Vector Meson Electro-production in Pomeron Exchange Model
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; LIU Bao-Rong; ZHOU Li-Juan; TAN Zhen-Qiang; HE Xiao-Rong; GU Yun-Ting
2005-01-01
Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/ψ production is performed. The effect of the energy scale so and photon virtuality Q2 on differential cross section are also predicted. Agood agreement with experimental data is obtained. Our conclusions are that the Pomeron exchange model is a successful description of J/ψ electro-production, the dependence of the differential cross sections on Q2 is negligible, the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory, and the value of the energy scale parameter so is dependent on the momentum transfer, namely its effect is moderate at low momentum transfer but it causes no difference at high momentum transfer | t |≥ 1.25 GeV2.
DN interaction from meson exchange
Haidenbauer, J.; Krein, G.; Meiner, U. -G.; Tolos, L.
A model of the DN interaction is presented which is developed in close analogy to the meson-exchange (K) over barN potential of the Julich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box
Meson Exchange Current (MEC) Models in Neutrino Interaction Generators
Katori, Teppei
2013-01-01
Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.
Study of the heavy molecular states in the quark model with meson exchange interaction
Institute of Scientific and Technical Information of China (English)
YU Si-Hai; WANG Bao-Kai; CHEN Xiao-Lin; DENG Wei-Zhen
2012-01-01
Some charmonium-like resonances such as X(3872) can be interpreted as possible D(*)(D)(*) molecular states.Within the quark model,we study the structure of such molecular states and the similar B(*)(B)(*)molecular states by taking into account the light meson exchange (π,η,ρ,ω and σ) between two light quarks from different mesons.
Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering
Simo, I Ruiz; Barbaro, M B; De Pace, A; Caballero, J A; Donnelly, T W
2016-01-01
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $\\Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $\\sigma$-model together with weak excitation of the $\\Delta(1232)$ resonance and its subsequent decay into $N\\pi$. With these currents we compute the five 2p-2h response functions contributing to $(\
Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model
Energy Technology Data Exchange (ETDEWEB)
Dhar, Madhumita
2016-06-15
To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.
A meson-exchange isobar model for the {pi}{sup +}d {r_reversible} pp reaction
Energy Technology Data Exchange (ETDEWEB)
Canton, L.; Cattapan, G.; Dortmans, P.J.; Pisent, G. [Istituto Nazionale di Fisica Nucleare, Padua (Italy); Svenne, J.P. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics]|[Winnipeg Inst. for Theoretical Physics, Winnipeg, MB (Canada)
1994-10-10
A broad set of observables are calculated for the {pi}{sup +} d {r_reversible} pp reaction with a relatively simple meson-exchange isobar model. The comparison between the calculated results and experimental data (including spin observables), shows that the model gives an overall phenomenologically acceptable description of the reaction around the {Delta} resonance. The effects due to the inclusion of Galilei invariant (pseudovector) recoil term in the {pi}NN vertex, of relativistic corrections to the {rho}-exchange component of the {Delta}N transition potential, and of NN final state interaction in the {pi}{sup +}d {yields} p+p process are also discussed. It is estimated that the model is sufficiently simple to be extended to the case of pion absorption on other light nuclei, in particular {sup 3}He (or tritium). 32 refs., 13 figs.
Mesons in the Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
WANG Li; PING Jia-Lun
2007-01-01
The quark-antiquark (q(-q)) spectrum is studied by solving the Schrǒdinger equation in the framework of non-relativistic constituent quark model. An overall good fit to the experimental data of meson is obtained. The interactions between quark and antiquark consist of quadratic colour confinement-exchange, one-gluon-exchange, and Goldstone-boson-exchange potentials.
Meson exchange and neutral weak currents
Energy Technology Data Exchange (ETDEWEB)
Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)
1994-04-01
Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.
Meson exchange currents in neutron-proton bremsstrahlung
Li, Yi; Liou, M.K.; Schreiber, W.M.; Gibson, B.F.; Timmermans, R.G.E.
2008-01-01
Background: The meson exchange current (MEC) contribution is important in the neutron-proton bremsstrahlung process (np gamma) when the two nucleon-scattering angles are small. However, our understanding of such effects is limited, and the reason why meson exchange current effects dominate the np ga
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.
Scalar meson mass from renormalized One Boson Exchange Potential
Cordon, A Calle
2008-01-01
We determine the mass and strength of the scalar meson from NN scattering data by renormalizing the One Boson Exchange Potential. This procedure provides a great insensitivity to the unknown short distance interaction making the vector mesons marginally important and allowing for SU(3) couplings in the 1S0 channel. The scalar meson parameters are tightly constrained by low energy np. We discuss whether this scalar should be compared to the recent findings based on the Roy equations analysis of pipi scattering.
Meson exchange currents in pion double charge exchange at high energies
Alvarez-Ruso, L
1995-01-01
In this letter we study the high energy behavior of the forward differential cross section for the O(18)(pi+,pi-)Ne(18) double charge exchange reaction. We have evaluated the sequential and the meson exchange current mechanisms. The meson exchange current contribution shows a very weak energy dependence and becomes dominant at incident pion kinetic energies above 600 MeV.
Nucleon-nucleon effective potential in dense matter including rho-meson exchange
Mornas, L; Pérez, A
2002-01-01
We obtain the RPA summed one-meson exchange potential between nucleons in symmetric nuclear matter at zero temperature, from a model which includes rho, sigma, omega and pi mesons. The behavior of rho mesons inside the medium is first discussed using different schemes to extract a finite contribution from the vacuum polarization. These schemes give qualitatively different results for the in-medium rho mass. The results are discussed in connection with the nonrenormalizability of the model. We next study the modified potential as density increases. In the intermediate-distance range, it is qualitatively modified by matter and vacuum effects. In the long-distance range (r>2 fm), one observes the presence of oscillations, which are not present in free space. Features on this distance range are insensitive to the renormalization scheme.
Heavy-light mesons in a relativistic model
Liu, Jing-Bin; Yang, Mao-Zhi
2016-07-01
We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)
The role of meson exchange currents in charged current (anti)neutrino-nucleus scattering
Barbaro, M B; Caballero, J A; De Pace, A; Donnelly, T W; Megias, G D; Simo, I Ruiz
2016-01-01
We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.
Simo, I Ruiz; Barbaro, M B; De Pace, A; Caballero, J A; Megias, G D; Donnelly, T W
2016-01-01
We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in $(e,e')$ scattering from $^{12}$C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the $\\Delta$ isobar current. We also analyze the effect of the exchange contribution and show that the direct/exchange interference strongly affects the determination of the np/pp ratio.
Soft-wall modelling of meson spectra
Afonin, S S
2016-01-01
The holographic methods inspired by the gauge/gravity correspondence from string theory have been actively applied to the hadron spectroscopy in the last eleven years. Within the phenomenological bottom-up approach, the linear Regge-like trajectories for light mesons are naturally reproduced in the so-called "Soft-wall" holographic models. I will give a very short review of the underlying ideas and technical aspects related to the meson spectroscopy. A generalization of soft-wall description of Regge trajectories to arbitrary intercept is proposed. The problem of incorporation of the chiral symmetry breaking is discussed.
Point-coupling models from mesonic hyper massive limit and mean-field approaches
Energy Technology Data Exchange (ETDEWEB)
Lourenco, O.; Dutra, M., E-mail: odilon@ita.br [Departamento de Fisica, Instituto Tecnologico da Aeronautica - CTA, Sao Jose dos Campos, SP (Brazil); Delfino, Antonio, E-mail: delfino@if.uff.br [Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ (Brazil); Amaral, R.L.P.G. [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2012-08-15
t In this work, we show how nonlinear point coupling models, described by a Lagrangian density containing only terms up to fourth order in the fermion condensate ({Psi}-bar{Psi}), are derived from a modified meson exchange nonlinear Walecka model. We present two methods of derivation, namely the hyper massive meson limit within a functional integral approach and the mean-field approximation, in which equations of state at zero temperature of the nonlinear point-coupling models are directly obtained. (author)
Extended Goldstone-boson-exchange constituent quark model
Wagenbrunn, R F; Plessas, W; Varga, K
2000-01-01
We discuss an updated version of the Goldstone-boson-exchange chiral quark model extended to include in addition to pseudoscalar meson exchanges also vector and scalar meson exchanges. The latter ingredients are viewed as effective parametrizations of multiple Goldstone-boson exchanges in baryons. The extended model allows for an accurate description of all light and strange baryon spectra and at the same time produces the right properties for deducing baryon-baryon interactions.
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange
Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.
2004-01-01
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...
The effect of instanton-induced interaction on -wave meson spectra in constituent quark model
Indian Academy of Sciences (India)
Bhavyashri; S Sarangi; Godfrey Saldanha; K B Vijaya Kumar
2008-01-01
The mass spectrum of the -wave mesons is considered in a non-relativistic constituent quark model. The full Hamiltonian used in the investigation includes the kinetic energy, the confinement potential, the one-gluon-exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good description of the mass spectrum is obtained. The respective role of III and OGEP in the P-wave meson spectrum is discussed.
Role of ω -meson exchange in scaling of the γ p →π0p process from a Regge-type model with resonances
Kong, Kook-Jin; Choi, Tae Keun; Yu, Byung-Geel
2016-08-01
The scaling of photoproduction γ p →π0p is investigated in the Reggeized model with N* and Δ resonances included to describe resonance peaks up to photon energy Eγ=3 GeV . Given the t -channel exchanges ρ (770 ) +ω (780 ) +b1(1235 ) +h1(1170 ) Reggeized for the background contribution, the resonances of the Breit-Wigner form are introduced to agree with cross sections for total, differential, and beam asymmetry in the low energy region. The scaled differential cross sections s7d σ /d t are reproduced to agree with the recent JLab data, revealing the production mechanism of the big bump structure around W ≈2.2 GeV by the deep-dip pattern of the ω exchange that originates from the zeros of the trajectory αω(t ) =0 in the canonical phase, 1/2 (-1 +e-i π αω(t )) .
Search for non-strange exotic mesons produced via baryon exchange
Boucrot, J; Bouquet, B; D'Almagne, B; De Rosny, G; Ferrer, A; Jacholkowski, A; Lahellec, A; Navach, F; Petroff, P; Rivet, P; Roudeau, P; Rougé, A; Salmeron, Roberto Aureliano; Six, J; Sonderegger, P; Treille, D; Volte, A; Wuthrick, J P; Yoshida, H
1977-01-01
Negative results on backward production via baryon exchange, of exotic non-strange mesons are presented. The reactions pi /sup -/p to p/sub forward/X/sup -/ and pi /sup -/n to p/sub forward/X/sup --/ have been studied with a 12 GeV/c pi /sup -/ beam in the Omega spectrometer at CERN. No resonant peak in X to pp pi /sup -/, pp pi /sup -/ pi /sup - /, pp pi /sup -/ pi /sup 0/, pi /sup +/ pi /sup -/ pi /sup -/ pi /sup -/, pi /sup +/ pi /sup -/ pi /sup -/ pi /sup 0/ has been seen. The upper limits obtained on cross sections for exotic meson production X to NN pi , NN pi pi , 4 pi are lower than the rho /sup -/ backward production cross section in the pi /sup -/p to p rho /sup -/ reaction; this result seems to contradict the predictions of the two-component duality model. Compared with already published experiments in the search for exotics produced via baryon exchange, the sensitivity of this experiment is higher by an order of magnitude. (20 refs).
Bulk properties of light deformed nuclei derived from a medium-modified meson-exchange interaction
Grümmer, F; Ma, Z Y; Krewald, S
1996-01-01
Deformed Hartree-Fock-Bogoliubov calculations for finite nuclei are carried out. As residual interaction, a Brueckner G-matrix derived from a meson-exchange potential is taken. Phenomenological medium modifications of the meson masses are introduced. The binding energies, radii, and deformation parameters of the Carbon, Oxygen, Neon, and Magnesium isotope chains are found to be in good agreement with the experimental data.
Quark Model Estimates of the Structure of the Meson-N-N*(1535,1/2-) Transition Vertices
Dillig, M; Marranghello, G F; Luetz, E F; Vasconcellos, C A Z
2006-01-01
We address an actual problem of baryon-resonance dominated meson-exchange processes in the low GeV regime, i.e. the phase and the structure of meson-NN* transition vertices. Our starting point is a quark-diquark model for the baryons (obeying approximate covariance; the mesons are kept as elementary objects), together with the relative phases for the NN vertices, as determined from low energy NN scattering. From the explicit representation of the N and N* baryons, we exemplify the derivation of the coupling constants and form factors of the NN*(1535,1/2-)transition vertices for pseudo-scalar, scalar and vector mesons.
Scalar mesons in a linear sigma model with (axial-)vector mesons
Parganlija, D; Wolf, Gy; Giacosa, F; Rischke, D H
2012-01-01
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for $\\bar{q}q$ states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar $\\bar{q}q$ states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as $\\bar{q}q$ states.
Dillig, M
2002-01-01
We investigate the exclusive production of the pseudoscalar mesons $\\pi ^{0}, \\eta, \\eta^{\\prime}, K^{+}$ and of the vector mesons $\\omega, \\phi$ in a microscopic gluon-exchange or instanton model. We describe the baryons as covariant quark - scalar diquark systems with harmonic confinement, thus taking into account center-of-mass corrections and Lorentz contraction in different frames. The excitation of intermediate baryon resonances is accounted by colorless 2-gluon (soft Pomeron) exchange. We find that our model accounts for the systematics of the high precision data on exclusive meson production from various modern proton factories.
Open flavour charmed mesons in a quantum chromodynamics potential model
Indian Academy of Sciences (India)
Krishna Kingkar Pathak; D K Choudhury
2012-12-01
We modify the mesonic wave function by using a short distance scale 0 in analogy with hydrogen atom and estimate the values of masses and decay constants of the open flavour charm mesons , $D_{s}$ and $B_{c}$ within the framework of a QCD potential model. We also calculate leptonic decay widths of these mesons to study branching ratios and lifetime. The results are in good agreement with experimental and other theoretical values.
Axially Symmetric Cosmological Mesonic Stiff Fluid Models in Lyra's Geometry
Gad, Ragab M
2009-01-01
In this paper, we obtained a new class of axially symmetric cosmological mesonic stiff fluid models in the context of Lyra's geometry. Expressions for the energy, pressure and the massless scalar field are derived by considering the time dependent displacement field. We found that the mesonic scalar field depends on only $t$ coordinate. Some physical properties of the obtained models are discussed.
Meson-meson bound states in a (2+1)-dimensional strongly coupled lattice QCD model
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antônio Francisco
2004-05-01
We consider bound states of two mesons (antimesons) in lattice quantum chromodynamics in an Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter κ and small plaquette coupling g-20, such that 0
Nuclear Matter with Quark-Meson Coupling; 1, Comparison of Nontopological Soliton Models
Barnea, N; Barnea, Nir; Walhout, Timothy S.
1999-01-01
A system of nontopological solitons interacting through scalar and vector meson exchange is used to model nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field. It is shown that the chiral chromodielectric model gives the best fit to the empirical data. The presence of the scalar meson guarantees saturation and an increase of the proton charge radius with nuclear density consistent with the EMC effect.
Self-consistent description of $\\Lambda$ hypernuclei in the quark-meson coupling model
Tsushima, K; Thomas, A W
1997-01-01
The quark-meson coupling model, which has been successfully used to describe the properties of both finite nuclei and infinite nuclear matter, is applied to a study of $\\Lambda$ hypernuclei. With the assumption that the (self-consistent) exchanged scalar, and vector, mesons couple only to the u and d quarks, a very weak spin-orbit force in the $\\Lambda$-nucleus interaction is achieved automatically. This can be interpreted as a direct consequence of the quark structure of the $\\Lambda$ hyperon. Possible implications and extensions of the present investigation are also discussed.
Meson-exchange enhancement of the first forbidden $0^{+} \\leftrightarrow 0^{-} \\beta$-transitions
2002-01-01
In the frame of the standard model of the weak interaction, it has been suggested by Kubodera, Delorme and Rho, that pion exchange should have a large effect on the rank-zero time-like component of the axial current A$_{0}$. The best case for the study of A$ _{0}$ is $0^{-} \\leftrightarrow 0^{+} \\beta$-decay since in this process only rank zero matrix elements of the time-like and space-like components of the axial current contribute to the transition rate. $0^{-} \\leftrightarrow 0^{+}$ decays have been studied in the vicinity of doubly closed-shell nuclei such as $^{16}$O, $^{96}$Zr, and $^{208}$Pb where s$_{1/2} \\leftrightarrow$ p$_{1/2}$ matrix elements were involved. In these cases, the meson-exchange correction to the one-body axial-charge density is significant. ISOLDE offers the possibility to perform sensitive measurements of the $0^{-} \\leftrightarrow 0^{+}$ pseudoscalar decay in nuclei where the p$_{3/2} \\rightarrow$ d$_{3/2}$ matrix elements are involved. We therefore propose a search of the $^{38}...
A Schematic Model For Density-Dependent Vector Meson Masses
Kim, Y; Brown, G E; Rho, M; Kim, Youngman; Rho, Mannque
1999-01-01
A schematic two-level model consisting of a "collective" bosonic state and an "elementary" meson is constructed that provides interpolation from a hadronic description (a la Rapp/Wambach) to B/R scaling for the description of properties of vector mesons in dense medium. The development is based on a close analogy to the degenerate schematic model of Brown for giant resonances in nuclei.
Contribution of σ meson exchange to elastic lepton-proton scattering
Koshchii, Oleksandr; Afanasev, Andrei
2016-12-01
Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE) experiment, which is devised to solve the "Proton Radius Puzzle," is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution, mediated by two-photon coupling of σ , is calculated to be at most ˜0.1 % for muons in the kinematics of MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-mass difference.
Meson exchange currents in the {sup 3}He({gamma},{pi}{sup +}){sup 3}H reaction
Energy Technology Data Exchange (ETDEWEB)
Gomez Tejedor, J.A.; Kamalov, S.S.; Oset, E. [Departamento de Fisica Teorica and Instituto de Fsica Corpuscular, Centro Mixto Universidad de Valencia--Consejo Superior de Investigaciones Cientificas, 46100 Burjassot (Valencia) (Spain)
1996-12-01
We generate meson exchange currents mechanisms for the ({gamma},{pi}{sup +}) reaction in nuclei starting from the {gamma}{ital N}{r_arrow}{pi}{pi}{ital N} amplitude on one nucleon and allowing one of the pions to be produced off shell and be absorbed by a second nucleon. Detailed calculations are presented for the {gamma} {sup 3}He{r_arrow}{pi}{sup +}{sup 3}H reaction, where we show that the cross section at large momentum transfers is dominated by these mechanisms, helping improve the agreement with experimental data. It is also shown that the meson exchange currents produce important effects in the photon asymmetry in the {Delta}-resonance region. {copyright} {ital 1996 The American Physical Society.}
Contribution of \\sigma-meson exchange to elastic lepton-proton scattering
Koshchii, O
2016-01-01
Lepton mass effects play a decisive role in description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future MUSE experiment, which is devised to solve the "Proton Radius Puzzle", is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in comparison of elastic electron-proton versus muon-proton scattering in MUSE. In this article, we estimate the $\\sigma$ meson exchange contribution in the $t$-channel. This contribution, mediated by two-photon coupling of $\\sigma$, is calculated to be at most $\\sim 0.1 \\%$ for muons in the kinematics of MUSE and it is about 3 orders in magnitude larger than for electrons because of the lepton-mass difference.
Thermodynamic phases and mesonic fluctuations in a chiral nucleon-meson model
Drews, Matthias; Klein, Bertram; Weise, Wolfram
2013-01-01
Studies of the QCD phase diagram must properly include nucleonic degrees of freedom and their thermodynamics in the range of baryon chemical potentials characteristic of nuclear matter. A useful framework for incorporating relevant nuclear physics constraints in this context is a chiral nucleon-meson effective Lagrangian. In the present paper, such a chiral nucleon-meson model is extended with systematic inclusion of mesonic fluctuations using the functional renormalization group approach. The resulting description of the nuclear liquid-gas phase transition shows a remarkable agreement with three-loop calculations based on in-medium chiral effective field theory. No signs of a chiral first-order phase transition and its critical endpoint are found in the region of applicability of the model, at least up to twice the density of normal nuclear matter and at temperatures T<100 MeV. Fluctuations close to the critical point of the first-order liquid-gas transition are also examined with a detailed study of the ...
Meson-Meson Scattering in the Relativistic Quark Model from Constraint Dynamics
Crater, Horace; Wong, Cheuk-Yin
2004-11-01
Previously, Crater and Van Alstine footnote H.W. Crater and P. Van Alstine, Ann. Phys. (N.Y.) Vol. 148, 57 (1983) employed Dirac's relativistic constraint dynamics to derive Two-Body Dirac equations which were subsequently applied successfully to obtain a covariant nonperturbative description of QED and QCD bound states footnote H.W. Crater, R.L. Becker, C.Y. Wong, and P. Van Alstine, Phys. Rev. D, Vol.46, 5117 (1992), H. Crater and P. Van Alstine to appear in Phys. Rev. D Vol 70 (hep-ph/0208186). We use this formalism to generalize the microscopic theory of meson-meson scattering developed by Barnes and Swanson footnote T. barnes and E.S. Swanson, Phys. Rev. D Vol. 46, 131 (1992) footnote C.Y. Wong, T. Barnes and E.S. Swanson, Phys. Rev. C Vol 62, 045201 (2001)from the nonrelativistic to the relativistic domain. The application of the present formalism will be demonstrated with a simple quark model for the scattering of mesons.
Meson Properties in a renormalizable version of the NJL model
Mota, A L; Hiller, B; Walliser, H; Mota, Andre L.; Hiller, Brigitte; Walliser, Hans
1999-01-01
In the present paper we implement a non-trivial and renormalizable extension of the NJL model. We discuss the advantages and shortcomings of this extended model compared to a usual effective Pauli-Villars regularized version. We show that both versions become equivalent in the case of a large cutoff. Various relevant mesonic observables are calculated and compared.
Monte Carlo Glauber wounded nucleon model with meson cloud
Zakharov, B G
2016-01-01
We study the effect of the nucleon meson cloud on predictions of the Monte Carlo Glauber wounded nucleon model for $AA$, $pA$, and $pp$ collisions. From the analysis of the data on the charged multiplicity density in $AA$ collisions we find that the meson-baryon Fock component reduces the required fraction of binary collisions by a factor of $\\sim 2$ for Au+Au collisions at $\\sqrt{s}=0.2$ TeV and $\\sim 1.5$ for Pb+Pb collisions at $\\sqrt{s}=2.76$ TeV. For central $AA$ collisions the meson cloud can increase the multiplicity density by $\\sim 16-18$\\%. We give predictions for the midrapidity charged multiplicity density in Pb+Pb collisions at $\\sqrt{s}=5.02$ TeV for the future LHC run 2. We find that the meson cloud has a weak effect on the centrality dependence of the ellipticity $\\epsilon_2$ in $AA$ collisions. For collisions of the deformed uranium nuclei at $\\sqrt{s}=0.2$ TeV we find that the meson cloud may improve somewhat agreement with the data on the dependence of the elliptic flow on the charged multi...
Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model
Falkowski, Adam; Ziegler, Robert
2015-01-01
We address the recent anomalies in semi-leptonic $B$-meson decays using a model of fermion masses based on the $U(2)$ flavor symmetry. The new contributions to $b \\to s \\ell \\ell$ transitions arise due to a tree-level exchange of a $Z^\\prime$ vector boson gauging a $U(1)$ subgroup of the flavor symmetry. They are controlled by a single parameter and are approximately aligned to the Standard Model prediction, with constructive interference in the $e$-channel and destructive interference in the $\\mu$-channel. The current experimental data on semi-leptonic $B$-meson decays can be very well reproduced without violating existing constraints from flavor violation in the quark and lepton sectors. Our model will be tested by new measurements of $b \\to s \\ell \\ell$ transitions and also by future electroweak precision tests, direct $Z^\\prime$ searches, and $\\mu$-$e$ conversion in nuclei.
The quark-meson coupling model for $\\Lambda$, $\\Sigma$ and $\\Xi$ hypernuclei
Tsushima, K; Haidenbauer, J; Thomas, A W
1998-01-01
The quark-meson coupling (QMC) model, which has been successfully used to describe the properties of both infinite nuclear matter and finite nuclei, is applied to a systematic study of $\\Lambda, \\Sigma$ and $\\Xi$ hypernuclei. Assumptions made in the present study are, (i) the (self-consistent) exchanged scalar, and vector, mesons couple only to the u and d quarks, and (ii) an SU(6) valence quark model for the bound nucleons and hyperon. The model automatically leads to a very weak spin-orbit interaction for the $\\Lambda$ in a hypernucleus. Effects of the Pauli blocking at the quark level, and the $\\Sigma N - \\Lambda N$ channel coupling (strong conversion), are also taken into account in a phenomenological way.
On the Role of One Pion Exchange and Heavy Quark Spin Symmetry in Heavy Meson Molecules
Directory of Open Access Journals (Sweden)
Pavón Valderrama M.
2012-12-01
Full Text Available In this contribution we consider the theoretical description of heavy mesonantimeson molecules from the effective field theory perspective. We are interested in the role of one pion exchange and heavy quark spin symmetry in the low energy description of the molecular states. We find that pion exchanges are weaker than naively expected. As a consequence, at lowest order in the effective expansion, the heavy meson-antimeson dynamics are driven by contact range interactions that are in turn heavily constrained by heavy quark spin symmetry. We find that if the X(3872 DD¯*${m{Dar D*}}$ is a bound state with quantum numbers JPC = 1++, we should expect the existence of a 2++ DD¯*${m{Dar D*}}$ molecule with a mass of 4012 MeV. If we also assume the X(3915 resonance to be molecular, we end up deriving the location of three new states with masses of 3710, 3820 and 3855 MeV.
Radiative decays of mesons in the NJL model
Epele, L N; Dumm, D G; Grunfeld, A G
2001-01-01
We revisit the theoretical predictions for anomalous radiative decays of pseudoscalar and vector mesons. Our analysis is performed in the framework of the Nambu-Jona-Lasinio model, introducing adequate parameters to account for the breakdown of chiral symmetry. The results are comparable with those obtained in previous approaches.
Structure of Vector Mesons in Holographic Model with Linear Confinement
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin; Hovhannes Grigoryan
2007-11-01
We investigate wave functions and form factors of vector mesons in the holographic dual model of QCD with oscillator-like infrared cutoff. We introduce wave functions conjugate to solutions of the 5D equation of motion and develop a formalism based on these wave functions, which are very similar to those of a quantum-mechanical oscillator. For the lowest bound state (rho-meson), we show that all its elastic form factors can be built from the basic form factor which, in this model, exhibits a perfect vector meson dominance, i.e., is given by the rho-pole contribution alone. We calculate the electric radius of the rho-meson and find the value _C = 0.655 fm, which is larger than in the case of the hard-wall cutoff. We calculate the coupling constant f_rho and find that the experimental value is in the middle between the values given by the oscillator and hard-wall models.
Liliani, N; Diningrum, J P; Sulaksono, A
2016-01-01
We have studied the effects of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms of relativistic mean field model on the properties of nuclear matter, finite nuclei, and super-heavy nuclei. We found that for the same fixed value of symmetry energy $J$ or its slope $L$ the presence of tensor coupling of $\\omega$ and $\\rho$ meson terms and Coulomb exchange term yields thicker neutron skin thickness of $^{208}$Pb. We also found that the roles of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei varies depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range especially in binding energies. We also observed that for some particular nuclei, the ...
Quarkonia and heavy-light mesons in a covariant quark model
Directory of Open Access Journals (Sweden)
Leitão Sofia
2016-01-01
Full Text Available Preliminary calculations using the Covariant Spectator Theory (CST employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study [1]. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.
String fragmentation model and inclusive production of K mesons
Energy Technology Data Exchange (ETDEWEB)
Aleem, F.E.; Saleem, M.; Rafique, M. (Punjab Univ., Lahore (Pakistan))
1992-06-30
In this paper an account of the inclusive production of K mesons in electron-positron annihilation is given. The most recent measurements on the cross section are exhibited and compared with the predictions of the Lund model. The model gives a satisfactory agreement with the experimental data. The result from different experiments on cross section, the mean multiplicity per multihadronic event and various other characteristics are found to be consistent.
Semileptonic decays of mesons in the SO(4) model
Energy Technology Data Exchange (ETDEWEB)
Iachello, F. [Yale Univ., New Haven, CT (United States). Center for Theoretical Physics; Lee, T.S.H. [Argonne National Lab., IL (United States)
1994-03-01
We present results of a calculation of semileptonic decays of mesons in the string-like U(4) SU{sub f}(n) 0 SU{sub s} (2) SU{sub c}(3) model with U(4) SO(4) dynamic symmetry. The calculation describes the available data as accurately as the semi-relativistic quark model. We make predictions for several exclusive decays which can be tested by future experiments.
A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space
Institute of Scientific and Technical Information of China (English)
LI Lei; WANG Shun-Jin; ZHOU Shan-Gui; ZHANG Guang-Biao
2007-01-01
For describing the radial excited states a relativistic confining potential in momentum space is included in the meson effective light-cone Hamiltonian. The meson eigen equations are transformed from the front form to the instant form and formulated in total angular representation. Details about numerically solving these equations are discussed, mainly focusing on treating singularities arising from one-gluon exchange interactions and confinement. The results of pseudo-scalar mesons indicate that the improved meson effective light-cone Hamiltonian can describe the ground states and radial excited states well. Some radial excited states are also predicted and waiting for experimental test.
A schematic model for QCD I Low energy meson states
Lerma, S; Hess, P O; Civitarese, O; Reboiro, M
2003-01-01
A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The model is a Lipkin type model for quarks coupled to gluons. The basic building blocks are pairs of quark-antiquarks coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity problem, which dictates that a given experimental state can be described in various manners, is removed when a particle-mixing interaction is turned on. In this first paper of a series we concentrates on the discussion of meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states is indicated, also.
Ishii, Masahiro; Yahiro, Masanobu
2016-01-01
We propose a practical effective model by introducing temperature ($T$) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2+1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The $T$ dependence is determined from LQCD data on the renormalized chiral condensate around the pseudocritical temperature $T_c^{\\chi}$ of chiral crossover and the screening-mass difference between $\\pi$ and $a_0$ mesons in $T > 1.1T_c^\\chi$ where only the $U(1)_{\\rm A}$-symmetry breaking survives. The model well reproduces LQCD data on screening masses $M_{\\xi}^{\\rm scr}(T)$ for both scalar and pseudoscalar mesons, particularly in $T \\ge T_c^{\\chi}$. Using this effective model, we predict meson pole masses $M_{\\xi}^{\\rm pole}(T)$ for scalar and pseudoscalar mesons. For $\\eta'$ meson, the prediction is consistent with the experimental value at finite $T$ measured in heavy-ion collisions. We point out that the relation $M_{\\xi}^{\\rm scr}(T)-M_{\\xi}^{\\rm pole}(T) \\approx...
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.
2001-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experi...
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R; Gignoux, C
2002-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.
