape and its spatial correlations evolve with increasing degree of structural order in mesophases with amorphous, uniaxial, and biaxial nematic ordering. It is shown that the formation of low-lying energy states in more ordered systems is mostly due to larger (on average) conjugation lengths and not due to electrostatic interactions. The proposed scheme is general and can be applied to a wide range of polymeric organic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Consensus formation on coevolving networks: groups' formation and structure

    International Nuclear Information System (INIS)

    Kozma, Balazs; Barrat, Alain

    2008-01-01

    We study the effect of adaptivity on a social model of opinion dynamics and consensus formation. We analyse how the adaptivity of the network of contacts between agents to the underlying social dynamics affects the size and topological properties of groups and the convergence time to the stable final state. We find that, while on static networks these properties are determined by percolation phenomena, on adaptive networks the rewiring process leads to different behaviors: adaptive rewiring fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. We show how the convergence time is determined by the characteristic time of link rearrangement. We finally investigate how the adaptivity yields nontrivial correlations between the internal topology and the size of the groups of agreeing agents

  11. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    OpenAIRE

    M. Katayeva; R. Mangazbayeva; R. Abdykalykova

    2012-01-01

    The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  12. Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Javidani, M.; Hoseini, M.; Larouche, D.; Pekguleryuz, M.

    2013-01-01

    Highlights: ► Phase formation in Al–Si–Ni–Cu–Mg–Fe system have been investigated. ► T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni are formed at different Ni levels. ► Thermally stable Ni-bearing precipitates improved the overaged hardness. ► It was found that Ni:Cu and Ni:Fe ratios control the precipitation. ► δ-Al 3 CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al–7Si–(0–1)Ni–0.5Cu–0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the δ-Al 3 CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  13. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  14. Ultraviolet photoelectron spectroscopy investigation of interface formation in an indium-tin oxide/fluorocarbon/organic semiconductor contact

    International Nuclear Information System (INIS)

    Tong, S.W.; Lau, K.M.; Sun, H.Y.; Fung, M.K.; Lee, C.S.; Lifshitz, Y.; Lee, S.T.

    2006-01-01

    It has been demonstrated that hole-injection in organic light-emitting devices (OLEDs) can be enhanced by inserting a UV-illuminated fluorocarbon (CF x ) layer between indium-tin oxide (ITO) and organic hole-transporting layer (HTL). In this work, the process of interface formation and electronic properties of the ITO/CF x /HTL interface were investigated with ultraviolet photoelectron spectroscopy. It was found that UV-illuminated fluorocarbon layer decreases the hole-injection barrier from ITO to α-napthylphenylbiphenyl diamine (NPB). Energy level diagrams deduced from the ultraviolet photoelectron spectroscopy (UPS) spectra show that the hole-injection barrier in ITO/UV-treated CF x /NPB is the smallest (0.46 eV), compared to that in the ITO/untreated CF x /NPB (0.60 eV) and the standard ITO/NPB interface (0.68 eV). The improved current density-voltage (I-V) characteristics in the UV-treated CF x -coated ITO contact are consistent with its smallest barrier height

  15. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  16. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  17. Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges

    Science.gov (United States)

    Tschiersch, R.; Bogaczyk, M.; Wagner, H.-E.

    2014-09-01

    As a logical extension to previous investigations of the barrier discharge (BD) in helium and nitrogen, the present work reports on the operation in any mixtures of both pure gases. Using a well-established plane-parallel discharge cell configuration allows to study the influence of the He/N2 mixing ratio on the formation of different discharge modes. Their characterization was made by measuring the discharge emission development together with the formation and decay of surface charges on a bismuth silicon oxide (Bi12SiO20, BSO) crystal. This was realized by the simultaneous application of the spatio-temporally resolved optical emission spectroscopy, and the electro-optic Pockels effect in combination with a CCD high speed camera. The existence diagram for diffuse and filamentary BDs was determined by varying the amplitude and shape of the applied voltage. Over the entire range of the He/N2 ratio, the diffuse mode can be operated at moderate voltage amplitudes whereas filamentation occurs at significant overvoltage and is favoured by a high voltage slew rate. Irrespective of the discharge mode, the overall charge transfer during a discharge breakdown is found to be in excellent agreement with the amount of accumulated surface charges. An exponential decay of the surface charge deposited on the BSO crystal is induced by LED illumination beyond a typical discharge cycle. During the decay process, a broadening of the radial profiles of positive as well as negative surface charge spots originating from previous microdischarges is observed. The investigations contribute to a better understanding of the charge accumulation at a dielectric.

  18. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    Science.gov (United States)

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were 500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Katayeva

    2012-12-01

    Full Text Available The complex formation process of hydroxypropylcellulose (HPC with polymethacrylic acid (PMA have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  20. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  1. Stratigraphy and environments of deposition of the Cretaceous Hell Creek Formation (reconnaissance) and the Paleocene Ludlow Formation (detailed), southwestern North Dakota. Report of investigations No. 56

    International Nuclear Information System (INIS)

    Moore, W.L.

    1976-01-01

    The Cretaceous Hell Creek and Paleocene Ludlow Formations of southwestern North Dakota, with the exception of the included lignite beds and minor amounts of concretions and nodules, are almost exclusively clastic sediments and sedimentary rocks. Massive clays, clays alternating with silts and sands, sandstones filling channels and other depressions, sheet sandstones, and lignites are the dominant sediment and rock types present. These sediments and sedimentary rocks were mostly deposited in a continental environment and were largely alluvial, lacustrine or paludal in origin; though marginal marine deposition, in part, is indicated by the occurrence of brackish water faunas in portions of the upper Ludlow Formation. With the possible exception of a persistent lignite near the base, persistent lignites are not present in the Hell Creek Formation. The Ludlow can be subdivided into several informal units, typically coal-bounded, which can be traced laterally over large areas. This informal subdivision permits isolation of stratigraphic units for the study of local environments of deposition. Channel and depression fill sandstones of the Ludlow Formation have a relatively low permeability and a high organic content at the surface and, for this reason, are considered poor prospective uranium host rocks. The lighter colored yellow winnowed sheet sandstones of the Ludlow are more permeable and relatively free of organic matter. They are considered as possible host rocks for uranium occurring in association with an oxidation/reduction interface at shallow depths. The uranium potential is enhanced where the latter sandstones occur along paleodivides which have been overlain by the Oligocene White River Formation, or in local areas where the latter formation is still preserved. Light yellow winnowed sheet sandstones are rare in the Hell Creek Formation, and the chances for uranium prospects in this interval seem correspondingly reduced

  2. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications

    Science.gov (United States)

    Gopi, D.; Nithiya, S.; Shinyjoy, E.; Kavitha, L.

    Synthetic calcium hydroxyapatite (HAP,Ca10(PO4)6(OH)2) is a well-known bioceramic material used in orthopaedic and dental applications because of its excellent biocompatibility and bone-bonding ability. Substitution of trace elements, such as Sr, Mg and Zn ions into the structure of calcium phosphates is the subject of widespread investigation. In this paper, we have reported the synthesis of Sr, Mg and Zn co-substituted nanohydroxyapatite by soft solution freezing method. The effect of pH on the morphology of bioceramic nanomaterial was also discussed. The in vitro bioactivity of the as-synthesized bioceramic nanomaterial was determined by soaking it in SBF for various days. The as-synthesized bioceramic nanomaterial was characterized by Fourier transform infrared spectroscopy, X- ray diffraction analysis, Scanning electron microscopy and Energy dispersive X-ray analysis and Transmission electron microscopic techniques respectively. The results obtained in our study have revealed that pH 10 was identified to induce the formation of mineralized nanohydroxyapatite. It is observed that the synthesis of bioceramic nanomaterial not only support the growth of apatite layer on its surface but also accelerate the growth which is evident from the in vitro studies. Therefore, mineralized nanohydroxyapatite is a potential candidate in bone tissue engineering.

  3. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  4. Experimental and theoretical investigations on the carbon dioxide gas hydrate formation kinetics at the onset of turbidity regarding CO2 capture and sequestration processes

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Mottahedin, Mona; Varaminian, Farshad

    2013-01-01

    The carbon dioxide gas hydrate formation kinetics at the onset of turbidity is experimentally and theoretically investigated. It is shown that the time-dependent heterogeneous nucleation and growth kinetics are simultaneously governing the hydrate formation process at the onset of turbidity. A new approach is also presented for determination of gas hydrate-liquid interfacial tension. The CO 2 hydrate-liquid interfacial tension according to the suggested heterogeneous nucleation mechanism is found to be about 12.7 mJ/m 2 . The overall average absolute deviation between predicted and measured CO 2 molar consumption is about 0.61%, indicating the excellent accuracy of the proposed model for studying the hydrate-based CO 2 capture and sequestration processes over wide ranges of pressures and temperatures

  5. Entropic Behavior of Binary Carbonaceous Mesophases

    Directory of Open Access Journals (Sweden)

    Alejandro D. Rey

    2008-08-01

    Full Text Available The Maier-Saupe model for binary mixtures of uniaxial discotic nematogens, formulated in a previous study [1], is used to compute and characterize orientational entropy [2] and orientational specific heat. These thermodynamic quantities are used to determine mixture type (ideal or non-ideal which arise due to their different intrinsic properties, determined by the molecular weight asymmetry ΔMw and the molecular interaction parameter β. These molecular properties are also used to characterize the critical concentration where the mixture behaves like a single component system and exhibits the minimum nematic to isotropic (NI transition temperature (pseudo-pure mixture. A transition within the nematic phase takes place at this specific concentration. According to the Maier-Saupe model, in a single mesogen, entropy at NI transition is a universal value; in this work we quantify the mixing effect on this universal property. The results and analysis provide a new tool to characterize molecular interaction and molecular weight differences in mesogenic mixtures using standard calorimetric measurements.

  6. Investigation of acrylamide formation on bakery products using a crust-like model.

    Science.gov (United States)

    Açar, Ozge C; Gökmen, Vural

    2009-12-01

    Baking is a complex process where a temperature gradient occurs within the product as a result of simultaneous heat and mass transfers. This behaviour makes the physical parameters (baking temperature and product dimensions) as effective as the chemical parameters on the rate of acrylamide formation in bakery foods. In this study, the change of temperature in different locations of the sample was shown as influenced by the product thickness. The temperature values were close to each other in the sample having thickness of 1 mm (crust model). The product temperature rapidly increased to the oven temperature. A temperature gradient was recorded in the sample having a thickness of 10 mm. As a result, the product temperature did not exceed 100 degrees C within a baking time of 30 min. The product thickness significantly influenced the rate of acrylamide formation during baking. Acrylamide concentration rapidly increased to 411+/-49 ng/g within 8 min in the crust model sample. However, no acrylamide was detected in the thicker sample within 15 min under the same conditions, because the moisture content was still above 10%. The crust model was considered useful to test the effectiveness of different mitigation strategies in bakery foods.

  7. Experimental investigation of liquid-liquid plug formation in a T-junction microchannel

    Science.gov (United States)

    Angeli, Panagiota; Chinaud, Maxime; Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Omar. K. Matar Collaboration; Lyes Kahouadji Collaboration

    2015-11-01

    Plug formation mechanism of two immiscible liquids was studied experimentally in a 200 μm microchannel using two innovative micro Particle Image Velocimetry (μ PIV) techniques i.e. two-colour μ PIV and high speed bright field μ PIV. The aqueous phase was a water/glycerol solution whereas the organic phase was silicon oil with a range of viscosities from 5 to 155 cSt. Experiments were conducted for different fluid flow rate combinations in the T-junction inlet and it was observed that velocity profiles within the forming plugs depend on the flow rate ratios. The velocity field studies provided insight into the plug mechanism revealing that the interface curvature at the rear of the forming plug changes sign at the later stages of plug formation and accelerates the thinning of the meniscus leading to plug breakage. Results from the two-colour PIV show that the continuous phase resists the flow of the dispersed phase into the main channel at the rear of the plug meniscus and causes the change in the interface curvature. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  8. FORMATIVE ASSESSMENT IN EFL CLASSROOM PRACTICES

    Directory of Open Access Journals (Sweden)

    Ida Ayu Made Sri Widiastuti

    2017-03-01

    Full Text Available This study investigated the challenges and opportunities of formative assessment in EFL classes. It made use of qualitative research design by using indepth interviews to collect the required data. Three teachers and three students were involved as research participants in this study and they were intensively interviewed to get valid and reliable data regarding their understanding of formative assessment and the follow up actions they took after implementing formative assessment. The results of this study showed that the English teachers were found not to take appropriate follow up actions due to their low understanding of formative assessment. The teachers’ understanding could influence their ability in deciding the actions. This study indicates that EFL teachers need urgent further intensive training on the appropriate implementation of formative assessment and how follow up actions should be integrated into classroom practices

  9. Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2014-01-01

    . Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined...

  10. Investigation into formation of nanoparticles of tetravalent neptunium in slightly alkaline aqueous solution

    International Nuclear Information System (INIS)

    Husar, Richard

    2015-01-01

    Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions. The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO 3 ) 5 ] 6- ) induces the intrinsic formation of nanocrystalline NpO 2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group Fm anti 3m). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ζ ∝0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO 2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm. Hitherto, unknown polynuclear species as intermediate species of NpO 2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. Intrinsic formation of NpO 2

  11. Investigating the formation mechanism of soot-like materials present in blast furnace coke samples

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; P. A' lvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2008-09-15

    An attempt to gain an understanding of the formation mechanism of these 'soot-like' materials has been made by means of tracing the changes in the molecular-mass distribution and molecular structure of the NMP-extractable materials from an injectant coal as well as its partially gasified chars and its pyrolytic tars. Variations in the SEC chromatograms provide clues about changes in the apparent molecular-mass distributions of these NMP extracts. Results suggest that the build-up of 'soot-like' materials follows from the secondary reactions of tars evolved from the injectant coal. The likely secondary-reaction pathways have been probed by collating structural information on these NMP extracts. The time-resolved 13-16 and 22-25 min elution fractions from the SEC column have been characterized using UV fluorescence (UV F) spectroscopy. Greater concentrations of larger aromatic ring systems are found present in samples formed under conditions appearing more prone for soot formation. The 11-16 min (large apparent molecular mass) effluent from SEC has been examined by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). Results from FTIR spectroscopy are consistent with the UV F data, showing more significant extents of dehydrogenation under conditions more prone to form soot. Similarly, TEM results show that larger amount of graphene layers exist in samples exposed to more soot-prone conditions. The emerging picture for the formation of 'soot-like' materials involves a well-defined sequence. Tars evolved from the injectant coal undergo secondary dehydrogenation, condensation, and repolymerization reactions, which eventually lead to the formation of the NMP-extractable 'soot-like' materials of large apparent molecular mass. 44 refs., 7 figs., 3 tabs.

  12. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  13. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid

    Science.gov (United States)

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-01

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.

  14. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cosmological Structure Formation: From Dawn till Dusk

    DEFF Research Database (Denmark)

    Heneka, Caroline Samantha

    Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology with mass......Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology...... with massive galaxy clusters, traveling from the dawn of structure formation, when the first galaxies appear, to its dusk, when a representative part of the mass in the Universe is settled in massive structures. This hunt for accurate constraints on cosmology is complemented with the demonstration of novel...... Bayesian statistical tools and kinematical constraints on dark energy. Starting at the dawn of structure formation, we study emission line fluctuations, employing semi-numerical simulations of cosmological volumes of their line emission, in order to cross-correlate fluctuations in brightness. This cross...

  16. Thermodynamic Investigation and Mixed Ligand Complex Formation of 1,4-Bis-(3-aminopropyl)-piperazine and Biorelevant Ligands.

    Science.gov (United States)

    El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H

    2012-01-01

    Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO(3)) using a potentiometric technique. The order of -ΔG(0) and -ΔH(0) was found to obey Co(2+) Zn(2+), in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K.

  17. L'organisation de la formation agricole au benin : quels nouveaux ...

    African Journals Online (AJOL)

    Ingénierie des Dispositifs de Formation (DIF). Des investigations et analyses, il ressort que les formations offertes aux ruraux sont compatibles avec leurs besoins en formation mais l'élaboration de ces programmes est caractérisée par une forte ...

  18. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    Science.gov (United States)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  19. Preliminary investigation on the sedimentary facies of the middle silurian uraniferous rock formations in western Qinling Region

    International Nuclear Information System (INIS)

    Mao Yunian; Min Yongming.

    1987-01-01

    The Middle Silurian stratabound uranium deposits in Western Qinling were formed due to hydrothermal modification of ground water and reconcentration of uranium from the sedimentary source rocks. The Silurian system consists of the sediments deposited in the marginal sea of the passive continent, to the south of which is the Ruoergai palaeocontinent. The Middle Silurian is divided into three formations. The lower members of each formation are composed of fine-grained clastic rocks with bay-lagoon facies, while the upper members of each formation are uraniferous rock formations consisted of carbonaceous-siliceous-limestone-argillaceous rocks. During the Middle Silurian period there occurred an island chain barrier which is roughly parallel to the palaeocoast and was formed by undersea uplifts. The uraniferous rock formations belong to the assemblage of lagoon-reef-back tidal flat-reef beach facies. Nearshore shallow water environment, abundant terrestrial fine detritus, local reduction facies and zones are three cardinal conditions for the formation of uranium-rich sediments. Uranium deposition mainly took place in the environments of the inner part of reef beach and reef-back tidal flat, which are characterized by having medium to slightly lower energy, the terrestrial fine detritus involved, and local reduction field resulting from the decomposition of organism after their massive death. Furing the process of relative slow deposition, UO 2 2+ in the sea water was formed by means of infiltration, diffusion and alternative absorption of water at the bottom into organic matter and clay

  20. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  1. The Use of Format Adaptation in Danish Public Service Programming

    DEFF Research Database (Denmark)

    Jensen, Pia Majbritt

    2013-01-01

    The article investigates Danish public service broadcasters’ use of format adaptations over a 12-year period in order to examine claims that formats constitute a potential threat to public service broadcasting and the national Danish television industry and culture. The article’s findings, howeve...... service orientation. Instead the article argues, following German sociologist Ulrich Beck, that format adaptation can represent a form of ‘banal transnationalism’, pointing to the fact that the world is no longer exclusively defined by national boundaries.......The article investigates Danish public service broadcasters’ use of format adaptations over a 12-year period in order to examine claims that formats constitute a potential threat to public service broadcasting and the national Danish television industry and culture. The article’s findings, however......, bear little evidence to support these claims. The practice of format adaptation constitutes a comparatively small proportion of the overall production of Danish public service content, and, more importantly, most of the formats adapted by the public broadcasters have a comparatively solid public...

  2. Study of spin-polaron formation in 1D systems

    International Nuclear Information System (INIS)

    Arredondo, Y.; Navarro, O.; Vallejo, E.

    2014-01-01

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J H and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J H and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems

  3. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  4. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  5. Exploring the value of usability feedback formats

    DEFF Research Database (Denmark)

    Nørgaard, Mie; Hornbæk, Kasper Anders Søren

    2009-01-01

    The format used to present feedback from usability evaluations to developers affects whether problems are understood, accepted, and fixed. Yet, little research has investigated which formats are the most effective. We describe an explorative study where three developers assess 40 usability findings...... presented using five feedback formats. Our usability findings comprise 35 problems and 5 positive comments. Data suggest that feedback serves multiple purposes. Initially, feedback must convince developers about the relevance of a problem and convey an understanding of this. Feedback must next be easy...... working with the feedback to address the usability problems, there were no significant differences among the developers' ratings of the value of the different formats. This suggests that all of the formats may serve equally well as reminders in later stages of working with usability problems...

  6. Formative assessment (assessment for learning educational achievements of students

    Directory of Open Access Journals (Sweden)

    Zemlyаnskaya E.N.

    2016-09-01

    Full Text Available We present definition of the concept of formative assessment and its significance for modern education. Displaying developmental approach in foreign studies, the further development, the risks and the possibility of their reduction. We discuss some of the techniques and examples of formative assessment. We investigate the relationship between formative and final evaluation, including the national curriculum levels.

  7. Time-Dependent Dust Formation in Novae

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1991-06-01

    Full Text Available The dust formation processes in novae are investigated with close attention to recent infrared observations. Using mainly the classical nucleation theory, we have calculated the time scales of dust formation and growth in the environments of novae. Those time scales roughly resemble the typical observations. We have classified the dust-forming novae into three classes according to their explosion properties and the thermodynamic properties of dust grains. Oxygen grains from much later than carbon grains because of their thermodynamic properties. The effect of grain formation to the efficiency of stellar winds to drive the material outward is tested with newly obtained Planck mean values of dust grains.

  8. Analysis of constituents of earth formations

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Grau, J.A.

    1981-01-01

    The composition of an earth formation is investigated by repetitively irradiating the formation with bursts of neutrons from a source and measuring an energy spectrum of the scattering gamma rays resulting from such irradiation e.g. by photomultiplier or solid state detector. The measured spectrum is thereafter analyzed by comparing it with a composite spectrum, made up of standard spectra, measured in a controlled environment, of constituents postulated to comprise the formation. As a result of such analysis, the proportions of the postulated constituents in the formation are determined. Since the measured spectrum is subject to degradation due to changes in the resolution of the detector, a filtering arrangement effects modification of the standard spectra in a manner which compensates for the changes in the detector and thereby provides for a more accurate determination of the constituents of the formation. Temperature is measured by sensor to compensate for temperature dependence of detector resolution. (author)

  9. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  10. The relationship between sucrose hydrolysis, sorbitol formation and mineral ion concentration during bioethanol formation using Zymomonas mobilis 2716

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, M.B.; Doelle, H.W. (Queensland Univ., St. Lucia (Australia). Dept. of Microbiology); Greenfield, P.F. (Queensland Univ., St. Lucia (Australia). Dept. of Chemical Engineering)

    1990-11-01

    Investigations into the relationship between sucrose hydrolysis, sorbitol formation and mineral ion concentration during bioethanol formation by Zymomonas mobilis 2716 revealed two distinct phenomena responsible for carbon flow diversion, a 'sucrose effect' and a 'salt effect'. Neither of the two phenomena affects sucrose hydrolysis, but they divert carbon flow of the fructose monomer leading to its own accumulation, sorbitol or oligosaccharide formation. Sucrose concentrations in excess of 15% (w/v) led to sorbitol formation, the level of which may exceed 2% (w/v) depending upon glucose accumulation during sucrose hydrolysis. Increasing mineral ion concentrations led initially to carbon losses and finally to fructose accumulation instead of sorbitol formation. This carbon loss can be corrected by the addition of invertase, which in turn leads to an increase in sorbitol, fructose and ethanol. Potassium and chloride are the dominant ions responsible for suppression of sorbitol formation and fructose uptake, encouraging oligosaccharide formation. These fructooligosaccharides must be of a type which can be converted to fructose, sorbitol and ethanol through the action of invertase. The requirement of invertase addition to prevent fructooligosaccharide formation is indirect evidence that Z. mobilis 2716 does not produce invertase. (orig.).

  11. Formation of topological defects

    International Nuclear Information System (INIS)

    Vachaspati, T.

    1991-01-01

    We consider the formation of point and line topological defects (monopoles and strings) from a general point of view by allowing the probability of formation of a defect to vary. To investigate the statistical properties of the defects at formation we give qualitative arguments that are independent of any particular model in which such defects occur. These arguments are substantiated by numerical results in the case of strings and for monopoles in two dimensions. We find that the network of strings at formation undergoes a transition at a certain critical density below which there are no infinite strings and the closed-string (loop) distribution is exponentially suppressed at large lengths. The results are contrasted with the results of statistical arguments applied to a box of strings in dynamical equilibrium. We argue that if point defects were to form with smaller probability, the distance between monopoles and antimonopoles would decrease while the monopole-to-monopole distance would increase. We find that monopoles are always paired with antimonopoles but the pairing becomes clean only when the number density of defects is small. A similar reasoning would also apply to other defects

  12. Chapter 3. Physicochemical aspects of structure formation and physico technical properties of materials obtained from soil-cement mixtures. 3.1. Formation features of nucleuses of binding materials

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is determined that structure formation of hardening systems depends on their thermodynamic stability. According to the investigations author concluded that probability of nucleuses formation depended on surface energy of new formations, chemical potential, temperature and value of interphase energy.

  13. Microstructural characteristics of toluene and quinoline-insolubles from coal-tar pitch and their cokes

    Energy Technology Data Exchange (ETDEWEB)

    Panaitescu, C. [University POLITEHNICA Bucharest, Faculty of Industrial Chemistry, Fuel Laboratory, Polizu St. 1, Sector 1, 011061, Bucharest (Romania); Predeanu, G. [Metallurgical Research Institute, Department of Raw Materials, Mehadia St. 39, Sector 6, 060543 Bucharest (Romania)

    2007-08-01

    The structural composition of coal-tar pitch used in the preparation of the special binder-pitch, was determined with special emphasis on the optical properties of the {beta}-resins, as typical components necessary to obtain electrodes of best quality through the pyrogenetic processes of baking and graphitization. In addition to raw toluene- and quinoline-insolubles (TI, QI), the corresponding cokes were analysed to evaluate, by structural composition and microtexture, the behaviour of pitch fractions during carbonization. The results suggest the dependence of the texture development on the type of toluene- and quinoline-insolubles and {beta}-resins during processing conditions, which influence the mesophase formation. An original and important result of the carbopetrographical study is represented by the identification and evaluation of {beta}-resins in the coke texture. (author)

  14. Study of spin-polaron formation in 1D systems

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo, Y.; Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico); Vallejo, E. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km. 7.5 Ciudad Universitaria, 27276 Torreón, Coahuila (Mexico)

    2014-05-15

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.

  15. Cytogenetical investigations on fertilization, embriogenesis and fruit formation by irradiated pollen

    International Nuclear Information System (INIS)

    Dryanovska, O.

    1981-01-01

    The mechanism of fertilization pollination with gamma-irradiated pollen (1-500 kR) in plants of various double fertilization: Crepis (Nicotiana tabacum, Lycopersicum esculentum, Solanum melongena, Ornithogalum gramminifolium, Melandrium rubrum) type, Lilium (Lilium speciosum) type, and Trandescantia (Tradescantia paludosa) type was studied, along with the opportunity of its modification, embryogenesis and fruit and seed formation. In the Crepis type, depending on the disturbances of male chromatin, fertilization manifested itself as: 1) normal karyogamy with decondensation of male chromatin and the formation of supplementary nucleoli and further development of embryo and endosperm (1-500 kR); 2) karyogamy without decondensation and functioning of the male chromatin (1-500 kR); 3) karyogamy or sticking the male chromatin to the nuclei of the female sex cells, stimulating the development of the ovule, embryo, and endosperm (50-500 kR); 4) sticking the highly pycnotized male chromatin to the nuclei of the female sex cells without evidence of zygote and endosperm function and further development (50-500 kR). In the Lilium type modification of fertilization was manifested by: 1) normal karyogamy with developing diploid embryos and pentaploid endosperm with aberrations (1-20 kK); 2) sticking the male chromatin to the nuclei of the female sex cells and stimulation of their development (50-500 kR). In the Trandescantia type the irradiated male chromatin modified fertilization as: 1) karyogamy with spermia having fragments, two spermia connected by a bridge or with a generative nucleus with aberrations (1-50 kR); 2) karyogamy without developing the female sex nuclei (10-500kR); 3) karyogamy or sticking the male chromatin to the female sex cell nuclei and stimulation of their development (10-500 kR); 4) sticking the male chromatin with no stimulating effect (10-500 kR). (author)

  16. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    Science.gov (United States)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  17. Investigations on crack formation in fatigue slip bands

    International Nuclear Information System (INIS)

    Hunsche, A.

    1982-01-01

    The aim of this study was to reproduce the surface topography of metals at cyclic loads as well as its variation with time by means of modern methods and to investigate it. Particular attention was given to the statistical support of the quantitative results by sufficiently large samples. This requires the development of preparation methods that are simple and can be quickly carried out. The material chosen was copper, because a particularly extended information background is available there. (orig./RW) [de

  18. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene

    International Nuclear Information System (INIS)

    Fang Yuanxiang; Al-Abed, Souhail R.

    2007-01-01

    Carbon stable isotope trichloroethylene ( 13 C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to analyze and quantify regular and 13 C TCE and their dechlorination products. The concentration of a 13 C compound can be calculated, based on the concentration of its regular counterpart, from the response ratio of two fragments of different mass per charge values from the compounds in a sample and two characteristic MS spectrum ratios: one is the response ratio of the two fragments of the regular compound, and the other is the response ratio of the corresponding fragments of the regular and 13 C compounds at the same concentrations. The method was used to analyze the regular and 13 C compounds observed in an experiment of dechlorination in an ammonium acetate solution that contained both regular TCE and 13 C TCE. Results of analysis confirmed that CM was not a direct product of TCE dechlorination at the granular graphite cathode that cis-DCE was an intermediate product of TCE dechlorination, and that 1,1-DCE was not a dechlorination product

  19. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yuanxiang [National Risk Management Research Laboratory, USEPA 26 W. Martin Luther King Dr. Cincinnati, OH 45268 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, USEPA 26 W. Martin Luther King Dr. Cincinnati, OH 45268 (United States)]. E-mail: Al-Abed.Souhail@epa.gov

    2007-03-22

    Carbon stable isotope trichloroethylene ({sup 13}C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to analyze and quantify regular and {sup 13}C TCE and their dechlorination products. The concentration of a {sup 13}C compound can be calculated, based on the concentration of its regular counterpart, from the response ratio of two fragments of different mass per charge values from the compounds in a sample and two characteristic MS spectrum ratios: one is the response ratio of the two fragments of the regular compound, and the other is the response ratio of the corresponding fragments of the regular and {sup 13}C compounds at the same concentrations. The method was used to analyze the regular and {sup 13}C compounds observed in an experiment of dechlorination in an ammonium acetate solution that contained both regular TCE and {sup 13}C TCE. Results of analysis confirmed that CM was not a direct product of TCE dechlorination at the granular graphite cathode that cis-DCE was an intermediate product of TCE dechlorination, and that 1,1-DCE was not a dechlorination product.

  20. Numerical investigation of slag formation in an entrained-flow gasifier

    Science.gov (United States)

    Zageris, G.; Geza, V.; Jakovics, A.

    2018-05-01

    A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification in account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and viable solutions such as radial inlet positioning for decreasing the amount of undesirable deposits are proposed. We also conclude that the particular chemical reactions that take place inside the gasifier play a significant role in determining how slagging occurs inside a gasifier.

  1. γIrradiation induced formation of PCB-solvent adducts in aliphatic solvents

    International Nuclear Information System (INIS)

    Lepine, F.; Milot, S.; Gagne, N.

    1990-01-01

    γIrradiation induced formation of PCB-solvent adducts was investigated as a model for PCB residues in irradiated food. Formation of cyclohexyl adducts of PCBs was found to be significant when pure PCB congeners and Aroclor mixture were irradiated in cyclohexane and cyclohexene. Reaction pathways were investigated, and the effects of oxygen and electron scavenger were studied

  2. Experimental investigation of the formation and propagation of plasma jets created by a power laser: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Loupias, B.

    2008-10-01

    Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet

  3. Microstructure study of PAN-pitch-based carbon-carbon composite

    International Nuclear Information System (INIS)

    Lee, K.J.; Chen, Z.Y.

    2003-01-01

    Scanning electron microscopy (SEM), polarized light microscopy (PLM), and transmission electron microscopy (TEM) techniques have been used to characterize the normal surface and flank surface microstructure of a two-dimensional polyacrylonitrile (PAN)-based fiber reinforced mesophase pitch-based matrix carbon-carbon (C-C) composite. Optical and SEM results indicate that the mesophase pitch appears generally well bonded to the fibers, as well as internal pores and cracks exist in both interbundle and intrabundle regions. TEM shows that matrix platelets were highly parallel to the fiber axis. Numerous microcracks, parallel to the fiber axis, were formed along fiber-matrix interface and within the matrix. The selected-area diffraction (SAD) patterns show that a random orientation of basal planes in the transverse fiber of flank surface and the domain near the fiber surface exhibited a better alignment

  4. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Deborah A. [Department; Rokhlenko, Yekaterina [Department; Marine, Jeannette E. [Department; David, Rachelle [Department; Sahoo, Dipankar [Department; Watson, Matthew D. [Department; Koga, Tadanori [Department; Department; Osuji, Chinedum O. [Department; Rudick, Jonathan G. [Department

    2017-10-24

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.

  5. Nanggulan Formation and Its Problem As a Basement in Kulonprogo Basin, Yogyakarta

    Directory of Open Access Journals (Sweden)

    Hill Gendoet Hartono

    2017-03-01

    Full Text Available DOI: 10.17014/ijog.4.2.71-80Nanggulan Formation consists of the oldest clastic rock sequence exposed in Kulonprogo area, Yogyakarta. This paper discusses the position of Nanggulan Formation as a basement. The method used in this research is surface and subsurface investigations based on gravity surveys. The rock assemblage is exposed and distributed partly in the east flank of Kulonprogo Mountains with weak undulated morphology. The rock sequence is composed of sand to clay grain sizes such as sandstone, quartz sandstone, calcareous sandstone, claystone, fossiliferous claystone, calcareous claystone, siltstone, and coal seam intercalations. The total thickness of the sequence is less than 200 m. Based on the fossil and palynology investigations, previous investigators concluded the age of the rock was Eocene to Middle Miocene. The geological structures developed in the rocks are the lithological stratification, fractures, folding, and faulting. The subsurface interpretation based on gravity data revealed the rock was located under the andesite breccias with 2.44 g/cc density. The density of the rock sequence was 2.63 g/cc. The gravity interpretation shows a strong indication that Nanggulan Formation underlies the andesitic breccias presumably associated with Old Andesite Formation exposed in Kulonprogo Mountains. The limited distribution, the thickness, and the closed environmental deposition of Nanggulan Formation found in the present investigation raised problems on the position of the formation as the basement of Old Andesite Formation occurring in the Kulonprogo Mountain.

  6. Differential participation in formative assessment and achievement in introductory calculus

    OpenAIRE

    Dibbs, Rebecca-Anne

    2015-01-01

    International audience; Prior formative assessment research has shown positive achievement gains when classes using formative assessment are compared to classes that do not. However, little is known about what, if any, benefits of formative assessment occur within a class. The purpose of this study was to investigate the achievement of the students in introductory calculus using formative assessment at the two different participation levels observed in class. Although there was no significant...

  7. Toward Understanding Pore Formation and Mobility during Controlled Directional Solidification in a Microgravity Environment Investigation (PFMI)

    Science.gov (United States)

    Grugel, Richard N.; Anilkumar, A. V.; Luz, Paul; Jeter, Linda; Volz, Martin P.; Spivey, Reggie; Smith, G.

    2003-01-01

    The generation and inclusion of detrimental porosity, e.g., pipes and rattails can occur during controlled directional solidification processing. The origin of these defects is generally attributed to gas evolution and entrapment during solidification of the melt. On Earth, owing to buoyancy, an initiated bubble can rapidly rise through the liquid melt and pop at the surface; this is obviously not ensured in a low gravity or microgravity environment. Clearly, porosity generation and inclusion is detrimental to conducting any meaningful solidification-science studies in microgravity. Thus it is essential that model experiments be conducted in microgravity, to understand the details of the generation and mobility of porosity, so that methods can be found to eliminate it. In hindsight, this is particularly relevant given the results of the previous directional solidification experiments conducted in Space. The current International Space Station (ISS) Microgravity Science Glovebox (MSG) investigation addresses the central issue of porosity formation and mobility during controlled directional solidification processing in microgravity. The study will be done using a transparent metal-analogue material, succinonitrile (SCN) and succinonitrile-water 'alloys', so that direct observation and recording of pore generation and mobility can be made during the experiments. Succinonitrile is particularly well suited for the proposed investigation because it is transparent, it solidifies in a manner analogous to most metals, it has a convenient melting point, its material properties are well characterized and, it has been successfully used in previous microgravity experiments. The PFMI experiment will be launched on the UF-2, STS-111 flight. Highlighting the porosity development problem in metal alloys during microgravity processing, the poster will describe: (i) the intent of the proposed experiments, (ii) the theoretical rationale behind using SCN as the study material for

  8. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means of the GC......Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...