Nuclear symmetry energy in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2015-01-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.
Meson exchange in the weak decay of LAMBDA hypernuclei and the GAMMA sub n /GAMMA sub p ratio
Jido, D; Palomar, J E
2001-01-01
We take an approach to the LAMBDA nonmesonic weak decay in nuclei based on the exchange of mesons. The one-pion and one-kaon exchange are considered, together with the exchange of two pions, either correlated, leading to an important scalar-isoscalar exchange (sigma-like exchange), or uncorrelated (box diagrams). Extra effects of omega exchange in the scalar-isoscalar channel are also considered. Constraints of chiral dynamics are used to generate these exchanges. A drastic reduction of the OPE results for the GAMMA sub n /GAMMA sub p ratio is obtained and the new results are compatible with all present experiments within errors. The absolute rates obtained for different nuclei are also in good agreement with experiment.
Polarizability of. pi. mesons in the confined quark model
Energy Technology Data Exchange (ETDEWEB)
Avakyan, E.Z.; Avakyan, S.L.; Efimov, G.V.; Ivanov, M.A. (Joint Institute for Nuclear Research, Dubna (USSR))
1989-05-01
The electric polarizabilities {alpha}{sub {pi}} and magnetic {beta}{sub {pi}} polarizabilities of {pi}{sup +} and {pi}{sup 0} mesons are calculated using the confined quark model. Diagrams with intermediate vector ({rho},{omega}), axial-vector ({ital a}{sub 1}, {ital f}{sub 1}), and scalar ({Epsilon}, {ital f}{sub 0}) states are included. It turns out that the intermediate mesons contribute significantly to the pion electric and magnetic polarizabilities. The following values (in units of 10{sup {minus}43} cm{sup 3}) are obtained: {alpha}{sub {pi}{sup +}}=5.8, {beta}{sub {pi}{sup +}}={minus}5.6, {alpha}{sub {pi}{sup 0}}={minus}1.1, and {beta}{sub {pi}{sup 0}}=2.8. The widths of two-particle strong and radiative decays of scalar mesons are calculated. The results are compared with the available experimental data and the results of other approaches.
Statistical Model and the mesonic-baryonic transition region
Oeschler, H.; Redlich, K.; Wheaton, S.
2009-01-01
The statistical model assuming chemical equilibriumand local strangeness conservation describes most of the observed features of strange particle production from SIS up to RHIC. Deviations are found as the maximum in the measured K+/pi+ ratio is much sharper than in the model calculations. At the incident energy of the maximum, the statistical model shows that freeze out changes regime from one being dominated by baryons at the lower energies toward one being dominated by mesons. It will be shown how deviations from the usual freeze-out curve influence the various particle ratios. Furthermore, other observables exhibit also changes just in this energy regime.
Unquenching the meson spectrum: a model study of excited $\\rho$ resonances
Rupp, George; van Beveren, Eef
2016-01-01
Quark models taking into account the dynamical effects of hadronic decay often produce very different predictions for mass shifts in the hadron spectrum. The consequences for meson spectroscopy can be dramatic and completely obscure the underlying confining force. Recent unquenched lattice calculations of mesonic resonances that also include meson-meson interpolators provide a touchstone for such models, despite the present limitations in applicability. On the experimental side, the $\\rho(770)$ meson and its several observed radial recurrences are a fertile testing ground for both quark models and lattice computations. Here we apply a unitarised quark model that has been successful in the description of many enigmatic mesons to these vector $\\rho$ resonances and the corresponding $P$-wave $\\pi\\pi$ phase shifts. This work is in progress, with encouraging preliminary results.
Liliani, N.; Nugraha, A. M.; Diningrum, J. P.; Sulaksono, A.
2016-05-01
We have studied the effects of tensor coupling of ω and ρ meson terms, the Coulomb exchange term in local density approximation, and various isoscalar-isovector coupling terms of relativistic mean-field model on the properties of nuclear matter, finite nuclei, and superheavy nuclei. We found that for the same fixed value of symmetry energy J or its slope L the presence of tensor coupling of ω and ρ meson terms and the Coulomb exchange term yields thicker neutron skin thickness of 208Pb. We also found that the roles of tensor coupling of ω and ρ meson terms, the Coulomb-exchange term in local density approximation, and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei vary depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range, especially in binding energies. We also observed that for some particular nuclei, the corresponding experimental data of binding energies are rather less compatible with the presence of the Coulomb-exchange term in local density approximation and they tend to disfavor the presence of isoscalar-isovector coupling term with too-high Λ value. Furthermore, we have found that these terms influence the detail properties of 292120 superheavy nucleus such as binding energies, the magnitude of two-nucleon gaps, single-particle spectra, neutron densities, neutron skin thicknesses, and mean-square charge radii. However, the shell-closure predictions of 208Pb and 292120 nuclei are not affected by the presence of these terms.
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Megias, G D; Moreno, O; Williamson, C F; Caballero, J A; Gonzalez-Jimenez, R; De Pace, A; Barbaro, M B; Alberico, W M; Nardi, M; Amaro, J E
2014-01-01
We evaluate and discuss the impact of meson-exchange currents (MEC) on charged-current quasielastic (QE) neutrino cross sections. We consider the nuclear transverse response arising from 2p-2h states excited by the action of electromagnetic, purely isovector meson-exchange currents in a fully relativistic framework, based on the work by the Torino collaboration [1]. An accurate parametrization of this MEC response as a function of the momentum and energy transfers involved is presented. Results of neutrino-nucleus cross sections using this MEC parametrization together with a recent scaling approach for the 1p-1h contributions (SuSAv2) are compared with experimental data (MiniBooNE, MINERvA, NOMAD and T2K Collaborations).
In-medium kaon and antikaon properties in the quark-meson coupling model
Tsushima, K; Thomas, A W; Wright, S V
1998-01-01
The properties of the kaon, $K$, and antikaon, $\\kbar$, in nuclear medium are studied in the quark-meson coupling (QMC) model. Employing a constituent quark-antiquark (MIT bag model) picture, their excitation energies in a nuclear medium at zero momentum are calculated within mean field approximation. The scalar, and the vector mesons are assumed to couple directly to the nonstrange quarks and antiquarks in the $K$ and $\\kbar$ mesons. It is demonstrated that the $\\rho$ meson induces different mean field potentials for each member of the isodoublets, $K$ and $\\kbar$, when they are embedded in asymmetric nuclear matter. Furthermore, it is also shown that this $\\rho$ meson potential is repulsive for the $K^-$ meson in matter with a neutron excess, and renders $K^-$ condensation less likely to occur.
Microscopic Description of K^+ Scattering on 4^He, 16^O and 40^Ca Nuclei using Meson Exchange Theory
Hanna, K M; Shalaby, A G
2013-01-01
We have calculated the total cross section for k^+-4^He, 16^O, 40^Ca, intes at incident momenta of the kaon P_lab<1GeV . We derived the K^+-nucleon optical potential according to the exchange of 3- mesons (segma,roh,omega) and also for 4- (segma,roh,omega, segma_0) exchanged between the reactants. We showed both of the radial behavior of the real and the imaginary parts of the derived potential. Comparisons between the available experimental data, other theoretical work and the calculated total cross sections for the three studied nuclei which have shown a reasonable agreement. The extended four mesons exchanged optical potential gave better close results to the experimental data. Further, ratios of the total cross sections of the studied nuclei with respect to the total cross section with the deuteron nucleus for the two applied optical potentials were given. In addition, the ratio of the theoretical result of the total cross section for the interaction of the K^+ meson with the deuteron was compared with...
Non-perturbative QCD Modeling and Meson Physics
Nguyen, T; Tandy, P C
2009-01-01
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Meson-Exchange Enhancement of First-Forbidden $\\beta$-Transitions in the Lead Region
Delaure, B J P; Severijns, N
2002-01-01
Both on-line and off-line low temperature nuclear orientation is used to measure the $\\beta$-asymmetry parameter for the first-forbidden g.s. $\\rightarrow$~g.s. $\\beta$-transitions of $^{205}$Hg, $^{207,209}$Tl, $^{209}$Pb and $^{213}$Bi. From this, the ratio of the rank-zero and the rank-one strengths in these decays can be deduced, with the rank of a $\\beta$-transition being defined as the total angular momentum of the lepton system. Combining this result with the experimental ${ft}$-values yields for the first time a purely experimental determination of the rank-zero contribution in these $\\Delta$ J = 0 first-forbidden transitions. This provides an independent check of the large enhancement (of about 100% over the impulse approximation) of the rank-zero matrix element of $\\gamma_{5} $, caused by meson exchange currents (MEC), which was recently obtained from a comparison of calculated first-forbidden $\\beta$-decay rates with experimentally observed values for nuclei in the lead region (A = 205-212). Measur...
The Meson Spectrum of the BCC Quark Model (A Modification of the Quark Model)
Xu, J L; Xu, Jiao Lin; Yu, Xin
2002-01-01
Using the quark spectrum of the BCC Quark Model [1] and the phenomenological formula for the binding energies of the mesons, not only have we deduced the intrinsic quantum numbers (I, S, C, b, and Q) of all mesons as was done with the Quark Model [2], but also we deduced the meson mass spectrum in agreement with experimental results [3] that we could not deduce using the Quark Model. The experimental meson spectrum gives some evidence of the existence of the new quarks $q_S^*(1391)$, $q_S^*(2551)$ and $q_C^*(6591)$..., which are predicted by the BCC Quark Model. The meson $\\chi (1600)$ $[2^+(2^{++})]$ with I = 2 (predicted by the BCC Quark Model--T(1603)) has already been discovered [4]. If this is finally confirmed, it will provide a strong support for the BCC Quark Model. We propose a search for the mesons D(5996), $D_S (6151)$, B(9504), $B_S (9659)$, $B_C (11031)$, $\\eta (5926)$, $\\eta (17837)$, $\\psi (25596)$, $\\Upsilon (17805)$, $\\Upsilon (29597)$, T(960), T(1282), T(1603), and T(1924).
Spectra of heavy-light mesons in a relativistic model
Liu, Jing-Bin
2016-01-01
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model, which is derived from the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation on the heavy quark. The kernel we choose is based on scalar confining and vector Coulomb potentials. The Hamiltonian for heavy-light quark-antiquark system is calculated up to order $1/m_Q^2$. The results are in good agreement with available experimental data except for the masses of the anomalous $D_{s0}^*(2317)$ and $D_{s1}(2460)$ states. The newly observed charmed meson states can be accommodated successfully in the relativistic model and their assignments are presented, the $D_{sJ}^*(2860)$ can be interpreted as the $|1^{3/2}D_1\\rangle$ and $|1^{5/2}D_3\\rangle$ states being the $J^P=1^-$ and $3^-$ members of the 1D family in our model.
Meson cloud effects on the pion quark distribution function in the chiral constituent quark model
Watanabe, Akira; Suzuki, Katsuhiko
2016-01-01
We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.
Photoproduction of vector mesons off nucleons near threshold
Energy Technology Data Exchange (ETDEWEB)
Friman, B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Soyeur, M. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1995-12-31
A simple meson-exchange model is proposed for the photoproduction of {rho}- and {omega}-mesons off protons near threshold. This model provides a good description of the available data and implies a large {rho}-nucleon interaction in the scalar channel ({sigma}-exchange). This phenomenological interaction is applied to estimate the leading contribution to the self-energy of {rho}-mesons in matter. The implications of our calculation for experimental studies of the {rho}-meson mass in nuclei are discussed. (author). 28 refs.
Spectra of heavy-light mesons in a relativistic model
Energy Technology Data Exchange (ETDEWEB)
Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)
2017-05-15
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)
Masses and Internal Structure of Mesons in the String Quark Model
Soloviev, L D
2000-01-01
The relativistic quantum string quark model, proposed earlier, is applied to all mesons, from pion to $\\Upsilon$, lying on the leading Regge trajectories (i.e., to the lowest radial excitations in terms of the potential quark models). The model describes the meson mass spectrum, and comparison with measured meson masses allows one to determine the parameters of the model: current quark masses, universal string tension, and phenomenological constants describing nonstring short-range interaction. The meson Regge trajectories are in general nonlinear; practically linear are only trajectories for light-quark mesons with non-zero lowest spins. The model predicts masses of many new higher-spin mesons. A new $K^*(1^-)$ meson is predicted with mass 1910 Mev. In some cases the masses of new low-spin mesons are predicted by extrapolation of the phenomenological short-range parameters in the quark masses. In this way the model predicts the mass of $\\eta_b(1S)(0^{-+})$ to be $9500\\pm 30$ MeV, and the mass of $B_c(0^-)$ t...
Charm meson scattering cross sections by pion and rho meson
Lin Zi Wei; Ko, C M
2001-01-01
Using the local flavor SU(4) gauge invariance in the limit of vanishing vector-meson masses, we extend our previous study of charm-meson scattering cross sections by pion and rho meson, which is based only on the pseudoscalar-pseudoscalar-vector meson couplings, to include also contributions from the couplings among three vector mesons and among four particles. We find that diagrams with light-meson exchanges usually dominate the cross sections. For the processes considered previously, the additional interactions lead only to diagrams involving charm-meson exchanges and contact interactions, and the cross sections for these processes are thus not much affected. Nevertheless, these additional interactions introduce new processes with light-meson exchanges and increase significantly the total scattering cross sections of charm mesons by pion and rho meson.
Hyperon stars in a modified quark meson coupling model
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2016-09-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. The effect of a nonlinear ω -ρ term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of 2 M⊙ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω -ρ term in the context of obtaining the star mass constraint in the present set of parametrizations.
Hyperon star in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2016-01-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a Modified Quark Meson Coupling Model (MQMC) where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. The effect of a nonlinear $\\omega$-$\\rho$ term on the equation of state is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of $2$~M$_{\\odot}$ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear $\\omega$-$\\rho$ term in the context of obtaining the star mass constraint in the present...
The Phase Structure of the Polyakov--Quark-Meson Model
Schaefer, Bernd-Jochen; Wambach, Jochen
2007-01-01
The relation between the deconfinement and chiral phase transition is explored in the framework of an Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N_f-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.
Phase structure of the Polyakov-quark-meson model
Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.
2007-10-01
The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and Nf-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.
Dynamical coupled-channel model of meson production reactions in the nucleon resonance region
Matsuyama, A; Sato, T
2006-01-01
A dynamical coupled-channel model is presented for investigating the nucleon resonances in the meson production reactions induced by pions and photons. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method. By applying the projection operator techniques,we derive a set of coupled-channel equations which satisfy the unitarity conditions within the channel space spanned by the considered two-particle meson-baryon states and the three-particle $\\pi\\pi N$ state. We present and explain in detail a numerical method based on a spline-function expansion for solving the resulting coupled-channel equations which contain logarithmically divergent one-particle-exchange driving terms resulted from the $\\pi\\pi N$ unitarity cut. We show that this driving term can generate rapidly varying structure in the reaction amplitudes associated with the unstable particle channels. It also has large effects in determining the two-pion production cros...
${\\bar p}p$ annihilation into ${\\bar D}D$ meson pair within an effective Lagrangian model
Shyam, R
2015-01-01
We study the charmed meson pair (${\\bar D}^0 D^0$ and $D^- D^+$) production in ${\\bar p}p$ annihilation within an effective Lagrangian model that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction amplitudes include terms corresponding to the t-channel $\\Lambda_c^+$, $\\Sigma_c^+$ and $\\Sigma_c^{++}$ baryon exchanges and the s-channel excitation, propagation and decay of the $\\Psi$(3770) resonance into the charmed mesons. The initial and final state distortion effects have been accounted for by using a simple eikonal approximation-based procedure in the same way as was done in our previous study of the ${\\bar p}p \\to {\\bar \\Lambda}_c^-\\Lambda_c^+$ reaction within a similar model. The ${\\bar D}^0 D^0$ production reaction is dominated by the $\\Lambda_c^+$ baryon exchange process, and the corresponding total cross sections are predicted to be in the range of 0.18 - 0.7 $\\mu$b for antiproton beam momenta varying between threshold and 20 $GeV/c$. The $\\Psi$(3770) reso...
Quark effects, meson-exchange currents and background in the d(e, e[sup primep])[Delta] reaction
Energy Technology Data Exchange (ETDEWEB)
Gomez Tejedor, J.A. (Institut fuer Theoretische Physik der Universitaet Tuebingen, Tuebingen (Germany)); Oset, E. (Institut fuer Theoretische Physik der Universitaet Tuebingen, Tuebingen (Germany))
1994-12-19
We have studied in detail the cross section for the d(e, e[sup primep])[Delta] reaction leading to the emission of a fast nucleon and a [Delta] at rest, which has been advocated as a tool to investigate quark effects in nuclei. We find that ordinary meson-exchange currents mechanisms dominate the quark-exchange effects in the region of excitation of the [Delta] and could be competitive at higher energies. Furthermore, at these higher energies, the small cross sections for the quark signal, together with the presence of a background about one order of magnitude bigger than the quark signal, make in any case the extraction of information about quark-exchange currents effects extraordinarily difficult. ((orig.))
Remarks on meson loop effects on quark models
Hammer, I K; Nefediev, A V
2016-01-01
We investigate the effect of meson loops on the spectrum of quark states. We demonstrate that in general quark states do not tend to get very broad if their coupling to the continuum increases, but instead they decouple from the latter in the large coupling limit. We ascribe this effect to the essentially nonperturbative unitarization procedure involved. In the meantime, some quark resonances behave very differently and demonstrate collectivity in the sense that their pole trajectories span a wide, as compared to the level spacing, region therefore acquiring contributions from multiple bare poles rather than from the closest neighbours. While the actual calculations are done within particular, very simplified models, it is argued that the findings might well be general.
Finite Hypernuclei in the Latest Quark-Meson Coupling Model
Energy Technology Data Exchange (ETDEWEB)
Pierre A. M. Guichon; Anthony W. Thomas; Kazuo Tsushima
2007-12-12
The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $\\Lambda$ and $\\Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $\\Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $\\Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $\\Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $\\Sigma$-atoms.
Remarks on meson loop effects on quark models
Energy Technology Data Exchange (ETDEWEB)
Hammer, I.K.; Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Nefediev, A.V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation)
2016-11-15
We investigate the effect of meson loops on the spectrum of quark states. We demonstrate that in general quark states do not tend to get very broad if their coupling to the continuum increases, but instead they decouple from the latter in the large coupling limit. We ascribe this effect to the essentially nonperturbative unitarization procedure involved. In the meantime, some quark resonances behave very differently and demonstrate collectivity in the sense that their pole trajectories span a wide, as compared to the level spacing, region therefore acquiring contributions from multiple bare poles rather than from the closest neighbors. While the actual calculations are done within particular, very simplified models, it is argued that the findings might well be general. (orig.)
Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's geometry
Indian Academy of Sciences (India)
S D Katore; S V Thakare; K S Adhao
2008-07-01
Bianchi Type-I cosmological models in Lyra's geometry are obtained when the source of gravitational field is a perfect fluid coupled with massless mesonic scalar field. Some physical and kinematical properties of the models are also discussed.
A chiral quark model for meson electro-production in the S11 partial wave
Golli, Bojan
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain consistent predictions for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model suggests that the N(1535) resonance is dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons.
Radiative decays of light vector mesons in a quark level linear sigma model
Napsuciale, M; Alvarado-Anell, E
2003-01-01
We calculate the P0 to gamma gamma, V0 to P0 gamma and V0to V'0 gamma gamma decays in the framework of a U(3)xU(3) linear sigma model which includes constituent quarks. For the first two decays this approach improves results based on the anomalous Wess-Zumino term, with contributions due to SU(3) symmetry breaking and vector mixing. The phi to (omega,rho) gamma gamma decays are dominated by resonant eta' exchange . Our calculation for the later decays improves and update similar calculations in the -closely related- framework of vector meson dominance. We obtain BR(phi to rho gamma gamma)=2.5x10^{-5} and BR(phi to omega gamma gamma)=2.8x10^{-6} within the scope of the high-luminosity phi factories.
Baryon-to-meson transition distribution amplitudes: formalism and models
Pire, B; Szymanowski, L
2016-01-01
In specific kinematics, hard exclusive amplitudes may be factorized into a short distance dominated part computable in a perturbative way on the one hand, and universal, confinement related hadronic matrix elements on the other hand. The extension of this description to processes such as backward meson electroproduction and forward meson production in antiproton-nucleon scattering leads to define new hadronic matrix elements of three quark operators on the light cone, the nucleon-to-meson transition distribution amplitudes, which shed a new light on the nucleon structure.
Baryon-to-Meson Transition Distribution Amplitudes: Formalism and Models
Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2017-03-01
In specific kinematics, hard exclusive amplitudes may be factorized into a short distance dominated part computable in a perturbative way on the one hand, and universal, confinement related hadronic matrix elements on the other hand. The extension of this description to processes such as backward meson electroproduction and forward meson production in antiproton-nucleon scattering leads to define new hadronic matrix elements of three quark operators on the light cone, the nucleon-to-meson transition distribution amplitudes, which shed a new light on the nucleon structure.
Z(3) metastable states in Polyakov Quark Meson model
Mishra, Hiranmaya
2016-01-01
We study the existence of Z(3) metastable states in the presence of the dynamical quarks within the ambit of Polyakov quark meson (PQM) model. Within the parameters of the model, it is seen that for temperatures $T_m$ greater than the chiral transition temperature $T_c$, Z(3) metastable states exist ( $T_{m} \\sim 310$ MeV at zero chemical potential). At finite chemical potential $T_m$ is larger than the same at vanishing chemical potential. We also observe a shift of ($\\sim 5^\\circ$) in the phase of the metastable vacua at zero chemical potential. The energy density difference between true and Z(3) metastable vacua is very large in this model. This indicates a strong explicit symmetry breaking effect due to quarks in PQM model. We compare this explicit symmetry breaking in PQM model with small explicit symmetry breaking as a linear term in Polyakov loop added to the Polyakov loop potential. We also study about the possibility of domain growth in a quenched transition to QGP in relativistic heavy ion collision...
核子-核子散射过程的研究和矢量介子交换势%Studies of NN Scattering Process and Vector Meson Exchange Potential
Institute of Scientific and Technical Information of China (English)
戴连荣; 张宗烨; 余友文; 袁淑立
2004-01-01
In this work, the vector meson exchange effect in NN interaction is studied on quark level in the extended chiral SU(3) quark model. The r, ρ and ω-meson exchange GCM potentials of central force and NN scattering phase shifts for all scattering partial waves are given. It shows that the vetor meson exchange potential can substitute one-gluon exchange (OGE) potential to explain repulsive core of the NN interaction.%在推广的手征SU(3)夸克模型下讨论了核子-核子散射过程和矢量介子交换势.给出了赝标π介子和矢量ρ和ω介子的GCM中心力的交换势和NN散射14个分波的相移.研究表明,矢量介子交换势可以替代单胶子交换势以解释核力的短程排斥.
Mesons at finite baryon density in (2+1)d
Strouthos, C G
2003-01-01
We discuss the critical properies of the three-dimensional Gross-Neveu model at nonzero temperature and nonzero chemical potential. We also present numerical and analytical results for the in-medium interaction due to scalar meson exchange. Further, we discuss in-medium modifications of mesonic dispersion relations and wavefunctions.
Melting of the quark condensate in the NJL model with meson loops
Energy Technology Data Exchange (ETDEWEB)
Florkowski, W.; Broniowski, W. [Institute of Nuclear Physics, Cracow (Poland)
1996-05-01
Temperature dependence of the quark condensate is studied in the Nambu-Jona-Lasinio model with meson loops. Substantial differences are found compared to the results with quark loop only. (author). 13 refs, 3 figs.
Vector and axial vector mesons in a nonlocal chiral quark model
Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.
2016-09-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region
Energy Technology Data Exchange (ETDEWEB)
T.-S. H. Lee; A. Matsuyama; T. Sato
2006-11-15
A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.
Vector and axial vector mesons in a nonlocal chiral quark model
Villafañe, M F Izzo; Scoccola, N N
2016-01-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Decay Constants and Distribution Amplitudes of B Meson in the Relativistic Potential Model
Sun, Hao-Kai
2016-01-01
In this work we study the decay constants of $B$ and $B_s$ mesons based on the wave function obtained in the relativistic potential model. Our results are in good agreement with experiment data which enables us to apply this method to the investigation of $B$-meson distribution amplitudes. A very compact form of the distribution amplitudes is obtained. We also investigate the one-loop QCD corrections to the purely leptonic decays of $B$ mesons. We find that, after subtracting the infrared divergence in the one-loop corrections using the factorization method, the QCD one-loop corrections to the leptonic decay amplitude will be zero.
Generalized SU(3) Nambu-Jona-Lasinio model. Pt. 1; Mesonic modes
Energy Technology Data Exchange (ETDEWEB)
Klimt, S.; Lutz, M.; Vogl, U.; Weise, W. (Regensburg Univ. (Germany, F.R.). Inst. fuer Physik 1 - Theoretische Physik)
1990-10-08
We present calculations of mesonic (quark-antiquark) modes in a generalized Nambu-Jona-Lasinio model with three quark flavours. The effective interaction between quarks is symmetric under chiral SU(3){sub L}xSU(3){sub R} and incorporates a U(1){sub A}-breaking six-point interaction as suggested by 't Hooft. We coencentrate on the evaluation of masses and decay constants of pseudoscalar mesons, with special emphasis on the underlying symmetry breaking patterns. Scalar, vector and axial vector mesonic modes are also discussed. (orig.).
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
Decays of open charmed mesons in the extended Linear Sigma Model
Directory of Open Access Journals (Sweden)
Eshraim Walaa I.
2014-01-01
Full Text Available We enlarge the so-called extended linear Sigma model (eLSM by including the charm quark according to the global U(4r × U(4l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark appear.We compute the (OZI dominant strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.
Meson-baryon interaction in the quark-gluon exchange framework
Hadjimichef, D
1999-01-01
We extend the Fock-Tani formalism to include the meson-baryon interaction. The Fock-Tani formalism is a first principle method which allows the use of field theoretic methods for treating systems of composite particles. An application of this general result can be the $K^{+}N$ system which is now reconized as much more suitable system for the investigation of the short range nature of the hadronic repulsion.
Production of phi-mesons on nuclear targets in the Quark-Gluon String model
Arakelyan, G H; Shabelski, Yu M
2016-01-01
We consider the experimental data on phi-meson production on nuclear targets, and we find that they present unusually small shadow corrections for the inclusive density in the midrapidity region. We also give a quantitatively consistent description of both the initial energy dependence and the A-dependence of the produced phi-mesons, obtained in the frame of the Quark-Gluon String Model.
D-meson observables in heavy-ion collisions at LHC with EPOSHQ model
Ozvenchuk, Vitalii; Aichelin, Joerg; Gossiaux, Pol-Bernard; Guiot, Benjamin; Nahrgang, Marlene; Werner, Klaus
2016-11-01
We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.
Weak decay constant of pseudscalar meson in a QCD-inspired model
Salcedo, L A M; Hadj-Michef, D; Frederico, T
2003-01-01
We show that a linear scaling between the weak decay constants of pseudoscalar and the vector mesons masses is supported by the available experimental data. The decay constant scale as $f_m/f_{pi}=M_V/M_{\\rho}$ (f_m is decay constant and M_V vector meson ground state mass). This simple form is justified within a renormalized light-front QCD-inpired model for quark-antiquark bound states.
Meson Thermalization by Baryon Injection in D4/D6 Model
Rezaei, Zahra
2016-01-01
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6- brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
Meson thermalization by baryon injection in D4/D6 model
Rezaei, Z.
2016-12-01
We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.
Screening of the meson fields in the Nambu - Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Florkowski, W. [Institute of Nuclear Physics, Cracow (Poland)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Friman, B.L. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik
1993-03-01
The spatial dependence of the finite-temperature meson correlation function in the (pseudo)scalar channel is studied in the Nambu-Jona-Lasinio model. The screening masses, obtained from the asymptotic behaviour of the static correlation function, are found to differ substantially from the dynamic masses, defined by a pole of the meson propagator. In particular, at high temperatures, the meson screening masses are large, although there are no well defined meson modes. In the high-temperature limit, the screening masses approach 2{pi}T, which corresponds to a gas of non-interacting, massless quarks. However interaction effects remain well beyond the chiral transition temperatures. The overall temperature dependence of the screening masses is in agreement with lattice results. (author). 26 refs, 5 figs.
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex Eduardo de
2001-07-01
Since the discovery of QCD (Quantum Chromodynamics), there have been remarkable technical achievements in perturbative calculations applied to hadrons. However, it is difficult to use QCD directly to compute hadronic properties. In this context, phenomenological potential models have provided extremely satisfactory results on description of ordinary hadrons, more specifically about quark-antiquark bound states (mesons). In this work we propose and study the main aspects in the construction of a potential model and search a generalized description of meson spectroscopy, with emphasis in heavy quark bound states. We analyze important aspects in the choice of the treatment in good agreement with the dynamics of interacting particles, attempting to relativistic aspects as well as to the possibilities of nonrelativistic approximation analysis. Initially the 'soft QCD' is employed to determine effective potential terms establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in accordance with QCD and phenomenological prescription. We perform the calculations of mass spectroscopy for particular sets of mesons and we verify whether the potential model could be extended to calculating the electronic transition rate ({gamma}(q q-bar {yields} e{sup -}e{sup +})). Finishing, we discuss the real physical possibilities of development of a generalized potential model (all quark flavors), its possible advantages relative to experimental parametrization, complexity in numerical calculations and in the description of physical reality in agreement with a quantum field theory (QCD). (author)
Multi-Meson Model applied to $D^+ \\to K^+ K^- K^+$
Aoude, R T; Reis, A C dos; Robilotta, M R
2016-01-01
Matrix elements of weak currents involving light multi-meson states are important in many hadronic decays of both heavy leptons and heavy mesons. In this paper we focus on the latter case where the current size of the data set demands better models. The specific case of three-kaon weak matrix elements is considered and expressed as a relatively simple structure, which generalizes naturally the concept of form factor. We propose a model for the decay $D^+ \\to K^+ K^- K^+$ as an alternative to isobar model, with free parameter predicted by the theory to be fine-tuned by a fit to data. An important qualitative outcome is that we encompass naturally all final states topologies, which involve necessarily proper multi-particle structures and cannot be decomposed into simpler two-body processes. This aspect represents a significant improvement when compared to isobar model, often employed in analyses of heavy-meson decay data.
Charmed decays of the B-meson in the quark model
Grach, I L; Ter-Martirosian, K A; Simula, S
1996-01-01
Exclusive and inclusive, semileptonic and non-leptonic, charmed decays of the B-meson are investigated in the context of a phenomenological quark model. Bound-state effects are taken care of by adopting a single (model-dependent) non-perturbative wave function, describing the motion of the light spectator quark in the B-meson. A nice reproduction of both exclusive and inclusive semileptonic data is obtained. Our predictions for the electron spectrum are presented and compared with those of the Isgur-Scora-Grinstein-Wise quark model. Finally, our approach is applied to the calculation of inclusive non-leptonic widths, obtaining a remarkable agreement with experimental findings.