  9. Thermotropic and optical properties of chiral nematic polymers

    International Nuclear Information System (INIS)

    Tsai, M.L.; Chen, S.H.; Marshall, K.L.; Jacobs, S.D.

    1988-09-01

    The thermotropic and optical properties of methacrylate copolymers and chemically modified poly(γ-benzyl L-glutamate) were investigated as part of our effort to explore the optical applications of these materials. It was found that besides the commonly cited comonomer ratio, physical blending and annealing followed by quenching represent a new and more flexible means to tune the selective reflection wavelength. In the poly (γ-benzyl L-glutamate) systems, it appears that the relatively high melt viscosity is capable of sustaining the cholesteric mesophase, generated by annealing and quenching, up to 100/degree/C. 22 refs., 8 figs

  10. Synthesis of disk-rod-disk liquid crystal trimers by using click chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of disk-rod-disk liquid crystal trimers were synthesized.CuI-NEt3 catalyzed alkyne azide cycloaddition in toluene at room temperature connected two triphenylene discogens to a biphenyl rod-shaped mesogen.The trimers were characterized by using 1H NMR,IR,and high resolution mass spectrometry.The mesomorphic properties were investigated using polarized optical microscopy(POM) ,differential scanning calorimetry(DSC) ,and wide-angle X-ray diffraction.The results showed that the trimers exhibited rectangular columnar mesophase(Colr) .The length of the flexible spacer connecting the three segments has prominent influence on the phase transition temperatures of the trimers.

  11. Self-Assembling, Stable Photonic Bend-Gap Phases in Emulsions of Chiral Nematics with Isotropic Fluids

    Science.gov (United States)

    Huang, Chien-Yueh; Petschek, R. G.

    1998-03-01

    We investigate the possible mesophases in emulsions of chiral nematic liquid crystals with immiscible isotropic fluids and surfactants. The interactions between the orientational fields of the chiral nematics and the surfactant membranes together with the topological constraints affect stability of micellar geometries and produce a new phase diagram. We compare the free energies of various candidate phases. Appropriate, likely realizable conditions on the surfactant and the pitch of the liquid crystal result in thermodynamically stable blue-phase like phases for a relatively wide range of parameters. Processing such emulsions may result in materials with photonic band gaps.

  12. Formation of Irreversible H-bonds in Cellulose Materials

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  13. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  14. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  15. Asking Better Questions: How Presentation Formats Influence Information Search

    Science.gov (United States)

    Wu, Charley M.; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D.

    2017-01-01

    While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search…

  16. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system.

    Science.gov (United States)

    Zhao, S; Li, J H; An, S M; Li, S N; Liu, B X

    2017-05-17

    A realistic interatomic potential was first constructed for the Ca-Mg-Ni system and then applied to Monte Carlo simulations to predict the favored composition for metallic glass formation in the ternary system. The simulations not only predict a hexagonal composition region, within which the Ca-Mg-Ni metallic glass formation is energetically favored, but also pinpoint an optimized sub-region within which the amorphization driving force, i.e. the energy difference between the solid solution and disordered phase, is larger than that outside. The simulations further reveal that the physical origin of glass formation is the solid solution collapsing when the solute atom exceeds the critical solid solubility. Further structural analysis indicates that the pentagonal bi-pyramids dominate in the optimized sub-region. The large atomic size difference between Ca, Mg and Ni extends the short-range landscape and facilitates the development of a hybridized packing model in the medium-range, and eventually enhancing the glass formation in the system. The predictions are well supported by the experimental observations reported so far, and could be of help for designing the ternary glass formation.

  17. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  18. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    '-hydroxyphenylazo) benzoate. In series I the phenolic -OH group is alkylated, whereas in series II it is esterified with 4--alkoxybenzoyl group. In series I, all the nine members synthesized exhibit only enantiotropic smectic A mesophase.

  20. Investigating the Dynamics of Formative Assessment: Relationships between Teacher Knowledge, Assessment Practice and Learning

    Science.gov (United States)

    Herman, Joan; Osmundson, Ellen; Dai, Yunyun; Ringstaff, Cathy; Timms, Michael

    2015-01-01

    This exploratory study of elementary school science examines questions central to policy, practice and research on formative assessment: What is the quality of teachers' content-pedagogical and assessment knowledge? What is the relationship between teacher knowledge and assessment practice? What is the relationship between teacher knowledge,…

  1. Continuous formation of liturgy through social cognition

    Directory of Open Access Journals (Sweden)

    Ferdi Kruger

    2016-08-01

    Full Text Available This article researches two focal points, namely liturgical formation and the influence that social cognition has on liturgical formation. Within a South African context it is evident that Western liturgical traditions encounter African traditions and vice versa. This encounter is challenging because it creates new questions. The process of enculturation is prominent in recent research. The article refers to the process of social cognition as the manner in which people observe each other and try to make sense of other cultures and the people of those cultures. People’s cognition can be wrong, leading to distortions. The main research question for this investigation emanates from this possibility, namely: How does social cognition influence the process of liturgical formation? The authors first of all offer a descriptive– empirical vantage point to investigate this matter. Two local congregations were visited. The authors reflect on their own cognition, but also examine the cognition of the leaders through interviews. Based on the findings of this endeavour, normative perspectives are formulated from Acts 17:16–35 to highlight the role of cognition in liturgical formation. Throughout, the article includes consideration of the hermeneutic interaction between the various elements of this research and provides hermeneutic guidelines.

  2. Role of bacterial efflux pumps in biofilm formation.

    Science.gov (United States)

    Alav, Ilyas; Sutton, J Mark; Rahman, Khondaker Miraz

    2018-02-28

    Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.

  3. Formation of ω-phase in Zr-4 at.% Cr alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kazantseva, N.V.

    1996-01-01

    The ω-phase has been discovered in zirconium-base alloys with the transition metals of Period 4 of the Periodic Table only in Zr-V, Zr-Cr, and Zr-Cu alloys. The first mention about the ω-phase formation in Zr-Cr alloys was given for Zr-4.5 at.%. However, there were no experimental data that confirmed this fact. W.M. Rumball and F.G. Elder presented the X-ray results on the ω-phase formation in Zr-3.9 at.%Cr, but at the present time there are no electron microscope studies of the structure of the ω-phase in this system. Investigations of the features of the ω-phase formation, morphology of the ω-phase and the mechanism of its formation in the different zirconium-base alloys are necessary to establish the common features of the formation of structures with the metastable phases. The task of the present work is to study the conditions and features of the ω-phase formation in the Zr-Cr alloys and the effect of the eutectoid decomposition on the formation of ω-phase. This article is part of the detailed investigations of the feature and condition of the ω-phase formation in zirconium-base alloys with the transition metals of the groups I and V to VIII of the Periodic Table

  4. Investigation of Secondary Craters in the Saturnian System

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  5. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  6. Concept Formation Skills in Long-Term Cochlear Implant Users

    Science.gov (United States)

    Castellanos, Irina; Kronenberger, William G.; Beer, Jessica; Colson, Bethany G.; Henning, Shirley C.; Ditmars, Allison; Pisoni, David B.

    2015-01-01

    This study investigated if a period of auditory sensory deprivation followed by degraded auditory input and related language delays affects visual concept formation skills in long-term prelingually deaf cochlear implant (CI) users. We also examined if concept formation skills are mediated or moderated by other neurocognitive domains (i.e., language, working memory, and executive control). Relative to normally hearing (NH) peers, CI users displayed significantly poorer performance in several specific areas of concept formation, especially when multiple comparisons and relational concepts were components of the task. Differences in concept formation between CI users and NH peers were fully explained by differences in language and inhibition–concentration skills. Language skills were also found to be more strongly related to concept formation in CI users than in NH peers. The present findings suggest that complex relational concepts may be adversely affected by a period of early prelingual deafness followed by access to underspecified and degraded sound patterns and spoken language transmitted by a CI. Investigating a unique clinical population such as early-implanted prelingually deaf children with CIs can provide new insights into foundational brain–behavior relations and developmental processes. PMID:25583706

  7. Plasma formation in TBR

    International Nuclear Information System (INIS)

    Del Bosco, E.

    1981-01-01

    In this work are presented and discussed results of the formation and equilibrium of the plasma current in TBR, a small tokamak, designed and contructed at the Instituto de Fisica of Universidade de Sao Paulo. The measured breakdown curves for H 2 , A and He are compared with the predictions of a simple model with reasonable agreement. The influence of stray magnetic fields in the plasma formation is investigated and conditions are chosen to facilitate the breakdown. The time profile of loop voltage and plasma current for shots with plasma equilibrium are shown. A comparison is made between experimental results and analytical-numerical model for tokamaks discharges with ohmic heating. Reasonable agreement is obtained when Z, effective atomic number, is assumed as a parameter. (Author) [pt

  8. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    Science.gov (United States)

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  9. Correlative theoretical and experimental investigation of the formation of AlYB_1_4 and competing phases

    International Nuclear Information System (INIS)

    Hunold, Oliver; Chen, Yen-Ting; Music, Denis; Baben, Moritz to; Achenbach, Jan-Ole; Keuter, Philipp; Schneider, Jochen M.; Persson, Per O. Å.; Primetzhofer, Daniel

    2016-01-01

    The phase formation in the boron-rich section of the Al-Y-B system has been explored by a correlative theoretical and experimental research approach. The structure of coatings deposited via high power pulsed magnetron sputtering from a compound target was studied using elastic recoil detection analysis, electron energy loss spectroscopy spectrum imaging, as well as X-ray and electron diffraction data. The formation of AlYB_1_4 together with the (Y,Al)B_6 impurity phase, containing 1.8 at. % less B than AlYB_1_4, was observed at a growth temperature of 800 °C and hence 600 °C below the bulk synthesis temperature. Based on quantum mechanical calculations, we infer that minute compositional variations within the film may be responsible for the formation of both icosahedrally bonded AlYB_1_4 and cubic (Y,Al)B_6 phases. These findings are relevant for synthesis attempts of all boron rich icosahedrally bonded compounds with the space group: Imma that form ternary phases at similar compositions.

  10. Correlative theoretical and experimental investigation of the formation of AlYB{sub 14} and competing phases

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Oliver, E-mail: hunold@mch.rwth-aachen.de; Chen, Yen-Ting; Music, Denis; Baben, Moritz to; Achenbach, Jan-Ole; Keuter, Philipp; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Persson, Per O. Å. [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Primetzhofer, Daniel [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden)

    2016-02-28

    The phase formation in the boron-rich section of the Al-Y-B system has been explored by a correlative theoretical and experimental research approach. The structure of coatings deposited via high power pulsed magnetron sputtering from a compound target was studied using elastic recoil detection analysis, electron energy loss spectroscopy spectrum imaging, as well as X-ray and electron diffraction data. The formation of AlYB{sub 14} together with the (Y,Al)B{sub 6} impurity phase, containing 1.8 at. % less B than AlYB{sub 14}, was observed at a growth temperature of 800 °C and hence 600 °C below the bulk synthesis temperature. Based on quantum mechanical calculations, we infer that minute compositional variations within the film may be responsible for the formation of both icosahedrally bonded AlYB{sub 14} and cubic (Y,Al)B{sub 6} phases. These findings are relevant for synthesis attempts of all boron rich icosahedrally bonded compounds with the space group: Imma that form ternary phases at similar compositions.

  11. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  12. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  13. Synergistic kinetic inhibition of natural gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    Rocking cells were used to investigate the natural gas hydrate formation and decomposition in the presence of kinetic inhibitor, Luvicap. In addition, the influence of poly ethylene oxide (PEO) and NaCl on the performance of Luvicap was investigated using temperature ramping and isothermal...

  14. Fluid Density and Impact Cavity Formation

    Directory of Open Access Journals (Sweden)

    Ga-Chun Lin

    2018-01-01

    Full Text Available Characteristics of the impact cavity formed when a steel ball is dropped into aqueous solutions of densities ranging from 0.98 g·cm-3 to 1.63 g·cm-3 were investigated. A high-speed camera was used to record the formation and collapse of the cavity. The results showed cavity diameter, volume, and pinch-off time are independent of fluid density, on average. There was an unexplained reduction in cavity formation for densities of 1.34 g·cm-3 and 1.45 g·cm-3.

  15. Investigation on the upper Paleozoic Strata in Tang-e-Zakeen, and introducing Zakeen formation, Kuh-e Faraghan Zagros Basin, South Iran

    International Nuclear Information System (INIS)

    Ghavidel-Syooki, M.

    1998-01-01

    A thick clastic sequence is well-developed in Tang-e-Zakeen, Kuh-e-Faraghan, being situated approximately 80 Km north of Bandar Abbas. The sequence is 340 m. thick and mainly consists of sandstone, siltstone, shale and subordinate dolomitic beds. So far, this clastic sequence has been called Faraghan Formation. This rock unit lacks marine fauna and based on stratigraphic position, it was assigned to the Early Permian (Szabo and Kheradpir, 1978). Since then, a detailed palynological study has been carried out on the Faraghan Formation by the author. These studies resulted identification of numerous palynomorph taxa, including miospore and acritarch species. The known palynomorph taxa indicated that, a major part of Faraghan Formation belongs to the Devonian Period, while the rest is Early Permian. As a result, the National Iranian Stratigraphic Committee decided and agreed upon to divide the Faraghan Formation into two rock units, namely, the Zakeen Formation, embracing the Devonian strata, and Faraghan Formation for the Early Permian sequence in the Zagros Basin respectively. The Zakeen Formation derives from the Zakeen Village which is located in the southern flank of Kuh-e-Faraghan, about 80 km north of Bandar Abbas. The type section of Zakeen Formation attains a thickness of 285m. in Tang-e-Zakeen, Kuh-e-Faraghan, approximately 23 Km from the Zakeen village. It disconformably rests on the Sarchahan Formation, while it too, disconformably overlain by the Faraghan Formation. A total of 100 samples from the Zakeen Formation were selected and treated in the palynological laboratory of the Exploration Division of National Iranian Oil Company. 63 palynomorph taxa were encountered from the Zakeen Formation. The known species were arranged in five local stratigraphic assemblage zones. Zones I and II occur in a thickness of 96 m. of the Zakeen Formation, in ascending order, suggesting the Early Devonian whereas Zones III and IV occur Within 156 m. interval of the Zakeen

  16. Mesomorphous versus traces of crystallinity: The itraconazole example

    Energy Technology Data Exchange (ETDEWEB)

    Atassi, Faraj, E-mail: fatassi@yahoo.com; Behme, Robert J.; Patel, Phenil J.

    2013-12-20

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level.

  17. Mesomorphous versus traces of crystallinity: The itraconazole example

    International Nuclear Information System (INIS)

    Atassi, Faraj; Behme, Robert J.; Patel, Phenil J.

    2013-01-01

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level

  18. Adsorption of the ionic liquid [BMP][TFSA] on Au(111 and Ag(111: substrate effects on the structure formation investigated by STM

    Directory of Open Access Journals (Sweden)

    Benedikt Uhl

    2013-12-01

    Full Text Available In order to resolve substrate effects on the adlayer structure and structure formation and on the substrate–adsorbate and adsorbate–adsorbate interactions, we investigated the adsorption of thin films of the ionic liquid (IL 1-butyl-1-methylpyrrolidinium-bis(trifluoromethylsulfonylimide [BMP][TFSA] on the close-packed Ag(111 and Au(111 surfaces by scanning tunneling microscopy, under ultra high vacuum (UHV conditions in the temperature range between about 100 K and 293 K. At room temperature, highly mobile 2D liquid adsorbate phases were observed on both surfaces. At low temperatures, around 100 K, different adsorbed IL phases were found to coexist on these surfaces, both on silver and gold: a long-range ordered (‘2D crystalline’ phase and a short-range ordered (‘2D glass’ phase. Both phases exhibit different characteristics on the two surfaces. On Au(111, the surface reconstruction plays a major role in the structure formation of the 2D crystalline phase. In combination with recent density functional theory calculations, the sub-molecularly resolved STM images allow to clearly discriminate between the [BMP]+ cation and [TFSA]− anion.

  19. COMPETENCYTHE FORMATION FOR LIFE

    Directory of Open Access Journals (Sweden)

    Milagros Mederos-Piñeiro

    2016-07-01

    Full Text Available The formation of life competences is the result of a quality education that prepares students to meet the challenges of a fast moving world where equality and equal opportunities should constitute premises of education; training them is a challenge teachers to assume new generations contribute actively to a better world. In Cuba are important research on the formation of communication competences and self-regulated learning in primary school. The paper shows the result of an investigation that provides a methodology for the formation of life competences in primary school education, used as an essential pathway research activity. The methodological approach of research has a quantitative approach and an explanatory scope to establish and make sense of understanding the causal relationship between the direction of research activity and training of life competences. Theoretical, empirical and mathematical-statistical, for characterizing the initial state, processing of results and analysis: research methods are used. The application of the methodology for the formation of life competences makes teachers lead the teaching-learning process with a research and transforming teaching concept, where the school is the protagonist of their learning and causes changes in their performances, which are evident in the formed competences related to effective and affective communication; the solution of problems related to life; the use of means in obtaining the knowledge and the expression of a behavior consistent with school and social demands. The effectiveness of the methodology confirms that there is a causal relationship between the direction of research activity by teachers and the formation of life competences in school.

  20. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2010-01-01

    austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...... with a continuation of the martensitic transformation. On prolonged isothermal holding a volume reduction was observed for AISI 52100, but not for AISI 1070. A mechanism is proposed that explains the occurrence of isothermal martensite formation....

  1. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    Science.gov (United States)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  2. Forced migration, adolescence, and identity formation.

    Science.gov (United States)

    Anagnostopoulos, Dimitris C; Vlassopoulos, Maria; Lazaratou, Helen

    2006-09-01

    Adolescence is a complex biopsychosocial phenomenon. All the inner-subjective changes in adolescents take place within the context of a specific social environment, which offers the necessary ideological setting that adolescents must confront in the course of their identity formation. Forced migration creates conditions under which the adolescent Ego may be traumatized more easily, resulting in the development of defensive mechanisms, which may interfere with the natural process of identity formation. The aim of this paper is to investigate how a traumatic situation such as forced migration may affect the mechanisms of identity formation in adolescence. For this purpose, clinical material, consisting of two cases of psychoanalytical psychotherapy of adolescents who were forced to immigrate to Greece, is presented and discussed in a psychoanalytical theoretical framework, along with the historical-sociological background.

  3. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium

    Directory of Open Access Journals (Sweden)

    Panpan Yang

    2017-08-01

    Full Text Available Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs. Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.

  4. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  5. Investigation of HNCO isomer formation in ice mantles by UV and thermal processing: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Escobar, A.; Giuliano, B. M.; Caro, G. M. Muñoz; Cernicharo, J. [Centro de Astrobiología, INTA-CSIC, Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Marcelino, N., E-mail: bgiuliano@cab.inta-csic.es [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-06-10

    Current gas-phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting their formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogs containing H{sub 2}O, NH{sub 3}, CO, HCN, CH{sub 3}OH, CH{sub 4}, and N{sub 2} followed by warm-up under astrophysically relevant conditions. Only the H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ices were simulated using the Interstellar Astrochemistry Chamber, a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer detected the desorption of the molecules in the gas phase. UV photoprocessing of H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ices lead to the formation of OCN{sup –} as a main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV photoprocessing of realistic simulated ice mantles might explain the observed abundances of these species in photodissociation regions, hot cores, and dark clouds.

  6. Interaction between synthetic lecithin and various sulfur-containing radioprotectors

    International Nuclear Information System (INIS)

    Rix-Montel, M.A.; Kranck, H.; Vasilescu, D.

    1981-01-01

    Interaction of the synthetic lecithin dipalmitoylphosphatidylcholine (DPPC) smectic mesophases with sulfur-containing radioprotectors was investigated by means of spectrophotometric and dielectric measurements. Electrical conductivity behavior indicated in all cases that an electrostatic interaction occurs between DPPC and the antiradiation drugs. This interaction is very strong in the case of the WR 2721 molecule. Thermal transitions of DPPC studied by spectrophotometry and conductivity Arrhenius diagrams showed that although the radio-protectors investigated (except WR 2721) delete the pretransition of the lipid phase, the principal transition is not modified. The observed electrostatic interactions are discussed with regard to ionized sites of the phosphatidylcholine lipid head and those of the radioprotectors. The special cases of WR 2721 and its metabolite, WR 1065, are examined

  7. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  8. An investigation on loyalty formation model in e-banking customers: A case study of banking industry

    Directory of Open Access Journals (Sweden)

    Mahmood Reza Esmaeili

    2013-03-01

    Full Text Available E-banking plays an important role on increasing customer satisfaction and helps industry grow faster. Most banks try to retain their customers by introducing more electronic services to facilitate banking transactions. Creating loyalty through providing better banking services is a new area of research. In fact, e-loyalty can be directly impacted by e-satisfaction, e-trust, and indirectly influenced by e-services, perceived value, reputation, and habit. Therefore, the present paper deals with designing and explanation of loyalty formation model in e-banking. The preliminary results indicate that “satisfaction” is the most influential component affecting customer loyalty formation with an 87% diagnose coefficient. In addition, trust formation in customers may impact loyalty in an electronic environment with a 70% diagnose coefficient. Moreover, the most important factors impacting customer satisfaction include “reputation” “perceived value,” “service quality,” and “habit” with relative effects coefficients of 44%, 32%, 29%, and 26%, respectively. Finally, “reputation,” “service quality,” “habit” and “perceived value” have been the most important factors influencing customer trust with influence coefficients of 37%, 32%, 31%, and 24%, respectively.

  9. Seismic attributes and advanced computer algorithm to predict formation pore pressure: Qalibah formation of Northwest Saudi Arabia

    Science.gov (United States)

    Nour, Abdoulshakour M.

    Oil and gas exploration professionals have long recognized the importance of predicting pore pressure before drilling wells. Pre-drill pore pressure estimation not only helps with drilling wells safely but also aids in the determination of formation fluids migration and seal integrity. With respect to the hydrocarbon reservoirs, the appropriate drilling mud weight is directly related to the estimated pore pressure in the formation. If the mud weight is lower than the formation pressure, a blowout may occur, and conversely, if it is higher than the formation pressure, the formation may suffer irreparable damage due to the invasion of drilling fluids into the formation. A simple definition of pore pressure is the pressure of the pore fluids in excess of the hydrostatic pressure. In this thesis, I investigated the utility of advance computer algorithm called Support Vector Machine (SVM) to learn the pattern of high pore pressure regime, using seismic attributes such as Instantaneous phase, t*Attenuation, Cosine of Phase, Vp/Vs ratio, P-Impedance, Reflection Acoustic Impedance, Dominant frequency and one well attribute (Mud-Weigh) as the learning dataset. I applied this technique to the over pressured Qalibah formation of Northwest Saudi Arabia. The results of my research revealed that in the Qalibah formation of Northwest Saudi Arabia, the pore pressure trend can be predicted using SVM with seismic and well attributes as the learning dataset. I was able to show the pore pressure trend at any given point within the geographical extent of the 3D seismic data from which the seismic attributes were derived. In addition, my results surprisingly showed the subtle variation of pressure within the thick succession of shale units of the Qalibah formation.

  10. A Theoretical and Experimental Investigation of Mechanical Damage to Rodent Sperm Generated by Microscale Ice Formation.

    Science.gov (United States)

    Han, X; Critser, J K

      BACKGROUND: Rodent sperm cryopreservation is of critical importance for the maintenance of lines or strains of genetically engineered mice and rats. However, rodent sperm are extremely mechanically sensitive due to their unusual morphology, and are severely damaged using current methods of cryopreservation. Those methods result in poor post thaw motility (PTM) for mouse. To investigate the mechanism of mechanical damage introduced to rodent sperm during freezing, a micro-mechanical model was established to analyze the sperm radial and axial thermal stresses generated by microscale extracellular ice formation. PTM of mouse sperm cryopreserved in capillaries of different radii (100, 200, 344, 526, 775µm) was measured using a standard computer-assisted sperm analysis system. The model predicts that when one of the inner dimensions of the containers (the inner diameter of plastic straws or straw capillaries) is on the same order of magnitude of sperm length, axial stress is significantly increased. The experimental results showed that the value of PTM was decreased from 38 ± 8 % in the larger (775µm) capillaries to 0 ± 0 % in the smaller (100 µm) ones. Theoretical analysis based on the established model were experimentally validated and can be used to guide the design of novel devices to improve the efficiency of rodent sperm cryopreservation.

  11. Core-to-core dimers forming switchable mesophase

    Czech Academy of Sciences Publication Activity Database

    Horčic, M.; Svoboda, J.; Novotná, Vladimíra; Pociecha, D.; Gorecka, E.

    2017-01-01

    Roč. 53, č. 18 (2017), s. 2721-2724 ISSN 1359-7345 R&D Projects: GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : liquid crystals * bent- core mesogens * dimers Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 6.319, year: 2016

  12. Study of a magnetically oriented lyotropic mesophase

    International Nuclear Information System (INIS)

    Amaral, L.Q.; Pimentel, C.A.; Tavares, M.R.; Vanin, J.A.

    A study of a magnetically oriented lyomesophase formed by a quaternary system (Na decyl sulfate/water/decanol/ Na sulfate) is reported. Small angle X-ray diffraction measurements have been performed on unoriented samples and samples previously subjected to the action of magnetic fields (H vector). A model of finite planar micelles surrounded by water is proposed [pt

  13. Concept formation skills in long-term cochlear implant users.

    Science.gov (United States)

    Castellanos, Irina; Kronenberger, William G; Beer, Jessica; Colson, Bethany G; Henning, Shirley C; Ditmars, Allison; Pisoni, David B

    2015-01-01

    This study investigated if a period of auditory sensory deprivation followed by degraded auditory input and related language delays affects visual concept formation skills in long-term prelingually deaf cochlear implant (CI) users. We also examined if concept formation skills are mediated or moderated by other neurocognitive domains (i.e., language, working memory, and executive control). Relative to normally hearing (NH) peers, CI users displayed significantly poorer performance in several specific areas of concept formation, especially when multiple comparisons and relational concepts were components of the task. Differences in concept formation between CI users and NH peers were fully explained by differences in language and inhibition-concentration skills. Language skills were also found to be more strongly related to concept formation in CI users than in NH peers. The present findings suggest that complex relational concepts may be adversely affected by a period of early prelingual deafness followed by access to underspecified and degraded sound patterns and spoken language transmitted by a CI. Investigating a unique clinical population such as early-implanted prelingually deaf children with CIs can provide new insights into foundational brain-behavior relations and developmental processes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Mechanistic investigation of the one-pot formation of amides by oxidative coupling of alcohols with amines in methanol

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Riisager, Anders; Fristrup, Peter

    2013-01-01

    The one-pot formation of amides by oxidative coupling of alcohols and amines via intermediate formation of methyl ester using supported gold and base as catalysts was studied using the Hammett methodology. Determining the relative reactivity of four different para-substituted benzyl alcohol deriv...... a theoretical Hammett plot that was in good agreement with the one obtained experimentally....

  15. Formation of cellular structure in beryllium at plastic working

    International Nuclear Information System (INIS)

    Papirov, I.I.; Nikolaenko, A.A.; Shokurov, V.S.; Pikalov, A.I.

    2013-01-01

    Conditions of cellular structure formation are investigated at various kinds of deformation and heat treatment of beryllium ingots. It is shown that the cellular structure plays the important role in formation of complex of physical mechanical properties of beryllium. Influence of impurity, various conditions of deformation (temperature, squeezing degree) and heat treatments on substructure, texture and mechanical properties of metal is investigated. Optimum conditions of rolling and heat treatments of beryllium are defined. The way of sign-variable cyclic deformation of beryllium ingots is offered for reception quasi-isotropic fine-grained metal. Physical-mechanical properties of ultra fine-grained metal are studied

  16. CsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation

    Science.gov (United States)

    Akbali, B.; Topcu, G.; Guner, T.; Ozcan, M.; Demir, M. M.; Sahin, H.

    2018-03-01

    Recent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.

  17. Synthesis of molecules in interstellar clouds and star formation

    International Nuclear Information System (INIS)

    Ghosh, K.K.; Ghosh, S.N.

    1981-01-01

    Study of the formation and destruction processes of interstellar molecules may throw certain light on interstellar medium. Formation and destruction processes of some interstellar molecules are proposed on the basis of laboratory data. The abundances of these molecules are calculated under steady-state condition. The calculated values are then compared with the observed values, obtained by different investigators. It appears that gas phase ion-neutral reactions are capable of synthesizing most interstellar molecules. The role of ion-neutral reactions to star formation has also been discussed. (author)

  18. The three phases of galaxy formation

    Science.gov (United States)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  19. Effect of aluminium on formation of metastable phases in titanium-niobium alloys

    International Nuclear Information System (INIS)

    Trenogina, T.L.; Derevyanko, V.N.; Vozilkin, V.A.

    2001-01-01

    Specific features of phase transformations in the alloy of Ti-20Nb-29Al (at.%) are investigated in comparison with those in the aluminium-free Ti-21Nb alloy. It is states that in the alloy Ti-20Nb-29Al on quenching the ordering of β-solid solution takes place with B2-structure formation. The B2-matrix experiences decomposition with the formation of ordered Ω 0 -phase which field ranges up to 700 deg C. The investigation results show that the sequence of phase formation in Ti-Nb-Al and aluminium-free alloys is much the same. The only difference between them is the formation of ordered phases in the alloy Ti-20Nb-29Al [ru

  20. H-Bond stabilized columnar discotic liquid crystals

    NARCIS (Netherlands)

    Paraschiv, I.

    2007-01-01

    Since 1977, more than 2300 publications on discotic (disk-like) liquid crystalline materials have appeared. Discotic liquid crystals, which usually consist of polyaromatic molecules surrounded by long peripheral alkyl tails, can form liquid crystalline mesophases in a wide temperature range. Within

  1. Investigation concerning the relative formation rate and half-life time of short-lived nuclides with a fast conveyor tube system

    International Nuclear Information System (INIS)

    Kreiner, H.J.

    1976-01-01

    Since the installation of the 'Ultrafast Rabbit System' at the FRN in end of 1974, some research was started concerning the possibility of neutron activation analysis of short-lived nuclides (0.02 1/2 < 1 s) and measurements of short-lived fission products of U-235 and Pu-239. One of the results of the investigations is a more exact gamma-energy determination of the 0.8 s Cl-38m with 671.33 keV. In NAA it was possible to reach a sensitivity for lead and boron near 2 μg per sample respectively 10 ppm. In measurements of light fission products 0.1 - 8s after a pulse irradiation some differences of the relative formation rate and half-life in the region of A approximately 100 were found in comparison to literature. For example a strong build-up could be seen measuring the gamma-energy of 276.1 keV that belongs to Nb-101. Therefore we suppose the existence of an isomeric state of Nb-101. In comparison to our own results of yield ratio of the Pu- and U-fission products a good agreement with known data was found. Furthermore the measuring method gives the possibility of coordination of unknown gamma-lines to nuclides using the rate of formation, the half-life, the yield ratio between U and Pu and the build-up factor. That could be verified in some cases, e.g. Nb-103 and Sr-96. (author)

  2. The interstellar medium and star formation in local galaxies: Variations of the star formation law in simulations

    International Nuclear Information System (INIS)

    Becerra, Fernando; Escala, Andrés

    2014-01-01

    We use the adaptive mesh refinement code Enzo to model the interstellar medium (ISM) in isolated local disk galaxies. The simulation includes a treatment for star formation and stellar feedback. We get a highly supersonic turbulent disk, which is fragmented at multiple scales and characterized by a multi-phase ISM. We show that a Kennicutt-Schmidt relation only holds when averaging over large scales. However, values of star formation rates and gas surface densities lie close in the plot for any averaging size. This suggests an intrinsic relation between stars and gas at cell-size scales, which dominates over the global dynamical evolution. To investigate this effect, we develop a method to simulate the creation of stars based on the density field from the snapshots, without running the code again. We also investigate how the star formation law is affected by the characteristic star formation timescale, the density threshold, and the efficiency considered in the recipe. We find that the slope of the law varies from ∼1.4 for a free-fall timescale, to ∼1.0 for a constant depletion timescale. We further demonstrate that a power law is recovered just by assuming that the mass of the new stars is a fraction of the mass of the cell m * = ερ gas Δx 3 , with no other physical criteria required. We show that both efficiency and density threshold do not affect the slope, but the right combination of them can adjust the normalization of the relation, which in turn could explain a possible bi-modality in the law.

  3. Extraordinary Mechanism of the Diels-Alder Reaction: Investigation of Stereochemistry, Charge Transfer, Charge Polarization, and Biradicaloid Formation.

    Science.gov (United States)

    Sexton, Thomas; Kraka, Elfi; Cremer, Dieter

    2016-02-25

    The Diels-Alder reaction between 1,3-butadiene and ethene is investigated from far-out in the entrance channel to the very last step in the exit channel thus passing two bifurcation points and extending the range of the reaction valley studied with URVA (Unified Reaction Valley Approach) by 300% compared to previous studies. For the first time, the pre- and postchemical steps of the reaction are analyzed at the same level of theory as the actual chemical processes utilizing the path curvature and its decomposition into internal coordinate or curvilinear coordinate components. A first smaller charge transfer to the dienophile facilitates the rotation of gauche butadiene into its cis form. The actual chemical processes are initiated by a second larger charge transfer to the dienophile that facilitates pyramidalization of the reacting carbon centers, bond equalization, and biradicaloid formation of the reactants. The transition state is aromatically stabilized and moved by five path units into the entrance channel in line with the Hammond-Leffler postulate. The pseudorotation of the boat form into the halfchair of cyclohexene is analyzed. Predictions are made for the Diels-Alder reaction based on a 11-phase mechanism obtained by the URVA analysis.

  4. Silver-containing mesoporous bioactive glass with improved antibacterial properties.

    Science.gov (United States)

    Gargiulo, Nicola; Cusano, Angela Maria; Causa, Filippo; Caputo, Domenico; Netti, Paolo Antonio

    2013-09-01

    The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

  5. Phase equilibrium and physical properties of biobased ionic liquid mixtures.

    Science.gov (United States)

    Toledo Hijo, Ariel A C; Maximo, Guilherme J; Cunha, Rosiane L; Fonseca, Felipe H S; Cardoso, Lisandro P; Pereira, Jorge F B; Costa, Mariana C; Batista, Eduardo A C; Meirelles, Antonio J A

    2018-02-28

    Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s -1 , as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.

  6. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  7. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  8. Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B

    Science.gov (United States)

    Abraham, Nabil Mathew

    Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We

  9. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Science.gov (United States)

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  10. Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project

    Science.gov (United States)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.

    2013-12-01

    formation (eg. Hamersley BIF). So we investigate that the Cleaverville iron formation, which is one of the best well known Mesoarchean iron formation, was already started cyanobacteria oxygen production system to used pre-syn iron sedimentation at anoxic oceanic condition.

  11. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  12. Uranium in a recent phosphorite formation process

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, G N; Dubinchuk, V I; Kochenov, A V

    1986-01-01

    Uranium behaviour in the process of nowadays phosphorite formation in the sediments of Namibia shelf is considered. The material collected during the 3-d trip of the research vessel ''Akademik Kurchatov'' and 26-th trip of the research vessel ''Mikhail Lomonosov'' is used. The samples from three geological stations 2046, 2047 and 2048 from the depths of 78-87 m have been investigated. Each sample (mass from 0.2 to 0.3 kg) is composed of several samples representing unified genetic series: holocene diatomic silts enclosing phosphorites - phosphatized silts - phosphorite concretions. Uranium has been determined by the X-ray spectral method; phosphorus, organic carbon and other components - by the chemical analysis. Uranium forms investigated by the combination of methods of electron microscopy, microdiffraction, microradioautography and microsounding. Uranium content in nowadays phosphorites at the shelf is 3-106 g/t. Uranium accumulation in phosphorites at the initial stages of their formation is controlled by its content in host sediments. In the course of litification of diagenetic phosphate concretions the uranium content in them varies from 40 to 80 g/t. The uranium concentration process in phosphorites is accompanied by formation of independent mineral phases of uranium oxide and ningyoite type.