Existence of the critical endpoint in the vector meson extended linear sigma model
Kovács, Peter; Wolf, György
2016-01-01
The chiral phase transition of the strongly interacting matter is investigated at nonzero temperature and baryon chemical potential mu_B within an extended (2+1) flavor Polyakov constituent quark-meson model which incorporates the effect of the vector and axial vector mesons. The effect of the fermionic vacuum and thermal fluctuations computed from the grand potential of the model is taken into account in the curvature masses of the scalar and pseudoscalar mesons. The parameters of the model are determined by comparing masses and tree-level decay widths with experimental values in a chi^2-minimization procedure which selects between various possible assignments of scalar nonet states to physical particles. We examine the restoration of the chiral symmetry by monitoring the temperature evolution of condensates and the chiral partners' masses and of the mixing angles for the pseudoscalar eta-eta' and the corresponding scalar complex. We calculate the pressure and various thermodynamical observables derived from...
Weak leptonic decay of light and heavy pseudoscalar mesons in an independent quark model
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, P.C. (Department of Physics, Utkal University, Bhubaneswar-751004 (India))
1993-04-01
Weak leptonic decays of light and heavy pseudoscalar mesons are studied in a field-theoretic framework based on the independent quark model with a scalar-vector harmonic potential. Defining the quark-antiquark momentum distribution amplitude obtainable from the bound quark eigenmodes of the model with the assumption of a strong correlation between quark-antiquark momenta inside the decaying meson in its rest frame, we derive the partial decay width with correct kinematical factors from which we extract an expression for the pseudoscalar decay constants [ital f][sub [ital M
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing; FENG Qing-Guo
2002-01-01
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
Light-Front Model of Transition Form-Factors in Heavy Meson Decay
de Melo, J P B C
2010-01-01
Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a light-front framework, we calculate electroweak transition form factor for the semileptonic decay of $D$ mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.
Generalized Chou-Yang Model and Meson-Proton Elastic Scattering at High Energies
Saleem, Mohammad; Aleem, Fazal-E.; Rashid, Haris
The various characteristics of meson-proton elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting pions(kaons) and protons. A new parametrization of the proton form factor consistent with the recent experimental data is proposed. It is then shown that all the data for meson-proton elastic scattering at 200 and 250 GeV/c are in agreement with theoretical computations. The physical picture of generalized Chou-Yang model which is based on multiple scattering theory is given in detail.
Generalized Chou-Yang model and meson-proton elastic scattering at high energies
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Aleem, F.E.; Rashid, H.
1989-01-01
The various characteristics of meson-proton elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting pions(kaons) and protons. A new parametrization of the proton form factor consistent with the recent experimental data is proposed. It is then shown that all the data for meson-proton elastic scattering at 200 and 250 GeV/c are in agreement with theoretical computations. The physical picture of generalized Chou-Yang model which is based on multiple scattering theory is given in detail.
A search for inverse magnetic catalysis in thermal quark-meson models
Fraga, E. S.; Mintz, B. W.; Schaffner-Bielich, J.
2014-04-01
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field B. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter T0 of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at B=0 is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
A search for inverse magnetic catalysis in thermal quark-meson models
Fraga, E S; Schaffner-Bielich, J
2013-01-01
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field $B$. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter $T_0$ of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at $B=0$ is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
A search for inverse magnetic catalysis in thermal quark–meson models
Energy Technology Data Exchange (ETDEWEB)
Fraga, E.S. [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Goethe University, D-60438 Frankfurt am Main (Germany); Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Mintz, B.W. [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil); Schaffner-Bielich, J. [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany)
2014-04-04
We explore the parameter space of the two-flavor thermal quark–meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field B. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark–meson coupling and the parameter T{sub 0} of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at B=0 is a crossover, we find that the quark–meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
Leptonic decay of light vector mesons in an independent quark model
Energy Technology Data Exchange (ETDEWEB)
Barik, N. (Department of Physics, Utkal University, Bhubaneswar-751004 (India)); Dash, P.C. (Department of Physics, P. N. College, Khurda, Orissa (India)); Panda, A.R. (Department of Physics, Kendrapara College, Kendrapara, Orissa (India))
1993-02-01
Leptonic decay widths of light vector mesons are calculated in a framework based on the independent quark model with a scalar-vector harmonic potential. Assuming a strong correlation to exist between the quark-antiquark momenta inside the meson, so as to make their total momentum identically zero in the center-of-mass frame of the meson, we extract the quark and antiquark momentum distribution amplitudes from the bound quark eigenmode. Using the model parameters determined from earlier studies, we arrive at the leptonic decay widths of ([rho],[omega],[phi]) as (6.26 keV, 0.67 keV, 1.58 keV) which are in very good agreement with the respective experimental data (6.77[plus minus]0.32 keV, 0.6[plus minus]0.02 keV, 1.37[plus minus]0.05 keV).
Dispersion Relation of σ Meson and Pion at Finite Nuclear Density in Chiral σ Model
Institute of Scientific and Technical Information of China (English)
DONG Dong-Qiao; CHEN Wei; WEN De-Hua; LIU Liang-Gang; Masahiro Nakano
2004-01-01
The propagators of pion and sigma meson at a finite nuclear density and zero temperature are studied in chiral σ model. Their dispersion relations are calculated numerically in one-loop approximation. In order to avoid the so-called tachyon pole appearing in the one-loop propagators of pion and sigma meson, we regard the mass of sigma meson mσ as a free parameter and adjust it to fit the nuclear saturation properties. For mσ equal to 3075 MeV, the tachyonpole does not appear at the normal nuclear density. Thus the dispersion relation can be calculated in chiral σ model in one-loop level for the first time.
Analysis of s s asymmetry in the proton sea combining the Meson Cloud and Statistical Model
Fox, Jordan; Budnik, Garrett; Tuppan, Sam
2014-09-01
We investigate strangeness in the proton in a hybrid version of the Meson Cloud Model. The convolution functions used to calculate the s s distributions consist of splitting functions and parton distributions. The splitting functions represent the non-perturbative fluctuations of the proton into a strange baryon and an anti-strange meson. The parton distributions of the baryons and mesons are calculated in a statistical model which represents perturbative processes of quarks and gluons. We consider six fluctuation states composed of ΛK+ , Σ0K+ , Σ+K0 , ΛK*+ , Σ0K*+ , Σ+K*0 . We then compare the results of these calculations to other theory, to the NuTeV, ATLAS, and HERMES experiments, and to global parton distributions. We investigate strangeness in the proton in a hybrid version of the Meson Cloud Model. The convolution functions used to calculate the s s distributions consist of splitting functions and parton distributions. The splitting functions represent the non-perturbative fluctuations of the proton into a strange baryon and an anti-strange meson. The parton distributions of the baryons and mesons are calculated in a statistical model which represents perturbative processes of quarks and gluons. We consider six fluctuation states composed of ΛK+ , Σ0K+ , Σ+K0 , ΛK*+ , Σ0K*+ , Σ+K*0 . We then compare the results of these calculations to other theory, to the NuTeV, ATLAS, and HERMES experiments, and to global parton distributions. This research has been supported in part by the Research in Undergraduate Institutions program of the National Science Foundation, Grant No. 1205686.
φ Electro-production in Pomeron Exchange Model
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; LIU Bao-Rong; ZHOU Li-Juan; TAN Zhen-Qiang; HE Xiao-Rong; GU Yun-Ting
2005-01-01
Based on the Pomeron exchange model, elastic production of φ meson in electron-proton interaction is investigated with both linear and non-linear Pomeron trajectories. The numerical calculations of the differential cross section for e + p → e' + p+ φ are performed. The theoretical predictions show that the dependence of the differentialcross section on virtual photon virtuality, Q2, is of moderation, the change of the energy scale parameter so causes moderate effect on the differential cross section, and the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory, in particular, at small momentum transfer region | t |≤ 0.2 GeV2.
Relativistic constituent model in sector of light mesons
Krutov, A F; Troitsky, V E
2016-01-01
We present a brief survey of some results on electroweak properties of composite systems that are obtained in the frameworks of our version of the instant form of relativistic quantum mechanics (RQM). Our approach describes well the $\\pi$- and the $\\rho$- mesons in wide range of momentum transfers $Q^{2}$. At large $Q^{2}$ the obtained pion form factor asymptotics coincides with that of QCD predictions. The method permits to perform analytic continuation of pion form factor to complex plane of momentum transfers that is in accordance with predictions of quantum field theory.
Model-Independent Analysis of CP Violation in Charmed Meson Decays
Dhir, Rohit; Oh, Sechul
2015-01-01
We present a model-independent analysis of CP violation, inspired by recent experimental observations, in charmed meson decays. The topological diagram approach is used to study direct CP asymmetries for singly Cabibbo-suppressed two-body hadronic decays of charmed mesons. We extract the magnitudes and relative phases of the corresponding topological amplitudes from available experimental information. In order to get more precise and reliable estimates of direct CP asymmetries, we take into account contributions from all possible strong penguin amplitudes, including the internal $b$-quark penguin contributions. We also study flavor SU(3) symmetry breaking effects in these decay modes and consequently, predict direct CP asymmetries of unmeasured modes.
D-meson observables in heavy-ion collisions at LHC with EPOSHQ model
Directory of Open Access Journals (Sweden)
Ozvenchuk Vitalii
2016-01-01
Full Text Available We study the propagation of charm quarks in the quark-gluon plasma (QGP created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.
An independent quark model study of weak leptonic decays of pseudoscalar mesons
Jena, S. N.; Nanda, P. K.; Sahoo, S.; Panda, S.
2015-05-01
An independent quark model with a relativistic power-law potential is used to study the weak leptonic decays of light and heavy pseudoscalar mesons. The partial decay width and the decay constant for the weak leptonic decay are derived from the quark-antiquark momentum distribution amplitude which is obtained from the bound quark eigenfunction with the assumption of a strong correlation existing between quark-antiquark momenta inside the decaying meson in its rest frame. The model parameters are first determined from the application of the model to study the ground state hyperfine splitting of ρ, K, D, Ds, B, Bs and Bc mesons. The same model with no adjustable parameters is then used to evaluate the decay constants fM and the decay widths of pseudoscalar mesons. The model predictions agree quite well with the available experimental data as well as with those of several other models. The decay constant for pion and kaon are obtained as fπ = 132 MeV and fk = 161 MeV which closely agree with experimental values. But in case of heavier mesons for which experimental data are not yet available, the present model gives its predictions as fBC > fBS > fB, fDS > fD, fD > fB and fπ > fB which are in conformity with most of other model predictions. The model predictions of the corresponding decay widths and the branching ratios for the (l\\bar {ν }l) and (τ \\bar {ν }τ ) decay modes are in close agreement with the available experimental data.
A chiral quark model for meson electro-production in the region of D-wave resonances
Golli, Bojan
2013-01-01
The meson scattering and electroproduction amplitudes in the D13, D33 and D15 partial waves are calculated in a coupled-channel formalism incorporating quasi-bound quark-model states, extending our previous studies of the P11, P33 and S11 partial waves. The vertices of the baryon-meson interaction including the s- and d-wave pions and $\\rho$-mesons, the s-wave $\\eta$-meson, and the $s$- and p-wave $\\sigma$-mesons are determined in the Cloudy Bag Model, with some changes of the parameters to reproduce the widths of the resonances. The helicity amplitudes and the electroproduction amplitudes exhibit consistent behavior in all channels but tend to be too weak compared to the experiment. We discuss possible origins of this discrepancy which arises also in the constituent quark model calculations.
Supernova Equation of State with an extended SU(3) Quark-Meson Model
Beisitzer, Thomas; Schaffner-Bielich, Juergen
2014-01-01
The quark-meson model is investigated for the two- and three-flavor case extended by contributions of vector mesons under conditions encountered in core-collapse supernova matter. Typical temperature ranges, densities and electron fractions, as found in core-collapse supernova simulations, are studied by implementing charge neutrality and local beta-equilibrium with respect to weak interactions. Within this framework, we analyze the resulting phase diagram and equation of state (EoS) and investigate the impact of undetermined parameters of the model. The EoS turns out to be relatively independent on the entropy per baryon but there are significant changes when going from the two-flavor to the three-flavor case due to the nontrivial contribution from the strange quarks which stay massive even at high densities. While an increasing vector meson coupling constant leads to a substantial stiffening of the EoS, we find that the impact of changing the scalar meson mass is equally strong and results in a softening of...
A Meson Emission Model of Psi to N Nbar m Charmonium Strong Decays
Barnes, T; Roberts, W
2010-01-01
In this paper we consider a sequential "meson emission" mechanism for charmonium decays of the type Psi -> N Nbar m, where Psi is a generic charmonium state, N is a nucleon and m is a light meson. This decay mechanism, which may not be dominant in general, assumes that an NNbar pair is created during charmonium annihilation, and the light meson m is emitted from the outgoing nucleon or antinucleon line. A straightforward generalization of this model can incorporate intermediate N* resonances. We derive Dalitz plot event densities for the cases Psi = eta_c, J/psi, chi_c0, chi_c1} and psi' and m = pi0, f0 and omega (and implicitly, any 0^{-+}, 0^{++} or 1^{--} final light meson). It may be possible to separate the contribution of this decay mechanism to the full decay amplitude through characteristic event densities. For the decay subset Psi -> p pbar pi0 the two model parameters are known, so we are able to predict absolute numerical partial widths for Gamma(Psi -> p pbar pi0). In the specific case J/psi -> p ...
Polyakov SU(3) extended linear $\\sigma$-model: Sixteen mesonic states in chiral phase-structure
Tawfik, Abdel Nasser
2014-01-01
The derivative of the grand potential in mean field approximation, non-strange and strange condensates and deconfinement phase-transition in thermal and dense hadronic medium are verified in extended SU(3) linear sigma-model (eLSM). In determining the chiral phase-transition, the chiral condensates sigma_x and sigma_y are analysed. The chiral mesonic phase-structures in temperature- and density-dependence are taken as free parameters to be fitted. These parameters are classified corresponding to scalar meson nonets; (pseudo)-scalar and (axial)-vector. For deconfinement phase-transition, effective Polyakov loop-potentials phi and phi^* are utilized. We investigated the in-medium effects on the masses of sixteen mesonic states states. The results are presented for two different forms for the effective Polyakov loop-potential and compared with other models with and without anomalous terms. The Polyakov loop potential in LSM has considerable effects on the chiral phase-transition in meson masses so that the resto...
Couplings between the ρ and D and D* mesons
El-Bennich, Bruno; Paracha, M. Ali; Roberts, Craig D.; Rojas, Eduardo
2017-02-01
We compute couplings between the ρ -meson and D and D* mesons—D(*)ρ D(*)—that are relevant to phenomenological meson-exchange models used to analyze nucleon-D -meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a simultaneous description of light- and heavy-quarks and the states they constitute. We find that all interactions, including the three independent D*ρ D* couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with ρ -meson virtuality. As a consequence, it appears that one should be cautious in using a single coupling strength or parametrization for the study of interactions between D(*) mesons and matter.
Real and virtual photon emission within effective quark-meson models
Energy Technology Data Exchange (ETDEWEB)
Wunderlich, Falk; Kaempfer, Burkhard [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Institut fuer Theoretische Physik, TU Dresden (Germany)
2014-07-01
Certain aspects of the behaviour of strongly interacting matter can be understood in terms of effective models. Among such models are the quark-meson models. With a suitable choice of parameters and field content their phase diagram exhibits a 1st order phase transition that terminates in a critical point at nonzero chemical potential. Including the electromagnetic sector we investigate the dependence of the real and virtual photon rates on temperature and chemical potential with emphasis on peculiarities near the critical point.
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
Energy Technology Data Exchange (ETDEWEB)
Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)
2016-02-15
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fabiano, N. [Perugia, Univ. (Italy)]|[INFN, Frascati (Italy). Laboratori Nazionali di Frascati
1997-03-01
The possibility of formation for a bound state of a t quark and a lighter one is investigated using potential model predictions and heavy quark effective theory approach. Resulting estimates for the 1S-2S splitting of the energy levels are compared to the total top decay width {Gamma}{sub t}. As for the case of toponium, their conclusions show that the probability of formation for T-mesons is negligibly small due to the high top mass value.
Isovector meson-exchange currents in the light-front dynamics
Energy Technology Data Exchange (ETDEWEB)
Desplanques, B. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Karmanov, V.A. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Mathiot, J.F. [Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex (France)
1995-07-17
In the light-front dynamics, there is no pair term that plays the role of the dominant isovector pion exchange current. This current gives rise to the large and experimentally observed contribution to the deuteron electrodisintegration cross-section near threshold for pseudo-scalar {pi}NN coupling. We show analytically that in leading 1/m order the amplitude in the light-front dynamics coincides, however, with the one given by the pair term. At high Q{sup 2}, it consists of two equal parts. One comes from extra components of the deuteron and final state relativistic wave functions. The other results from the contact NN{pi}{gamma} interaction which appears in the light-front dynamics. This provides a transparent link between relativistic and non-relativistic approaches. ((orig.)).
Vector meson electroproduction in QCD
Institute of Scientific and Technical Information of China (English)
LU Juan; CAI Xian-Hao; ZHOU Li-Juan
2012-01-01
Based on the generalized QCD vector meson dominance model,we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model.Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for p,ω and φ meson electroproduction in this paper.Since gluons interact among themselves (self-interaction),two gluons can form a glueball with quantum numbers IG,JPC =0+,2++,decay width Γt ≈ 100 MeV,and mass of mG=2.23 GeV.The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C =-1,called the Odderon.The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon.Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully,which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton.It should be emphasized that our mechanism is different from the theoretical framework of Block et al.We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies,as well as for searching for new particles such as tensor glueballs and Odderons,which have been predicted by QCD and the color glass condensate model (CGC).Therefore,in return,it can test the validity of QCD and the CGC model.
Vector meson electroproduction in QCD
Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan
2012-08-01
Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.
Electromagnetic structure and weak decay of pseudoscalar mesons in a light-front QCD-inspired model
Salcedo, L A M; Hadj-Michef, D; Frederico, T
2006-01-01
We study the scaling of the $^3S_1-^1S_0$ meson mass splitting and the pseudoscalar weak decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short-distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splittings, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]$^2$ are reasonably described by the model
Polyakov-Quark-Meson-Diquark Model for two-color QCD
Strodthoff, Nils
2013-01-01
We present an update on the phase diagram of two-color QCD from a chiral effective model approach based on a quark-meson-diquark model using the Functional Renormalization Group (FRG). We discuss the impact of perturbative UV contributions, the inclusion of gauge field dynamics via a phenomenological Polyakov loop potential, and the impact of matter backcoupling on the gauge sector. The corresponding phase diagram including these effects is found to be in qualitative agreement with recent lattice investigations.
D-meson observables in Pb-Pb and p-Pb collisions at LHC with EPOSHQ model
Ozvenchuk, V.; Aichelin, J.; Gossiaux, P. B.; Guiot, B.; Nahrgang, M.; Werner, K.
2017-01-01
We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion and proton-nucleus collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of nal D-meson spectra at high transverse momentum and a nite D-meson elliptic ow, v 2, whereas in proton-nucleus collisions the D-meson nuclear modi cation factor, RpA , at high transverse momentum is compatible with unity. Our results are in good agreement with the available experimental data.
Symmetry-preserving contact interaction model for heavy-light mesons
Serna, F E; Krein, G
2016-01-01
We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interac- tion model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar pion and Kaon mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals.
Excited bottom and bottom-strange mesons in the quark model
Lü, Qi-Fang; Pan, Ting-Ting; Wang, Yan-Yan; Wang, En; Li, De-Min
2016-10-01
In order to understand the possible q q ¯ quark-model assignments of the BJ(5840 ) and BJ(5960 ) recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the BJ(5840 ) and BJ(5960 ) can be identified as the B (2 1S0) and B (1 3D3) , respectively, and the B (5970 ) reported by the CDF Collaboration can be interpreted as the B (2 3S1) or B (1 3D3) . Further precise measurements of the width, spin and decay modes of the B (5970 ) are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Symmetry-preserving contact interaction model for heavy-light mesons
Energy Technology Data Exchange (ETDEWEB)
Serna, F. E.; Brito, M. A.; Krein, G. [Instituto de Física Teórica, Universidade Estadual Paulista (Brazil); Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP (Brazil)
2016-01-22
We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interaction model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar π and K mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals.
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R. J.; Serot, Brian D.
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
Excited bottom and bottom-strange mesons in the quark model
Lü, Qi-Fang; Wang, Yan-Yan; Wang, En; Li, De-Min
2016-01-01
In order to understand the possible $q\\bar{q}$ quark-model assignments of the $B_J(5840)$ and $B_J(5960)$ recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the $B_J(5840)$ and $B_J(5960)$ can be identified as $B(2^1S_0)$ and $B(1^3D_3)$, respectively, and the $B(5970)$ reported by the CDF Collaboration can be interpreted as $B(2^3S_1)$ or $B(1^3D_3)$. Further precise measurements of the width, spin and decay modes of the $B(5970)$ are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model
Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho
2016-05-01
Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.
Non-Orthogonality of Residues in the Wigner-Weisskopf Model for Neutral K Meson Decay
Cohen, E; Cohen, Eli
1998-01-01
We review the application of the Wigner-Weisskopf model to the two-channel decay problem for the neutral $K$ meson system in the resolvent formalism. The residues in the pole approximation are not orthogonal, leading to additional interference terms in the $K_S-K_L 2\\pi$ channel. We show that these terms may be detectable experimentally in the beam emitted from a regenerator.
Blaschke, D.; Ebert, D.
2017-08-01
For the investigation of back-reactions of composite mesons in the NJL model, a variational path-integral treatment is formulated which yields an effective action Aeff [Dσ ,Dπ ; S ], depending on the propagators Dσ, Dπ of σ- and π-mesons and on the full quark propagator S. The stationarity conditions δAeff / δS = 0, δAeff / δDσ = 0, δAeff / δDπ = 0, then lead to coupled Schwinger-Dyson (SD) equations for the quark self-energy and the meson polarization functions. These results reproduce and extend results of the so-called ;Φ-derivable; approach and provide a functional formulation for diagrammatic resummations of 1 /Nc -corrections in the NJL model. Finally, we perform a low-momentum estimate of the quark and meson loop contributions to the polarization function of the pion and on this basis discuss the Goldstone theorem.
Nuclear symmetry energy in a modified quark-meson coupling model
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2015-10-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. We find an analytic expression for the symmetry energy Esym as a function of its slope L . Our result establishes a linear correlation between L and Esym. We also analyze the constraint on neutron star radii in (p n ) matter with β equilibrium.
A model-independent determination of the inclusive semileptonic decay fraction of B mesons
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M.; Reim, K.; Wegener, H.; Eckmann, R.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križnič, P.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Snizhko, A.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration
1993-12-01
With the ARGUS detector at the e +e - storage ring DORIS II, we have determined decay fraction and electron momentum spectrum of the inclusive decay mode B → eνX. Usinng lepton tags from the second B meson. in 209 000 γ(4 S) → BoverlineB decays, we could determine the spectrum for all electron momenta pe > 0.6 GeV/ c. Including the small extrapolation to pe > 0, we find the model-independent decay fraction B(B → eνX) = (9.6 ± 0.5 ± 0.4)%. Adding D meson tags, our result is (9.7 ± 0.5 ± 0.4)%.
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ-ω Model
Institute of Scientific and Technical Information of China (English)
CHEN Wei; AI Bao-Quan; LIU Liang-Gang
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model. Different from the results of the previous paper, we find that the effect of the constant a in the self-interaction, U(σ) = aσ+ bσ + cσ + dσ , of the σ meson cannot be neglected.It determines the critical density where tachyon appears. The smaller the a, the larger the critical density. The binding energy, pressure, incompressibility coefficient, nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
Institute of Scientific and Technical Information of China (English)
郭华; 胡翔
2001-01-01
The ω-and p-meson tensor couplings to nucleons in a derivative scalar coupling model for finite nuclei are investigated. The influences of the tensor couplings on the binding energies per nucleon, the root-mean-square charge radii, spin-orbit splittings and single particle energies are discussed. The obtained results show that the spin-orbit splittings for finite nuclei are more sensitive to the ω-meson tensor coupling.
Couplings between the $\\rho$ and $D$- and $D^\\ast$-mesons
El-Bennich, Bruno; Roberts, Craig D; Rojas, Eduardo
2016-01-01
We compute couplings between the $\\rho$-meson and $D$- and $D^\\ast$-mesons - $D^{(\\ast)}\\rho D^{(\\ast)}$ - that are relevant to phenomenological meson-exchange models used to analyse nucleon-$D$-meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a consistent, simultaneous description of light- and heavy-quarks and the states they constitute, We find that all interactions, including the three independent $D^{\\ast} \\rho \\,D^{\\ast}$ couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with $\\rho$-meson virtuality. As a consequence, it appears that no single coupling strength or parametrization can realistically be employed in the study of interactions between $D^{(\\ast)}$-mesons and matter.
Vector and tensor meson decay constants in light-front quark model
Geng, Chao-Qiang; Xia, Chuanhui
2016-01-01
We study the decay constants ($f_M$) of the vector ($D^{*}$, $D^{*}_{s}$, $B^{*}$, $B^{*}_{s}$, $B^{*}_{c}$) and tensor ($D_{2}^{*}$, $D_{s2}^{*}$, $B^{*}_{2}$, $B^{*}_{s2}$) mesons in the light front quark model. With the known pseudoscalar meson decay constants of $f_D$, $f_{D_s}$, $f_B$, $f_{B_s}$, and $f_{B_c}$ as the input parameters to determine the light-front meson wave functions, we obtain that $f_{D^{*}, D^{*}_{s}, B^{*},B^{*}_s,B^{*}_c} = (252.0^{+13.8}_{-11.6}$, $318.3^{+15.3}_{-12.6}$ , $201.9^{+43.2}_{-41.4}$, $244.2\\pm7.0$, $473.4\\pm18.2$) and $(264.9^{+10.2}_{-9.5}$, $330.9^{+9.9}_{-9.0}$, $220.2^{+49.1}_{-46.2}$, $265.7\\pm8.0$, $487.6\\pm19.2$) MeV with Gaussian and power-law wave functions, respectively, while $f_{D_{2}^{*},D_{s2}^{*},B^{*}_{2},B^{*}_{s2}}$=($143.6^{+24.9}_{-21.8}$, $209.5^{+29.1}_{-24.2}$, $80.9^{+33.8}_{-27.7}$, $109.7^{+15.7}_{-15.0}$) MeV with only Gaussian wave functions.
Form Factors and charge radii of heavy flavored mesons in a potential model
Das, T; Bordoloi, N S
2016-01-01
We report the results for charge radii of heavy flavored mesons ($D^+, D^0, D^+_s, B^+, B^0, B^0_s$) in a QCD model with the potential $V(r)=-4\\frac{\\alpha_s}{3r}+br+c$ by incorporating two scales $r^{short}$ and $r^{long}$ as an integration limit so that the perturbative procedure can be improved in a potential model. We also obtain the analytical expressions for Form Factors in terms of momentum transfer ($Q^2$). The obtained results are compared with our earlier works and with the other theoretical models.
Photoproduction of Hybrid Mesons
Barnes, T
1998-01-01
In this contribution I discuss prospects for photoproducing hybrid mesons at CEBAF, based on recent model results and experimental indications of possible hybrids. One excellent opportunity appears to be a search for the I=1, JPC=2+-, neutral "(b2)o" hybrid in (a2 pi)o through diffractive photoproduction. Other notable possibilities accessible through pi+ or pio exchange photoproduction are I=1, JPC=1-+, charged "pi1+" in f1 pi+, (b1 pi)+ and (rho pi)+; piJ(1770)+ in f2 pi+ and (b1 pi)+; pi(1800)+ in f0 pi+, f2 pi+, omega rho+ and (rho pi)+; a1 in f1 pi+ and f2 pi+; and omega in (rho pi)o, omega eta and (K1 K)o.
Radiative decay of mesons in an independent-quark potential model
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, P.C. (Department of Physics, Utkal University, Bhubaneswar 751004 (India)); Panda, A.R. (Department of Physics, Kendrapara College, Kendrapara, Orissa (India))
1992-11-01
We investigate in a potential model of independent quarks the {ital M}1 transitions among the low-lying vector ({ital V}) and pseudoscalar ({ital P}) mesons. We perform a static'' calculation of the partial decay widths of twelve possible {ital M}1 transitions such as {ital V}{r arrow}{ital P}{gamma} and {ital P}{r arrow}{ital V}{gamma} within the traditional picture of photon emission by a confined quark and/or antiquark. The model accounts well for the observed decay widths.
Anisotropic exchange-interaction model: From the Potts model to the exchange-interaction model
King, T. C.; Chen, H. H.
1995-04-01
A spin model called the anisotropic exchange-interaction model is proposed. The Potts model, the exchange-interaction model, and the spin-1/2 anisotropic Heisenberg model are special cases of the proposed model. Thermodynamic properties of the model on the bcc and the fcc lattices are determined by the constant-coupling approximation.
Sequential pole dominance model and decay of new mesons
Chaichian, Masud
1976-01-01
The sequential pole dominance model recently proposed by Freund and Nambu (1975) allows predictions to be made about the decay processes which violate the Zweig-Iizuka rule. Detailed comparison of the model with recent experimental data on the decay modes of psi (3095) and psi '(3684) reveals some quantitative disagreement. A possible decay mechanism which can account for this discrepancy is discussed. (7 refs).
Consistent parameter fixing in the quark-meson model with vacuum fluctuations
Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael
2016-08-01
We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.
Finite Nuclei in the Quark-Meson Coupling (QMC) Model
Stone, J R; Reinhard, P G; Thomas, A W
2016-01-01
We report the first use of the effective QMC energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the non-relativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having clear physical basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist however multiple Skyrme paramater sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF parameter set is not open to such variation, chosen set being applied, without adjustment, to both the propert...
Extended NJL Model for light and heavy mesons without $q-\\overline{q}$ thresholds
Ebert, D; Reinhardt, H
1996-01-01
We consider the NJL model as an effective quark theory to describe the interaction which is responsible for the quark flavor dynamics at intermediate energies. In addition to the usual ultraviolet cut-off which is necessary since the model is non-renormalizable, we also introduce an infrared cut-off which drops off the unknown confinement part of the quark interaction, which is believed to be less important for the flavor dynamics. The infrared cut-off eliminates all q-qbar thresholds, which plague the application of the usual NJL model beyond low-energy pion physics. We apply this two-cut-off prescription to the extended NJL model with chiral and heavy quark symmetries proposed recently by us. We find a satisfactoring description even of the heavy mesons with spin/parity J/P = (0+, 1+). Furthermore, the shape-parameters of the Isgur-Wise function are studied as a function of the residual heavy meson mass.
A simple nonlocal model for exchange.
Janesko, Benjamin G
2009-12-21
This work presents a new nonlocal model for the exchange energy density. The model is obtained from the product of the Kohn-Sham one-particle density matrix used to construct exact [Hartree-Fock-like (HF)] exchange, and an approximate density matrix used to construct local spin-density approximation (LSDA) exchange. The proposed exchange energy density has useful formal properties, including correct spin and coordinate scaling and the correct uniform limit. It can readily be evaluated in finite basis sets, with a computational scaling intermediate between HF exchange and semilocal quantities such as the noninteracting kinetic energy density. Applications to representative systems indicate that its properties are typically intermediate between HF and LSDA exchange, and often similar to global hybrids of HF and LSDA exchange. The model is proposed as a novel "Rung 3.5" ingredient for constructing approximate exchange-correlation functionals.