  13. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  14. Adaptive Fuzzy Output Regulation for Formation Control of Unmanned Surface Vehicles

    DEFF Research Database (Denmark)

    Li, Shaobao; Er, Meng Joo; Wang, Ning

    2017-01-01

    In this paper, the formation control problem of unmanned surface vehicles (USVs) is investigated. Unlike the classical formation control problem where the reference signal is required to be second-order differentiable with respect to time, we consider a more general autonomous dynamic system...

  15. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    Science.gov (United States)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  16. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  17. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  18. Regulation of Reactionary Dentine Formation.

    Science.gov (United States)

    Neves, V C M; Sharpe, P T

    2018-04-01

    During the treatment of dental caries that has not penetrated the tooth pulp, maintenance of as much unaffected dentine as possible is a major goal during the physical removal of decayed mineral. Damage to dentine leads to release of fossilized factors (transforming growth factor-β [TGF-β] and bone morphogenic protein [BMP]) in the dentine that are believed to stimulate odontoblasts to secrete new "tertiary" dentine (reactionary dentine). This is formed on the pulpal surface of existing dentine and rethickens the dentine. We have previously shown that activation of Wnt/β-catenin signaling is pivotal for tooth repair in exposed pulp injury, and the pathway can be activated by small-molecule GSK-3 antagonists, resulting in enhanced reparative dentine formation. Here, we use a nonexposed pulp injury model to investigate the mechanisms of reactionary dentine formation in vivo, using small molecules to modulate the Wnt/β-catenin, TGF-β, and BMP pathways. We found that a local increase of Wnt activation at the injury site enhances reactionary dentine secretion. In addition, inhibition of TGF-β, BMP, or Wnt pathways does not impede reactionary dentine formation, although inhibition of TGF-β and/or BMP signaling does result in more disorganized, nontubular reactionary dentine. This suggests that Wnt/β-catenin signaling plays no major role in the formation of reactionary dentine, but in common with reparative dentine formation, exogenous elevation of Wnt/β-catenin signaling can enhance tertiary dentine formation. Release of latent TGF-β or BMPs from dentine is not required for the deposition of mineral to form reactionary dentine but does play a role in its organization.

  19. Rayleigh-Benard Natural Convection Cell Formation and Nusselt number

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2013-01-01

    The experimental results lie within the predictions of the existing heat transfer correlations for the Rayleigh-Benard natural convections even though the material properties were different. For shorter separation distances, the heat transfers enhance due to the active interaction between heated and cooled plumes. For a step temperature difference, the time dependent Nusselt number variations were investigated. Both experimental and numerical results showed that with time the Nusselt number decreases monotonically to a minimum point presenting the onset of convection. As the hot and cold plumes increase and convey the heat to the other plates, the Nusselt number increases to the local maximum point, presenting the vertical movements of the plumes. Then, the Nusselt number fluctuates with the formation of square cells and larger vortices. This also predicted by the mass transfer experiment. The experiments and calculations show similar trend but the timings were different. These discrepancies are caused by the disturbances inherent in both systems. The molten pool is formed in a hypothetical severe accident condition at the lower head of reactor vessel and is stratified into two layers by the density difference: an upper metallic layer and a lower oxide pool. Rayleigh-Benard natural convection occurs in the metallic layer of relocated molten pool. This study aimed at the investigation of the time-dependent cell formation and Nusselt number variation in Rayleigh-Benard natural convection. Time dependent variation of Nusselt number was also measured experimentally and analyzed numerically to investigate the relationship between the cell formation and Nusselt number. Based on the analogy, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and heating conditions

  20. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  1. The enthalpies of formation of two dibenzocyclooctadienones

    Energy Technology Data Exchange (ETDEWEB)

    Perisanu, St.; Contineanu, Iulia; Banciu, M.D.; Liebman, Joel F.; Farivar, Behzad S.; Mullan, Melissa A.; Chickos, James S.; Rath, Nigam; Hillesheim, Dorothea M

    2003-04-17

    The standard molar enthalpies of formation ({delta}{sub f}H{sub m}{sup 0}(s)/kJ mol{sup -1}) for 2,3:6,7-dibenzocycloocta-2,6-dien-1-one and 2,3:7,8-dibenzocycloocta-2,7-dien-1-one [6H-11,12-dihydro-dibenzo[a,e]cycloocten-5-one (ketone 1) and 10H-11,12-dihydrodibenzo[a,d]-cycloocten-5-one (ketone 2), respectively] were derived from enthalpies of combustion, measured by means of a microbomb calorimeter. The fusion and vaporization enthalpies of these compounds were obtained from DSC and correlation gas chromatography measurements. The standard molar enthalpies of formation in the gas phase were calculated by combining the condensed phase standard molar enthalpies of formation with the fusion and vaporization enthalpies adjusted to 298.15 K. Values for {delta}{sub f}H{sub m}{sup 0}(g) of (-39.9{+-}5.5) and (-14.8{+-}5.3) kJ mol{sup -1} were obtained for 2,3:6,7-dibenzocycloocta-2,6-dien-1-one and 2,3:7,8-dibenzocycloocta-2,7-dien-1-one, respectively. Quantum chemical calculations are reported for the compounds investigated experimentally and an additional four isomers. Isomerization enthalpies are derived from computed energies. The enthalpies of formation are also calculated by group additivity, compared with the experimental values and then correlated with the structure of the molecules investigated. The X-ray analysis of ketone 1 is also reported.

  2. The enthalpies of formation of two dibenzocyclooctadienones

    International Nuclear Information System (INIS)

    Perisanu, St.; Contineanu, Iulia; Banciu, M.D.; Liebman, Joel F.; Farivar, Behzad S.; Mullan, Melissa A.; Chickos, James S.; Rath, Nigam; Hillesheim, Dorothea M.

    2003-01-01

    The standard molar enthalpies of formation (Δ f H m 0 (s)/kJ mol -1 ) for 2,3:6,7-dibenzocycloocta-2,6-dien-1-one and 2,3:7,8-dibenzocycloocta-2,7-dien-1-one [6H-11,12-dihydro-dibenzo[a,e]cycloocten-5-one (ketone 1) and 10H-11,12-dihydrodibenzo[a,d]-cycloocten-5-one (ketone 2), respectively] were derived from enthalpies of combustion, measured by means of a microbomb calorimeter. The fusion and vaporization enthalpies of these compounds were obtained from DSC and correlation gas chromatography measurements. The standard molar enthalpies of formation in the gas phase were calculated by combining the condensed phase standard molar enthalpies of formation with the fusion and vaporization enthalpies adjusted to 298.15 K. Values for Δ f H m 0 (g) of (-39.9±5.5) and (-14.8±5.3) kJ mol -1 were obtained for 2,3:6,7-dibenzocycloocta-2,6-dien-1-one and 2,3:7,8-dibenzocycloocta-2,7-dien-1-one, respectively. Quantum chemical calculations are reported for the compounds investigated experimentally and an additional four isomers. Isomerization enthalpies are derived from computed energies. The enthalpies of formation are also calculated by group additivity, compared with the experimental values and then correlated with the structure of the molecules investigated. The X-ray analysis of ketone 1 is also reported

  3. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    Science.gov (United States)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  4. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.

    Science.gov (United States)

    Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs

    2017-10-01

    In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1  s -1 and 149.5 ± 5.8 M -1  s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during

  5. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  6. Gigaseal formation in patch clamping with applications of nanotechnology

    CERN Document Server

    Malboubi, Majid

    2014-01-01

    This book presents an investigation of gigaseal formation using micro/nanotechnology. The aims of the book are twofold. First, it explains the mechanisms of gigaseal formation using the latest discoveries. Second, it provides practical techniques for frequent formation of high resistance seals. The formation of a high-resistance electrical seal, also known as a gigaseal, between a cell membrane and a glass micropipette tip is essential in patch-clamp experiments. Even though four decades have passed since the introduction of the patch-clamping technique by Neher and Sakmann, gigaseal formation remains an obstacle in developing the high-throughput ion channel screening systems required by the pharmaceutical industry. Here the authors share their latest methods for achieving gigaseal formation and describe techniques that are highly desirable at both research and industrial levels. Nanotechnology has been found to be a powerful tool for studying and modifying glass micropipettes and in tackling the problem of g...

  7. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kissick, David J.; Dettmar, Christopher M. [Purdue University, West Lafayette, IN 47907 (United States); Becker, Michael [Argonne National Laboratory, Argonne, IL 60439 (United States); Mulichak, Anne M. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Cherezov, Vadim [The Scripps Research Institute, La Jolla, CA 92037 (United States); Ginell, Stephan L. [Argonne National Laboratory, Argonne, IL 60439 (United States); Battaile, Kevin P.; Keefe, Lisa J. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Fischetti, Robert F. [Argonne National Laboratory, Argonne, IL 60439 (United States); Simpson, Garth J., E-mail: gsimpson@purdue.edu [Purdue University, West Lafayette, IN 47907 (United States)

    2013-05-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.

  8. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    International Nuclear Information System (INIS)

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-01-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β 2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed

  9. Additional aspects of facies determination of the Souza Formation

    International Nuclear Information System (INIS)

    Vasconcelos, E.C.; Mabesoone, J.M.

    1984-01-01

    By means of geochemical analysis of total sample and trace elements, x-ray and DTA investigation of the clay fractions, and microfanes study, obtained by the facies determination of the Souza Formation, some additional aspects giving evidence of the sequence of events responsable by origin, deposition and formation of sediments of this middle unit of the Rio do Peixe group were established. (Author) [pt

  10. Experimental investigation of biofilm formation within a glass porous medium in the presence of carbon dioxide

    Science.gov (United States)

    Sygouni, Varvara; Manariotis, Ioannis D.; Chrysikopoulos, Constantinos V.

    2013-04-01

    Capturing CO2 emissions and storing them in properly selected deep geologic formations is considered a promising solution for the reduction of CO2 in the atmosphere. However, if CO2 leakage occurs from geologic storage formations due to permeability increases caused by rock-brine-supercritical CO2 geochemical reactions or reactivation of existing fractures, the impact to groundwater quality could be significant. Dissolved CO2 in groundwater can decrease the pH, which in turn can solubilize undesired heavy metals from the solid matrix with profound and severe implications to public health. Consequently, it is essential to fully understand the potential impact of CO2 to shallow groundwater systems. In this study, a series of visualization experiments in a glass-etched micromodel were performed in order to estimate the effect of CO2 on biofilm formation. All biofilms were developed using Pseudomonas (P.) Putida. Synthetic water saturated with CO2 was injected through the micromodel through an inlet port, and CO2 was measured at the outlet port. The transient growth of the biofilm was monitored by taking high-resolution digital photographs at various times, and the effect of CO2 on biofilm growth was estimated. Furthermore, transient changes of effective permeability and porosity were measured and the effect of solution chemistry (e.g. pH, ionic strength, redox potential) on the rate of biofilm growth was evaluated.

  11. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  12. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  13. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  14. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  15. Directed networks, allocation properties and hierarchy formation

    NARCIS (Netherlands)

    Slikker, M.; Gilles, R.P.; Norde, H.W.; Tijs, S.H.

    2005-01-01

    We investigate properties for allocation rules on directed communication networks and the formation of such networks under these payoff properties. We study allocation rules satisfying two appealing properties, Component Efficiency (CE) and the Hierarchical Payoff Property (HPP). We show that such

  16. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  17. Formative questioning in computer learning environments: a course for pre-service mathematics teachers

    Science.gov (United States)

    Akkoç, Hatice

    2015-11-01

    This paper focuses on a specific aspect of formative assessment, namely questioning. Given that computers have gained widespread use in learning and teaching, specific attention should be made when organizing formative assessment in computer learning environments (CLEs). A course including various workshops was designed to develop knowledge and skills of questioning in CLEs. This study investigates how pre-service mathematics teachers used formative questioning with technological tools such as Geogebra and Graphic Calculus software. Participants are 35 pre-service mathematics teachers. To analyse formative questioning, two types of questions are investigated: mathematical questions and technical questions. Data were collected through lesson plans, teaching notes, interviews and observations. Descriptive statistics of the number of questions in the lesson plans before and after the workshops are presented. Examples of two types of questions are discussed using the theoretical framework. One pre-service teacher was selected and a deeper analysis of the way he used questioning during his three lessons was also investigated. The findings indicated an improvement in using technical questions for formative purposes and that the course provided a guideline in planning and using mathematical and technical questions in CLEs.

  18. Geology of the Cannonball Formation (Paleocene) in the Williston basin, with reference to uranium potential. Report of investigation No. 57

    International Nuclear Information System (INIS)

    Cvancara, A.M.

    1976-01-01

    The Paleocene Cannonball Formation is a marine, non-lignitic-bearing clastic sequence in the lower part of the Fort Union Group. It is overlain by the lignite-bearing Tongue River Formation in places and both overlain and underlain by the lignite-bearing Ludlow Formation in places. The Cannonball crops out primarily in southwest-central North Dakota and probably occurs throughout the western one-half of the state. It occurs also in northwestern South Dakota and may extend into parts of Saskatchewan and Manitoba. Poorly consolidated, very fine- to fine-grained, light to medium brownish yellow-weathering sandstone and light gray-weathering, sandy mudstone are the principal types of lithology. Mudstone generally predominates in North Dakota whereas sandstone seems to predominate in South Dakota. Although uranium in the Williston basin has been found almost entirely in lignite and nonmarine carbonaceous rocks, its occurrence in the marine Cannonball Formation is possible. If the Cannonball, Ludlow, Tongue River, and Sentinel Butte Formations are at least partly penecontemporaneous, a variety of depositional environments were in areal juxtaposition during the Paleocene. Streams originating or passing through coastal plain bogs could have carried uranium ions (derived from volcanic materials) to the Cannonball sea where they were deposited syngenetically. Epigenetic uranium may occur in Cannonball mudstones or sandstones that directly underlie the Ludlow Formation, which is known to contain volcanic materials

  19. Variations in non-thermal NO formation pathways in alcohol flames

    KAUST Repository

    Bohon, Myles

    2016-07-04

    This work investigates the formation of NO in a range of laminar, premixed, burner-stabilized C1 to C3 alcohol and alkane flames, in the equivalence ratio between 0.8 and 1.2. Measurements of temperature and NO concentration were conducted, and simulations utilizing the measured temperature profile allowed for the comparison of predicted NO with experiment, as well as a detailed investigation of the contributions from a number of NO formation pathways. In the alcohol flames, reduced contributions to Prompt NO were observed along with reduced consumption of NO through the NO-HCN Reburn mechanism, demonstrating the importance of hydrocarbon radicals (CH, CH2, CH3, and HCCO) to NO formation. Additionally, significant contributions to NO through the combined NNH and N2O mechanism were observed, representing a greater proportion of the NO produced in the alcohol flames. © 2016.

  20. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  1. Microwave based method of monitoring crack formation

    International Nuclear Information System (INIS)

    Aman, Sergej; Aman, Alexander; Majcherek, Soeren; Hirsch, Soeren; Schmidt, Bertram

    2014-01-01

    The formation of cracks in glass particles was monitored by application of linearly polarized microwaves. The breakage behavior of glass spheres coated with a thin gold layer of about 50 nm, i.e. a thickness that is lower than the microwave penetration depth, was tested. In this way the investigation of fracture behavior of electronic circuits was simulated. A shielding current was induced in the gold layer by the application of microwaves. During the crack formation the distribution of this current changed abruptly and a scattered microwave signal appeared at the frequency of the incident microwaves. The time behavior of the scattered signal reflects the microscopic processes occurring during the fracture of the specimen. The duration of the increasing signal corresponds to the crack formation time in the tested specimen. This time was estimated as particle size divided by crack development speed in glass. An intense emission of electrons occurs during the formation of cracks. Due to this, coherent Thomson scattering of microwaves by emitted electrons becomes significant with a delay of a few microseconds after the initial phase of crack formation. In this time the intensity of the microwave signal increases. (paper)

  2. Fermentable sugars and microbial inhibitors formation from two ...

    African Journals Online (AJOL)

    ... under low severity factor and its enzymatic degradability was investigated in this ... The highest glucan conversion and recovery at the optimum conditions were ... reduce microbial inhibitors formation and excessive biomass processing cost.

  3. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Directory of Open Access Journals (Sweden)

    Hans-Georg Braun

    2013-02-01

    Full Text Available The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO, molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  4. Investigation of γ-radiation defect formation at the Si-SiO2 interface

    International Nuclear Information System (INIS)

    Zaynabidinov, S.; Yulchiev, Sh.; Aliev, R.

    2004-01-01

    Full text: In work the results of an experimental research of process radiating defects formation on border are submitted undressed Si-SiO 2 at γ-radiation of the silicon MOS structures. As against similar researches the basic attention is given on the analysis of generation-recombination characteristics of structures, that allowed to establish character of the defects formation both on border undressed Si-SiO 2 , and in about border of Si. In experiments the structures received by thermal oxidation at T=1000 deg. C in environment of dry oxygen n-Si substrates with specific resistance ρ=0.3 Ω·cm are used. The thickness of oxygen layer made ∼0.1 μm. The test MOS-structures with an aluminium electrode and area ∼0.01 cm 2 irradiated with γ-quanta from the 60 Co source by a dose of 10 6 rad. The choice of a dose of an radiation is caused by that at such dose the essential increase of concentration of superficial defects is observed, and at the same time there are no significant changes of parameters of a substrate because of formation of point defects in volume of silicon. The generation characteristics of structures such, as speed of superficial generation s and time of life τ g of carriers of a charge in about surface before and after an radiation defined by a method isothermal relaxation of nonequilibrium high-frequency capacity. The relaxation of nonequilibrium capacity registered at submission on translating structure in a condition of deeper inversion. Such mode of measurement allows to neglect the contribution which is brought in recharged of superficial condition in superficial generation currents. Are received relaxation dependence of structures before and after an radiation, and also spectra of distribution of density of superficial condition on width of the forbidden zone Si dN ss /dE. The increase at 12-15 of time of concentration of superficial condition with E=E c -(0.18±0.03) eV in the irradiated structures is established. Such condition is

  5. First principles investigation of nitrogenated holey graphene

    Science.gov (United States)

    Xu, Cui-Yan; Dong, Hai-Kuan; Shi, Li-Bin

    2018-04-01

    The zero band gap problem limits the application of graphene in the field of electronic devices. Opening the band gap of graphene has become a research issue. Nitrogenated holey graphene (NHG) has attracted much attention because of its semiconducting properties. However, the stacking orders and defect properties have not been investigated. In this letter, the structural and stacking properties of NHG are first investigated. We obtain the most stable stacking structure. Then, the band structures for bulk and multilayer NHG are studied. Impact of the strain on the band gaps and bond characteristics is discussed. In addition, we investigate formation mechanism of native defects of carbon vacancy (VC), carbon interstitial (Ci), nitrogen vacancy (VN), and nitrogen interstitial (Ni) in bulk NHG. Formation energies and transition levels of these native defects are assessed.

  6. Effects of a Formative Assessment Script on How Vocational Students Generate Formative Feedback to a Peer's or Their Own Performance

    Science.gov (United States)

    Peters, Olaf; Körndle, Hermann; Narciss, Susanne

    2018-01-01

    The purposes of this study are threefold: It investigates effects of a formative assessment script (FAS) that was designed to support vocational students in generating feedback to (1) a peer's and (2) their own performance. Effects of the FAS are investigated with respect to quantitative and qualitative characteristics of the peer and internal…

  7. Cu(II) promotes amyloid pore formation

    International Nuclear Information System (INIS)

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-01-01

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils

  8. Cu(II) promotes amyloid pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hangyu, E-mail: hangyuz@uw.edu [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Rochet, Jean-Christophe [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 (United States); Stanciu, Lia A. [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.

  9. Induction of Liquid Crystallinity by Self-Assembled Molecular Boxes

    NARCIS (Netherlands)

    Piermattei, A.; Giesbers, M.; Marcelis, A.T.M.; Mendes, E.; Picken, S.J.; Crego-Calama, M.; Reinhoudt, D.N.

    2006-01-01

    In a hierarchical process, three molecules of a calix[4]arene (blue) and six of barbituric or cyanuric acid (green) assemble into double-rosette boxes, which assemble into columns, which in turn assemble into columnar liquid-crystalline phases (see picture). The resulting mesophases have a

  10. A novel lyotropic liquid crystal formed by triphilic star-polyphiles

    DEFF Research Database (Denmark)

    Campo, Liliana de; Varslot, Trond; Moghaddam, Minoo J.

    2011-01-01

    /oleophilic/fluorophilic 3-phase systems. Quantitative comparison with scattering simulations shows that the experimental data are in very good agreement with an underlying 2D columnar (12.6.4) tiling. As in a conventional amphiphilic hexagonal mesophase, the hexagonally packed water channels (dodecagonal prismatic domains...

  11. Modifying the Hierarchical Porosity of SBA-15 via Mild-Detemplation Followed by Secondary Treatments

    NARCIS (Netherlands)

    Zhang, Zheng; Melian-Cabrera, Ignacio

    2014-01-01

    Fenton-chemistry-based detemplation combined with secondary treatments offers options to tune the hierarchical porosity of SBA-15. This approach has been studied on a series of SBA-15 mesophases and has been compared to the conventional calcination. The as-synthesized and detemplated materials were

  12. Design and Synthesis of Novel Discotic Liquid Crystals

    Science.gov (United States)

    Kayal, Himadri Sekhar

    Columnar mesophases of discotic liquid crystals (DLCs) have attracted much attention as organic semiconductors and have been tested as active materials in light-emitting diodes, photovoltaic solar cells, and field-effect transistors. However, devices based on DLCs have shown lower performance than devices based on polymeric and small molecule glass semiconductors, despite their superior charge conducting and advantages self-organizing properties. Most DLCs also require relatively complex processing conditions for the preparation of electronic devices, which is another significant disadvantage. Consequently, new types of DLCs are sought-after to overcome these limitations and described in this thesis are new types of discotic materials and their synthesis. Chapters 2 and 3 describe star-shaped discotic molecules for donor-acceptor columnar structures and as novel flexible core discotic molecules. Presented are the first examples of star-shaped heptamers of donor and acceptor discotic molecules which have six hexaalkoxy triphenylene ligands and a hexaazatriphenylene hexacarboxylate core or a hexaazatriphenylene hexaamide core. The hexaazatriphenylene cores were chosen because of their electron deficient character while the hexaalkoxy triphenylenes are known to be electron rich. Envisioned is the formation of super-columns in which the heptamers stack on top of each other and generate a material with electron acceptor and electron donor channels separated by aliphatic chains. This is an important difference to previously reported donor-acceptor star-shaped structures that were connected via conjugated linkers and do not form separate columnar stacks. Star-shaped DLCs based on small aromatic groups linked together by short flexible spacers may represent a novel type of discotic core structure that does not require peripheral flexible chains. Softening of the core by the spacer group is expected to sufficiently lower melting points and not interfere with the columnar

  13. Numerical evidence of liquid crystalline mesophases of a lollipop shaped model in two dimensions

    Science.gov (United States)

    Pérez-Lemus, G. R.; Armas-Pérez, J. C.; Chapela, G. A.; Quintana-H., J.

    2017-12-01

    Small alterations in the molecular details may produce noticeable changes in the symmetry of the resulting phase behavior. It is possible to produce morphologies having different n-fold symmetries by manipulating molecular features such as chirality, polarity or anisotropy. In this paper, a two dimensional hard molecular model is introduced to study the formation of liquid crystalline phases in low dimensionality. The model is similar to that reported by Julio C. Armas-Pérez and Jacqueline Quintana-H., Phys. Rev. E 83, 051709 (2011). The main difference is the lack of chirality in the model proposed, although they share some characteristics like the geometrical polarity. Our model is called a lollipop model, because its shape is constructed by a rounded section attached to the end of a stick. Contrary to what happens in three dimensions where chiral nematogens produce interesting and complex phases such as blue phases, the lack of molecular chirality of our model generates a richer phase diagram compared to the chiral system. We show numerical and some geometrical evidences that the lack of laterality of the non chiral model seems to provide more routes of molecular self-assembly, producing triatic, a random cluster and possibly a tetratic phase behavior which were not presented in the previous work. We support our conclusions using results obtained from isobaric and isochoric Monte Carlo simulations. Properties as the n-fold order parameters such as the nematic, tetratic and triatic as well as their correlation functions were used to characterize the phases. We also provide the Fourier transform of equilibrium configurations to analyze the n-fold symmetry characteristic of each phase.

  14. Memory for biopsychology material presented in comic book format.

    OpenAIRE

    Aleixo, Paul; Sumner, Krystina

    2017-01-01

    This study investigated the influence of format of presentation on memory for undergraduate level Biopsychology material. Ninety participants read either seven comic book pages from Aleixo and Baillon (2008) explaining the rudiments of sleep, the same material presented in text only format or seven pages where the original images were replaced with random incongruous images. Participants were tested on the material using ten multiple-choice questions. Results showed significantly higher memor...

  15. Concept Formation Skills in Long-Term Cochlear Implant Users

    OpenAIRE

    Castellanos, Irina; Kronenberger, William G.; Beer, Jessica; Colson, Bethany G.; Henning, Shirley C.; Ditmars, Allison; Pisoni, David B.

    2014-01-01

    This study investigated if a period of auditory sensory deprivation followed by degraded auditory input and related language delays affects visual concept formation skills in long-term prelingually deaf cochlear implant (CI) users. We also examined if concept formation skills are mediated or moderated by other neurocognitive domains (i.e., language, working memory, and executive control). Relative to normally hearing (NH) peers, CI users displayed significantly poorer performance in several s...

  16. Model of the macrostructure formation of plasma sprayed coatings

    International Nuclear Information System (INIS)

    Gnedovets, A.G.; Kalita, V.I.

    2007-01-01

    A 3D discrete ballistic model of plasma sprayed coatings structure formation is presented. The effect of a spraying angle on porous macrostructure of coatings is investigated by numerical computations.Computer simulation results as well as experimental data show that at a sputtering angle less than 45 deg the mechanism of surface relief formation is changed and the relief consists of valleys and ridges under such conditions of plasma spraying [ru

  17. Investigating Image Formation with a Camera Obscura: a Study in Initial Primary Science Teacher Education

    Science.gov (United States)

    Muñoz-Franco, Granada; Criado, Ana María; García-Carmona, Antonio

    2018-04-01

    This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.

  18. The Formation of English Teacher Identities: A Cross-Cultural Investigation

    Science.gov (United States)

    Gu, Mingyue; Benson, Phil

    2015-01-01

    Drawing on insights from Communities of Practice and critical discourse theory, this study investigates how teacher identities are discursively constructed in course of teacher education and under the influence of social structure. The participants were seven Hong Kong and nine mainland Chinese pre-service teachers. Two focus group interviews and…

  19. Management of formation of image of Lithuanian countryside

    OpenAIRE

    Atkočiūnienė, Vilma; Boculo, Irina

    2011-01-01

    Image formation of country­side is part of a regional image itself; it includes all general country­side development areas. Image formation of country­side is based on the efforts made by different concerned actors and their additional initiative; consequently, the core activity of the above process is management. The investigation is aimed at the analysis of theoretical constituent actors assign ed to the process of development of country­side, at the identification of country­side image ele...

  20. Vortex formation with a snapping shrimp claw.

    Science.gov (United States)

    Hess, David; Brücker, Christoph; Hegner, Franziska; Balmert, Alexander; Bleckmann, Horst

    2013-01-01

    Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  1. Vortex formation with a snapping shrimp claw.

    Directory of Open Access Journals (Sweden)

    David Hess

    Full Text Available Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  2. Size effects on cation heats of formation. I. Methyl substitutions in nitrogenous compounds

    International Nuclear Information System (INIS)

    Leach, Sydney

    2012-01-01

    Graphical abstract: Heat of formation of cations as a function of ln(n) where n is the number of atoms in the ion: methyl substituted immonium cations. N = substitution at nitrogen sites, C = substitution at carbon sites. Highlights: ► Heats of formation of nitrogenous cations by graphical method relating to ion size. ► Methyl substitution in formamides, acetamides, immonium, amine, and imine cations. ► Methyl substitution in ammonium and amino cations. ► New studies ionization energies and heats of formation required in several cases. - Abstract: The heats of formation of molecular ions are often not known to better than 10 or 20 kJ/mol. The present study on nitrogenous compounds adopts the graphical approach of Holmes and Lossing which relates cation heats of formation to cation size. A study of methyl substitution in formamides and acetamides is followed by an examination of heat of formation data on carbon-site and nitrogen-site methyl substitution in immonium, amine, imine, ammonium and amino cations. The results provide tests of the validity of this graphical method and also suggest investigating or re-investigating the ionization energies and the heats of formation of several of the molecules studied.

  3. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Paul M.; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J., E-mail: p.woods@qub.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-11-10

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  4. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    International Nuclear Information System (INIS)

    Woods, Paul M.; Viti, Serena; Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J.

    2013-01-01

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints

  5. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  6. Foam formation in low expansion fire fighting equipment

    International Nuclear Information System (INIS)

    Rogers, Lucy Elizabeth

    2001-01-01

    This thesis describes an investigation into the foam generation mechanisms involved in producing foam from a low expansion fire fighting branchpipe. The investigation was carried out using scale models of branchpipes, and a high-speed video camera was used to study the formation of the foam. The experiments provided evidence of three possible methods of bubble formation within this type of system: Stage 1 - Mixing within the branchpipe; Stage 2 - Air entrainment and bubble growth during the flight of the jet; Stage 3 - Aeration produced from the collision of the high speed jet onto a surface. Each stage is described in detail and the mechanism which has the greatest effect on the expansion ratio of the foam produced has been determined. The relevance of these findings to the design of branchpipes is discussed. (author)

  7. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II

    NARCIS (Netherlands)

    Nguyen, H.T.; Fels, van der Ine; Boekel, van Tiny

    2017-01-01

    This study investigated acrylamide and 5-hydroxymethylfurfural (HMF) formation during biscuit baking. Four types of wheat flour with different molar ratios of total fructose and glucose to asparagine were investigated. Nevertheless, the molar ratio in all four biscuit doughs exceeded one after

  8. Language arts achievement level, attitude survey format, and adolescents' attitudes towards reading.

    Science.gov (United States)

    Smith, L R; Ryan, B E

    1997-01-01

    The joint effects of student achievement level and attitude survey format upon attitudes toward reading were investigated. Sixth-grade students completed reading attitude surveys involving a standard Likert-type format or one involving pictures of the comic strip character, Garfield. The survey items were identical for both formats; only the presentation format was varied. There was no significant main effect on attitude responses due to achievement level, but the main effect due to survey format was significant, with the Likert-type format producing significantly higher attitude responses than the Garfield format. The interaction between achievement level and format also was significant, with above average students and average students giving higher attitude responses than did below average students when the Garfield format was used. When the Likert-type format was used, average students and below average students gave higher attitude responses than did above average students. The results imply that attitude responses of adolescents can be manipulated by varying the format of the survey.

  9. Seroma formation after surgery for breast cancer

    Directory of Open Access Journals (Sweden)

    Ebrahimi Mandana

    2004-12-01

    Full Text Available Abstract Background Seroma formation is the most frequent postoperative complication after breast cancer surgery. We carried out a study to investigate the effect of various demographic, clinical and therapeutic variables on seroma formation. Patients and methods A retrospective cross sectional study of patients who underwent surgical therapy for breast cancer with either modified radical mastectomy (MRM or breast preservation (BP was carried out. The demographic data and clinical information were extracted from case records. Seroma formation was studied in relation to age, type of surgery, tumor size, nodal involvement, preoperative chemotherapy, surgical instrument (electrocautery or scalpel, use of pressure garment, and duration of drainage. The multiple logistic regression analysis was performed to estimate odds ratios. Results A total of 158 patients with breast cancer were studied. The mean age of the patients was 46.3 years (SD ± 11.9. Seventy-three percent underwent modified radical mastectomy and the remaining 27% received breast preservation surgery. Seroma occurred in 35% of patients. In multivariate logistic regression analysis an association of postoperative seroma formation was noted with modified radical mastectomy (OR = 2.83, 95% CI 1.01–7.90, P = 0.04. No other factor studied was found to significantly effect the seroma formation after breast cancer surgery. Conclusion The findings suggest that the type of surgery is a predicting factor for seroma formation in breast cancer patients.

  10. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  11. Trauma-induced heterotopic bone formation and the role of the immune system: A review.

    Science.gov (United States)

    Kraft, Casey T; Agarwal, Shailesh; Ranganathan, Kavitha; Wong, Victor W; Loder, Shawn; Li, John; Delano, Matthew J; Levi, Benjamin

    2016-01-01

    Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.

  12. Bainite formation kinetics in high carbon alloyed steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    In recent years, many investigations have been carried out on the modeling of the bainite formation. In the present work, a physical approach proposed in the literature is implemented to model the formation of lower bainite in high carbon steels (1 wt.% C). In this model, the carbon diffusion is assumed to control the kinetics of the bainite formation. Both the nucleation and the growth rates are considered in an Avrami type analysis. The effect of alloying elements is taken into account considering only the thermodynamics of the system. The results and the physical meaning of the model parameters are discussed. It is shown that the diffusional approach gives a reasonable description of bainite formation kinetics in high carbon steel. Only two fitting parameters are used: the first accounts for carbon grain-boundary diffusion and the second is the initial nucleation-site density. The model satisfactorily accounts for the effect of transformation temperature, but does not take into account the carbide precipitation during bainite formation and the effect of alloying elements on the diffusion coefficient of carbon

  13. Kinetics of Hydrocarbon formation in a-C:H Film deposition plasmas

    International Nuclear Information System (INIS)

    Cal, E. de la; Tabares, F. L.

    1993-01-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs

  14. Kinetics of Hydrocarbon formation in a- C:H Film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E de la; Tabares, F L

    1993-07-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs.

  15. Satellite formation flying relative dynamics, formation design, fuel optimal maneuvers and formation maintenance

    CERN Document Server

    Wang, Danwei; Poh, Eng Kee

    2017-01-01

    This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.

  16. Essays on habit formation and inflation hedging

    NARCIS (Netherlands)

    Zhou, Y.

    2014-01-01

    The thesis consists of four chapters. Chapter 1 reviews recent contributions on habit formation in the literature and investigates its implications for investors. Chapter 2 revisits the “Floor-Leverage” rule for investors with ratchet consumption preference proposed by Scott and Watson (2011). It

  17. Electron beam formation in high-current diode

    International Nuclear Information System (INIS)

    Korneev, S.A.

    1981-01-01

    The results of experimental investigation of the electron beam formation in diode with cathode on the base of incomplete discharge over the surface of dielectrics with dielectric penetration epsilon 2 . The measurement of current density distribution over transversal cross section reveals an efficient homogeneity [ru

  18. Input Enhancement and L2 Question Formation.

    Science.gov (United States)

    White, Lydia; And Others

    1991-01-01

    Investigated the extent to which form-focused instruction and corrective feedback (i.e., "input enhancement"), provided within a primarily communicative program, contribute to learners' accuracy in question formation. Study results are interpreted as evidence that input enhancement can bring about genuine changes in learners' interlanguage…

  19. Polylactide based nanocomposites: Processing, structure and performance relationship

    Science.gov (United States)

    Karami, Shahir

    chains at the temperatures above Tg+60°C. The larger nucleation density resulted in the formation of larger rigid amorphous fraction along the semi-crystalline matrix. The variation of complex viscosity at molten state reflected the degradation of polylactide. The NMR characterization was conducted to investigate the effect of dispersed nanoparticle on the degradation of matrix. It was found that the degradation was accelerated with the nanoparticle content. However, the stereoregularity of polylactide chains remained unchanged in the presence of nanoparticles. Mechanical response was measured using Instron mechanical tester. The fractured surface was analyzed by SEM and SAXS. It was found that, toughness improved with the nanoparticle content due to enhanced occupation density upon multiple crazing. Structural evolutions were investigated during a hot-drawing process, at different initial strain rates and the temperatures of Tg+10°C and Tg+30°C, using WAXS and SAXS offline measurements. A mesomorphic phase was developed along the drawing direction, at Tg+10°C, composed of a bundle of parallel extended molecules with a looser lateral chain packing compared to that of the crystalline domain. The mesophase was disordered at the glass transition temperature of the bulk-like chains acting as the precursor of crystalline ordering. A lower fraction of the intermediate ordering was detected with nanoparticle content than that of the neat polymer at constant processing conditions. The slippage of frozen-in mesophase triggered strain hardening behavior during the stretching process at room temperature. This led to the significant improvement of film toughness and stress at break. Spherulitic crystalline domains were formed upon development of point-like nuclei during the drawing process at T g+30°C. No mesophase was detected at Tg+30°C, due to the enhanced contribution of chain relaxation. Line-like nuclei were observed at the highest applied strain rate, resulting in the

  20. The shock formation distance in a bounded sound beam of finite amplitude.

    Science.gov (United States)

    Tao, Chao; Ma, Jian; Zhu, Zhemin; Du, Gonghuan; Ping, Zihong

    2003-07-01

    This paper investigates the shock formation distance in a bounded sound beam of finite amplitude by solving the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation using frequency-domain numerical method. Simulation results reveal that, besides the nonlinearity and absorption, the diffraction is another important factor that affects the shock formation of a bounded sound beam. More detailed discussions of the shock formation in a bounded sound beam, such as the waveform of sound pressure and the spatial distribution of shock formation, are also presented and compared for different parameters.