Infrared Dynamics of a Large N QCD Model, the Massless String Sector and Mesonic Spectra
Dasgupta, Keshav; Mia, Mohammed; Richard, Michael; Trottier, Olivier
2014-01-01
A consistency check for any UV complete model for large N QCD should be, among other things, the existence of a well-defined vector and scalar mesonic spectra. In this paper, we use our UV complete model in type IIB string theory to study the IR dynamics and use this to predict the mesonic spectra in the dual type IIA side. The advantage of this approach is two-fold: not only will this justify the consistency of the supergravity approach, but it will also give us a way to compare the IR spectra and the model with the ones proposed earlier by Sakai and Sugimoto. Interestingly, the spectra coming from the massless stringy sector are independent of the UV physics, although the massive string sector may pose certain subtleties regarding the UV contributions as well as the mappings to actual QCD. Additionally, we find that a component of the string landscape enters the picture: there are points in the landscape where the spectra can be considerably improved over the existing results in the literature. These points...
Inhomogeneous phases in the quark-meson model with vacuum fluctuations
Carignano, Stefano; Schaefer, Bernd-Jochen
2014-01-01
Inhomogeneous chiral-symmetry breaking phases at non-vanishing chemical potential and temperature are studied within a two-flavor quark-meson model in the chiral limit. The analysis is performed beyond the standard mean-field approximation by taking into account the Dirac-sea contributions of the quarks. Compared with the case where the Dirac sea is neglected, we find that the inhomogeneous phase shrinks, but in general does not disappear. It is shown within a Ginzburg-Landau analysis that the Lifshitz point of the inhomogeneous phase coincides with the tricritical point if the ratio between sigma-meson and constituent quark mass in vacuum is chosen to be $m_\\sigma/M = 2$, corresponding to the fixed mass ratio in the Nambu--Jona-Lasinio model. In the present model, however, this ratio can be varied, offering the possibility to separate the two points. This is confirmed by our numerical calculations, which demonstrate a strong sensitivity of the size of the inhomogeneous phase on $m_\\sigma$. Finally, we uncove...
Choi, Ho-Meoyng
2014-01-01
We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...
Esha, Roli; Huang, Huan Zhong
2016-01-01
A study of elliptic flow of open charm mesons, $D^0$ and $D_S ^\\pm$ using quark coalescence as a mechanism of hadronization within the framework of a multi-phase transport model has been presented. We have studied the transverse momentum dependence of the elliptic flow parameter at mid-rapidity ($|y|$ $<$ 1.0) for minimum bias Au+Au collisions at $\\sqrt{s_{NN}} = 200$ GeV (RHIC) and Pb+Pb collisions $\\sqrt{s_{NN}} = 2.76$ TeV (LHC) for different values of partonic interaction cross-section and QCD coupling constant. We have compared our calculations with the experimentally measured data at the LHC energy. We have also studied the effect of specific viscosity on elliptic flow of open charm mesons within the transport model approach. Our study indicates that the elliptic flow of open charmed mesons is more sensitive to viscous properties of QGP medium compared to light hadrons.
Esha, Roli; Nasim, Md.; Huang, Huan Zhong
2017-01-01
A study of elliptic flow of open charm mesons, D 0 and using quark coalescence as the mechanism of hadronization of heavy quarks will be presented. The coalescing partons are taken from a multi-phase transport model. The transverse momentum dependence of the elliptic flow parameter at mid-rapidity (|y| = 200 GeV (RHIC) and Pb+Pb collisions = 2.76 TeV (LHC) for different values of partonic interaction cross-section and QCD coupling constant will be discussed. We have compared our calculations with the experimentally measured data at the LHC energy. We will also present the effect of specific viscosity on elliptic flow of open charm mesons within the transport model approach. Our study indicates that the elliptic flow of open charmed mesons is more sensitive to viscous properties of QGP medium compared to light hadrons.
Wealth Distributions in Asset Exchange Models
Krapivsky, P L
2010-01-01
How do individuals accumulate wealth as they interact economically? We outline the consequences of a simple microscopic model in which repeated pairwise exchanges of assets between individuals build the wealth distribution of a population. This distribution is determined for generic exchange rules --- transactions that involve a fixed amount or a fixed fraction of individual wealth, as well as random or greedy exchanges. In greedy multiplicative exchange, a continuously evolving power law wealth distribution arises, a feature that qualitatively mimics empirical observations.
Tuppan, Sam; Budnik, Garrett; Fox, Jordan
2014-09-01
The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. This research has been supported in part by the
Transversity and Meson Photoproduction
Goldstein, G R; Goldstein, Gary R.; Gamberg, Leonard
2002-01-01
Both meson photoproduction and semi-inclusive deep inelastic scattering can potentially probe transversity in the nucleon. We explore how that potential can be realized dynamically. The role of rescattering in both exclusive and inclusive meson production as a source for transverse polarization asymmetry is examined. We use a dynamical model to calculate the asymmetry and relate that to the transversity distribution of the nucleon.
Indian Academy of Sciences (India)
Ajay Kumar Rai; P C Vinodkumar
2006-05-01
The mass spectrum of $c\\bar{b}$ meson is investigated with an effective quark-antiquark potential of the form $\\dfrac{-_{c}}{r} + Ar^{}$ with varying from 0.5 to 2.0. The and -wave masses, pseudoscalar decay constant, weak decay partial widths in spectator model and the lifetime of c meson are computed. The properties calculated here are found to be in good agreement with other theoretical and experimental values at potential index, = 1.
Energy Technology Data Exchange (ETDEWEB)
Ikhdair, S.M.; Sever, R.; Magdy, M.A. [Middle East Technical Univ., Ankara (Turkey)
1994-04-01
The mass spectra of the lowest S, P and D levels of the self-conjugate (Q{bar Q}) and the non-self-conjugate (Q{bar q}) mesons are studied with the three flavour-dependent static quark-antiquark potentials, belong to the class U(r)=a{sub 1}r{sup {gamma}}{minus}a{sub 2}r{sup {minus}{gamma}}+a{sub 3}, for {gamma}=1, 1/2, 3/4 cases. The non-relativistic form of statistical model is used in the calculations. The leptonic decay widths and decay constants of the vector Q{bar Q} and the psuedoscalar Q{bar q} mesons are estimated by considering the improved version of the Van Royen-Weisskopf formula. Moreover, the binding energy, the form factor and the charge radius of the proton have also been calculated. These results are in reasonably good agreement with experimental and theoretical findings. 21 refs., 6 tabs.
Light-light and heavy-light mesons in the model of QCD string with quarks at the ends
Nefediev, A V
2002-01-01
The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, D_s, B, and B_s meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*'(2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.
From QCD to a dynamical quark model: construction and some meson spectroscopy
Dudal, D; Palhares, L F; Sorella, S P
2013-01-01
We introduce an effective quark model that is in principle dynamically derivable from the QCD action. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum exhibits complex conjugate poles, indicative of an unphysical spectral form, i.e. confined quarks. Moreover, the ensuing mass function can be fitted well to existing lattice data. To validate the physical nature of the new model, we identify not only a massless pseudoscalar (i.e. a pion) in the chiral limit, but we also present reasonable estimates for the rho meson mass and decay constant, employing a contact point interaction and a large N argument to simplify the diagrammatic spectral analysis. We stress that we do not use any experimental input to obtain our numbers, but only rely on our model and lattice quark data.
Inverse magnetic catalysis and regularization in the quark-meson model
Andersen, Jens O; Tranberg, Anders
2014-01-01
Motivated by recent work on inverse magnetic catalysis at finite temperature, we study the quark-meson model using both dimensional regularization and a sharp cutoff. We calculate the critical temperature for the chiral transition as a function of the Yukawa coupling in the mean-field approximation varying the renormalization scale and the value of the ultraviolet cutoff. We show that the results depend sensitively on how one treats the fermionic vacuum fluctuations in the model and in particular on the regulator used. Finally, we explore a $B$-dependent transition temperature for the Polyakov loop potential $T_0(B)$ using the functional renormalization group. These results show that even arbitrary freedom in the function $T_0(B)$ does not allow for a decreasing chiral transition temperature as a function of $B$. This is in agreement with previous mean-field calculations.
Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model
Malik, Tuhin; Banerjee, Kinjal; Jha, T. K.; Agrawal, B. K.
2017-09-01
The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at subsaturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of a neutron star is consistent with the measurement, and the radius at the canonical mass of the neutron star is within the empirical bounds.
Edge exchangeable models for network data
Crane, Harry
2016-01-01
Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing that edges, not vertices, act as the statistical units in most network datasets, making a theory of edge labeled networks more natural for most applications. Within this context we introduce the new invariance principle of {\\em edge exchangeability}, which unlike its vertex exchangeable counterpart can produce networks with sparse and/or power law structure. We characterize the class of all edge exchangeable network models and identify a particular two parameter family of models with suitable theoretical properties for statistical inference. We discuss issues of estimation from edge exchangeable models and compare our a...
The charge form factor of pseudoscalar mesons in a relativistic constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others
1994-04-01
The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.
Root mean square radii of heavy flavoured mesons in a quantum chromodynamics potential model
Indian Academy of Sciences (India)
D K CHOUDHURY; TAPASHI DAS
2016-10-01
We report the results of root mean square (r.m.s.) radii of heavy flavoured mesons in a QCD model with the potential $V (r) = −(4\\alpha_{s}/3r) + br + c$. As the potential is not analytically solvable, we first obtain the results in the absence of confinement and Coulomb terms respectively. Confinement and Coulomb effects are then introduced successively in the approach using the Dalgarno’s method of perturbation. We explicitly consider the following two quantum mechanical aspects in the analysis: (a) The scale factor $c$ in the potential should not effect the wave function of the system even while applying the perturbation theory. (b) Choice of perturbative piece of the Hamiltonian (confinement or linear) should determine the effective radial separation between the quarks and antiquarks. The results are then compared with the available theoretical values of r.m.s. radii.
Parton Distributions Functions of Pion, Kaon and Eta pseudoscalar mesons in the NJL model
Davidson, R M
2002-01-01
Parton distributions of pseudoscalar pi,K and eta mesons obtained within the NJL model using the Pauli-Villars regularization method are analyzed in terms of LO and NLO evolution, and the valence sea quark and gluon parton distributions for the pion are obtained at Q^2 = 4 GeV^2 and compared to existing parametrizations at that scale. Surprisingly, the NLO order effects turn out to be small compared to the LO ones. The valence distributions are in good agreement with experimental analyses, but the gluon and sea distributions come out to be softer in the high-x region and harder in the low-x region than the experimental analyses suggest.
Barnea, N
2000-01-01
A system of nontopological solitons interacting through meson exchange is used to model dense nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field sigma. It is shown in the Wigner-Seitz approximation that the high density behavior of such models depends essentially on the leading power of the quark-sigma coupling vertex. By insisting that the parameters of any soliton model be chosen to reproduce single nucleon properties, this high-density behavior then selects a promising class of models that better fit the empirical results -- the chiral chromodielectric models. The presence of a scalar meson is shown to provide saturation as well as an increase of the proton charge radius with nuclear density. We go beyond the usual Wigner-Seitz approximation by introducing the disorder necessary to reproduce the liquid state, using the significant structure theory of physical chemistry. We study nuclear matt...
Page, P R
1996-01-01
New experimental information on the non--exotic J^{PC} = 0^{-+} isovector seen at 1.8 GeV by VES yields convincing evidence of its excited gluonic (hybrid) nature when a critical study of alternative quarkonium assignments is made in the context of ^3 P_0 decay by flux--tube breaking. Production of this gluonic excitation via meson exchange is promising, although its two photon production vanishes.
Analysis of two-body nonleptonic B decays involving light mesons in the standard model
Ali, A.; Greub, C.
1998-03-01
We report a theoretical analysis of the exclusive nonleptonic decays of the B+/- and B0 mesons into two light mesons, some of which have been measured recently by the CLEO Collaboration. Our analysis is carried out in the context of an effective Hamiltonian based on the standard model (SM), using next-to-leading order perturbative QCD calculations. We explicitly take into account the O(αs) penguin-loop diagrams of all four-Fermi operators and the O(αs) tree-level diagram of the chromomagnetic dipole operator, and give a prescription for including their effects in nonleptonic two-body decays. Using a factorization ansatz for the hadronic matrix elements, we show that existing data, in particular, the branching ratios B(B+/--->η'K+/-), B(B+/--->π+/-K0), B(B0(B0¯)-->π-/+K+/-), and B(B+/--->ωh+/-)(h+/-=π+/-,K+/-), can be accounted for in this approach. Thus, theoretical scenarios with a substantially enhanced Wilson coefficient of the chromomagnetic dipole operator (as compared to the SM) and/or those with a substantial color-singlet cc¯ component in the wave function of η' are not required by these data. We predict, among other decay rates, the branching ratios for the decays B0(B0¯)-->π+/-π-/+ and B+/--->π0π+/-, which are close to the present experimental limits. Implications of some of these measurements for the parameters of the CKM matrix are presented.
Meson-Meson Scattering in Relativistic Constraint Dynamics
Crater, H W; Crater, Horace W.
2004-01-01
Dirac's relativistic constraint dynamics have been successfully applied to obtain a covariant nonperturbative description of QED and QCD bound states. We use this formalism to describe a microscopic theory of meson-meson scattering as a relativistic generalization of the nonrelativistic quark-interchange model developed by Barnes and Swanson.
A formal model of fair exchange protocols
Institute of Scientific and Technical Information of China (English)
QING Sihan; LI Gaicheng
2005-01-01
Based on the study of existing fair exchange protocols, this paper sets up an accurate formal model by stepwise refinement. In the process of refinement an unreliable channel is employed to simulate an attack behavior. The model provides a novel formal definition of exchanged items, and presents the formal goals for fairness, accountability,etc., reflecting the inherent requirements for fair exchange protocols across-the-board. In order to check, prove, and design fair exchange protocols effectively and efficiently, the model puts forward a novel property of abuse-freeness which applies to all fair exchange protocols, gives a formal definition for trust strand of the third party, and presents general criteria of designing a secure and effective fair exchange protocol. Taking a typical fair exchange protocol as an example, this paper presents the analysis steps of fair exchange protocols appealing to our model. An unknown attack is uncovered. The analysis reveals the process of a complete attack, discovering deeper reasons for causing an attack.Finally, we modify the flawed protocol and the revised protocol ensures the desirable properties.
Fragmentary model of exchange interactions
Kotov, V M
2000-01-01
This article makes attempt to refusal from using neutrino for explanation continuous distribution of beta particle energy by conversion to characteristic exchange interaction particles in nucleolus. It is taking formulation for nuclear position with many different fragments. It is computing half-value period of spontaneous fission of heavy nucleolus. (author)
Dynamical coupled-channels model for neutrino-induced meson productions in resonance region
Nakamura, S X; Sato, T
2015-01-01
A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. Starting from the DCC model that we have previously developed through an analysis of $\\pi N, \\gamma N\\to \\pi N, \\eta N, K\\Lambda, K\\Sigma$ reaction data for $W\\le 2.1$ GeV, we extend the model of the vector current to $Q^2\\le$ 3.0 (GeV/$c$)$^2$ by analyzing electron-induced reaction data for both proton and neutron targets. We derive axial-current matrix elements that are related to the $\\pi N$ interactions of the DCC model through the Partially Conserved Axial Current (PCAC) relation. Consequently, the interference pattern between resonant and non-resonant amplitudes is uniquely determined. We calculate cross sections for neutrino-induced meson productions, and compare them with available data. Our result for the single-pion production reasonably agrees with the data. We also make a comparison with the double-pion production data. Our model is the first DCC model that can give the double-pion product...
Exotic meson spectroscopy with CLAS
Energy Technology Data Exchange (ETDEWEB)
Adams, G.; Napolitano, J. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The identification and study of mesons with explicit gluonic degrees of freedom will provide major constraints on nonperturbative QCD and models thereof. CLAS will provide a unique opportunity for studying these resonances by measuring photoproduction of multi-meson final states.
Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.
Kinetic exchange models for social opinion formation
Lallouache, Mehdi; Chakrabarti, Bikas K
2010-01-01
We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society.
Meson-baryon bound states in a (2+1)-dimensional strongly coupled lattice QCD model
Neto, Antônio Francisco
2004-08-01
We consider bound states of a meson and a baryon (meson and antibaryon) in lattice QCD in a Euclidean formulation. For simplicity, considering the + parity sector we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. We work in the strong coupling regime, i.e., in a region of parameters such that the hopping parameter κ is sufficiently small and κ≫g-20, where g-20 is the pure gauge coupling. There is a meson (baryon) particle with asymptotic mass -2 ln κ (-3 ln κ) and an isolated dispersion curve. Here, in a ladder approximation, we show that there is no meson baryon (or meson-antibaryon) bound state solution to the Bethe-Salpeter equation up to the meson-baryon threshold (˜-5 ln κ). The absence of such a bound state is an effect of a spatial range-one repulsive potential that is local in space at order κ3, i.e., the leading order in the hopping parameter κ.
Energy Technology Data Exchange (ETDEWEB)
Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB
2014-08-01
We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.
D¯ D meson pair production in antiproton-nucleus collisions
Shyam, R.; Tsushima, K.
2016-10-01
We study the D ¯D (D¯0D0 and D-D+) charm meson pair production in antiproton (p ¯) induced reactions on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction proceeds via the t -channel exchanges of Λc+, Σc+, and Σc++ baryons in the initial collision of the antiproton with one of the protons of the target nucleus. The medium effects on the exchanged baryons are included by incorporating in the corresponding propagators, the effective charm baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound proton have been determined within the QMC model as well as in a phenomenological model where they are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and final-state distortion effects have been approximated by using an eikonal approximation-based procedure. Detailed numerical results are presented for total and double differential cross sections for the D¯0D0 and D-D+ production reactions on 16O and 90Zr targets. It is noted that at p ¯ beam momenta of interest to the P ¯ ANDA experiment, medium effects lead to noticeable enhancements in the charm meson production cross sections.
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Jena, S.N.
1981-08-01
Phenomenological evidence from meson spectroscopy is presented to support the view that a unified description of bound light- and heavy-quark systems is possible within the scope of a nonrelativistic-potential-model approach. The vacuum-polarization-corrected potential with its confinement part in the form of an approximately equal admixture of vector and scalar components is found to be a suitable one for the purpose. The overall systematics of the predictions based on this potential model for the meson masses, fine-hyperfine splittings, leptonic decay widths, and the Regge slopes are observed to be consistent with the premise that the forces between quarks and antiquarks are independent of the quark flavors.
Stable hybrid stars within a SU(3) Quark-Meson-Model
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2015-01-01
The inner regions of the most massive compact stellar objects might be occupied by a phase of quarks. Since the observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses, the equations of state constructing relativistic stellar models have to be constrained respecting these new limits. We discuss stable hybrid stars, i.e. compact objects with an outer layer composed of nuclear matter and with a core consisting of quark matter (QM). For the outer nuclear layer we utilize a density dependent nuclear equation of state and we use a chiral SU(3) Quark-Meson model with a vacuum energy pressure to describe the objects core. The appearance of a disconnected mass-radius branch emerging from the hybrid star branch implies the existence of a third family of compact stars, so called twin stars. Twin stars did not emerge as the transition pressure has to be relatively small with a large jump in energy density, which could not be satisfied within our approach. This is, among other...
Strong Couplings of Three Mesons with Charm(ing) Involvement
Lucha, Wolfgang; Sazdjian, Hagop; Simula, Silvano
2016-01-01
We determine the strong couplings of three mesons that involve, at least, one $\\eta_c$ or $J/\\psi$ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of $J/\\psi$ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.
Ghosh, Sabyasachi; Roy, Victor; Serna, Fernando E; Krein, Gastão
2015-01-01
We have calculated the temperature dependence of shear $\\eta$ and bulk $\\zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$\\pi$ and quark-$\\sigma$ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses, and quark-meson couplings are obtained in the Nambu--Jona-Lasinio model. We found a non-trivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios $\\eta/s$ and $\\zeta/s$, where $s$ is the entropy density (also determined in the Nambu--Jona-Lasinio model in the quasi-particle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for $\\eta/s$ has a minimum very close to the conjectured AdS/CFT lower bound, $\\eta/s = 1/4\\pi$.
Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão
2016-04-01
We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .
Pseudoscalar meson form factors and decays
Dorokhov, A E
2011-01-01
In this communication we discuss few topics related with modern experimental data on the physics of light pseudoscalar mesons. It includes the contribution of the pseudoscalar mesons to the muon anomalous magnetic moment (AMM), $g-2$, the rare decays of light pseudoscalar mesons to lepton pair, the transition form factors of pseudoscalar mesons at large momentum transfer, the pion transversity form factor. Measuring the muon anomalous magnetic moment $g-2$ and the rare decays of light pseudoscalar mesons into lepton pair $P\\rightarrow l^{+}l^{-} $ serve as important test of the standard model. To reduce the theoretical uncertainty in the standard model predictions the data on the transition form factors of light pseudoscalar mesons play significant role. Recently new data on behavior of these form factors at large momentum transfer was supplied by the BABAR collaboration. Within the nonlocal chiral quark model it shown how to describe these data and how the meson distribution amplitude evolves as a function o...
An analysis of two-body non-leptonic B decays involving light mesons in the standard model
Ali, A
1998-01-01
We report a theoretical analysis of the exclusive non-leptonic decays of B mesons into two light mesons, some of which have been measured recently by the CLEO collaboration. Our analysis is carried out in the context of an effective Hamiltonian based on the Standard Model (SM), using next-to-leading order perturbative QCD calculations. Using a factorization ansatz for the hadronic matrix elements, we show that existing data are accounted for in this approach. Thus, theoretical scenarios with a substantially enhanced Wilson coefficient of the chromomagnetic dipole operator (as compared to the SM) and/or those with a substantial color-singlet $c\\bar{c}$ component in the wave function of rates, the branching ratios for the decays $B^0 (\\bar{B^0}) \\to \\pi^\\pm experimental limits. Implications of some of these measurements for the parameters of the CKM matrix are presented.
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ—ω Model
Institute of Scientific and Technical Information of China (English)
CHENWei; AIBao－Quan; 等
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model.Different from the results of the previous paper,we find that the effect of the constant a in the self-interaction,U(σ)=aσ+1/2! bσ2+1/3!cσ3+1/4!dσ4,of the σ meson cannot be neglected.It determines the critical density where techyon appears.The smaller the a,the larger the critical density.The binding energy,pressure,incompressibility coefficient,nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
D-meson production according to the parton model and their detection in ALICE
Kalliokoski, Tuomo; Trzaska, Wladyslaw
2007-01-01
Modern understanding in particle physics is constructed over lay- ers and layers of work. Most of the work was done during last century, starting from the quantum mechanics. Modern theoretical basis is the parton model, which is constructed from three independent parts: distribution of momentum to partons inside hadron, partonic cross-sections from QCD and from fragmentation of parton to hadrons. All of these parts are discussed in this work. Future experiments are aiming for higher energies and/or greater number of intresting events than what previous experiments were capable to gain. Main example of this is LHC and ALICE-experiment on it in CERN. While simulations have benefited greatly from fast increase of computing power during last few decades. With the following assumptions, p$_t$ $>$ 1 GeV, fixed QCD scale Q = 5 GeV, massless quarks and only gluon-gluon channel in partonic cross-section and $\\delta$-function fragmentation, the lowest order simulations for production of D-meson with midrapidity y = 0 a...
Semi-dileptonic decays of the light vector mesons in Light Front Quark Model
Geng, Chao-Qiang
2014-01-01
We study the transition form factors of the light vector to pseudoscalar mesons as functions of the momentum transfer $q^2$ within the light-front quark model. With these form factors, we calculate the decay branching ratios of all possible modes for $V\\to P\\ell^+\\ell^-$ ($V=\\omega$ and $\\phi$, $P=\\pi^0$, $\\eta$ and $\\eta^{\\prime}$ and $\\ell=e$ and $\\mu$). We find that our numerical results fit with the data, such as those of $\\omega \\to \\pi^0 \\ell^+\\ell^-$ and $\\phi\\to \\pi^0 e^+e^-$ by NA60 and $\\phi \\to\\eta e^+e^-$ by SND. We also predict that the branching ratios of $\\phi \\to \\pi^0 \\mu^+\\mu^-$, $\\omega\\to \\eta e^+e^-$, $\\omega\\to \\eta \\mu^+\\mu^-$, $\\phi\\to \\eta \\mu^+\\mu^-$ and $\\phi\\to \\eta^{\\prime} e^+e^-$ to be aroud $3.48\\times 10^{-6}$, $3.22\\times 10^{-6}$, $1.81\\times 10^{-9}$, $6.86\\times 10^{-6}$ $2.97\\times 10^{-7}$, respectively.
Kaptari, L P
2004-01-01
Vector meson ($V = \\omega, \\phi$) production in near-threshold elementary nucleon-nucleon collisions $pp\\to ppV$, $pn\\to pnV$ and $pn\\to dV$ is studied within an effective meson-nucleon theory. It is shown that a set of effective parameters can be established to describe fairly well the available experimental data of angular distributions and the energy dependence of the total cross sections without explicit implementation of the Okubo-Zweig-Iisuka rule violation. Isospin effects are considered in detail and compared with experimental data whenever available.
SPEEDUP{trademark} ion exchange column model
Energy Technology Data Exchange (ETDEWEB)
Hang, T.
2000-03-06
A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.
Incoherent photoproduction of ϕ-meson from deuteron at low energies
Directory of Open Access Journals (Sweden)
Kiswandhi Alvin
2014-06-01
Full Text Available The LEPS and CLAS data of the incoherent photoproduction of ϕ meson from deuteron at low energies are studied with a model for ϕ meson photoproduction from nucleon consisting of Pomeron, π, and η meson exchanges in the t-channel, and a postulated resonance, with parameters fitted to recent LEPS data on ϕ production from proton near threshold. The resonance was introduced to explain an observed bump in the forward differential cross section. Within impulse approximation, we find that the Fermi motion, final state interaction, and the resonance excitation all give important contributions to improve the agreement with data. However, discrepancies remain. Contributions from ϕ production via spectator nucleon by other mesons like π,ρ, and ϕ produced from the first nucleon need to be calculated in order to gain insight on the medium effects as well as the existence of the postulated nucleon resonance.
Strange meson spectral functions and cross sections at GSI-FAIR conditions
Energy Technology Data Exchange (ETDEWEB)
Cabrera, Daniel; Bratkovskaya, Elena [Institute for Theoretical Physics and Frankfurt Institute for Advanced Studies, Frankfurt University, 60438 Frankfurt am Main (Germany); Tolos, Laura [Institut de Ciencies de l' Espai (IEEE/CSIC), Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C-5, E-08193 Bellaterra (Spain); Aichelin, Joerg [Subatech, UMR 6457, IN2P3/CNRS, Universite de Nantes, Ecole des Mines de Nantes, Nantes (France)
2014-07-01
We discuss recent progress on the properties of strange mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels, which incorporates the s- and p-waves of the kaon nucleon interaction. As a novelty, the in-medium scattering amplitudes and cross sections in several channels (such as anti K N → πΣ) are obtained in addition to the (off-shell) K and anti K spectral functions and quasi-particle properties, which is of particular interest for microscopic transport evaluations of strangeness production and propagation in heavy-ion collisions. We overview previous results from the Parton-Hadron-String Dynamics transport approach (PHSD), relying on a G-matrix calculation of strange meson spectral functions within a meson-exchange model. Our understanding of strange meson interactions in nuclear matter within transport simulations is discussed in view of the in-medium cross sections obtained within the chiral unitary approach.
Skyrmions with vector mesons revisited
Oh, Yongseok
2014-01-01
In order to develop a model that can describe both a single baryon and multi-baryon systems on the same footing, we re-investigate the Skyrme model in a chiral Lagrangian derived from the hidden local symmetry (HLS) up to $O(p^4)$ including the homogeneous Wess-Zumino terms. We use the master formulas that connect the parameters of the HLS Lagrangian and a class of holographic QCD models, which provides a controllable way to determine the low-energy constants of the Lagrangian once the pion decay constant and the vector meson mass are given. Therefore, this model allows us to study the role of vector mesons in the skyrmion structure. We find that the $\\rho$ and $\\omega$ vector mesons have different roles in the skyrmion structure and that the $\\omega$ meson has an important role in the properties of the nucleon.
Search for rare B meson decays into D {/s +} mesons
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M. G.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1993-03-01
A search has been performed for rare B meson decays into D {/s -} mesons arising from b→ u transitions, W exchange modes, B + annihilation processes, and decays where the D {/s +} is not produced via a W→ c bar s quark pair coupling, using the ARGUS detector operating on the Ψ(4 S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D {/s +}ℓ- correlations an upper limit of BR ( B→ D {/s +}ℓ- X) (90% CL) is determined.
Kong, Kook-Jin; Yu, Byung-Geel
2016-01-01
We investigate the role driven by the $\\sigma$ exchange in the photoproduction of $\\phi$ meson off a proton by using the Reggeized model. In this reaction, in addition to the Pomeron exchange which constitutes the background contribution extending to high energies, the $\\sigma$ Regge-pole exchange is found to give an interesting contribution to the reaction process near threshold. In particular, the $\\sigma$ exchange can reproduce reasonably well the bump structure at the forward angle in the differential cross section as well as the peaking behavior in the total cross section observed in the CLAS collaboration. We also show that our calculation reproduces well the recent data for the differential cross section from the LEPS and CLAS at low energies. Moreover, the scaled cross section $s^7d\\sigma /dt$ at the production angle $\\theta=90^{\\circ}$ obtained from the CLAS data is found to be consistent with the calculation using the canonical phase of the $\\sigma$ Regge-pole.
Survival of Bc mesons in a hot plasma within a potential model
Alberico, W M; Czerski, P; De Pace, A; Nardi, M; Ratti, C
2013-01-01
We extend a previous work on the study of heavy charmonia and bottomonia in a deconfined quark-gluon plasma by considering the Bc family of mesons. With the introduction of this bound state of a charm and a beauty quark, we investigate at finite temperature the behavior of the quarkonium, in an energy region between the {\\psi} and the {\\Upsilon} states.
Non-self-conjugate mesons in a potential model with vacuum-polarization corrections
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Jena, S.N.
1980-10-01
We present a unified approach to the study of non-self-conjugate mesons including both light and heavy mesons in the framework of the vacuum-polarization-corrected flavor-independent potential. We have found that the quark-confining potential in the form of an almost equal admixture of vector and scalar parts successfully explains the S-wave hyperfine levels of the observed light and heavy mesons. Finally we calculate the electromagnetic mass differences of the heavy-quark mesons and obtain (K-bar*/sup 0/-K*/sup -/)=3.79 MeV, (K-bar/sup 0/-K/sup -/)=6 MeV, (D*/sup +//sub c/-D*/sup 0//sub c/)=2.4 MeV, (D/sup +//sub c/-D/sup 0//sub c/)=5.8 MeV, (D*/sup 0//sub b/-D*/sup -//sub b/)=3.547 MeV, and (D/sup 0//sub b/-D/sup -//sub b/)=3.558 MeV.
Meson Production Experiments at CLAS
Energy Technology Data Exchange (ETDEWEB)
S. Strauch
2006-11-01
Electromagnetic meson production is an important tool in the investigation of the structure of the nucleon. Consequently, a series of meson photo- and electroproduction experiments have been performed with the CLAS detector at Jefferson Lab. In this overview I will report on measurements of cross sections, as well as recent and upcoming measurements of single- and double-polarization observables in meson photoproduction. The data will greatly constrain partial-wave analyses and reduce model-dependent uncertainties in the extraction of nucleon resonance properties.
Modeling foreign exchange risk premium in Armenia
Poghosyan, Tigran; Kocenda, Evnen; Zemcik, Petr
2008-01-01
This paper applies stochastic discount factor methodology to modeling the foreign exchange risk premium in Armenia. We use weekly data on foreign and domestic currency deposits, which coexist in the Armenian banking system. This coexistence implies elimination of the cross-country risks and transact
ECONOMETRIC MODELS FOR DETERMING THE EXCHANGE RATE
Directory of Open Access Journals (Sweden)
Mihaela BRATU
2012-05-01
Full Text Available The simple econometric models for the exchange rate, according to recent researches, generates the forecasts with the highest degree of accuracy. This type of models (Simultaneous Equations Model, MA(1 Procedure, Model with lagged variables is used to describe the evolution of the average exchange rate in Romanian in January 1991-March 2012 and to predict it on short run. The best forecasts, in terms of accuracy, on the forecasting horizon April-May 2012 were those based on a Simultaneous Equations Model that takes into account the Granger causality. An almost high degree of accuracy was gotten by combining the predictions based on MA(1 model with those based on the simultaneous equations model, when INV weighting scheme was applied (the forecasts are inversely weighted to their relative mean squared forecast error. The lagged variables Model provided the highest prediction errors. The importance of knowing the best exchange rate forecasts is related to the improvement of decision-making and the building of the monetary policy.
Mathematical Modeling of Spiral Heat Exchanger
Directory of Open Access Journals (Sweden)
Probal Guha , Vaishnavi Unde
2014-04-01
Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model
The importance of {eta} exchange in the pp{yields}pp{eta} process up to T{sub lab}=4.5 GeV
Energy Technology Data Exchange (ETDEWEB)
Ceci, Sasa; Svarc, Alfred; Zauner, Branimir [Ruder Boskovic Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia)
2006-06-15
The new and improved treatment of {eta}-meson exchange diagrams turns out to be essential in order to fully describe both total cross-sections and, in particular, the challenging pp invariant mass distributions. Contrary to other approaches, the {eta}-meson contribution in our model is comparable with the leading {pi}-meson exchange term, and using the phenomenological final state interaction we have no need to include other mesons, like {rho} and {omega}, in order to obtain good agreement with experiment.
Single spin asymmetry for charm mesons
Energy Technology Data Exchange (ETDEWEB)
Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)
2007-08-15
We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)
Ion exchange model for α phase proton exchange waveguide in LiNbO3
DEFF Research Database (Denmark)
Veng, Torben Erik; Skettrup, Torben
1998-01-01
An H+/Li+ exchange model is found to be applicable to describe the diffusion of protons when optical waveguides are formed in LiNbO3 by proton exchange methods where the proton doped crystal structure stays in the pure α phase. The H + and Li+ self-diffusion coefficients in the ion exchange model...
Abu-Shady, M
2015-01-01
The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.
Energy Technology Data Exchange (ETDEWEB)
Steffen Strauch
2009-10-01
This is a brief and selective discussion of meson photoproduction measurements with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Meson photo- production is being used as a tool for various investigations, including the spectroscopy of baryons and mesons and the search for vector-meson medium modifications.
Energy Technology Data Exchange (ETDEWEB)
Steffen Strauch
2009-10-01
This is a brief and selective discussion of meson photoproduction measurements with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Meson photo- production is being used as a tool for various investigations, including the spectroscopy of baryons and mesons and the search for vector-meson medium modifications.
Modelling Heat Exchangers for Domestic Boilers
Directory of Open Access Journals (Sweden)
S. F. C. F. Teixeira
2000-01-01
Full Text Available In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimensionless numbers (Fourier, Biot and geometric ratios which are found to be representative for this particular geometry. Furthermore, the effect of thermal gradients along the fin surface upon the fin efficiency is investigated. Based on a differential model for the heat balances, design charts have been developed for the thermal analysis of heat exchangers.
Forecasting Exchange Rates with Mixed Models
Directory of Open Access Journals (Sweden)
Laura Maria Badea
2013-06-01
Full Text Available Gaining accuracy in exchange rate forecasting applications provides true benefits for financial activities. Supported today by the advancements in computing power, machine learning techniques provide good alternatives to traditional time series estimation methods. Very approached in time series forecasting are Artificial Neural Networks (ANNs which offer robust results and allow a flexible data manipulation. When integrating both, the “white-box” feature of conventional methods and the complexity of machine learning techniques, forecasting models perform even better in terms of generated errors. In this study, input variables (independent variables are selected using an ARIMA technique and are further employed in differently configured multilayered feed-forward neural networks using Broyden-Fletcher-Goldfarb-Shanno (BFGS optimization algorithm to perform predictions on EUR/RON and CHF/RON exchange rates. Results in terms of mean squared error highlight good results when using mixed models.
Nikitin, N V; Smirnova, L N
1999-01-01
The features of the rare semileptonic B-meson decays B/sub d//sup 0/ to K/sup 0/* mu /sup +/ mu /sup -/ and B/sub d//sup 0/ to rho /sup 0/ mu /sup -/ mu /sup -/ have been considered. It has been shown that the dependence of the lepton charge asymmetry A/sub FB/ on the dilepton effective mass has different forms in the Standard Model and in certain versions of the minimal supersymmetric model. In particular, distinctions of this type have been found in the angular distributions d Gamma /dcos theta * of K mesons produced in the decay B/sub d//sup 0/ to (K/sup 0/* to K pi ) mu /sup +/ mu /sup -/ in the K/sup 0/* rest frame. The numbers of events that can be recorded by the ATLAS detector have been estimated for the above decays. The statistical errors in the measurements of A/sub FB/ and d Gamma /dcos theta * have been assessed. It has been shown that, under certain conditions. The expected numbers of detected events will be sufficient for observing deviations from the predictions of the Standard Model. (15 refs...
Energy Technology Data Exchange (ETDEWEB)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)
2017-03-15
The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)
Photoproduction of eta-prime-mesons from the Proton
Sibirtsev, A A; Krewald, S; Speth, J; Elster, Ch.
2003-01-01
The presently available data for the reaction ${\\gamma}p{\\to}\\eta^\\prime{p}$ are analyzed in terms of a model in which the dominant production mechanism is the exchange of the vector mesons $\\omega$ and $\\rho$. To describe the data at photon energies close to the production threshold we introduce a resonance contribution due to the well established $S_{11}(1535)$ resonance. Finally we study the contributions due to nucleon exchange to the $\\eta^\\prime$ photoproduction and find, that those contributions can be seen at large angles in the differential cross section.
Energy Technology Data Exchange (ETDEWEB)
Nebauer, R
2000-09-29
This thesis presents a detailed overview of the thermodynamical properties of the model of Nambu and Jona-Lasinio. In fact, this model can be interpreted as a low energy approximation of QCD. The NJL model has the advantage to be solvable at finite temperature and density. Comparison with QCD lattice calculations show that the NJL model reproduces correctly the feature of chiral symmetry breaking and restoration. We present the chiral phase diagram of the NJL model for three flavors and study the influence of the parameters on the order of the phase transition. The properties of the mesons in a hot and dense medium are another topic of this thesis. We discuss the behaviour of the chiral partners and the influence of the symmetries. A point of special interest are the masses of the kaons in a dense medium. We compare the masses of the kaons with other models like RMF and ChPT. The last part of the thesis is devoted to the low temperature - high density region of the QCD phase diagram. In this region, the formation of a diquark condensate and a superconducting phase are expected. We discuss the structure of the diquark condensate and present the results of the numerical calculations at finite temperature and density. (author)
Yu, Byung-Geel
2016-01-01
A Regge approach to the reaction processes $\\gamma p\\to\\pi^-\\Delta^{++}$ and $\\gamma p\\to\\pi^+\\Delta^0$ is presented for the description of existing data up to $E_\\gamma= 16$ GeV. The model consists of the $t$-channel $\\pi+\\rho+a_2$ exchanges which are reggeized from the relevant Born amplitude. Discussion is given on the minimal gauge prescription for the $\\pi$ exchange to render convergent the divergence of the $u$-channel $\\Delta$-pole in the former process. A new Lagrangian is constructed for the $a_2N\\Delta$ coupling in this work and applied to the process for the first time with the coupling constant deduced from the duality plus vector dominance. It is shown that, while the $\\pi$ exchange dominates over the process, the role of the $a_2$ exchange is crucial rather than the $\\rho$ in reproducing the cross sections for total, differential, and photon polarization asymmetry to agree with data at high energy.
Multidimensional numerical modeling of heat exchangers
Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.
A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).
FCNC in leptonic and semileptonic decays of D mesons in a general two-Higgs doublet model
Castro, G L; Muñoz, J H
1998-01-01
Large long-distance standard model effects in FCNC semileptonic D decays can make observable these processes in future measurements. Eventual disagreements in this sector and/or the observation of lepton family violating (LFV) D decays would require an explanatio beyond the SM framework. In this paper we confront present experimental data on leptonic and semileptonic FCNC and LFV D meson decays with a version of the two-Higgs doublet model that allows these effects to occur at tree- level. The stringent bounds on the parameters of the model are obtained from D^0 --> l^+l'^- and D --> pi l^+l'^- decays. The consistency of the model requires that the branching fractions of D --> V l^+l'^- decays should be below the 10^{-9} level.
Photoproduction of Pseudoscalar Mesons
Arndt, R A; O'Rielly, G V; Strakovsky, I I; Workman, R L
2003-01-01
Experiments that study the photoproduction of pseudoscalar mesons; pions, etas and kaons, have the potential to increase our knowledge of baryon and hyperon resonance properties. Recent experiments at JLab, Mainz, GRAAL, and Bonn are beginning to produce results in the form of polarization and asymmetry measurements and determinations of the differential and integrated cross sections. These new data are essential to the performance of Partial-Wave Analyses that are less model dependent and coupled-channels calculations that incorporate unitarity dynamically,combining hadronic reaction channels together with electromagnetic processes. This approach is necessary to extract resonance properties and may lead to the identification of missing, but predicted, resonances. Some recent experimental and phenomenological results for single and double pseudoscalar meson photoproduction are discussed.
Forecasting the Euro exchange rate using vector error correction models
Aarle, B. van; Bos, M.; Hlouskova, J.
2000-01-01
Forecasting the Euro Exchange Rate Using Vector Error Correction Models. — This paper presents an exchange rate model for the Euro exchange rates of four major currencies, namely the US dollar, the British pound, the Japanese yen and the Swiss franc. The model is based on the monetary approach of ex
Some heavy vector and tensor meson decay constants in light-front quark model
Energy Technology Data Exchange (ETDEWEB)
Geng, Chao-Qiang [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Lih, Chong-Chung [National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); Xia, Chuanhui [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China)
2016-06-15
We study the decay constants (f{sub M}) of the heavy vector (D{sup *}, D{sub s}{sup *}, B{sup *}, B{sub s}{sup *}, B{sub c}{sup *}) and tensor (D{sub 2}{sup *}, D{sub s2}{sup *}, B{sub 2}{sup *}, B{sub s2}{sup *}) mesons in the light-front quarkmodel.With the known pseudoscalar meson decay constants of f{sub D}, f{sub Ds}, f{sub B}, f{sub Bs}, and f{sub Bc} as the input parameters to determine the light-front meson wave functions, we obtain f{sub D{sup *},D{sub s{sup *}B{sup *}B{sub s{sup *},B{sub c{sup *}}}}} = (252.0{sub -11.6}{sup +13.8}, 318.3{sub -12.6}{sup +15.3}, 201.9{sub -41.4}{sup +43.2}, 244.2 ± 7.0, 473.4 ± 18.2) and (264.9{sub -9.5}{sup +10.2}, 330.9{sub -9.0}{sup +9.9}, 220.2{sub -46.2}{sup +49.1}, 265.7 ± 8.0, 487.6 ± 19.2) MeV with Gaussian and power-law wave functions, respectively, while we have f{sub D{sub 2{sup *},D{sub s{sub 2{sup *}B{sub 2{sup *}B{sub s{sub 2{sup *}}}}}}}} = (143.6{sub -21.8}{sup +24.9}, 209.5{sub -24.2}{sup +29.1}, 80.9{sub -27.7}{sup +33.8}, 109.7{sub -15.0}{sup +15.7}) MeV with only Gaussian wave functions. (orig.)
Bizot, Nicolas; Knecht, Marc; Kneur, Jean-Loïc
2016-01-01
We consider a vector-like gauge theory of fermions that confines at the multi-TeV scale, and that realizes the Higgs particle as a composite Goldstone boson. The weak interactions are embedded in the unbroken subgroup $Sp(4)$ of a spontaneously broken $SU(4)$ flavour group. The meson resonances appear as poles in the two-point correlators of fermion bilinears, and include the Goldstone bosons plus a massive pseudoscalar $\\eta'$, as well as scalars, vectors and axial vectors. We compute the mass spectrum of these mesons, as well as their decay constants, in the chiral limit, in the approximation where the hypercolour $Sp(2N)$ dynamics is described by four-fermion operators. This approach generalises the Nambu-Jona Lasinio model for QCD, and it amounts to the resummation of leading diagrams in the $1/N$ expansion. We find that the spin-one states lie beyond the LHC reach, while spin-zero electroweak-singlet states may be as light as the Goldstone-boson decay constant, $f\\sim 1$ TeV. We also confront our results...
Meson's Correlation Functions in a Nuclear Medium
Park, Chanyong
2016-01-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the rho-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Meson's correlation functions in a nuclear medium
Park, Chanyong
2016-09-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Unraveling the pattern of the XYZ mesons
Directory of Open Access Journals (Sweden)
J. Vijande
2014-09-01
Full Text Available We present a plausible mechanism for the origin of the XYZ mesons in the heavy meson spectra within a standard quark-model picture. We discuss the conditions required for the existence of four-quark bound states or resonances contributing to the heavy meson spectra, being either compact or molecular. We concentrate on charmonium and bottomonium spectra, where several new states, difficult to understand as simple quark–antiquark pairs, have been reported by different experimental collaborations. The pivotal role played by entangled meson–meson thresholds is emphasized.
Two Higgs doublet model and leptoquarks constraints from D meson decays
Barranco, J; Macias, V Gonzalez; Lopez-Lozano, L
2014-01-01
We use a combined analysis of the semileptonic and leptonic branching ratios of the D mesons to constrain scalar leptoquark interactions and charged higgs-like interactions. For the THDM type II, we found that a low mass 6.3GeV < m_{H^+} < 63.1GeV for the charged Higgs is favored at 90% C.L. although at 95% there is still agreement with other constraints. We find for the leptoquark states a more restrictive bound than previous analysis.
Poincaré-invariant constituent quark model for light mesons: capabilities and constraints
Directory of Open Access Journals (Sweden)
Krutov A.F.
2016-01-01
Full Text Available We present a brief survey of some results on electroweak properties of com- posite systems that are obtained in the frameworks of our version of the instant form of relativistic quantum mechanics (RQM. Our approach describes well the π- and the ρ- mesons in wide range of momentum transfers Q2. At large Q2 the obtained pion form factor asymptotics coincides with that of QCD predictions. The method permits to per- form analytic continuation of pion form factor to complex plane of momentum transfers that is in accordance with predictions of quantum field theory.
Poincaré-invariant constituent quark model for light mesons: capabilities and constraints
Krutov, A. F.; Polezhaev, R. G.; Troitsky, V. E.
2016-10-01
We present a brief survey of some results on electroweak properties of com- posite systems that are obtained in the frameworks of our version of the instant form of relativistic quantum mechanics (RQM). Our approach describes well the π- and the ρ- mesons in wide range of momentum transfers Q2. At large Q2 the obtained pion form factor asymptotics coincides with that of QCD predictions. The method permits to per- form analytic continuation of pion form factor to complex plane of momentum transfers that is in accordance with predictions of quantum field theory.
Vector meson condensation in a pion superfluid
Brauner, Tomáš; Huang, Xu-Guang
2016-11-01
We revisit the suggestion that charged ρ -mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that ρ -meson condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ -meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and ρ -mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.
Vector meson condensation in a pion superfluid
Brauner, Tomas
2016-01-01
We revisit the suggestion that charged rho-mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that rho-meson condensation is either avoided or postponed to isospin chemical potentials much higher than the rho-meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and rho-mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.
Valence and sea quark mixing in meson states
Institute of Scientific and Technical Information of China (English)
WangZi－Xing; SongHong－Qiu; 等
1997-01-01
A meson model with qq and (qq)2 mixing has been developed.The 0- meson state has been studied within this model space.Considerable qq and (qq)2 mixing has been found.The first excited state is in the energy range-1.5GeV,This state may be relevant to the new discovered exotic meson states.
Jiang, N; Shelley, J D; Smith, Robin
2014-01-01
The retrofit of heat exchanger networks requires detailed models of the heat exchangers for the detailed assessment of network performance. Network retrofit options include heat transfer enhancement. There is thus a requirement for detailed models of heat exchanger performance, including heat transfer enhancement, suitable for inclusion in network retrofit optimization algorithms. Such models must be robust, computationally efficient and accurate enough to reflect the heat transfer and pressu...
Modeling the Volatility of Exchange Rates: GARCH Models
Directory of Open Access Journals (Sweden)
Fahima Charef
2017-03-01
Full Text Available The modeling of the dynamics of the exchange rate at a long time remains a financial and economic research center. In our research we tried to study the relationship between the evolution of exchange rates and macroeconomic fundamentals. Our empirical study is based on a series of exchange rates for the Tunisian dinar against three currencies of major trading partners (dollar, euro, yen and fundamentals (the terms of trade, the inflation rate, the interest rate differential, of monthly data, from jan 2000 to dec-2014, for the case of the Tunisia. We have adopted models of conditional heteroscedasticity (ARCH, GARCH, EGARCH, TGARCH. The results indicate that there is a partial relationship between the evolution of the Tunisian dinar exchange rates and macroeconomic variables.
Asset pricing model selection: Indonesian Stock Exchange
Pasaribu, Rowland Bismark Fernando
2010-01-01
The Capital Asset Pricing Model (CAPM) has dominated finance theory for over thirty years; it suggests that the market beta alone is sufficient to explain stock returns. However evidence shows that the cross-section of stock returns cannot be described solely by the one-factor CAPM. Therefore, the idea is to add other factors in order to complete the beta in explaining the price movements in the stock exchange. The Arbitrage Pricing Theory (APT) has been proposed as the first multifactor succ...
STEP - Product Model Data Sharing and Exchange
DEFF Research Database (Denmark)
Kroszynski, Uri
1998-01-01
- Product Data Representation and Exchange", featuring at present some 30 released parts, and growing continuously. Many of the parts are Application Protocols (AP). This article presents an overview of STEP, based upon years of involvement in three ESPRIT projects, which contributed to the development......During the last fifteen years, a very large effort to standardize the product models employed in product design, manufacturing and other life-cycle phases has been undertaken. This effort has the acronym STEP, and resulted in the International Standard ISO-10303 "Industrial Automation Systems...
The Effects of δ Meson on the Neutron Star Cooling
Institute of Scientific and Technical Information of China (English)
许妍; 刘广洲; 吴姚睿; 朱明枫; 喻孜; 王红岩; 赵恩广
2012-01-01
In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.
Choi, Ho-Meoyng
2014-01-01
We discuss the light-front zero-mode issue in the light-front quark model prediction of the twist-3 distribution amplitude of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD.
A Model for Trading the Foreign Exchange Market | Nwokorie | West ...
African Journals Online (AJOL)
A Model for Trading the Foreign Exchange Market. ... interest rates, inflation rates, etc. have significant impacts on the exchange rate fluctuation. Existing ... The predictions from the networks are integrated to get the direction of price movement.
Tawfik, Abdel Nasser; Magdy, Niseem
2015-01-01
Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson
Dynamically generated open and hidden charm mesons
Gamermann, D; Strottman, D; Vacas, M J Vicente
2007-01-01
In this presentation I explain our framework for dynamically generating resonances from the meson meson interaction. Our model generates many poles in the T-matrix which are associated with known states, while at the same time new states are predicted.
Exclusive φ meson production in HERMES
Energy Technology Data Exchange (ETDEWEB)
Golembiovskaya, Mayya
2014-03-15
In the present work exclusive φ meson leptoproduction at HERMES experiment in DESY was studied using the data collected at HERA accelerator in the period from 1998 till 2000 and from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen and deuteron targets were used, the beam consisted of longitudinally polarized leptons. Via measurement of the angular and momentum distribution of the φ meson decay products 23 spin density matrix elements (SDMEs) for the φ meson were obtained. The number of SDMEs was defined by the experiment conditions, e.g. by the beam and target polarization directions. For the mentioned time period φ meson SDMEs were defined at HERMES for the first time. The quantities U{sub 1}, U{sub 2} and U{sub 3} which can be used to check presence of unnatural parity exchange (UPE) mechanism in phi meson production were calculated from SDMEs. All the results were obtained in 3 kinematic bins of Q{sup 2}, 4 kinematic bins of t' and for the integrated kinematics. No statistically significant difference between the results for hydrogen and deuteron targets was observed. The UPE quantities were found to be zero within 2 σ for the integrated kinematics, indicating negligible contribution of UPE for the φ meson production which is in agreement with theory predictions. The test of s-channel helicity conservation hypothesis via comparison of corresponding SDME values showed helicity conservation for the φ meson production.
Importance of the meson cloud to hadron structure
Pearce, B. C.; Speth, J.; Szczurek, A.
1994-07-01
We present a review of our recent results on the role of the mesonic cloud in the structure of hadrons in both soft and hard kinematical regimes. We compute the pion and nucleon form factors of the scalar operator overlineuu + overlinedd within a meson exchange model. Our results agree with recent dispersion relation analyses near the Cheng-Dashen point but show some deviation at higher energies. In particular, we confirm the observation that the strong ππ interaction gives rise to a scalar square radius of the nucleon of 1.5 fm 2 and a 15 MeV contribution to the pion nucleon sigma term. Some aspects of the meson cloud around the nucleon for deep-inelastic lepton scattering are studied in the framework of the Sullivan formalism. We present a simple two-phase model of the nucleon. Renormalization of the valence quark distribution due to the mesonic cloud is taken into account explicitly. We study the dependence of different quantities on the cut-off parameter of the form factor, the role of different mesons in deep-inelastic scattering, and SU(2) F symmetry breaking in the nucleon sea in connection to the Gottfried Sum Rule. It is possible to obtain agreement with the CCFR data using relatively hard meson-N-N form factors. The E615 data on ( overlineu + overlined)/2 - overlines restrict the cut-off parameter in the dipole form factor to about 1.2 GeV. For this value the cut-off parameter we get the largest violation of the Gottfried Sum Rule, about half of that observed by NMC. Mesonic models predict violation of the SU (2) symmetry in the nucleon sea which seems to be necessary to explain the violation of the Gottfried Sum Rule. Since up to now there is no consensus concerning the explanation of the NMC effect, one has to study the role the overlined/ overlineu asymmetry may play in other processes. Here we study the effect of the asymmetry for the Drell-Yan processes. We find that careful analysis of the dilepton production in the p-p and p-n collisions should
Photoproduction of η{^' -mesons off the deuteron
Jaegle, I.; Mertens, T.; Fix, A.; Huang, F.; Nakayama, K.; Tiator, L.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D. E.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Crede, V.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Funke, C.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Hillert, W.; Höffgen, S.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Lang, M.; Löhner, H.; Lopatin, I. V.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Nanova, M.; Novinski, D. V.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S. V.; Sokhoyan, V.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, C.
2011-01-01
Quasi-free photoproduction of η{^' -mesons off nucleons bound in the deuteron has been measured with the combined Crystal Barrel - TAPS detector. The experiment was done at a tagged photon beam of the ELSA electron accelerator in Bonn for incident photon energies from the production threshold up to 2.5GeV. The η{^' -mesons have been detected in coincidence with recoil protons and recoil neutrons. The quasi-free proton data are in good agreement with the results for free protons, indicating that nuclear effects have no significant impact. The coincidence with recoil neutrons provides the first data for the γ n rightarrow n η{^' reaction. In addition, also first estimates for coherent η{^' -production off the deuteron have been obtained. In agreement with model predictions, the total cross-section for this channel is found to be very small, at most at the level of a few nb. The data are compared to model calculations taking into account contributions from nucleon resonances and t -channel exchanges.
Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons
Du, Meng-Lin; Meißner, Ulf-G; Yao, De-Liang
2016-01-01
We investigate the numerical values of the low-energy constants in the chiral effective Lagrangian for the interactions between the charmed mesons and the lightest pseudoscalar mesons, the Goldstone bosons of the spontaneous breaking of chiral symmetry for QCD. This problem is tackled from two sides: estimates using the resonance exchange model, and positivity constraints from the general properties of the $S$-matrix including analyticity, crossing symmetry and unitarity. These estimates and constraints are compared with the values determined from fits to lattice data of the scattering lengths. Tensions are found, and possible reasons are discussed. We conclude that more data from lattice calculations and experiments are necessary to fix these constants better. As a by-product, we also estimate the coupling constant $g_{DDa_2}$, with $a_2$ the light tensor meson, via the QCD sum rule approach.
Elastic Photoproduction of $J/\\psi$ and $\\Upsilon$ Mesons at HERA
Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazarian, S.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Hauschildt, T.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hilton, C.D.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolanoski, H.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Krucker, D.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstrom, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, D.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Negri, I.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.
2000-01-01
Cross sections for elastic photoproduction of J/Psi and Upsilon mesons are presented. For J/Psi mesons the dependence on the photon-proton centre-of-mass energy W_gammap is analysed in an extended range with respect to previous measurements of 26<=W_gammap<= 285 GeV. The measured energy dependence is parameterized as sigma_gammap proportional W_gammap^delta with delta=0.83+-0.07. The differential cross section dsigma/dt for J/Psi mesons is derived, its dependence on W_gammap and on t is analysed and the effective trajectory (in terms of Regge theory) is determined to be alpha(t)=(1.27+-0.05)+(0.08+-0.17)*t/GeV^2. Models based on perturbative QCD and on pomeron exchange are compared to the data.
Dynamically Generated Open and Hidden Charm Meson Systems
Gamermann, D; Strottman, D D; Vacas, M J V
2006-01-01
The lowest order chiral Lagrangian successfully applied to study the interaction of the SU(3) octet of pseudo-scalar mesons is generalized to include all mesons from the SU(4) 15-plet of pseudo-scalar mesons. Exchanges of heavy vector mesons, which are indirectly taken into account via this approach, are suppressed. Unitarization in coupled channels leads to dynamical generation of resonances in the open and hidden charm sectors. In particular, for reasonable values of the input, a new narrow scalar resonance in the hidden charm sector appears with a mass of 3.7 GeV.
Improved Nucleon Properties in the Extended Quark Sigma Model
Abu-Shady, M
2013-01-01
The quark sigma model describes the quarks interacting via exchange the pions and sigma meson fields. A new version of mesonic potential is suggested in the frame of some aspects of the quantum chromodynamics (QCD). The field equations have been solved in the mean-field approximation for the hedgehog baryon state. The obtained results are compared with previous works and other models. We conclude that the suggested mesonic potential successfully calculates nucleon properties.
Kirchbach, M.; Compean, C. B.
2016-07-01
doubled single SO(3) states. We attribute the striking measured meson degeneracies to conformal symmetry dynamics within color neutral two-body systems, and conclude on the usefulness of the de Sitter space-time, dS4, as a tool for modelling strong interactions, on the one side, and on the relevance of hyperbolic and trigonometric potentials in constituent quark models of hadrons, on the other.
Energy Technology Data Exchange (ETDEWEB)
Kirchbach, M. [UASLP, Instituto de Fisica, San Luis Potosi (Mexico); Compean, C.B. [Instituto Tecnologico de San Luis Potosi, San Luis Potosi (Mexico)
2016-07-15
multiplets rather than, as usually assumed, only in terms of parity doubled single SO(3) states. We attribute the striking measured meson degeneracies to conformal symmetry dynamics within color neutral two-body systems, and conclude on the usefulness of the de Sitter space-time, dS{sub 4}, as a tool for modelling strong interactions, on the one side, and on the relevance of hyperbolic and trigonometric potentials in constituent quark models of hadrons, on the other. (orig.)
Medium Modification of Vector Mesons
Energy Technology Data Exchange (ETDEWEB)
Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour
2011-03-01
The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.
Quark diagram analysis of B-meson emitting vector ( V) and vector ( V) mesons
Kaur, Maninder
2017-07-01
This paper presents the two body weak nonleptonic decays of B-mesons emitting vector ( V) and vector ( V) mesons within the framework of the diagrammatic approaches at flavor SU(3) symmetry. We have investigated exclusive two body decays of B-meson using model independent quark diagram scheme. We have shown that the recent measurement of the two body exclusive decays of B-mesons can allow us to determine the magnitude and even sign of the QD amplitude for B → VV decays. Therefore, we become able to make few predictions for their branching fractions.
Exlusive charmed meson pair production
Berezhnoy, A V
2004-01-01
The experimental data of BELLE Collaboration on the exclusive charmed meson pair production in the process of monophotonic $e^+e^-$-annihilation ($e^+e^-\\to \\gamma^* \\to D\\bar D$) has been studied. It has been shown that these data is described satisfactorily in the frame work of constituent quark model. Our studies have demonstrated that the central production process $e^+e^-\\to e^+e^-\\gamma\\gamma \\to e^+e^-D\\bar D +X$ and the process of monophotonic $e^+e^-$-annihilation yield comparable numbers of the charmed meson pairs.
Light Vector Mesons in the Nuclear Medium
Energy Technology Data Exchange (ETDEWEB)
Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen
2008-07-01
The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff
Model Uncertainty and Exchange Rate Forecasting
Kouwenberg, Roy; Markiewicz, Agnieszka; Verhoeks, Ralph; Zwinkels, Remco
2013-01-01
textabstractWe propose a theoretical framework of exchange rate behavior where investors focus on a subset of economic fundamentals. We find that any adjustment in the set of predictors used by investors leads to changes in the relation between the exchange rate and fundamentals. We test the validity of this framework via a backward elimination rule which captures the current set of fundamentals that best predicts the exchange rate. Out-of-sample forecasting tests show that the backward elimi...
Sibirtsev, A A; Elster, C; Haidenbauer, J; Krewald, S; Speth, J; Elster, Ch.