  1. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  2. Formation and electrical transport properties of pentacene nanorod crystal

    International Nuclear Information System (INIS)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Kuwahara, Y; Aono, M

    2010-01-01

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  3. Formation and electrical transport properties of pentacene nanorod crystal.

    Science.gov (United States)

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y

    2010-09-10

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  4. Induction of liquid crystallinity of by self-assembled molecular boxes

    NARCIS (Netherlands)

    Piermattei, A.; Giesbers, Marcel; Marcelis, Antonius T.M.; Mendes, Eduardo; Picken, Stephen J.; Crego Calama, Mercedes; Reinhoudt, David

    2006-01-01

    Jewel-box: In a hierarchical process, three molecules of a calix[4]arene (blue) and six of barbituric or cyanuric acid (green) assemble into double-rosette boxes, which assemble into columns, which in turn assemble into columnar liquid-crystalline phases (see picture). The resulting mesophases have

  5. Constraint and flow: Poiseuille shear response of a surfactant ...

    Indian Academy of Sciences (India)

    Abstract. To minimize their free energy in aqueous solution, surfactant molecules self-assemble to form some basic morphologies – globular micelles, highly extended thead- like micelles and membrane bilayers – which themselves order to display a rich variety of mesophase symmetries and properties. In membrane ...

  6. Particles in swimming pool filters – Does pH determine the DBP formation?

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Mosbæk, Hans

    2012-01-01

    The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many...... or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from...

  7. On the external relations of Purepecha : an investigation into classification, contact and patterns of word formation

    NARCIS (Netherlands)

    Bellamy, K.R.

    2018-01-01

    This thesis considers Purepecha from the perspectives of genealogy and contact, as well as offering insight into word formation processes. The genealogy study re-visits the most prominent classification proposals for Purepecha, concluding on the basis of a quantitative lexical comparison and

  8. Bump formation in a binary attractor neural network

    International Nuclear Information System (INIS)

    Koroutchev, Kostadin; Korutcheva, Elka

    2006-01-01

    The conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity are investigated. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. An analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region where this effect is observed, although critical storage and information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network

  9. Syndrome of shperical enlightement (cavitary formation)

    International Nuclear Information System (INIS)

    Ginzburg, M.A.

    1987-01-01

    Syndrome is characterized by spherical enlightement surrounded by a closed ring-shaped shadow. Such picture is created by the lung cavity. Intrasyndrome differential diagnosis of the cavitary formations in the lungs and differential diagnosis of restricted pneumothorax, intrapulmonary cavities are given. Ethiology, pathogenesis and pathomorphology of spherical enlightement syndrome, its clinical picture and investigation methods are discussed

  10. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J.

    2013-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer

  11. Predictive factors for anterior chamber fibrin formation after vitreoretinal surgery

    Directory of Open Access Journals (Sweden)

    Leonardo Provetti Cunha

    2014-04-01

    Full Text Available Purpose: The aim of this study was to investigate possible predictive factors related to anterior chamber fibrin formation after vitreoretinal surgery in a large series of patients. Methods: The data of 185 eyes of 185 patients submitted to vitreoretinal surgery was reviewed. The following variables were evaluated: the postoperatively presence of fibrin, age, diabetes mellitus, the vitrectomy system gauge (20, 23 or 25 gauge, the type of vitreous substitute, the influence of prior surgical procedures and the combination with cataract extraction. To evaluate predictive factors for anterior chamber fibrin formation, univariate analysis was performed. A multivariate stepwise logistic regression model was adjusted to investigate factors associated with fibrin formation (p<0.05. Results: Fibrinoid anterior chamber reaction was found in 12 (6.4% patients. For multivariate logistic regression analysis, balanced salt solution (BSS, the chance of fibrin occurrence was 5 times greater (odds ratio 4.83, CI 95% 1.302 - 17.892; p=0.019, while combination with phacoemulsification increased the chance of fibrin formation by 20 times (odds ratio 20, CI 95% 2.480 - 161.347; p=0.005. No significant difference was found regarding other variables. Conclusion: Anterior chamber fibrin formation is an unwanted complication after vitreoretinal surgery. Factors such as combined performance of phacoemulsification and the use of balanced salt solution as a vitreous substitute may predispose the occurrence of this complication.

  12. The Influence of Phosphate Buffer on the Formation of N-Nitrosodimethylamine from Dimethylamine Nitrosation

    Directory of Open Access Journals (Sweden)

    Long Xu

    2013-01-01

    Full Text Available Buffer solutions were widely used for almost all the investigations concerning N-nitrosodimethylamine (NDMA, a member of powerful mutagenic and carcinogenic compounds which are ubiquitous in the environment. However, whether or how the buffer matrixes influence NDMA formation is still unknown. The effect of buffer solutions on NDMA formation from the nitrosation of dimethylamine (DMA by nitrite (NaNO2 was investigated at pH 6.4 in four kinds of buffer solutions, that is, Na2HPO4/C6H8O7, Na3(C6H5O7/C6H8O7, NaH2PO4/NaOH, and NaH2PO4/Na2HPO4. Our observations demonstrate an unexpected inhibitory effect of the buffer solutions on NDMA formation and the phosphate buffer plays a more significant role in inhibiting NDMA formation compared to the citrate buffer. Moreover, the amount of the phosphate in the buffer was also found to greatly impact the formation of NDMA. A further investigation indicates that it is the interaction between NaH2PO4 and reactant NaNO2 rather than DMA that leads to the inhibitory effect of phosphate buffer during the DMA nitrosation reaction. This study expands the understanding of the influence of buffer solution on nitrosamines formation through the nitrosation pathway and further gives a hint for water plants to reduce the formation of nitrosamines.

  13. Cytogenetical investigations on fertilization, embriogenesis and fruit formation by irradiated pollen. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dryanovska, O.

    1981-01-01

    The mechanism of fertilization pollination with gamma-irradiated pollen (1-500 kR) in plants of various double fertilization: Crepis (Nicotiana tabacum, Lycopersicum esculentum, Solanum melongena, Ornithogalum gramminifolium, Melandrium rubrum) type, Lilium (Lilium speciosum) type, and Trandescantia (Tradescantia paludosa) type was studied, along with the opportunity of its modification, embryogenesis and fruit and seed formation. In the Crepis type, depending on the disturbances of male chromatin, fertilization manifested itself as: 1) normal karyogamy with decondensation of male chromatin and the formation of supplementary nucleoli and further development of embryo and endosperm (1-500 kR); 2) karyogamy without decondensation and functioning of the male chromatin (1-500 kR); 3) karyogamy or sticking the male chromatin to the nuclei of the female sex cells, stimulating the development of the ovule, embryo, and endosperm (50-500 kR); 4) sticking the highly pycnotized male chromatin to the nuclei of the female sex cells without evidence of zygote and endosperm function and further development (50-500 kR). In the Lilium type modification of fertilization was manifested by: 1) normal karyogamy with developing diploid embryos and pentaploid endosperm with aberrations (1-20 kK); 2) sticking the male chromatin to the nuclei of the female sex cells and stimulation of their development (50-500 kR). In the Trandescantia type the irradiated male chromatin modified fertilization as: 1) karyogamy with spermia having fragments, two spermia connected by a bridge or with a generative nucleus with aberrations (1-50 kR); 2) karyogamy without developing the female sex nuclei (10-500kR); 3) karyogamy or sticking the male chromatin to the female sex cell nuclei and stimulation of their development (10-500 kR); 4) sticking the male chromatin with no stimulating effect (10-500 kR).

  14. Waste isolation in geologic formations in the USA

    International Nuclear Information System (INIS)

    Zerby, C.D.; McClain, W.C.

    1976-01-01

    The ERDA program for the establishment of terminal storage facilities for commercial radioactive wastes in deep geologic formations was recently reorganized as the National Waste Terminal Storage (NWTS) program. General plans for implementing this expanded program call for geologic investigations and feasibility confirmation studies at multiple geographic locations, leading to pilot plant construction and operation with possible future conversion into a Federal Repository. The pilot plant operations will be experimental facilities having limited capacity to store actual waste in a readily retrievable configuration. The first two pilot plants are planned to start operations simultaneously in the mid-1980's. Geologic investigations are now in progress or planned in study areas of the interior basins of the Gulf Coast Salt Dome Province, in the Salina Salt basin and in the Paradox Basin in an effort to identify acceptable locations for these initial facilities. Subsequent pilot plants will be located in other formations. Preliminary geologic evaluations have been initiated in the Paleozoic shales and limestones, Triassic shale basins along the east coast, Mesozoic shales of the Gulf Coast and northern high plains and certain crystalline igneous rocks. Most of the required engineering testing of disposal in salt formations has been completed in previous programs. However, the establishment of pilot plants in the other rock types will require a sequence of in situ testing designed to develop the information necessary to both demonstrate the feasibility of waste disposal in that particular formation and provide the data for facility designs

  15. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  16. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    International Nuclear Information System (INIS)

    Stimson, Lorna M.

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a single dendrimer molecule in the gas phase at the atomistic level, semi-atomistic molecular dynamics of a single molecule in liquid crystalline solvents and a coarse-grained molecular dynamics study of the dendrimer in the bulk. The coarse-grained model has been developed and parameterized using the results of the atomistic and semi-atomistic work. The single molecule studies showed that the liquid crystalline dendrimer was able to change its structure by conformational changes in the flexible chains that link the mesogenic groups to the core. Structural change was seen under the application of a mean field ordering potential in the gas phase, and in the presence of liquid crystalline solvents. No liquid crystalline phases were observed for the bulk phase studies of the coarse-grained model. However, when the length of the mesogenic units was increased there was some evidence for microphase separation in these systems. (author)

  17. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    NARCIS (Netherlands)

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; De Wit, J.; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding

  18. The effect of photoionizing feedback on star formation in isolated and colliding clouds

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth J.; Federrath, Christoph; Habe, Asao

    2018-05-01

    We investigate star formation occurring in idealized giant molecular clouds, comparing structures that evolve in isolation versus those undergoing a collision. Two different collision speeds are investigated and the impact of photoionizing radiation from the stars is determined. We find that a colliding system leads to more massive star formation both with and without the addition of feedback, raising overall star formation efficiencies (SFE) by a factor of 10 and steepening the high-mass end of the stellar mass function. This rise in SFE is due to increased turbulent compression during the cloud collision. While feedback can both promote and hinder star formation in an isolated system, it increases the SFE by approximately 1.5 times in the colliding case when the thermal speed of the resulting H II regions matches the shock propagation speed in the collision.

  19. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  20. Pattern formation in two-dimensional square-shoulder systems

    International Nuclear Information System (INIS)

    Fornleitner, Julia; Kahl, Gerhard

    2010-01-01

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  1. Pattern formation in two-dimensional square-shoulder systems

    Energy Technology Data Exchange (ETDEWEB)

    Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)

    2010-03-17

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  2. A new method in prediction of TCP phases formation in superalloys

    International Nuclear Information System (INIS)

    Mousavi Anijdan, S.H.; Bahrami, A.

    2005-01-01

    The purpose of this investigation is to develop a model for prediction of topologically closed-packed (TCP) phases formation in superalloys. In this study, artificial neural networks (ANN), using several different network architectures, were used to investigate the complex relationships between TCP phases and chemical composition of superalloys. In order to develop an optimum ANN structure, more than 200 experimental data were used to train and test the neural network. The results of this investigation shows that a multilayer perceptron (MLP) form of the neural networks with one hidden layer and 10 nodes in the hidden layer has the lowest mean absolute error (MAE) and can be accurately used to predict the electron-hole number (N v ) and TCP phases formation in superalloys

  3. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S....... epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...... air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamicle derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four...

  4. Adduct formation in Ce(IV) thenolytrifluoroacetonate

    International Nuclear Information System (INIS)

    Anufrieva, S.I.; Polyakova, G.V.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.I.; Spitsyn, V.I.

    1982-01-01

    The literature contains no information on adduct formation in Ce(IV) β-diketonates with additional ligands. Since tetrakis-β-diketonates of Ce(IV) have four six-membered chelate rings, we can suppose that the introduction of an additional monodentate or bidentate ligand into the coordination sphere of Ce(IV) β-diketonates would lead to an increase in the coordination number (CN) of the Ce(IV) to nine or ten. The possibility of realization of such a high CN for Ce(IV) has not been proved; a study of adduct formation by Ce(IV) tetrakis-β-diketonates is thus of theoretical interest. Such an investigation might also be of practical interest, because the introduction of an additional ligand into the coordination sphere of a rare-earth β-diketonate usually increases the solubility of the β-diketonate in nonpolar solvents and increases the volatility of the compound; such a modification of the properties is important for various practical purposes. The aim of our work was to study the possibility of separating solid adducts of Ce(IV) tetrakis-thenoyltrifluoroacetonate with certain oxygen-containing and nitrogen-containing donor monodentate and bidentate ligands, and also to investigate their properties. As the β-diketone we used thenoyltrifluoroacetone (HTTFA), since in a parallel investigation it was found that Ce(TTFA) 4 has a high oxidation-reduction stability

  5. Investigation of the dipole formation and growth behavior at In2O3|TiO2 heterojunctions using photoemission spectroscopy and atomic force microscopy

    Science.gov (United States)

    Schaefer, Michael; Halpegamage, Sandamali; Batzill, Matthias; Schlaf, Rudy

    2016-02-01

    This paper discusses the investigation of the dipole formation at In2O3|TiO2 heterojunctions depending on preparation conditions, i.e., cleaning methods. In2O3 films were deposited using atomic layer deposition (ALD) onto solvent and in situ cleaned anatase and rutile film substrates. The interface dipole strength and film thickness were evaluated by photoemission spectroscopy. Our results indicate the formation of a large intrinsic and film thickness dependent interface dipole that reaches its maximum strength at monolayer thick ALD films. In addition, it was observed that UV photoelectron spectroscopy measurements introduced UV induced surface hydroxylation, which resulted in dipole potentials of -0.70 eV and -0.50 eV on solvent cleaned anatase and rutile, respectively. The overlayers also introduced small amounts of band bending (˜0.10 eV) at the interfaces. Taking these effects into account, the total dipole strength at monolayer thick In2O3 films was determined to be -0.96 eV for solvent cleaned anatase and rutile and -0.81 eV for in situ cleaned rutile. The deposition of single ALD cycles on differently cleaned rutile substrates resulted in similar work function values, suggesting little influence of the sample preparation method prior to ALD deposition on the dipole formation. This was assigned to the fact that ALD oxides benefit from ambient water related contamination by integrating the molecules into the growing ALD layer. Highest initial growth was observed on solvent cleaned rutile, followed by in-situ cleaned rutile and solvent cleaned anatase. The In2O3 growth converged at 0.3 Å/c past the nucleation regime.

  6. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline

  7. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis

    OpenAIRE

    Baraliakos, Xenofon; Listing, Joachim; Rudwaleit, Martin; Sieper, Joachim; Braun, Juergen

    2008-01-01

    Introduction Spinal inflammation as detected by magnetic resonance imaging and new bone formation as identified by conventional radiographs are characteristic of ankylosing spondylitis. Whether and how spondylitis and syndesmophyte formation are linked are unclear. Our objective was to investigate whether and how spinal inflammation are associated with new bone formation in ankylosing spondylitis. Methods Spinal magnetic resonance images and conventional radiographs from 39 ankylosing spondyl...

  8. Mantle dynamics following supercontinent formation

    Science.gov (United States)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  9. Why adult formation

    Directory of Open Access Journals (Sweden)

    Andrej Justinek

    1997-01-01

    Full Text Available The article argues that the primary aim of adult formation is comprehensive personality development which is supposed to ensure quality existence in modern world. The article also suggests that formarion is a permanent process. Justinek puts special emphasis on adult formation methodology and defines fundamental formation styles which encourage independent action in individuals. Justinek differentiates between formation and education. methods and concludes that formation methods are related to the emotional sphere of personality, and education methods mostly to the rational. Justinek believes that formation of adults is based primarily on appropriate formation methodology.

  10. Smectite Formation in Acid Sulfate Environments on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  11. Biofilm formation in attached microalgal reactors.

    Science.gov (United States)

    Shen, Y; Zhu, W; Chen, C; Nie, Y; Lin, X

    2016-08-01

    The objective of this study was to investigate the fundamental question of biofilm formation. First, a drum biofilm reactor was introduced. The drums were coated with three porous substrates (cotton rope, canvas, and spandex), respectively. The relationships among the substrate, extracellular polymeric substances (EPS), and adhesion ratio were analyzed. Second, a plate biofilm reactor (PBR) was applied by replacing the drum with multiple parallel vertical plates to increase the surface area. The plates were coated with porous substrates on each side, and the nutrients were delivered to the cells by diffusion. The influence of nitrogen source and concentration on compositions of EPS and biofilm formation was analyzed using PBR under sunlight. The results indicated that both substrate and nitrogen were critical on the EPS compositions and biofilm formation. Under the optimal condition (glycine with concentration of 1 g l(-1) and substrate of canvas), the maximum biofilm productivity of 54.46 g m(-2) d(-1) with adhesion ratio of 84.4 % was achieved.

  12. Formation of radical cations of diaryloxadiazoles

    International Nuclear Information System (INIS)

    Helmstreit, W.