2002-01-01
An analysis of incoherent photoproduction of $\\eta$ mesons off the deuteron for photon energies from threshold to 800 MeV is presented. The dominant contribution, the $\\gamma$N-$\\eta$N amplitude, is described within an isobar model. Effects of the final state interactions in the $NN$ as well as the ${\\eta}N$ systems are included employing models derived within the meson-exchange approach. It is found that their consideration is important. Specifically, due to an interference effect the influence of the $\\eta N$ final state interaction is enhanced in the reaction $\\gamma d \\to np \\eta$ close to threshold.
Study on the radiative decays of h{sub c} via intermediate meson loops model
Energy Technology Data Exchange (ETDEWEB)
Wu, Qi; Li, Gang; Zhang, Yawei [Qufu Normal University, College of Physics and Engineering, Qufu (China)
2017-05-15
Recently, the BESIII Collaboration reported two new decay processes: h{sub c}(1P) → γη and γη{sup '}. Inspired by this measurement, we propose to study the radiative decays of h{sub c} via intermediate charmed meson loops in an effective Lagrangian approach. With the acceptable cutoff parameter range, the calculated branching ratios of h{sub c}(1P) → γη and γη{sup '} are of the orders of 10{sup -4} to 10{sup -3} and 10{sup -3} to 10{sup -2}, respectively. The ratio R{sub h{sub c}} = B(h{sub c} → γη)/ B(h{sub c} → γη{sup '}) can reproduce the experimental measurements with the commonly acceptable α range. This ratio provide us with some information on the η-η{sup '} mixing, which may be helpful for us to test the SU(3)-flavor symmetries in QCD. (orig.)
Model Uncertainty and Exchange Rate Forecasting
R.R.P. Kouwenberg (Roy); A. Markiewicz (Agnieszka); R. Verhoeks (Ralph); R.C.J. Zwinkels (Remco)
2013-01-01
textabstractWe propose a theoretical framework of exchange rate behavior where investors focus on a subset of economic fundamentals. We find that any adjustment in the set of predictors used by investors leads to changes in the relation between the exchange rate and fundamentals. We test the validit
Electromagnetic rho-meson form factors in point-form relativistic quantum mechanics
Biernat, Elmar P
2014-01-01
The relativistic point-form formalism which we proposed for the study of the electroweak structure of few-body bound states is applied to calculate the elastic form factors of spin-1 mesons, such as the rho, within constituent-quark models. We treat electron-meson scattering as a Poincare-invariant coupled-channel problem for a Bakamjian-Thomas mass operator and extract the meson current from the resulting invariant 1-photon-exchange amplitude. Wrong cluster properties inherent in the Bakamjian-Thomas framework are seen to cause spurious contributions in the current. These contributions, however, can be separated unambiguously from the physical ones and we end up with a meson current with all required properties. Numerical results for the rho-meson form factors are presented assuming a simple harmonic-oscillator bound-state wave function. The comparison with other approaches reveals a remarkable agreement of our results with those obtained within the covariant light-front scheme proposed by Carbonell et al.
Equation of state of a quark-Polyakov loop-meson mixture in the PNJL model at finite temperature
Torres-Rincon, Juan M
2016-01-01
Recent consensus on the $N_f=2+1$ equation of state at vanishing chemical potential from different lattice-QCD groups has spoiled the previous agreement with the outcome from the mean-field Polyakov-Nambu-Jona-Lasinio model. In this letter we review the thermodynamics of the PNJL model introducing two important aspects needed to describe the pressure computed in the lattice QCD. First, we consider the thermodynamics of the model beyond the mean-field approach to include pseudoscalar and scalar mesonic-like fluctuations into the grand-canonical potential. This accounts for the hadronic pressure of the system below the critical temperature. On the other hand we also implement the back reaction of quarks into the Polyakov-loop effective potential bringing a reduction of the pressure above $T_c$ from the Stefan-Boltzmann limit. We get a good agreement with lattice-QCD data at low and moderate temperatures, opening the door to a straightforward extension to finite chemical potential.
Radiative decay of light and heavy mesons
Energy Technology Data Exchange (ETDEWEB)
Barik, N. (Department of Physics, Utkal University, Bhubaneswar-751004 (India)); Dash, P.C. (Department of Physics, P. N. College, Khurda, Orissa (India))
1994-01-01
The [ital M]1 transition among the vector ([ital V]) and pseudoscalar ([ital P]) mesons in the light and heavy flavor sectors has been investigated in a potential model of independent quarks. Going beyond the static approximation, to add some momentum dependence due to the recoil effect in a more realistic calculation, we find an improvement in the results for the radiative decay of light flavored mesons. However, our prediction on the decay rates for the mesons ([ital D][sup *] and [ital B][sup *]) in the heavy flavor sector remains unaffected and compares well with those of other model calculations.
Modeling And Forecasting Exchange-Rate Shocks
Andreou, A. S.; Zombanakis, George A.; Likothanassis, S. D.; Georgakopoulos, E.
1998-01-01
This paper considers the extent to which the application of neural networks methodology can be used in order to forecast exchange-rate shocks. Four major foreign currency exchange rates against the Greek Drachma as well as the overnight interest rate in the Greek market are employed in an attempt to predict the extent to which the local currency may be suffering an attack. The forecasting is extended to the estimation of future exchange rates and interest rates. The MLP proved to be highly ...
Central Production of Eta and Eta-prime via Double Pomeron Exchange in the Sakai-Sugimoto Model
Anderson, Neil; Harvey, Jeffrey A; Mann, Nelia
2014-01-01
We construct a string-inspired model for the central production of $\\eta$ and $\\eta'$ mesons in proton-proton collisions, via double Pomeron exchange. Using general symmetry considerations, we construct a low-energy differential cross section for double glueball exchange in terms of some undetermined coupling constants and form factors. We extend this model to the Regge regime, replacing the glueball propagators with Pomeron trajectories, and modifying the interaction term by a factor derived from the 5-string scattering amplitude in flat space. We then fix the couplings which remain undetermined, using the Sakai-Sugimoto framework to model low-energy QCD. Finally, we generate a simulation of the scattering process at $\\sqrt{s} = 29.1 GeV$, where double Pomeron exchange should play a role (secondary to double Reggeon exchange). We focus on the dependence of the scattering cross section on the angle between the scattered protons in the transverse plane. The results exhibit a definite deviation from the angular...
Haas, Florian
2009-01-01
QCD predicts four quark states or gluonic excitations like hybrids or glueballs to contribute to the meson spectrum in addition to $q\\overline{q}$ pair configurations. The most promising way to identify such states is the search for $J^{PC}$ quantum number combinations which are forbidden in the constituent quark model. The fixed target COMPASS experiment at CERN offers the opportunity to search for such states in the light quark sector with an unprecedented statistics. Diffractive reactions of 190 GeV/c pions on a lead target were studied by COMPASS during a pilot run in 2004. A Partial Wave Analysis (PWA) of the $\\pi^{−}\\pi^{−}\\pi^{+}$ final state with 42 waves including acceptance corrections through a phase-space Monte Carlo simulation of the spectrometer was performed. The exotic $\\pi_{1}$(1600) meson with quantum numbers $J^{PC}= 1^{−+}$ has been clearly established in the rho-pi decay channel with a mass of 1660 $\\pm$ 10(stat) MeV/c$^{2}$ and a width of 269 $\\pm$ 21(stat) MeV/c$^{2}$. The final s...
Factor Model Forecasts of Exchange Rates
Charles Engel; Nelson C. Mark; Kenneth D. West
2012-01-01
We construct factors from a cross section of exchange rates and use the idiosyncratic deviations from the factors to forecast. In a stylized data generating process, we show that such forecasts can be effective even if there is essentially no serial correlation in the univariate exchange rate processes. We apply the technique to a panel of bilateral U.S. dollar rates against 17 OECD countries. We forecast using factors, and using factors combined with any of fundamentals suggested by Taylor r...
Photon emissivity in the vicinity of a critical point - A case study within the quark meson model
Wunderlich, F.; Kämpfer, B.
2017-03-01
The quark meson (linear sigma) model with linearized fluctuations displays at a critical end point the onset of a curve of first-order phase transitions (FOPTs) located at non-zero chemical potentials and temperatures below a certain cross-over temperature. The model qualifies well for an illustrative example to study the impact of the emerging FOPT, e.g. on photon emissivities. Such a case study unravels the tight interlocking of the phase structure with the emission rates, here calculated according to lowest-order tree level processes by kinetic theory expressions. It is the strong dependence of the rates on the effective masses of the involved degrees of freedom which distinctively vary over the phase diagram thus shaping the emissivity accordingly. At the same time, thermodynamic properties of the medium are linked decisively to these effective masses, i.e. a consistent evaluation of thermodynamics, governing for instance adiabatic expansion paths, and emission rates is maintained within such an approach.
Photon emissivity in the vicinity of a critical point – A case study within the quark meson model
Energy Technology Data Exchange (ETDEWEB)
Wunderlich, F., E-mail: f.wunderlich@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, D-01328 Dresden (Germany); Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden (Germany); Kämpfer, B., E-mail: kaempfer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, D-01328 Dresden (Germany); Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden (Germany)
2017-03-15
The quark meson (linear sigma) model with linearized fluctuations displays at a critical end point the onset of a curve of first-order phase transitions (FOPTs) located at non-zero chemical potentials and temperatures below a certain cross-over temperature. The model qualifies well for an illustrative example to study the impact of the emerging FOPT, e.g. on photon emissivities. Such a case study unravels the tight interlocking of the phase structure with the emission rates, here calculated according to lowest-order tree level processes by kinetic theory expressions. It is the strong dependence of the rates on the effective masses of the involved degrees of freedom which distinctively vary over the phase diagram thus shaping the emissivity accordingly. At the same time, thermodynamic properties of the medium are linked decisively to these effective masses, i.e. a consistent evaluation of thermodynamics, governing for instance adiabatic expansion paths, and emission rates is maintained within such an approach.
Photon emissivity in the vicinity of a critical point - A case study within the quark meson model
Wunderlich, Falk
2016-01-01
The quark meson (linear sigma) model with linearized fluctuations displays at a critical end point the onset of a curve of first-order phase transitions (FOPTs) located at non-zero chemical potentials and temperatures below a certain cross-over temperature. The model qualifies well for an illustrative example to study the impact of the emerging FOPT, e.g. on photon emissivities. Such a case study unravels the tight interlocking of the phase structure with the emission rates, here calculated according to lowest-order tree level processes by kinetic theory expressions. It is the strong dependence of the rates on the effective masses of the involved degrees of freedom which distinctively vary over the phase diagram thus shaping the emissivity accordingly. At the same time, thermodynamic properties of the medium are linked decisively to these effective masses, i.e. a consistent evaluation of thermodynamics, governing for instance adiabatic expansion paths, and emission rates is maintained within such an approach.
Exclusive meson production at HERMES
Manaenkov, Sergey
2016-01-01
The data were accumulated with the HERMES forward spectrometer using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. Exclusive electroproduction of $\\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of $Q^2>1.0$ GeV$^2$, 3.0 GeV $< W <$ 6.3 GeV, and $-t'< 0.2 $ GeV$^{2}$, while for $\\rho^0$-meson production on a transversely polarized hydrogen target $-t'< 0.4$ GeV$^{2}$ is used. Spin-density matrix elements for $\\omega$ production are presented in projections of $Q^2$ or $-t'$, while the ratios of the helicity amplitudes for the reaction $\\gamma^*+p \\to \\rho^0+p$ are obtained in the entire kinematic region. The usage of the transversely polarized target allows for the first time the extraction of the ratios of certain nucleon-helicity-flip amplitudes to the natural-parity exchange amplitude $T_{0\\frac{1}{2}0\\frac{1}{2}}$ without the nucleon-helicity flip describing the longitudinal $\\rho^0$-meson production by the longitudinal...
Photoproduction of the eta prime meson in the effective Lagrangian approach
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, J.F. [Rensselaer Polytechnic Inst., Troy, NY (United States); Benmerrouche, M. [Univ. of Saskatchewan, Saskaton (Canada)
1994-04-01
In the framework of the effective Lagrangian approach, the authors study the {eta}{prime} photoproduction off protons, of great interest at CEBAF I and II. They calculate the contributions from the leading nucleon Born terms, vector meson exchanges, and estimate the resonance contributions, using the transition amplitudes from the recent quark model estimates by Capstick and Roberts. They discuss implications for the CEBAF experiments.
Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis
Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.
2015-06-01
This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.
Chen, Kan; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Inspired by the abundant experimental observation of axial vector states, we study whether the observed axial vector states can be categorized into the conventional axial vector meson family. In this paper we carry out analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial vector mesons, which are valuable to further experimental exploration of the observed and predicted axial vector mesons.
Exclusive hadronic decays of B mesons
Hölscher, Andreas
1991-06-01
The recent experimental results on exclusive hadronic decays of B mesons obtained by the ARGUS collaboration are presented in the talk. The results include exclusive hadronic decays involving a b → c transition, namely B decays with a D, D ∗ plus several pions and B decays to J/ψ or ψ' mesons plus Kaons have been studied. The measurements of branching ratios for two-body B decays involving a J/ψ or ψ' meson are of wide interest in the light of proposals for the study of CP violation in future experiments. The branching ratios are compared with the predictions of the model of Bauer, Stech and Wirbel and with a model of A.V. Dobrovolskaya. Using the cleanest decay channels, the masses and mass difference of the charged and neutral B meson are obtained. This mass difference is then compared with the mass splitting in other isospinmultipletts and with theoretical models.
Exclusive central diffractive production of scalar, pseudoscalar and vector mesons
Directory of Open Access Journals (Sweden)
Lebiedowicz P.
2014-01-01
Full Text Available We discuss exclusive central diffractive production of scalar (ƒ0(980, ƒ0(1370, ƒ0(1500, pseudoscalar (η, η′(958, and vector (ρ0 mesons in proton-proton collisions. The amplitudes are formulated in terms of effective vertices required to respect standard rules of Quantum Field Theory and propagators for the exchanged pomeron and reggeons. Different pomeron-pomeron-meson tensorial (vectorial coupling structures are possible in general. In most cases two lowest orbital angular momentum - spin couplings are necessary to describe experimental differential distributions. For the ƒ0(980 and η production the reggeon-pomeron, pomeron-reggeon, and reggeon-reggeon exchanges are included in addition, which seems to be necessary at relatively low energies. The theoretical results are compared with the WA102 experimental data, in order to determine the model parameters. For the ρ0 production the photon-pomeron and pomeron-photon exchanges are considered. The coupling parameters of tensor pomeron and/or reggeon are fixed from the H1 and ZEUS experimental data of the γp → ρ0 p reaction. We present first predictions of this mechanism for pp → ppπ+π− reaction being studied at COMPASS, RHIC, Tevatron, and LHC. Correlation in azimuthal angle between outgoing protons and distribution in pion rapidities at √s = 7 TeV are presented. We show that high-energy central production of mesons could provide crucial information on the spin structure of the soft pomeron.
Mandal, Sanjoy; Mitra, Manimala; Sinha, Nita
2017-08-01
We analyze the lepton number violating (LNV) meson decays that arise in a TeV scale left-right symmetry model. The right-handed Majorana neutrino N along with the right-handed or Standard Model gauge bosons mediate the meson decays and provide a resonant enhancement of the rates if the mass of N (MN) lies in the range ˜(100 MeV - 5 GeV ) . Using the expected upper limits on the number of events for the LNV decay modes M1+→ℓ+ℓ+ π- (M1=B,D,Ds, K ), we derive constraints plausible on the mass of the right handed charged gauge boson by future searches at the ongoing NA62 and LHCb experiments at CERN, the upcoming Belle II at SuperKEK, as well as at the proposed future experiments, SHiP and FCC-ee. These bounds are complimentary to the limits from the same-sign dilepton search at the Large Hadron Collider (LHC). The very high intensity of charmed mesons expected to be produced at SHiP will result in a far more stringent bound, MW R>18.4 TeV (corresponding to MN=1.46 GeV ), than the other existing bounds from collider and neutrinoless double beta decay searches.
Modeling of Crystalline Silicotitanate Ion Exchange Columns
Energy Technology Data Exchange (ETDEWEB)
Walker, D.D.
1999-03-09
Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.
Rasch models with exchangeable rows and columns
DEFF Research Database (Denmark)
Lauritzen, Steffen Lilholt
The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique...... of existence of measures with given marginals....
Real Exchange Rate and Commodity Prices in a Neoclassical Model
Reinhart, Carmen
1988-01-01
This paper represents a neoclassical model that explains the observed empirical relationship between government spending and world commodity supplies and the real exchange rate and real commodity prices. It is shown that fiscal expansion and increasing world commodity supplies simultaneously lead to an appreciation of the real exchange rate and a decline in relative commodity prices. The structural model is estimated and its forecasting performance is compared to a variety of models. We fin...
Indian Academy of Sciences (India)
Gy Wolf
2006-04-01
One consequence of the chiral restoration is the mixing of parity partners. We look for a possible signature of the mixing of vector and axial vector mesons in heavy-ion collisions. We suggest an experimental method for its observation. The dynamical evolution of the heavy-ion collision is described by a transport equation of QMD-type evolving nucleons, * and resonances, ’s and $\\sum$ baryons, and furthermore, ’s, ’s ’s ’s ’s and kaons with their isospin degrees of freedom. The input cross-sections and resonance parameters of the model are fitted to the available nucleon–nucleon and pion–nucleon cross-sections.
The production of {eta} and {omega} mesons in 3.5 GeV p+p interaction in HADES
Energy Technology Data Exchange (ETDEWEB)
Teilab, Khaled
2011-08-31
The study of meson production in proton-proton collisions in the energy range up to one GeV above the production threshold provides valuable information about the nature of the nucleon-nucleon interaction. Theoretical models describe the interaction between nucleons via the exchange of mesons. In such models, different mechanisms contribute to the production of the mesons in nucleon-nucleon collisions. The measurement of total and differential production cross sections provide information which can help in determining the magnitude of the various mechanisms. Moreover, such cross section information serves as an input to the transport calculations which describe e.g. the production of e{sup +}e{sup -} pairs in proton- and pion-induced reactions as well as in heavy ion collisions. In this thesis, the production of {omega} and {eta} mesons in proton-proton collisions at 3.5 GeV beam energy was studied using the High Acceptance DiElectron Spectrometer (HADES) installed at the Schwerionensynchrotron (SIS 18) at the Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. About 80 000 {omega} mesons and 35 000 {eta} mesons were reconstructed. Total production cross sections of both mesons were determined. Furthermore, the collected statistics allowed for extracting angular distributions of both mesons as well as performing Dalitz plot studies. The {omega} and {eta} mesons were reconstructed via their decay into three pions ({pi}{sup +}{pi}{sup -}{pi}{sup 0}) in the exclusive reaction pp {yields} pp{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The charged particles were identified via their characteristic energy loss, via the measurement of their time of flight and momentum, or using kinematics. The neutral pion was reconstructed using the missing mass method. A kinematic fit was applied to improve the resolution and to select events in which a {pi}{sup 0} was produced. The correction of measured yields for the effects of spectrometer acceptance was done as a function of four
Vector Meson Production in Collisions of Nucleons
Brinkmann, K.-Th.; Abdel-Bary, M.; Abdel-Samad, S.; Clement, H.; Doroshkevich, E.; Dshemuchadse, S.; Dutz, H.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Georgi, J.; Gillitzer, A.; Gonser, P.; Jäkel, R.; Karsch, L.; Kilian, K.; Koch, H.; Kreß, J.; Kuhlmann, E.; Marcello, S.; Meyer, W.; Michel, P.; Morsch, H. P.; Möller, K.; Mörtel, H.; Naumann, L.; Pinna, L.; Pizzolotto, L.; Roderburg, E.; Schamlott, A.; Schönmeier, P.; Schroeder, W.; Schulte-Wissermann, M.; Sefzick, T.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Ucar, A.; Ullrich, W.; Wagner, G. J.; Wagner, M.; Wilms, A.; Wintz, P.; Wirth, S.; Wüstner, P.; Zupranski, P.
The production of vector mesons in collisions between nucleons is studied in order to address a variety of issues concerning nucleon-nucleon interaction, reaction mechanism and properties of baryons. These studies are summarized with emphasis on the most recent experiments at the Time-of-Flight spectrometer TOF and results obtained at the COoler SYnchrotron COSY in Jülich. While currently the open questions regarding the so-called OZI violation, its relation to the meson exchange picture and the relative importance of contributions to the production mechanism from various channels within this formalism are still unresolved, the present-day experiments hold the potential to clarify the situation greatly. Possible extensions of the experimental program on vector mesons using 4π detection techniques for charged as well as neutral particles, in particular π0, are discussed.
Bs mesons: semileptonic and nonleptonic decays
Directory of Open Access Journals (Sweden)
Albertus C.
2014-01-01
Full Text Available In this contribution we compute some nonleptonic and semileptonic decay widths of Bs mesons, working in the context of constituent quark models [1, 2]. For the case of semileptonic decays we consider reactions leading to kaons or different Jπ Ds mesons. The study of nonleptonic decays has been done in the factorisation approximation and includes the final states enclosed in Table 2.
Energy Technology Data Exchange (ETDEWEB)
Boltz, J.C. (ed.)
1992-09-01
EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.
Mathematical Modeling of Spiral Heat Exchanger
Probal Guha , Vaishnavi Unde
2014-01-01
Compact Heat Exchangers (CHEs) are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat ...
Monetary models and exchange rate determination: The Nigerian ...
African Journals Online (AJOL)
Monetary models and exchange rate determination: The Nigerian evidence. ... income levels and real interest rate differentials provide better forecasts of the naira-US dollar ... in this regard is that monetary policy should be positively predicted.
Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons
Directory of Open Access Journals (Sweden)
A. V. Оvsiannik
2007-01-01
Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.
Modeling canopy CO2 exchange in the European Russian Arctic
DEFF Research Database (Denmark)
Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias
2013-01-01
In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...
Ferrokinetics: a biologic model for plasma iron exchange in man.
Cook, J D; Marsaglia, G; Eschbach, J W; Funk, D D; Finch, C A
1970-02-01
A method is presented for calculating internal iron kinetics. An early reflux associated with extravascular exchange and a late reflux associated with erythropoiesis are described. A biologic model of iron exchange is proposed in which erythron iron turnover is divided into an effective portion (iron fixed in circulating red cells) and wastage iron of erythropoiesis (late reflux). Nonerythroid iron exchange also has a fixed portion (parenchymal uptake) and an early reflux (lymphatic circuit), both of which correlate in amount with the amount of plasma iron. Ferrokinetic measurements in normal subjects and in various pathologic states are presented to validate the model.
Meson's correlation functions in a nuclear medium
Directory of Open Access Journals (Sweden)
Chanyong Park
2016-09-01
Full Text Available We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Modeling radial flow ion exchange performance for condensate polisher conditions
Energy Technology Data Exchange (ETDEWEB)
Shallcross, D. [University of Melbourne, Melbourne, VIC (Australia). Department of Chemical Engineering; Renouf, P.
2001-11-01
A theoretical model is developed which simulates ion exchange performance within an annular resin bed. Flow within the mixed ion exchange bed is diverging, with the solution flowing outwards away from the bed's axis. The model is used to simulate performance of a mixed annular bed operating under condensate polisher conditions. The simulation predictions are used to develop design envelope curves for practical radial flow beds and to estimate potential cost savings flowing from less expensive polisher vessels. (orig.)
Vector-meson dominance revisited
Directory of Open Access Journals (Sweden)
Terschlüsen Carla
2012-12-01
Full Text Available The interaction of mesons with electromagnetism is often well described by the concept of vector-meson dominance (VMD. However, there are also examples where VMD fails. A simple chiral Lagrangian for pions, rho and omega mesons is presented which can account for the respective agreement and disagreement between VMD and phenomenology in the sector of light mesons.
Energy Technology Data Exchange (ETDEWEB)
Atkinson, D. (Fermi National Accelerator Lab., Batavia, IL (United States) Institute for Theoretical Physics, Groningen, The Netherlands (NL)); Harada, M. (Nagoya Univ. (Japan). Dept. of Physics); Sanda, A.I. (Superconducting Super Collider Lab., Dallas, TX (United States) Rockefeller Univ., New York, NY (United States). Dept. of Physics)
1991-10-01
We investigate the possibility that the Higgs lagrangian predicts the existence of a P-wave W{sub L}W{sub L} resonance. This problem is equivalent to studying the formation of the {rho} meson by the dynamics contained in the {sigma} model. Using the Pade approximation, Basdevant and Lee had claimed that {rho} is generated dynamically. We show that their result, while computationally correct, is not significant, because of the position of the Landau ghost. For the same reason, a W{sub L}W{sub L} P-wave resonance below 2 TeV is not expected, unless the standard model is violated. 10 refs., 8 figs.
Proton exchange membrane fuel cells modeling
Gao, Fengge; Miraoui, Abdellatif
2013-01-01
The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre
RESULTS OF INTERBANK EXCHANGE RATES FORECASTING USING STATE SPACE MODEL
Directory of Open Access Journals (Sweden)
Muhammad Kashif
2008-07-01
Full Text Available This study evaluates the performance of three alternative models for forecasting daily interbank exchange rate of U.S. dollar measured in Pak rupees. The simple ARIMA models and complex models such as GARCH-type models and a state space model are discussed and compared. Four different measures are used to evaluate the forecasting accuracy. The main result is the state space model provides the best performance among all the models.
String point of view for heavy-light mesons
Dong, Yubing; Matsuki, Takayuki
2016-01-01
An approximate rotational symmetry of a heavy-light meson is viewed from a string picture. Using a simple string configuration, we derive a formula, $(M-m_c)^2=\\pi\\sigma L$, whose coefficient of the r.h.s. is just 1/2 of that of a light meson with two light quarks. A numerical plot is obtained for $D$ mesons of experimental data as well as several theoretical models, which shows good agreement with this formula.
Baryon to meson transition distribution amplitudes and their spectral representation
Pire, Bernard; Szymanowski, Lech
2011-01-01
We consider the problem of construction of a spectral representation for nucleon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of nonlocal three quark light-cone operators between a nucleon and a meson states. We introduce the notion of quadruple distributions and generalize Radyshkin's factorized Ansatz for this issue. Modelling of baryon to meson TDAs in the complete domain of their definition opens the way to quantitative estimates of cross-sections for various hard exclusive reactions.
${\\bar D}D$ meson pair production in antiproton-nucleus collisions
Shyam, R
2016-01-01
We study the $\\bar D D$ (${\\bar D}^0 D^0$ and $D^-D^+$) charm meson pair production in antiproton (${\\bar p}$) induced reactions on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction proceeds via the $t$-channel exchanges of $\\Lambda_c^+$, $\\Sigma_c^+$, and $\\Sigma_c^{++}$ baryons in the initial collision of the antiproton with one of the protons of the target nucleus. The medium effects on the exchanged baryons are included by incorporating in the corresponding propagators, the effective charm baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound proton have been determined within the QMC model as well as in a phenomenological model where they are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and final-state distortion effects have been approx...
Double Charm Decays of B Mesons in mSUGRA Model
Institute of Scientific and Technical Information of China (English)
L(U) Lin-Xia; XIAO Zhen-Jun; WANG Shuai-Wei; LI Wen-Jun
2011-01-01
Based on the low energy effective Hamiltonian with naive factorization, we calculate the branching ratios (BRa) and CP asymmetries (CPAs) for the twenty three double charm decays B/Bs → D()(s)D()(s) in both the standard model (SM) and the minimal supergravity (mSUGRA) model. Within the considered parameter space, we find that (a)the theoretical predictions for the BRs, CPAs and the polarization fractions in the SM and the mSUGRA model are all consistent with the currently available data within ±2σ errors; (b) For all the considered decays, the supersymmetric contributions in the mSUGRA model are very small, less than 7% numerically. It may be difficult to observe so small SUSY contributions even at LHC.
Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code
Energy Technology Data Exchange (ETDEWEB)
Viani, B.E.; Bruton, C.J.
1992-06-01
Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites.
Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code
Energy Technology Data Exchange (ETDEWEB)
Viani, B.E.; Bruton, C.J. [Lawrence Livermore National Lab., CA (United States)
1992-12-31
Potential disposal of high-level nuclear waste at Yucca Mtn., Nevada requires the means to simulate ion-exchange behavior of clays and zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs and Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites. 15 refs., 5 figs., 1 tab.
Masses of and wave mesons and pseudoscalar decay constants using a conﬁnement scheme
Indian Academy of Sciences (India)
J N Pandya; P C Vinodkumar
2001-10-01
In the framework of relativistic harmonic conﬁnement model for quarks and antiquarks, the masses of - and -wave mesons and pseudoscalar decay constants from light ﬂavour to heavy ﬂavour sectors are computed. The residual two-body Coulomb interaction and the spin-dependent interaction of the conﬁned one gluon exchange effects (COGEP) such as spin–spin and spin–orbit interactions are perturbatively incorporated with the conﬁnement energy to get the respective vectorpseudoscalar meson mass differences. Here we employ the same parametrization and model parameters as used in a recent study of low-lying hadron masses and leptonic decay widths. The results are being compared with the values obtained from other theoretical models and the experimental values.
Thermodynamics and phase structure of the Polyakov-Quark-Meson model
Energy Technology Data Exchange (ETDEWEB)
Braun, Jens [Institut fuer Kernphysik (Theoriezentrum), Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI (Germany); Fraga, Eduardo S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt (Germany); Haas, Lisa M.; Pawlowski, Jan M. [Institut fuer Theoretische Physik, Universitaet Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI (Germany); Herbst, Tina K.; Stiele, Rainer [Institut fuer Theoretische Physik, Universitaet Heidelberg (Germany); Mintz, Bruno W.; Ramos, Rudnei O. [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro (Brazil); Mitter, Mario [Institut fuer Theoretische Physik, Universitaet Heidelberg (Germany); Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt (Germany); Schaefer, Bernd-Jochen [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen (Germany); Institut fuer Physik, Karl-Franzens-Universitaet Graz (Austria); Schaffner-Bielich, Juergen [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt (Germany)
2014-07-01
Polyakov-loop extended chiral effective models are important tools to describe the phase structure and thermodynamics of strongly interacting matter. We show that taking into account the backreaction of quarks onto the gauge sector is crucial in such models to achieve results for the order parameters and thermodynamics that are in line with lattice calculations. Achieving a good description of lattice data at zero density, we test the reliability of those models in systems containing other control parameters besides the temperature by confronting its results with lattice data at nonzero isospin. Furthermore, we investigate the phase structure of the three-dimensional T-μ{sub isospin}-μ{sub quark} phase diagram and calculate the surface tension of the first order phase transition at small temperatures and large quark densities.
Calculating Masses of Pentaquarks Composed of Baryons and Mesons
Directory of Open Access Journals (Sweden)
M. Monemzadeh
2016-01-01
Full Text Available We consider an exotic baryon (pentaquark as a bound state of two-body systems composed of a baryon (nucleon and a meson. We used a baryon-meson picture to reduce a complicated five-body problem to simple two-body problems. The homogeneous Lippmann-Schwinger integral equation is solved in configuration space by using one-pion exchange potential. We calculate the masses of pentaquarks θc(uuddc¯ and θb(uuddb¯.