    1988-01-01

    The nature of the formation of the radical cation of the 2,5-bis-(p-diethylaminophenyl)-1,3,4-oxadiazole (PC) in liquid n-butyl chloride and acetonitrile has been investigated by observing excited state fluorescence and transient absorption using nanosecond pulse radiolysis and laser flash photolysis. The formation of solute oxonium ions has also been observed. At concentrations -4 mol dm -3 the growth time at which the transient absorption of the radical cation reaches the maximum follows the rise time of the electron pulse ( 2 laser yields the solute radical cation in an acetonitrile solution of 2 x 10 -4 mol dm -3 PC via an electronically excited state. Here, the generation time was smaller than 5 ns. The yield of the cation is increased by addition of CCl 4 . A reaction mechanism is proposed that explains the fast cation formation in terms of an exciplex formed by interaction between an electronically excited state of diaryloxadiazole and the ground state of the solvent. This exciplex yields the solute radical cation. (author)

  13. NDMA formation kinetics from three pharmaceuticals in four water matrices.

    Science.gov (United States)

    Shen, Ruqiao; Andrews, Susan A

    2011-11-01

    N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Methods and apparatus for constituent analysis of earth formations

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Nelligan, W.B.

    1979-01-01

    The composition of an earth formation is investigated by repetitively irradiating the formation with bursts of fast neutrons and generating an energy spectrum of the gamma rays resulting from the inelastic scattering of such neutrons by nuclei of the formation. This spectrum is analyzed by comparison with a composite spectrum, consisting of standard spectra of constituents postulated to comprise the formation. This spectrum includes one or more standard spectrum derived from a background energy spectrum generated from gamma rays detected during periods between neutron bursts. The standard background spectra are updated to reflect the current background component. More reliable information can be obtained of the presence of oil in the formation through the derivation of such indicators as the carbon/oxygen ratio, calcium/silicon ratio etc. the detected background gamma ray spectrum may also be analysed to determine the proportions of the formation constituents contributing to the spectrum; and the standards for the most significant background contributors, or the composite spectrum produced by such standard spectra, may be used among the standard spectra for the inelastic scattering spectrum analysis in lieu of the standardized detected background spectrum itself. (UK)

  15. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised...

  16. Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production.

    Science.gov (United States)

    Delatolla, R; Séguin, C; Springthorpe, S; Gorman, E; Campbell, A; Douglas, I

    2015-10-01

    The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Petrophysical investigations to both Rudeis and Kareem formations, Ras Ghara oil field, Gulf of Suez, Egypt

    Directory of Open Access Journals (Sweden)

    A.A. El-Khadragy

    2017-06-01

    In this research, Tech-log software is used to evaluate the petrophysical characteristics of the studied formations in the form of litho-saturation plots which are considered as an important vertical representation because they are used for more accurate evaluation in the individual wells in the comparison between different wells.

  18. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  19. Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Andersson, Klas Jerker; Nerlov, Jesper

    2008-01-01

    Formate (HCOO) synthesis, decomposition and the hydrogenation of carbonate (CO3) on Cu overlayers deposited on a Pt(111) single crystal are investigated to examine the reactivity of a Cu surface under tensile strain with defects present. Formate is synthesized from a 0.5 bar mixture of 70% CO2...

  20. Investigation on the formation of the preferred orientations in a TbDyFe alloy with directional solidification

    International Nuclear Information System (INIS)

    Jiang Chengbao; Xu Huibin

    1999-01-01

    The formation of the preferred orientations in a TbDyFe alloy was studied by transmission electron microscopy (TEM). It was found that there were several different preferred orientations in the experimental TbDyFe alloy with directional solidification. left angle 110 right angle, left angle 112 right angle and left angle 113 right angle preferred orientations were observed in this alloy solidified by our self-made super high gradient temperature directional solidification device. The preferred orientations changed with the variation of the solidification conditions. Two {111} twinning systems resulted in the left angle 110 right angle preferred orientation and a single {111} twinning system resulted in the left angle 112 right angle preferred orientation. The twinning displacement was observed and this formatted the left angle 113 right angle preferred orientation. (orig.)

  1. Investigation of the formation of deposits of calcium sulfate on a metallic wall: detection and growth initiation

    International Nuclear Information System (INIS)

    Guillermin, Roger

    1970-01-01

    Whereas the formation of calcium sulfate deposits on walls of (water desalination) heat exchanger tubes increases the load loss and decreases the heat exchange coefficient, measuring the load loss or measuring heat transfer in an exchanger could be a method to determine whether scaling occurs. In this research thesis, the author aims at a computational assessing of the sensitivity of such methods in conditions easily obtained in laboratory and allowing, if possible, the identification of the different steps of deposit formation. Then, the author considers some discontinuous methods, possibly more sensitive but more difficult to adjust, but which are not interesting in an industrial point of view: methods based on weighing, on chemical dosing, on radioactive measurements (tracers, auto-radiography, beta backscattering), optical methods and electric methods (piezoelectric quartz, conductivity measurements)

  2. Raman and Terahertz Spectroscopic Investigation of Cocrystal Formation Involving Antibiotic Nitrofurantoin Drug and Coformer 4-aminobenzoic Acid

    Directory of Open Access Journals (Sweden)

    Yong Du

    2016-12-01

    Full Text Available Cocrystallization could improve most physicochemical properties of specific active pharmaceutical ingredients, which has great potential in pharmaceutical development. In this study, the cocrystal of nitrofurantoin and 4-aminobenzoic acid was prepared with solid-state (solvent-free or green-chemistry grinding approach, and the above cocrystal has been characterized by Raman and terahertz vibrational spectroscopic techniques. Spectral results show that the vibrational modes of the cocrystal within the whole spectral region are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman spectra. These results offer us unique means for characterizing the cocrystal conformation from the molecule-level, and provides us with rich information about the reaction dynamic of cocrystal formation within pharmaceutical fields.

  3. Investigating Created Properties of Nanoparticles Based Drilling Mud

    Science.gov (United States)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  4. Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing

    Directory of Open Access Journals (Sweden)

    Y. Hua

    2016-12-01

    Full Text Available During the APEC (Asia-Pacific Economic Cooperation Economic Leaders' 2014 Summit in Beijing, strict regional air emission controls were implemented, providing a unique opportunity to investigate the transport and formation mechanism of fine particulate matter (PM2.5. This study explores the use of vertical observation methods to investigate the influence of regional transport on PM2.5 pollution in Beijing before and during the APEC Summit. Vertical profiles of extinction coefficient, wind, temperature and relative humidity were monitored at a rural site on the border of Beijing and Hebei Province. Three PM2.5 pollution episodes were analyzed. In episode 1 (27 October to 1 November, regional transport accompanied by the accumulation of pollutants under unfavorable meteorological conditions led to the pollution. In episode 2 (2–5 November, pollutants left from episode 1 were retained in the boundary layer of the region for 2 days and then settled down to the surface, leading to an explosive increase of PM2.5. The regional transport of aged aerosols played a crucial role in the heavy PM2.5 pollution. In episode 3 (6–11 November, emissions from large point sources had been controlled for several days while primary emissions from diesel vehicles might have led to the pollution. It is found that ground-level observation of meteorological conditions and air quality could not fully explain the pollution process, while vertical parameters (aerosol optical properties, winds, relative humidity and temperature improved the understanding of regional transport influence on heavy pollution processes. Future studies may consider including vertical observations to aid investigation of pollutant transport, especially during episodic events of rapidly increasing concentrations.

  5. Geochemical parameters of radioelements applied to assess uranium prospects in geological formation

    International Nuclear Information System (INIS)

    Ma Zhongxiang.

    1988-01-01

    Based on geochemical characteristics of radioelements and the theory of facieology, the author describes the characteristics of the distribution of U, Th and K in sedimentary formation and the relationship between their combined parameters MA and MB and uranium mineralization in geological formation. The ranges of MA and MB in uraniferous geological formation used to assess four different levels of uranium mineralization in regional investigation are obtained from the comparision of combined parameters MA and MB in the geological formation with different levels of mineralization and the experience is provided for quantitatively assessing uranium prospects in geological by multi-parameter model of radioelements

  6. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.

    Science.gov (United States)

    Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D

    2018-03-05

    Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.

  7. Formation and malformation of the enteric nervous system

    NARCIS (Netherlands)

    J.H.C. Meijers (Johan)

    1989-01-01

    textabstractTo clarify pathogenetic mechanisms of congenital malformations of the ENS, the formation of the ENS was investigated in chicken and murine embryos. The experimental work was concentrated on several aspects of the interaction between neural crest cells and the enteric microenvironment.

  8. Effect of pH on the formation of disinfection byproducts in swimming pool water – Is less THM better?

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Antoniou, Maria

    2012-01-01

    This study investigated the formation and predicted toxicity of different groups of disinfection byproducts (DBPs) from human exudates in relation to chlorination of pool water at different pH values. Specifically, the formation of the DBP groups trihalomethanes (THMs), haloacetic acids (HAAs......), haloacetonitriles (HANs) and trichloramine (NCl3), resulting from the chlorination of body fluid analog, were investigated at 6.0 ≤ pH ≤ 8.0. Either the initial concentration of active chorine or free chlorine was kept constant in the tested pH range. THM formation was reduced by decreasing pH but HAN, and NCl3...... formation was investigated and found to follow the same pH dependency as without bromide present, with the overall DBP formation increasing, except for HAAs. Estimation of genotoxicity and cytotoxicity of the chlorinated human exudates showed that among the quantified DBP groups, HAN formation were...

  9. Zeolite-Catalyzed Hydrocarbon Formation from Methanol: Density Functional Simulations

    Directory of Open Access Journals (Sweden)

    George Fitzgerald

    2002-04-01

    Full Text Available Abstract: We report detailed density functional theory (DFT calculations of important mechanisms in the methanol to gasoline (MTG process in a zeolite catalyst. Various reaction paths and energy barriers involving C-O bond cleavage and the first C-C bond formation are investigated in detail using all-electron periodic supercell calculations and recently developed geometry optimization and transition state search algorithms. We have further investigated the formation of ethanol and have identified a different mechanism than previously reported [1], a reaction where water does not play any visible role. Contrary to recent cluster calculations, we were not able to find a stable surface ylide structure. However, a stable ylide structure built into the zeolite framework was found to be possible, albeit a very high reaction barrier.

  10. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  11. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  12. Gender-Based Prototype Formation in Face Recognition

    Science.gov (United States)

    Baudouin, Jean-Yves; Brochard, Renaud

    2011-01-01

    The role of gender categories in prototype formation during face recognition was investigated in 2 experiments. The participants were asked to learn individual faces and then to recognize them. During recognition, individual faces were mixed with faces, which were blended faces of same or different genders. The results of the 2 experiments showed…

  13. It’s all about networking! Empirical investigation of social capital formation on social network sites

    OpenAIRE

    Koroleva, Ksenia; Krasnova, Hanna; Veltri, Natasha F.; Günther, Oliver

    2011-01-01

    As Social Network Sites (SNS) permeate our daily routines, the question whether participation results in value for SNS users becomes particularly acute. This study adopts a 'participation-source-outcome' perspective to explore how distinct uses of SNS generate various types of social capital benefits. Building on existing research, extensive qualitative findings and an empirical study with 253 Facebook users, we uncover the process of social capital formation on SNS. We find that even though ...

  14. Formation of dust grains in the ejecta of SN 1987A

    International Nuclear Information System (INIS)

    Kozasa, Takashi; Hasegawa, Hiroichi; Nomoto, Kenichi

    1989-01-01

    Formation of dust grains in the ejecta of SN 1987A is investigated on the basis of a theory of homogeneous nucleation and grain growth. The formation of dust grains in the gas ejected from a heavy element-rich mantle is considered, including the effects of latent heat released during grain growth and of radiation from the photosphere. It is shown that dust grains can condense in the heavy-element-rich mantle, and that the time of formation strongly depends on the temperature structure in the ejecta. Moreover, the formation of dust grains is retarded by the strong SN radiation field and the effect of latent heat deposited during grain growth. 41 refs

  15. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  16. Effects of pressure and temperature on the self-assembled fully hydrated nanostructures of monoolein-oil systems

    Czech Academy of Sciences Publication Activity Database

    Yaghmur, A.; Kriechbaum, M.; Amenitsch, H.; Steinhart, Miloš; Laggner, P.; Rappolt, M.

    2010-01-01

    Roč. 26, č. 2 (2010), s. 1177-1185 ISSN 0743-7463 R&D Projects: GA ČR GA202/09/2078 Institutional research plan: CEZ:AV0Z40500505 Keywords : lyotropic lipid mesophases * X-ray-diffraction * bicontinuous cubic phases Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.269, year: 2010

  17. Cholesteric lyomesophases based on sodium N-lauroyl asparte: characterization of new system by nuclear magnetic resonance and polarizing microscopy

    International Nuclear Information System (INIS)

    Melo, M.V.M.C. de.

    1982-01-01

    Lyomesophases based on di-sodium N-lauroyl aspartate (SNLA), bi-carboxilated amphiphile obtained from the reaction of n-lauroyl chloride with aspartic acid in racemic or levo form are studies. The different mesophases were characterized by 2 H and 23 Na NMR and by polarizing microscopy. (M.J.C.) [pt

  18. Water formation via HCl oxidation on Cu(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Ibrahim A., E-mail: isuleman@taibahu.edu.sa [College of Engineering, Taibah University, Yanbu 41911 (Saudi Arabia); Radny, Marian W. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Institute of Physics, Poznan University of Technology, 62-956 Poznan (Poland); Gladys, Michael J.; Smith, Phillip V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John C. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Chemistry, The University of Sydney (Australia); Stockenhuber, Michael; Kennedy, Eric M. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan Z. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Engineering and Information Technology, Murdoch University, Perth (Australia)

    2014-04-01

    Graphical abstract: This work investigates water formation on the Cu(1 0 0) surface via HCl oxidation using density functional theory and periodic slabs. We show that there are two different pathways for water formation on the surface depending on the temperature and oxygen coverage. - Highlights: • Pre-adsorbed chlorine increases the stability of water on Cu(1 0 0). • Two different pathways describe water formation on Cu(1 0 0) via HCl oxidation. • The mechanism of H{sub 2}O formation depends on the temperature and oxygen coverage. - Abstract: Using density functional theory and periodic slabs, we have studied water formation via HCl oxidation on the Cu(1 0 0) surface. We show that while adsorbed chlorine increases the stability of water on the Cu(1 0 0) surface, water molecules dissociate immediately when located next to an oxygen atom. We also show that these competing interactions, when arising from HCl reacting with oxygen on Cu(1 0 0), lead to water formation according to two different pathways depending on the temperature and oxygen coverage.

  19. A computer simulation study of tilted smectic mesophases

    International Nuclear Information System (INIS)

    Withers, I.M.

    2000-05-01

    Results are presented from a series of simulations undertaken to determine the effect of a novel form of molecular biaxiality upon the phase behaviour of the well established Gay-Berne (GB) liquid crystal model. Firstly, the simulation of a bulk system interacting via the Internally-Rotated Gay Berne (IRGB) potential, which offers a single-site representation of a molecule rigidly constrained into a zig-zag conformation, is presented. The results of simulations performed for systems of IRGB particles with an aspect ratio of 3:1 confirm that the introduction of biaxiality into the model results in the destabilisation of the orientationally ordered phases. For particles with a sufficiently pronounced zig-zag conformation, this results in the complete destabilisation of the smectic A phase and the smectic B phase being replaced by the tilted smectic J phase. Following these observations, the effect upon the phase behaviour of increasing molecular elongation is also considered, with an increase in the aspect ratio from 3:1 to 4:1 resulting in the nematic and smectic J phases being replaced by smectic A and smectic G phases respectively. Secondly, a version of the IRGB potential modified to include a degree of molecular flexibility is considered. Results obtained from bulk systems interacting via the flexible IRGB for 3:1 and 4:1 molecules show that the introduction of flexibility results in the destabilisation of the smectic A phase and the stabilisation of the nematic and tilted hexatic phases. Finally, the effect upon the phase behaviour of the rigid IRGB model of the inclusion of a longitudinal linear quadrupole is examined. These results show that increasing quadrupole moment results in the destabilisation of the tilted hexatic phase, although the biaxial order parameter is increased with increasing quadrupole moment. There is no clear correlation between quadrupole magnitude and the other observed phase transitions, with the nematic and smectic A phases being variously stabilised and destabilised with increasing quadrupole magnitude. For the 4:1 molecules with large quadrupole moments, buckled smectic layers are observed where some molecules are tilted with respect to a local layer normal. Of all the systems considered here, this buckled structure is the one which most closely resembles the elusive smectic C phase. (author)

  20. Dynamic properties of anhydrites, marls and salts of the Gachsaran evaporitic formation, Iran

    International Nuclear Information System (INIS)

    Gorjian, M; Memarian, H; Moosavi, M; Mehrgini, B

    2013-01-01

    A large carbonate oil field in Iran is suffering from severe casing collapses and related operational problems in anhydrite, marl and salt sequences of the Gachsaran cap rock formation. To investigate the causes and cures of operational problems, specifically casing collapse, knowing geomechanical properties of anhydrite, marl and salt of this formation is a prerequisite. However, taking cores in this formation is virtually impossible due to high solubility and weakness of the rocks. Moreover, there are insufficient well log data in this formation and the only available running well log is V p . In this paper, in order to obtain the dynamic parameters of the Gachsaran formation, V p , V s and ρ b in anhydrite, marl and salt cores, which had been taken from depths up to 300 m, were measured. Moreover, V p and V s in salt cores under different triaxial and hydrostatic stress conditions were obtained. The V p –V s, (V p /V s )–V p and V p –ρ b relations in anhydrite, marl and salt were investigated. The established relations in these anhydrite samples were verified by the data derived from limited cores which were taken from 3600 m depth. The relations between dynamic properties of salt with lateral and hydrostatic stresses were investigated. In conclusion, V s , ρ b and the ratio of V p /V s in anhydrite and marl can be estimated through the established relations and having V p logs in the Gachsaran formation. As a result, the dynamic properties of these rocks can be calculated in different depths of this evaporitic formation. Furthermore, the dynamic properties of salt rock seem to be constant in various depths and under differing triaxial and hydrostatic stress conditions. (paper)