Kinetic exchange models: From molecular physics to social science
Patriarca, Marco; Chakraborti, Anirban
2013-08-01
We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.
Kinetic exchange models: From molecular physics to social science
Patriarca, Marco
2013-01-01
We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.
Identification and Estimation of Exchange Rate Models with Unobservable Fundamentals
Chambers, M.J.; McCrorie, J.R.
2004-01-01
This paper is concerned with issues of model specification, identification, and estimation in exchange rate models with unobservable fundamentals.We show that the model estimated by Gardeazabal, Reg´ulez and V´azquez (International Economic Review, 1997) is not identified and demonstrate how to spec
Study on Isomerous CAD Model Exchange Based on Feature
Institute of Scientific and Technical Information of China (English)
SHAO Xiaodong; CHEN Feng; XU Chenguang
2006-01-01
A model-exchange method based on feature between isomerous CAD systems is put forward in this paper. In this method, CAD model information is accessed at both feature and geometry levels and converted according to standard feature operation. The feature information including feature tree, dimensions and constraints, which will be lost in traditional data conversion, as well as geometry are converted completely from source CAD system to destination one. So the transferred model can be edited through feature operation, which cannot be implemented by general model-exchange interface.
Light-Front Quark Model Analysis of Meson-Photon Transition Form Factor
Choi, Ho-Meoyng
2016-01-01
We discuss $(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma$ transition form factors using the light-front quark model. Our discussion includes the analysis of the mixing angles for $\\eta-\\eta'$. Our results for $Q^2 F_{(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma}(Q^2)$ show scaling behavior for high $Q^2$ consistent with pQCD predictions.
Energy Technology Data Exchange (ETDEWEB)
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
Thermal performance modeling of cross-flow heat exchangers
Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria
2014-01-01
This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges
Heavy and light meson wavefunctions
Wu, Xing-Gang
2013-01-01
We present a short review on the properties of heavy and light mesons' light-cone wavefunctions (LCWFs), and their distribution amplitudes (DAs). The B meson LCWFs can be treated by taking the heavy quark limit ($m_b\\to\\infty$) and by using the heavy quark effective theory (HQET). Using the relations between 2- and 3- particle WFs derived from the QCD equations of motion and constraints from the heavy quark symmetry, one can obtain their transverse momentum dependence up to next-to-leading order in Fock state expansion. Furthermore, we propose a simple model for B meson WFs with 3-particle Fock states' contributions, whose behaviors are controlled by two parameters $\\bar\\Lambda$ and $\\delta$. Using such model, the form factors $F^{B\\to\\pi}_{+,0,T}$ and $F^{B\\to K}_{+,0,T}$ in large recoil region are studied up to ${\\cal O}(1/m_b^2)$ within the $k_T$ factorization approach. When $\\bar\\Lambda\\in [0.50,0.55]$ and $\\delta\\in[0.25,0.30]$, the results of $F^{B\\to\\pi}_{+,0,T}(Q^2)$ and $F^{B\\to K}_{+,0,T}(Q^2)$ are ...
Neutral meson oscillations in the Standard Model and beyond from Nf=2 Twisted Mass Lattice QCD
Carrasco, N; Frezzotti, R; Gimenez, V; Herdoiza, G; Lubicz, V; Martinelli, G; Palao, D; Papinutto, M; Rossi, G C; Sanfilippo, F; Shindler, A; Simula, S; Tarantino, C
2012-01-01
We present the ETMC results for the bag parameters describing the neutral kaon mixing in the Standard Model and beyond and preliminary results for the bag parameters controlling the short distance contributions in the D^0-\\bar{D}^0 oscillations. We also present preliminary results for the B_{Bd}, B_{Bs}, B_{Bs}/B_{Bd} and \\xi -parameter controlling B^0_-\\bar{B}^0 oscillations in the Standard Model employing the so-called ratio method. Using Nf=2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks we achieve both O(a)-improvement and continuum like renormalization pattern. Simulations are performed at three-values of the lattice spacing and several values of quark masses in the light, strange, charm region and above charm up to ~2.5m_c. Our results are extrapolated to the continuum limit and extrapolated/interpolated to the physical quark masses.
Optical model potential of 800 MeV/c K+ meson for 12C and 40Ca by the method of inversion
Indian Academy of Sciences (India)
I Ahmad; M A Abdulmomen; Ghada A Hamra
2005-09-01
The elastic scattering differential cross-sections of 800 MeV/c K+ mesons from 12C and 40Ca have been analyzed using the Ericson's parametrization for the phase shift. It is found that the parameter values obtained by our analysis are significantly different from those obtained from the closed expression for K+ -nucleus amplitude derived by the strong absorption approximation. Next, using the phase shift obtained from the present analysis we calculate the K+ optical model potentials for 12C and 40Ca by the method of inversion. The calculated potentials are compared with the recently determined phenomenological ones.
Search for gluonic excitations in light unconventional mesons
Energy Technology Data Exchange (ETDEWEB)
Paul Eugenio
2007-07-01
Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenologicalmodels for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.
Electroproduction of the Φ(1020) Vector Meson at 4 GeV
Energy Technology Data Exchange (ETDEWEB)
Loukachine, Konstantin [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
2000-02-01
We studied the reaction ep → e'p'Φ with a 4.2 GeV incident electron beam in the region of the electroproduction variables Q^{2} from 0.7 to 2.2 GeV^{2} and W from 2.0 to 2.6 GeV. The data were taken and analyzed at the Thomas Jefferson National Accelerator Facility. For the first time, we observe the expected t-slope dependence on Q^{2} and Δτ in Φ vector meson production. We find that the width of the forward Φ-meson diffraction peak increases rapidly as the interaction time decreases below cΔτ of 1 fm. Within a simple optical model framework, the data show that Φ meson has a smaller size than the ρ. The measured Φ cross-section dependence on Q^{2} is in a good agreement with previous measurements and well-described by the phenomenological Pomeron exchange model. Our cross-section data do not favor the standard Vector Meson Dominance and s$\\bar{s}$-knockout model predictions. From the angular distribution of the decay Φ → K^{+} K^{-}, assuming the s-channel helicity conservation, we extracted the longitudinal-to-transverse cross-section ratio, R, and Vector Meson Dominance scaling parameter, ζ^{2}, which are consistent with the previous measurements and the model expectations.
Iso-spin Dependent Microscopic Optical Model Potential Based on Dirac Bruckner Haretree Fock Method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The microscopic optical model is investigated in the Dirac-Brueckner-Hartree-Fock (DBHF) framework with Bonn B meson exchange potential. Both real and imaginary parts of isospin-dependent self-energies are derived from a strict projection
Roy, Sabyasachi
2013-01-01
Nambu-Goto action for bosonic string predicts the quark-antiquark potential to be $V(r) = -\\frac{\\gamma}{r}+ \\sigma r + \\mu_0$. The coefficient $\\gamma=\\frac{\\pi(d-2)}{24}$ is the L\\"{u}scher coefficient of the L\\"{u}scher term $\\frac{\\gamma}{r}$, which depends upon the space-time dimension `d'. Very recently, we have developed meson wave functions in higher dimension with this potential from higher dimensional Schrodinger equation by applying quantum mechanical perturbation technique with both $L\\ddot{u}scher$ term as parent and as perturbation. In this letter, we analyze Isgur-Wise function for heavy-light mesons using these wave functions in higher dimension and make a comparative study on the status of the perturbation technique in both the cases.
Roy, Sabyasachi
2013-01-01
Nambu-Goto action of bosonic string predicts the quark-antiquark potential to be $ V (r) = \\frac{\\gamma}{r} + \\sigma r +\\mu_0 $. The coefficient$ \\gamma = - \\frac{\\pi(d-2)}{24} $ is the universal L\\"{u}scher coefficient of the L\\"uscher term $ \\frac{\\gamma}{r}$, which depends upon the space-time dimension `d'. We take linear term in potential as parent and L\\"uscher term as perturbation for the generation of wave function for meson in d space-time dimension.The wave function comes out in terms of Airy's infinite polynomial series. With this wave function in higher dimension, we then study the Isgur-Wise function for heavy-light mesons and its derivatives.
Precision tests of the Standard Model: Rare B-meson decays
Ali, Ahmed
2017-03-01
The charge given to me by the organisers of the memorial meeting for Prof. Abdus Salam’s 90th birthday is to recall my personal impressions of him and review an aspect of the standard model (SM) physics related to my work. Salam was, first and foremost, a brilliant theoretical physicist whose work is still very much en vogue, currently being tested precisely by the experiments at the Large Hadron Collider (LHC). Salam was, however, equally effective as a scientific advisor to many institutions, such as IAEA and CERN, but also to the government of Pakistan as the chief scientific strategist. He was also an untiring advocate of scientific research and higher education in developing countries, which took a concrete form in the International Centre for Theoretical Physics (ICTP) in Trieste. I discuss these aspects of his scientific life seen from my perspective in the first part. In the second part of my talk, which may appear as a disjoint piece to the first, I summarise some selected topics in rare B-decays — the current flavour physics frontier. Experiments carried out over several decades are largely in agreement with the SM, thanks also to dedicated theoretical effort in their interpretation. However, this field is undergoing an anomalous phase in a number of key measurements, in particular reported by LHCb, triggering a very lively debate and model building. These anomalies, which I review here, are too numerous to be ignored, but none is individually significant enough to announce a breakdown of the SM.
Radially excited axial mesons and the enigmatic Zc and Zb in a coupled-channel model
Coito, Susana
2016-07-01
The enigmatic charged states Zc(3900 ), Zc(4020 ), Zc(4050 ), Zb(10610 ), and Zb(10650 ) are studied within a coupled-channel Schrödinger model, where radially excited quark-antiquark pairs, with the same angular momenta and isospin as the a1(1260 ) and b1(1235 ), are strongly coupled to their Okubo-Zweig-Iizuka-allowed decay channels D D¯*+D ¯D* and D*D¯*, or B B¯*+B ¯B* and B*B¯*, in S and D waves. Poles, matching the experimental mass and width of the above states, are found by varying only two free parameters. From the wave-function analysis of each resonance, the probability of each of the components contributing to the coupled system is estimated, and predictions can be made for the relative decay fractions among the coupled open-charm or open-bottom decay channels.
Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model
de Melo, J P B C; Tsushima, Kazuo
2015-01-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
Exclusive semileptonic decay of {ital D} and {ital B} mesons in the independent quark model
Energy Technology Data Exchange (ETDEWEB)
Barik, N. [Department of Physics, Utkal University, Bhubaneswar-751004 (India); Dash, P.C. [Department of Physics, P. N. College, Khurda-752057 (India)
1996-02-01
We investigate the exclusive semileptonic decay modes {ital D}{sup 0}{r_arrow}{ital K},{ital K}{sup {asterisk}} and {bar {ital B}}{sup 0}{r_arrow}{ital D},{ital D}{sup {asterisk}} in a field-theoretic framework based on the independent quark model with a scalar-vector-harmonic potential. Our predictions for the relevant form factors and their {ital q}{sup 2} dependence are in reasonable agreement with the expectations of HQET and those of several other models. We predict that the decay width ratio and the polarization ratio for {ital D}{sup 0} decays are {Gamma}({ital D}{sup 0}{r_arrow}{ital K}{sup {asterisk}}{sup {minus}})/{Gamma}({ital D}{sup 0}{r_arrow}{ital K}{sup {minus}})=0.68 and {Gamma}{sub {ital L}}({ital D}{sup 0}{r_arrow}{ital K}{sup {asterisk}}{sup {minus}})/{Gamma}{sub {ital T}}({ital D}{sup 0}{r_arrow}{ital K}{sup {asterisk}}{sup {minus}})=0.52 and those for {bar {ital B}}{sup 0} decays are {Gamma}({bar {ital B}}{sup 0}{r_arrow}{ital D}{sup {asterisk}}{sup +})/{Gamma}({bar {ital B}}{sup 0}{r_arrow}{ital D}{sup +})=1.87 and {Gamma}{sub {ital L}}({bar {ital B}}{sup 0}{r_arrow}{ital D}{sup {asterisk}}{sup +})/{Gamma}{sub {ital T}}({bar {ital B}}{sup 0}{r_arrow}{ital D}{sup {asterisk}}{sup +})=0.77, respectively. {copyright} {ital 1996 The American Physical Society.}
MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS
Energy Technology Data Exchange (ETDEWEB)
Nash, C.; Hang, T.; Aleman, S.
2011-01-03
Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.
Stydy on the Model of Ion Exchange Kinetics
Institute of Scientific and Technical Information of China (English)
ChenFengrong; JiangZhixin
1994-01-01
In this paper, a macrokinetics model equation describing the characteristics of the solid-liquid mass transfer has been proposed.The qualitative analysis and experimental verification have been done for this mode equation.The model equation can explain the ion exchange process considerably well.
Modeling Of Proton Exchange Membrane Fuel Cell Systems
DEFF Research Database (Denmark)
Nielsen, Mads Pagh
The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...
Exchange Rate Forecasting Using Entropy Optimized Multivariate Wavelet Denoising Model
Directory of Open Access Journals (Sweden)
Kaijian He
2014-01-01
Full Text Available Exchange rate is one of the key variables in the international economics and international trade. Its movement constitutes one of the most important dynamic systems, characterized by nonlinear behaviors. It becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulation and global integration worldwide. Facing the increasingly diversified and more integrated market environment, the forecasting model in the exchange markets needs to address the individual and interdependent heterogeneity. In this paper, we propose the heterogeneous market hypothesis- (HMH- based exchange rate modeling methodology to model the micromarket structure. Then we further propose the entropy optimized wavelet-based forecasting algorithm under the proposed methodology to forecast the exchange rate movement. The multivariate wavelet denoising algorithm is used to separate and extract the underlying data components with distinct features, which are modeled with multivariate time series models of different specifications and parameters. The maximum entropy is introduced to select the best basis and model parameters to construct the most effective forecasting algorithm. Empirical studies in both Chinese and European markets have been conducted to confirm the significant performance improvement when the proposed model is tested against the benchmark models.
Cluster variation studies of the anisotropic exchange interaction model
King, T. C.; Chen, H. H.
The cluster variation method is applied to study critical properties of the Potts-like ferromagnetic anisotropic exchange interaction model. Phase transition temperatures, order parameter discontinuities and latent heats of the model on the triangular and the fcc lattices are determined by the triangle approximation; and those on the square and the sc lattices are determined by the square approximation.
Bizot, Nicolas; Frigerio, Michele; Knecht, Marc; Kneur, Jean-Loïc
2017-04-01
We consider a vectorlike gauge theory of fermions that confines at the multi-TeV scale, and that realizes the Higgs particle as a composite Goldstone boson. The weak interactions are embedded in the unbroken subgroup S p (4 ) of a spontaneously broken S U (4 ) flavor group. The meson resonances appear as poles in the two-point correlators of fermion bilinears, and include the Goldstone bosons plus a massive pseudoscalar η', as well as scalars, vectors and axial vectors. We compute the mass spectrum of these mesons, as well as their decay constants, in the chiral limit, in the approximation where the hypercolor S p (2 N ) dynamics is described by four-fermion operators, à la Nambu-Jona Lasinio. By resumming the leading diagrams in the 1 /N expansion, we find that the spin-one states lie beyond the LHC reach, while spin-zero electroweak-singlet states may be as light as the Goldstone-boson decay constant, f ˜1 TeV . We also confront our results with a set of available spectral sum rules. In order to supply composite top-quark partners, the theory contains additional fermions carrying both hypercolor and ordinary color, with an associated flavor symmetry-breaking pattern S U (6 )/S O (6 ). We identify and analyze several nontrivial features of the complete two-sector gauge theory: the 't Hooft anomaly matching conditions; the higher-dimension operator which incorporates the effects of the hypercolor axial-singlet anomaly; the coupled mass-gap equations; the mixing between the singlet mesons of the two sectors, resulting in an extra Goldstone boson η0, and novel spectral sum rules. Assuming that the strength of the four-fermion interaction is the same in the two sectors, we find that the colored vector and scalar mesons have masses ≳4 f , while the masses of colored pseudo-Goldstone bosons, induced by gluon loops, are ≳1.5 f . We discuss the scaling of the meson masses with the values of N , of the four-fermion couplings, and of a possible fermion mass.
Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon
Institute of Scientific and Technical Information of China (English)
YANG Zhong-Cheng; SUN Zhi-Feng; HE Jun; LIU Xiang; ZHU Shi-Lin
2012-01-01
Using the one-boson-exchange model,we studied the possible existence of very loosely bound hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon.Our numerical results indicate that the ∑c(D)* and ∑c(D) states exist,but that the ∑c(D) and ∑c(D)* molecular states do not.
Different Interaction Models in Strong Decays of Negative Parity N* Resonances Under 2 GeV
Institute of Scientific and Technical Information of China (English)
HE Jun; DONG Yu-Bing
2004-01-01
In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange model including vector and scalar mesons), and OGE (one-gluon-exchange model), we calculate and compare the strong decays of negative parity N* resonances under 2 GeV. We find that the conventional mixing angles are correct, and GBE and OGE are obviously superior to OPE and OPsE.
Phase transitions and relaxation dynamics of Ising models exchanging particles
Goh, Segun; Fortin, Jean-Yves; Choi, M. Y.
2017-01-01
A variety of systems in nature and in society are open and subject to exchanging their constituents with other systems (e.g., environments). For instance, in biological systems, cells collect necessary energy and material by exchange of molecules or ions. Similarly, countries, cities or research institutes evolve as their constituents move in or out. To probe the corresponding particle exchange dynamics in such systems, we consider two Ising models exchanging particles and establish a master equation describing the equilibrium phases as well as the non-equilibrium dynamics of the system. It is found that an additional stable phase emerges as a consequence of the particle exchange process. Furthermore, we formulate the Ginzburg-Landau theory which allows to probe correlation effects. Accordingly, critical slowing down is manifested and the associated dynamic exponent is computed in the linear relaxation regime. In particular, this approach is relevant for investigating the grand canonical description of the system plus environment, with particle exchange and state transitions taken into account explicitly.
Semileptonic decays of the Bc meson
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2009-10-01
We study the semileptonic transitions Bc→ηc,J/Ψ,D,D*,B,B*,Bs,Bs* in the leading order in the framework of a relativistic independent quark model based on a confining potential in the equally mixed scalar-vector harmonic form. We compute relevant weak form factors as overlap integrals of the meson-wave functions obtained in the relativistic independent quark model in the whole accessible kinematical range. We predict that the semileptonic transitions of the Bc meson are mostly dominated by two Cabibbo-Kobayashi-Maskawa (CKM)-favored modes, Bc→Bs(Bs⋆)eν, contributing about 77% of the total decay width, and its decays to vector meson final states take place in the predominantly transverse mode. Our predicted values for the total decay rates, branching ratios, polarization ratios, the forward-backward asymmetry factor, etc., are broadly in agreement with other model predictions.
Decay constants of p and d wave heavy light mesons
Energy Technology Data Exchange (ETDEWEB)
Veseli, Sinisa; Dunietz, Isard
1996-07-01
We investigate decay constants of P- and D-wave heavy-light mesons within the mock-meson approach. Numerical estimates are obtained using the relativistic quark model. We also comment on recent calculations of heavy-light pseudo-scalar and vector decay constants.
Exchange Rate Prediction using Neural – Genetic Model
Directory of Open Access Journals (Sweden)
MECHGOUG Raihane
2012-10-01
Full Text Available Neural network have successfully used for exchange rate forecasting. However, due to a large number of parameters to be estimated empirically, it is not a simple task to select the appropriate neural network architecture for exchange rate forecasting problem.Researchers often overlook the effect of neural network parameters on the performance of neural network forecasting. The performance of neural network is critically dependant on the learning algorithms, thenetwork architecture and the choice of the control parameters. Even when a suitable setting of parameters (weight can be found, the ability of the resulting network to generalize the data not seen during learning may be far from optimal. For these reasons it seemslogical and attractive to apply genetic algorithms. Genetic algorithms may provide a useful tool for automating the design of neural network. The empirical results on foreign exchange rate prediction indicate that the proposed hybrid model exhibits effectively improved accuracy, when is compared with some other time series forecasting models.
Photoproduction of {eta}{sup '} -mesons off the deuteron
Energy Technology Data Exchange (ETDEWEB)
Jaegle, I.; Mertens, T.; Krusche, B. [Univ. Basel, Dept. Physik, Basel (Switzerland); Fix, A. [Tomsk Polytechnic Univ., Lab. of Mathematical Physics, Tomsk (Russian Federation); Huang, F.; Nakayama, K. [Univ. of Georgia, Dept. of Physics and Astronomy, Athens, GA (United States); Tiator, L. [Univ. Mainz, Inst. fuer Kernphysik, Mainz (Germany); Anisovich, A.V.; Bayadilov, D.E.; Nikonov, V.A.; Novinski, D.V.; Sarantsev, A.V. [Helmholtz-Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany); Petersburg Nuclear Physics Inst., Gatchina (Russian Federation); Bacelar, J.C.S.; Castelijns, R.; Loehner, H.; Messchendorp, J.G.; Shende, S.V. [Univ. of Groningen, KVI, Groningen (Netherlands); Bantes, B.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Hillert, W.; Hoeffgen, S.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Menze, D.; Ostrick, M.; Schmieden, H.; Schoch, B.; Suele, A.; Walther, D. [Physikalisches Inst. der Univ. Bonn, Bonn (Germany); Bartholomy, O.; Beck, R.; Funke, C.; Gutz, E.; Junkersfeld, J.; Kalinowsky, H.; Klempt, E.; Lang, M.; Schmidt, C.; Sokhoyan, V.; Szczepanek, T.; Wendel, C. [Helmholtz-Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany); Beloglazov, Y.A.; Gridnev, A.B.; Lopatin, I.V.; Sumachev, V.V. [Petersburg Nuclear Physics Inst., Gatchina (Russian Federation); Crede, V. [Helmholtz-Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany); Florida State Univ., Dept. of Physics, Tallahassee, FL (United States); Gregor, R.; Lugert, S.; Metag, V.; Nanova, M.; Novotny, R.; Pant, L.M.; Pfeiffer, M.; Roy, A.; Schadmand, S.; Trnka, D.; Varma, R. [Univ. Giessen, II. Physikalisches Inst., Giessen (Germany); Kotulla, M. [Univ. Basel, Dept. Physik, Basel (Switzerland); Univ. Giessen, II. Physikalisches Inst., Giessen (Germany); Pee, H. van; Thoma, U. [Helmholtz-Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany); Univ. Giessen, II. Physikalisches Inst., Giessen (Germany)
2011-01-15
Quasi-free photoproduction of {eta}{sup '} -mesons off nucleons bound in the deuteron has been measured with the combined Crystal Barrel - TAPS detector. The experiment was done at a tagged photon beam of the ELSA electron accelerator in Bonn for incident photon energies from the production threshold up to 2.5GeV. The {eta}{sup '} -mesons have been detected in coincidence with recoil protons and recoil neutrons. The quasi-free proton data are in good agreement with the results for free protons, indicating that nuclear effects have no significant impact. The coincidence with recoil neutrons provides the first data for the {gamma}n{yields}n{eta}{sup '} reaction. In addition, also first estimates for coherent {eta}{sup '} -production off the deuteron have been obtained. In agreement with model predictions, the total cross-section for this channel is found to be very small, at most at the level of a few nb. The data are compared to model calculations taking into account contributions from nucleon resonances and t -channel exchanges. (orig.)
Isospin considerations in correlations of pions and B mesons
Dunietz, Isard
1995-01-01
The correlations between a B meson and a pion produced nearby in phase space should respect isospin reflection symmetry I_3 \\to -I_3. Thus, one generally expects similar \\pi^+ B^0 and \\pi^- B^+ correlations (non-exotic channels), and similar \\pi^- B^0 and \\pi^+ B^+ correlations (exotic channels). Exceptions include (a) fragmentation processes involving exchange of quarks with the producing system, (b) misidentification of charged kaons as charged pions, and (c) effects of decay products of the associated \\overline{B}. All of these can affect the apparent signal for correlations of charged B mesons with charged hadrons. The identification of the flavor of neutral B mesons through the decay B^0 \\to K^{*0} J/\\psi requires good particle identification in order that the decay K^{*0} \\to K^+ \\pi^- not be mistaken for \\overline{K}^{*0} \\to K^- \\pi^+, in which case the correlations of neutral B mesons with hadrons can be underestimated.
Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,
2011-01-01
Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c
Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
2015-01-01
). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....
Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles
Vagne, Quentin
2016-01-01
The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on biochemical maturation of the organelle content by specific enzymes. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we show that full maturation of membrane-bound compartments can be seen as the stochastic escape from a steady-state in which export is dominated by vesicular exchange. We show that full maturation can contribute a significant fraction of the total out-flux for small organelles such as endosomes and Golgi cisternae.
Charmed-strange mesons revisited: mass spectra and strong decays
Song, Qin-Tao; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family, in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be valuable task in LHCb, forthcoming BelleII and PANDA.
Modeling and predicting historical volatility in exchange rate markets
Lahmiri, Salim
2017-04-01
Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.
Light Vector Mesons in the Nuclear Medium
Wood, M H; Weygand, D P; Djalali, C; Tur, C; Mosel, U; Mühlich, P; Adams, G; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Casey, L; Chen, S; Cheng, L; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; Dashyan, N; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dickson, R; Dodge, G E; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Feuerbach, R J; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hassall, N; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Jüngst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Khetarpal, P; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Krahn, Z; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Ji, Li; Livingston, K; Lu, H Y; MacCormick, M; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Müller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabati, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S; Stepanyan, S S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Williams, M; Wolin, E; Yegneswaran, A; Zana, L; Zhang, B; Zhang, J; Zhao, B; Zhao, Z W
2008-01-01
The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional...
Modeling of karst aquifer genesis: Influence of exchange flow
Bauer, Sebastian; Liedl, Rudolf; Sauter, Martin
2003-10-01
This paper presents a numerical model study simulating the early karstification of a single conduit embedded in a fissured system. A hybrid continuum-discrete pipe flow model (CAVE) is used for the modeling. The effects of coupling of the two flow systems on type and duration of early karstification are studied for different boundary conditions. Assuming fixed head boundaries at both ends of the conduit, coupling of the two flow systems via exchange flow between the conduit and the fissured system leads to an enhanced evolution of the conduit. This effect is valid over a wide range of initial conduit diameters, and karstification is accelerated by a factor of about 100 as compared to the case of no exchange flow. Parameter studies reveal the influence of the exchange coefficient and of the hydraulic conductivity of the fissured system on the development time for the conduit. In a second scenario the upstream fixed head boundary is switched to a fixed flow boundary at a specified flow rate during the evolution, limiting the amount of water draining toward the evolving conduit. Depending on the flow rate specified, conduit evolution may be slowed down or greatly impaired if exchange flow is considered.
Agent dynamics in kinetic models of wealth exchange
Chatterjee, Arnab
2010-01-01
We study the dynamics of individual agents in some kinetic models of wealth exchange, particularly, the models with savings. For the model with uniform savings, agents perform simple random walks in the `"wealth space". On the other hand, we observe ballistic diffusion in the model with distributed savings. There is an associated skewness in the gain-loss distribution which explains the steady state behavior in such models. We find that in general an agent gains while interacting with an agent with a larger saving propensity.
New hybrid model of proton exchange membrane fuel cell
Institute of Scientific and Technical Information of China (English)
WANG Rui-min; CAO Guang-yi; ZHU Xin-jian
2007-01-01
Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.
Inequality measures in kinetic exchange models of wealth distributions
Ghosh, Asim; Chatterjee, Arnab; Inoue, Jun-ichi; Chakrabarti, Bikas K.
2016-06-01
In this paper, we study the inequality indices for some models of wealth exchange. We calculated Gini index and newly introduced k-index and compare the results with reported empirical data available for different countries. We have found lower and upper bounds for the indices and discuss the efficiencies of the models. Some exact analytical calculations are given for a few cases. We also exactly compute the quantities for Gamma and double Gamma distributions.
Inequality measures in kinetic exchange models of wealth distributions
Ghosh, Asim; Inoue, Jun-ichi; Chakrabarti, Bikas K
2015-01-01
In this paper, we study the inequality indices for some models of wealth exchange. We calculated Gini index and newly introduced k-index and compare the results with reported empirical data available for different countries. We have found lower and upper bounds for the indices and discuss the efficiencies of the models. Some exact analytical calculations are given for a few cases. We also exactly compute the quantities for Gamma and double Gamma distributions.
TESTING MONETARY EXCHANGE RATE MODELS WITH PANEL COINTEGRATION TESTS
Directory of Open Access Journals (Sweden)
Szabo Andrea
2015-07-01
Full Text Available The monetary exchange rate models explain the long run behaviour of the nominal exchange rate. Their central assertion is that there is a long run equilibrium relationship between the nominal exchange rate and monetary macro-fundamentals. Although these models are essential tools of international macroeconomics, their empirical validity is ambiguous. Previously, time series testing was prevalent in the literature, but it did not bring convincing results. The power of the unit root and the cointegration tests are too low to reject the null hypothesis of no cointegration between the variables. This power can be enhanced by arranging our data in a panel data set, which allows us to analyse several time series simultaneously and enables us to increase the number of observations. We conducted a weak empirical test of the monetary exchange rate models by testing the existence of cointegration between the variables in three panels. We investigated 6, 10 and 15 OECD countries during the following periods: 1976Q1-2011Q4, 1985Q1-2011Q4 and 1996Q1-2011Q4. We tested the reduced form of the monetary exchange rate models in three specifications; we have two restricted models and an unrestricted model. Since cointegration can only be interpreted among non-stationary processes, we investigate the order of the integration of our variables with IPS, Fisher-ADF, Fisher-PP panel unit root tests and the Hadri panel stationary test. All the variables can be unit root processes; therefore we analyze the cointegration with the Pedroni and Kao panel cointegration test. The restricted models performed better than the unrestricted one and we obtained the best results with the 1985Q1-2011Q4 panel. The Kao test rejects the null hypotheses – there is no cointegration between the variables – in all the specifications and all the panels, but the Pedroni test does not show such a positive picture. Hence we found only moderate support for the monetary exchange rate models.
Hadronic matrix elements of neutral-meson mixing through lattice QCD
Chang, C C
2015-01-01
Neutral-meson mixing is loop suppressed in the Standard Model, leading to the possibility of enhanced sensitivity to new physics. The uncertainty in Standard Model predictions for $B$-meson oscillation frequencies is dominated by theoretical uncertainties within the short-distance $B$-meson hadronic matrix elements, motivating the need for improved precision. In $D$-meson mixing, the Standard Model short-distance contributions are further suppressed by the GIM mechanism allowing for the possibility of large new physics enhancements. A first-principle determination of the $D$-meson short-distance hadronic matrix elements will allow for model-discrimination between the new physics theories. I review recently published and ongoing lattice calculations of hadronic matrix elements in $B$ and $D$-meson mixing with emphasis on the Fermilab lattice and MILC collaboration effort on the determination of the $B$ and $D$-meson mixing hadronic matrix elements using the methods of lattice QCD.
Magnetic properties of ground-state mesons
Energy Technology Data Exchange (ETDEWEB)
Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)
2016-04-15
Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)
Magnetic properties of ground-state mesons
Simonis, Vytautas
2016-01-01
Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.
Holographic decays of large-spin mesons
Peeters, K; Zamaklar, M; Peeters, Kasper; Sonnenschein, Jacob; Zamaklar, Marija
2006-01-01
We study the decay process of large-spin mesons in the context of the gauge/string duality, using generic properties of confining backgrounds and systems with flavour branes. In the string picture, meson decay corresponds to the quantum-mechanical process in which a string rotating on the IR "wall" fluctuates, touches a flavour brane and splits into two smaller strings. This process automatically encodes flavour conservation as well as the Zweig rule. We show that the decay width computed in the string picture is in remarkable agreement with the decay width obtained using the phenomenological Lund model.
Mass shift of -meson in nuclear matter
Indian Academy of Sciences (India)
J R Morones-Ibarra; Mónica Menchaca Maciel; Ayax Santos-Guevara; Felipe Robledo Padilla
2013-03-01
The propagation of -meson in nuclear matter is studied in the Walecka model, by assuming that the sigma couples to a pair of nucleon–antinucleon states and to particle–hole states. The in-medium effect of - mixing is also studied. For completeness, the coupling of sigma to two virtual pions was also considered. It is found that the -meson mass decreases with respect to its value in vacuum and that the contribution of the - mixing effect on the mass shift is relatively small.
Strong and Electromagnetic Transitions in Heavy Flavor Mesons
Lähde, T A
2003-01-01
The electromagnetic and pionic transitions in mesons with heavy flavor quarks are calculated within the framework of the covariant Blankenbecler-Sugar equation. The M1 transitions in the charmonium system are shown to be sensitive to the relativistic aspect of the spin-flip magnetic moment operator, and the Lorentz structure of the Q\\bar Q interaction. The observed rate for the M1 transition J/psi -> eta_c gamma is shown to provide strong evidence for a scalar confining interaction. The single pion and dipion widths are calculated for the heavy-light D mesons, by employment of the pseudovector pion-quark coupling suggested by chiral perturbation theory. The pionic transitions D* -> D pi are shown to provide constraining information on the pion-quark axial coupling g_A^q. It is also shown that axial exchange charge contributions associated with the Q\\bar q interaction suppress the axial charge amplitude for pion emission by an order of magnitude. The models for pi and M1 transitions also make it possible to es...
Categorization of exchange fluxes explains the four relational models
Favre, Maroussia
2013-01-01
The theory of Relational Models (RMs) posits four elementary models of relationships governing all human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. By considering two agents that can act in one out of three ways towards one another: give resource A, give resource B, or give nothing, we find four discrete categories of exchange fluxes that map unequivocally to the four RMs. This categorization shows that the RMs form an exhaustive set of all possible elementary exchanges. Hence, the fluxes categorization answers why there are just four RMs and explains their discreteness. By considering the costs associated with extracting resources, storing them and implementing each flux category, we are able to propose conditions under which each RM should evolve. We also logically deduce the singular nature of the Authority Ranking model. Our propositions are compatible with anthropological, ethnological and historical observations and can be tested a...
ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES
Directory of Open Access Journals (Sweden)
Josip Arnerić
2010-12-01
Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.
Wealth concentration in a biased asset-exchange model
Devitt-Lee, Adrian
Economic inequality is a significant and dynamic problem throughout the world. Asset-exchange models have been used to model macroeconomic systems based on microeconomic assumptions about how agents exchange wealth in an economy. Previous studies of a certain asset-exchange model, called the Yard-Sale model, have found that trade alone promotes the condensation of wealth to a single individual in an economy [Chakraborti, 2002, Moukarzel et al., 2007, Boghosian, 2014b]. A later study found that a slight modification of the Yard-Sale model seems to allow for the coexistence of both "condensed wealth" and a normal population in an economy [Boghosian et al., 2016a]. This work formalizes the notion of wealth condensation in a macroeconomic system. This can be done by extending Schwartz's theory of distributions to allow for objects which increase at most linearly at infinity, or by considering condensed wealth to be a nonstandard phenomenon, and describing it as such. Numerical simulations indicate that this continuous description of wealth concentration is a valid approximation of wealth concentration in discrete systems with as few as 256 agents. We then study the properties of the steady-state distribution of wealth in such a system, and mention the fit of our system to the distribution of wealth in the United States in 2016.
Closed Loop Brain Model of Neocortical Information Based Exchange
Directory of Open Access Journals (Sweden)
James eKozloski
2016-01-01
Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.
A Covariant OBE Model for $\\eta$ Production in NN Collisions
Gedalin, E; Razdolskaya, L A
1998-01-01
A relativistic covariant one boson exchange model, previously applied to describe elastic nucleon-nucleon scattering, is extended to study $\\eta$ production in NN collisions. The transition amplitude for the elementary BN->$\\eta$N process with B being the meson exchanged (B=$\\pi$, $|sigma$,$\\eta$, corresponding to s and u-channels with a nucleon or a nucleon isobar N*(1535MeV) in the intermediate states. Taking the relative phases of the various exchange amplitudes to be +1, the model reproduces the cross sections for the $NN\\to X\\eta$ reactions in a consistent manner. In the limit where all overall contributions from the exchange of pseudoscalart and scalar mesons with that of vector mesons cancel out. Consequently, much of the ambiguities in the model predictions due to unknown relative phases of different vector pseudoscalar exchanges are strongly reduced.
Modeling Of Proton Exchange Membrane Fuel Cell Systems
DEFF Research Database (Denmark)
Nielsen, Mads Pagh
The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...
Treating Coulomb exchange contributions in relativistic mean field calculations: why and how
Van Giai, Nguyen; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie
2014-01-01
The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow 'mock up' the effects of meson-induced exchange terms by adjusting the meson-nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this note, we show that the Coulomb exchange effects can be easily included with a good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation.
Scalar f sub 0 (980) and sigma(500) meson exchange in phi decays into pi sup 0 pi sup 0 gamma
Bramon, A; Lucio, M J L; Napsuciale, M; Pancheri, G
2002-01-01
The complementarity between chiral perturbation theory and the linear sigma model is exploited to study pi sup 0 pi sup 0 production in phi radiative decays, where the effects of the f sub 0 (980) scalar resonance, and those of its more controversial sigma(500) partner, should become manifest via the phi->K sup + K sup - (gamma)-> pi sup 0 pi sup 0 gamma decay chain. The recently reported data on phi-> pi sup 0 pi sup 0 gamma coming from the VEPP-2M e sup + e sup - collider in Novosibirsk and the DA PHI NE phi-factory in Frascati can be reasonably described in our approach, which we propose as a promising first step towards more detailed analyses. The f sub 0 (980) contribution, which appears as a moderately narrow peak at the high part of the dipion mass spectrum, can be interpreted as the isoscalar member of the scalar nonet with a large f sub 0 K anti K coupling and an f sub 0 pi pi coupling suppressed by almost ideal sigma-f sub 0 mixing. Indeed, the mixing angle in the flavor basis is found to be phi sub...
Diffractive production of mesons
Schicker, R
2014-01-01
The interest in the study of diffractive meson production is discussed. The description of diffraction within Regge phenomenology is presented, and the QCD-based understanding of diffractive processes is given. Central production is reviewed, and the corresponding main results from the COMPASS experiment and from the experiments at the ISR, RHIC, TEVATRON and LHC collider are summarised.
Energy Technology Data Exchange (ETDEWEB)
Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards
2003-07-22
We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.
Diffractive production of mesons
Directory of Open Access Journals (Sweden)
Schicker Rainer
2014-01-01
Full Text Available The interest in the study of diffractive meson production is discussed. The description of diffraction within Regge phenomenology is presented, and the QCD-based understanding of diffractive processes is given. Central production is reviewed, and the corresponding main results from the COMPASS experiment and from the experiments at the ISR, RHIC, TEVATRON and LHC collider are summarised.
Nicotri, Stefano
2009-01-01
A holographic description of scalar mesons is presented, in which two- and three-point functions are holographically reconstructed. Mass spectrum, decay constants, eigenfunctions and the coupling of the scalar states with two pseu- doscalars are found. A comparison of the results with current phenomenology is discussed.
Page, Philip R.
1998-01-01
We report on some interesting recent theoretical and experimental advances on J^PC exotics and hybrid mesons. These are the decay selection rules governing J^PC exotic decay, the experimental evidence for a J^PC = 1^-+ exotic in eta pi and rho pi, and the production of charmonium hybrids at forthcoming B-factories.
Performance analysis of a medical record exchanges model.
Huang, Ean-Wen; Liou, Der-Ming
2007-03-01
Electronic medical record exchange among hospitals can provide more information for physician diagnosis and reduce costs from duplicate examinations. In this paper, we proposed and implemented a medical record exchange model. According to our study, exchange interface servers (EISs) are designed for hospitals to manage the information communication through the intra and interhospital networks linked with a medical records database. An index service center can be given responsibility for managing the EIS and publishing the addresses and public keys. The prototype system has been implemented to generate, parse, and transfer the health level seven query messages. Moreover, the system can encrypt and decrypt a message using the public-key encryption algorithm. The queuing theory is applied to evaluate the performance of our proposed model. We estimated the service time for each queue of the CPU, database, and network, and measured the response time and possible bottlenecks of the model. The capacity of the model is estimated to process the medical records of about 4000 patients/h in the 1-MB network backbone environments, which comprises about the 4% of the total outpatients in Taiwan.
Electromagnetic Form Factor of Charged Scalar Meson
Institute of Scientific and Technical Information of China (English)
LI Heng-Mei; CHEN Ning; WANG Zhi-Gang; WAN Shao-Long
2007-01-01
Wavefunctions and the electromagnetic form factor of charged scalar mesons are studied with the vector-vectortype flat-bottom potential model under the framework of the spinor spinor Bethe Salpeter equation. The obtained results are in agreement with other theories.
New physics effects from meson decays
Indian Academy of Sciences (India)
Anirban Kundu
2000-07-01
In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from -meson decays, taking -parity conserving and violating supersymmetry as illustrative examples. An expanded version is available on hep-ph archive.
On the Origin of the $XYZ$ Mesons
Valcarce, A
2016-01-01
In this talk we present a mechanism giving rise to exotic $XYZ$ four-quark states in the meson spectra within a constituent quark model approach. We discuss its generalization to five-quark states in the heavy baryon sector. Finally, we revise some other works in the literature and experimental data where this mechanism may be working.
Charmonium meson and hybrid radiative transitions
Energy Technology Data Exchange (ETDEWEB)
Guo, Peng [Indiana U., JLAB; Yépez-Martínez, Tochtli [Indiana U.; Szczepaniak, Adam P. [Indiana U., JLAB
2014-06-01
We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.
Strong Decays of Hybrid Mesons from the Heavy Quark Expansion of QCD
Page, P R
1998-01-01
We calculate the strong decays of hybrid mesons to conventional mesons for all the lowest lying J^PC hybrids of flavour uu, dd, ss, cc and bb. A decay operator developed from the heavy quark expansion of quantum chromodynamics is employed. We show that the selection rule that hybrid mesons do not decay to identical S-wave mesons, found in other models, is preserved. We predict decays of charmonium hybrids, discuss decays of J^PC=1^-+ exotic isovector hybrids of various masses, and interpret the \\pi(1800) as a hybrid meson.
Generalized Bogoliubov Polariton Model: An Application to Stock Exchange Market
Thuy Anh, Chu; Anh, Truong Thi Ngoc; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-06-01
A generalized Bogoliubov method for investigation non-simple and complex systems was developed. We take two branch polariton Hamiltonian model in second quantization representation and replace the energies of quasi-particles by two distribution functions of research objects. Application to stock exchange market was taken as an example, where the changing the form of return distribution functions from Boltzmann-like to Gaussian-like was studied.
Exchange bias of patterned systems: Model and numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Garcia, Griselda [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Kiwi, Miguel, E-mail: mkiwi@puc.c [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Mejia-Lopez, Jose; Ramirez, Ricardo [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile)
2010-11-15
The magnitude of the exchange bias field of patterned systems exhibits a notable increase in relation to the usual bilayer systems, where a continuous ferromagnetic film is deposited on an antiferromagnet insulator. Here we develop a model, and implement a Monte Carlo calculation, to interpret the experimental observations which is consistent with experimental results, on the basis of assuming a small fraction of spins pinned ferromagnetically in the antiferromagnetic interface layer.
SU(4) flavor symmetry breaking in D-meson couplings to light hadrons
Energy Technology Data Exchange (ETDEWEB)
Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-05-15
The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)
Kinetic Modeling of Incremental Ambulatory Peritoneal Dialysis Exchanges.
Guest, Steven; Leypoldt, John K; Cassin, Michelle; Schreiber, Martin
2017-01-01
♦ BACKGROUND: Incremental peritoneal dialysis (PD), the gradual introduction of dialysate exchanges at less than full-dose therapy, has been infrequently described in clinical reports. One concern with less than full-dose dialysis is whether urea clearance targets are achievable with an incremental regimen. In this report, we used a large database of PD patients, across all membrane transport types, and performed urea kinetic modeling determinations of possible incremental regimens for an individual membrane type. ♦ METHODS: Using a modified 3-pore model of peritoneal transport, various incremental manual continuous ambulatory PD (CAPD) exchanges employing glucose and/or icodextrin were evaluated. Peritoneal urea clearances from those simulations were added to residual kidney urea clearance for patients with various glomerular filtration rates (GFRs), and the total weekly urea clearance was then compared to the total weekly urea Kt/V target of 1.7. All 4 peritoneal membrane types were modeled. For each simulated prescription, net ultrafiltration and carbohydrate absorption were also calculated. ♦ RESULTS: Incremental CAPD regimens of 2 exchanges a day met adequacy targets if the GFR was 6 mL/min/1.73 m(2) in all membrane types. For regimens employing 3 exchanges a day, Kt/V targets were achieved at GFR levels of 4 to 5 mL/min/1.73 m(2) in high transporters to low transporters but higher tonicity 2.5% glucose solutions or icodextrin were required in some regimens. ♦ CONCLUSIONS: This work demonstrates that with incremental CAPD regimens, urea kinetic targets are achievable in most new starts to PD with residual kidney function. Incremental PD may be a less intrusive, better accepted initial treatment regime and a cost-effective way to initiate chronic dialysis in the incident patient. The key role of intrinsic kidney function in incremental regimens is highlighted in this analysis and would warrant conscientious monitoring. Copyright © 2017 International
Energy Technology Data Exchange (ETDEWEB)
Guidal, M
1997-01-01
In this work a model is proposed to simulate the photoproduction of pseudoscalar mesons ('PI' and K) on the nucleon at high energy. This model is based on the exchange of mesonic or baryonic Regge trajectories, it is gauge invariant and it uses a Feynman diagram formalism inspired from isobaric models. The measurements concerning the following reactions {gamma}p {yields} n{pi}{sup +}, {gamma}n {yields} p{pi}{sup -}, {gamma}p {yields} p{pi}{sup 0} and {gamma}n {yields} n{pi}{sup 0} are reviewed and the new model is confronted to the experimental results. The model gives a reasonable and coherent description of these 4 reactions. The model has also been applied to the photoproduction of strange mesons and of {lambda} and {sigma} baryons and has been extrapolated at low energy to the threshold of the reaction, the model matches the results even up to E{sub {gamma}} = 2 GeV for differential cross-sections and recoil polarization. An attempt has been made to associate a Regge based description, which is valid with low transfers, with perturbative quantum chromodynamics which is valid with high transfers. The model relies on the saturation of trajectories in the high transfer region and on the counting laws that give the right variation of the cross-section. It seems that a model based on linear trajectories can be reliable up to 4 GeV. The domain of high transfer has been too little investigated to provide enough experimental data to validate the model. An experiment whose purpose is to study the photoproduction of {phi} at high transfer, is proposed. This experiment requires an accelerator with high useful cycle because of the smallness of the expected cross-section. The CEBAF (continuous electron beam accelerator facility) as well as the CLAS 4{pi} detector is presented. The study of {gamma}p {yields} p{phi} and {gamma}p {yields} K{lambda}{sup *} (1520) requires the discrimination of kaons from pions so the measurement of 180 ps as time resolution allows the
Wealth distribution of simple exchange models coupled with extremal dynamics
Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.
2015-01-01
Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.
Multilinear Model of Heat Exchanger with Hammerstein Structure
Directory of Open Access Journals (Sweden)
Dragan Pršić
2016-01-01
Full Text Available The multilinear model control design approach is based on the approximation of the nonlinear model of the system by a set of linear models. The paper presents the method of creation of a bank of linear models of the two-pass shell and tube heat exchanger. The nonlinear model is assumed to have a Hammerstein structure. The set of linear models is formed by decomposition of the nonlinear steady-state characteristic by using the modified Included Angle Dividing method. Two modifications of this method are proposed. The first one refers to the addition to the algorithm for decomposition, which reduces the number of linear segments. The second one refers to determination of the threshold value. The dependence between decomposition of the nonlinear characteristic and the linear dynamics of the closed-loop system is established. The decoupling process is more formal and it can be easily implemented by using software tools. Due to its simplicity, the method is particularly suitable in complex systems, such as heat exchanger networks.
Light Meson Distribution Amplitudes
Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. t' [Institute for Theoretical Physics, Utrecht University, and Spinoza Institute, Postbus 8000, 3508 TA Utrecht (Netherlands); Isidori, G. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Laboratori Nazionali di Frascati, Via E.Fermi 40, 00044 Frascati (Italy); Maiani, L. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy); INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy); Polosa, A.D. [INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy)], E-mail: antonio.polosa@cern.ch; Riquer, V. [INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy)
2008-05-08
We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges.
A continuum model for metabolic gas exchange in pear fruit.
Directory of Open Access Journals (Sweden)
Q Tri Ho
2008-03-01
Full Text Available Exchange of O(2 and CO(2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O(2 and increased CO(2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O(2 and CO(2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.
Albrecht, H.; Binder, U.; Böckmann, P.; Gläser, R.; Harder, G.; Lembke-Koppitz, I.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Wurth, R.; Yagil, A.; Donker, J. P.; Drescher, A.; Kamp, D.; Matthiesen, U.; Scheck, H.; Spaan, B.; Spengler, J.; Wegener, D.; Gabriel, J. C.; Schubert, K. R.; Stiewe, J.; Strahl, K.; Waldi, R.; Weseler, S.; Edwards, K. W.; Frisken, W. R.; Gilkinson, D. J.; Gingrich, D. M.; Kapitza, H.; Kim, P. C. H.; Kutschke, R.; Macfarlane, D. B.; McKenna, J. A.; McLean, K. W.; Nilsson, A. W.; Orr, R. S.; Padley, P.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seywerd, H. C. J.; Swain, J. D.; Tsipolitis, G.; Yoon, T.-S.; Yun, J. C.; Ammar, R.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Boštjančič, B.; Kernel, G.; Pleško, M.; Jönsson, L.; Babaev, A.; Danilov, M.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Matveev, V.; Nagovitsin, V.; Ryltsov, V.; Semenov, A.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitzev, Yu.; Childers, R.; Darden, C. W.; Oku, Y.; Gennow, H.; Argus Collaboration
1987-02-01
B mesons have been reconstructed in five decay channels of the type B→D ∗±nπ(n=1,2,3) using data accumulated by the ARGUS experiment at the e +e - storage ring DORIS II at DESY. In total, we find 40 neutral B mesons above a background of 15±6 events with a mass of (5278.2±1.0±3.0) MeV/ c2 and 32 charged B mesons above a background of 17±6 events with a mass of (5275.8±1.3±3.0) MeV/ c2. The decays overlineB0D∗+π -π 0, overlineB0D∗+π -π -π +, and B-→ D∗+π -π -π 0 have been observed for the first time. We find substantially smaller branching ratios for the decay modes overlineB0→ D∗+π - and B-→ D∗+π -π - than previously published by the CLEO collaboration.
Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.
Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth
2015-01-01
This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.
Hyperons in the bound state approach with vector mesons
Schat, C L
1994-01-01
We investigate a model for hyperons based on the bound state approach in which vector mesons are explicitly incorporated. We show that for empirical values of the mesonic parameters the strange hyperon spectrum is well reproduced. We also discuss the extension of the model to heavier flavors. We show that the explicit presence of the heavy vectors leads to good predictions for the heavy baryon masses.
Clinical exchange: one model to achieve culturally sensitive care.
Scholes, J; Moore, D
2000-03-01
This paper reports on a clinical exchange programme that formed part of a pre-registration European nursing degree run by three collaborating institutions in England, Holland and Spain. The course included: common and shared learning including two summer schools; and the development of a second language before the students went on a three-month clinical placement in one of the other base institutions' clinical environments. The aim of the course was to enable students to become culturally sensitive carers. This was achieved by developing a programme based on transcultural nursing principles in theory and practice. Data were gathered by interview, focus groups, and questionnaires from 79 exchange students, fostering the strategies of illuminative evaluation. The paper examines: how the aims of the course were met; the factors that inhibited the attainment of certain goals; and how the acquisition of a second language influenced the students' learning about nursing. A model is presented to illustrate the process of transformative learning from the exchange experience.
Spectroscopy of mesonic molecules with heavy-light flavour mesons
Rathaud, D P
2016-01-01
In this work, we have calculated the mass spectra and decay properties of dimesonic (meson-antimeson) bound state in the variational scheme. The intermesonic interaction considered as the Hellmann potential and One Pion Exchange potential. The mass spectra of the $D\\bar{D^{*}}$, $D\\bar{D_{s}^{*}}$, $D_{s}\\bar{D^{*}}$, $D_{s}\\bar{D_{s}^{*}}$, $D^{*}\\bar{D^{*}}$, $D_{s}^{*}\\bar{D_{s}^{*}}$, $D\\bar{B^{*}}$, $D\\bar{B_{s}^{*}}$, $D_{s}\\bar{B^{*}}$, $D_{s}\\bar{B_{s}^{*}}$, $B^{*}\\bar{D}$,$B^{*}\\bar{D_{s}}$, $B\\bar{B^{*}}$, $B_{s}\\bar{B^{*}}$, $B_{c}\\bar{B^{*}}$, $B^{*}\\bar{B^{*}}$, $B^{*}\\bar{B_{s}^{*}}$, $B_{s}^{*}\\bar{B_{s}^{*}}$ etc.. are calculated. The states X(3872), $X_{2c}(4013)$ ,$Z_{b}(10610)/X_{b}$ and $Z_{b}(10650)/X_{b2}$ are compared with $D\\bar{D^{*}}$, $D^{*}\\bar{D^{*}}$, $B\\bar{B^{*}}$ and $B^{*}\\bar{B^{*}}$ dimesonic bound states. To probe the molecular structure of the compared states, we have calculated the decay properties sensitive to their long and short distance structure of hadorinc molecul...
Modeling Inflation Using a Non-Equilibrium Equation of Exchange
Chamberlain, Robert G.
2013-01-01
Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project
MODELLING THE WORLD EXCHANGE RATES:DYNAMICS, VOLATILITY AND FORECASTING
Nwaobi, Godwin
2008-01-01
Indeed, the specification of equilibrium in the world economy depends on the exchange rate regime and thus, the early contributions to the postwar literature on exchange rate economics are to a large extent concerened with the role of speculation in foreign exchange markets. However, the world has known several exchange rate systems beginning with the fixed-gold standard, the adjustable-peg system, adjustable-parity system and the flexible exchange rate system. Yet, in 1997, when foreign exch...
Rare B Meson Decays With Omega Mesons
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei; /Colorado U.
2006-04-24
Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.
MesonNet Workshop on Meson Transition Form Factors
Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S
2012-01-01
The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.
Molecular components in P -wave charmed-strange mesons
Ortega, Pablo G.; Segovia, Jorge; Entem, David R.; Fernández, Francisco
2016-10-01
Results obtained by various experiments show that the Ds0 *(2317 ) and Ds 1(2460 ) mesons are very narrow states located below the D K and D*K thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the c s ¯ ground states with quantum numbers JP=0+ [Ds0 *(2317 )] and JP=1+ [Ds 1(2460 )] due to their coupling with S -wave D(*)K thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables, and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a 3P0 model in which its only free parameter γ has been elucidated, performing a global fit to the decay widths of mesons that belong to different quark sectors, from light to heavy. We observe that the coupling of the 0+ (1+) meson sector to the D K (D*K ) threshold is the key feature to simultaneously lower the masses of the corresponding Ds0 *(2317 ) and Ds 1(2460 ) states predicted by the naive quark model and describe the Ds 1(2536 ) meson as the 1+ state of the jqP=3 /2+ doublet predicted by heavy quark symmetry, reproducing its strong decay properties. Our calculation allows us to introduce the coupling with the D -wave D*K channel and the computation of the probabilities associated with the different Fock components of the physical state.
Common Data Model for Neuroscience Data and Data Model Exchange
Gardner, Daniel; Kevin H. Knuth; Abato, Michael; Erde, Steven M.; White, Thomas; DeBellis, Robert; Gardner, Esther P
2001-01-01
Objective: Generalizing the data models underlying two prototype neurophysiology databases, the authors describe and propose the Common Data Model (CDM) as a framework for federating a broad spectrum of disparate neuroscience information resources.
Modeling Multi-commodity Trade Information Exchange Methods
Traczyk, Tomasz
2012-01-01
Market mechanisms are entering into new fields of economy, in which some constraints of physical world, e.g. Kirchoffs Law in power grid, must be taken into account during trading. On such markets, some of commodities, like telecommunication bandwidth or electrical energy, appear to be non-storable, and must be exchanged in real-time. On the other hand, the markets tend to react at shortest possible time, so an idea to delegate some competency to autonomous software agents is very attractive. Multi-commodity mechanism addresses the aforementioned requirements. Modeling the relationships between the commodities allows to formulate new, more sophisticated models and mechanisms, which reflect decision situations in a better manner. Application of multi-commodity approach requires solving several issues related to data modeling, communication, semantics aspects of communication, reliability, etc. This book answers some of the questions and points out promising paths for implementation and development. Presented s...
$\\rho$ - meson spectral function in hot nuclear matter
Bhageerathi, P C Raje
2010-01-01
We study the $\\rho$-meson spectral function in hot nuclear matter by taking into account the isospin-symmetric pion and the nucleon loops within the quantum hadrodynamics (QHD) model as well as using an effective chiral SU(3) model. The spectral function of the $\\rho$ meson is studied in the mean field approximation (MFA) as well as in the relativistic Hartree (RHA) approximation. The inclusion of the nucleon loop considerably changes the $\\rho$-meson spectral function. Due to a larger mass drop of $ \\rho $ meson in the RHA, it is seen that the spectral function shifts towards the low invariant mass region, whereas in the MFA the spectral function is seen to be slightly shifted towards the high mass region. Moreover, while the spectral function is observed to be sharper with the nucleon-antinucleon polarization in RHA, the spectral function is seen to be broader in the MFA.
Chiral symmetry and scalar meson in hadron and nuclear physics
Kunihiro, T
1995-01-01
After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.
Modelling world gold prices and USD foreign exchange relationship using multivariate GARCH model
Ping, Pung Yean; Ahmad, Maizah Hura Binti
2014-12-01
World gold price is a popular investment commodity. The series have often been modeled using univariate models. The objective of this paper is to show that there is a co-movement between gold price and USD foreign exchange rate. Using the effect of the USD foreign exchange rate on the gold price, a model that can be used to forecast future gold prices is developed. For this purpose, the current paper proposes a multivariate GARCH (Bivariate GARCH) model. Using daily prices of both series from 01.01.2000 to 05.05.2014, a causal relation between the two series understudied are found and a bivariate GARCH model is produced.
Heavy meson fragmentation at LHC
Directory of Open Access Journals (Sweden)
M. A. Gomshi Nobary
2003-06-01
Full Text Available Large Hadron Collider (LHC at CERN will provide excellent opportunity to study the production and decay of heavy mesons and baryons with high statistics. We aim at the heavy mesons in this work and calculate their fragmentation functions consistent with this machine and present their total fragmentation probabilities and average fragmentation parameters.
Decay Constants of Vector Mesons
Institute of Scientific and Technical Information of China (English)
LI Heng-Mei; WAN Shao-Long
2008-01-01
@@ The light vector mesons are studied within the framework of the Bethe-Salpeter equation with the vector-vectortype flat-bottom potential The Bethe-Salpeter wavefunctions and the decay constants of the vector mesons are obtained. All the obtained results, fρ, fφ, and fΚ* , are in agreement with the experimental values, respectively.
The light meson spectroscopy program
Directory of Open Access Journals (Sweden)
Smith Elton S.
2014-06-01
Full Text Available Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.
The light meson spectroscopy program
Energy Technology Data Exchange (ETDEWEB)
Smith, Elton S. [JLAB
2014-06-01
Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.
Meson Resonances from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.
Meson resonances on the lattice
Energy Technology Data Exchange (ETDEWEB)
Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems
Hybrid Exotic Meson Decay Width
Cook, M S
2005-01-01
We present results of a decay width calculation for a hybrid exotic meson(h, JPC=1-+) in the decay channel h to pi+a1. This calculation uses quenched lattice QCD and Luescher's finite box method. Operators for the h and pi+a1 states are used in a correlation matrix which was expanded by varying the smearing and fuzzing levels at source and sink points. Scattering phase shifts for a discrete set of relative pi+a1 momenta are determined using eigenvalues of the correlation matrix and formulae derived by Luescher. The phase shift data is very sparse, but fits to a Breit-Wigner model are made, resulting in a decay width of about 80 MeV.
The width of the omega meson in the nuclear medium
Ramos, A; Molina, R; Oset, E
2013-01-01
We evaluate the width of the \\omega\\ meson in nuclear matter. We consider the free decay mode of the \\omega\\ into three pions, which is dominated by \\rho\\pi\\ decay, and replace the \\rho\\ and \\pi\\ propagators by their medium modified ones. We also take into account the quasielastic and inelastic processes induced by a vector-baryon interaction dominated by vector meson exchange, as well as the contributions coming from the \\omega\\ \\to K \\bar K mechanism with medium modified K, \\bar K meson propagators. We obtain a substantial increase of the \\omega\\ width in the medium, reaching a value of 114 \\pm 10 MeV at normal nuclear matter density, which comes mainly from \\omega N \\to \\pi \\pi N, \\omega NN \\to \\pi NN processes associated to the dominant \\omega\\ \\to \\rho\\pi\\ decay mode.
Elliptic flow of ϕ mesons at intermediate pT: Influence of mass versus quark number
Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis
2017-02-01
We have studied elliptic flow (v2) of ϕ mesons in the framework of a multiphase transport (AMPT) model at CERN Large Hadron Collider (LHC) energy. In the realms of AMPT model we observe that ϕ mesons at intermediate transverse momentum (pT) deviate from the previously observed [at the BNL Relativistic Heavy Ion Collider (RHIC)] particle type grouping of v2 according to the number of quark content, i.e, baryons and mesons. Recent results from the ALICE Collaboration have shown that ϕ meson and proton v2 has a similar trend, possibly indicating that particle type grouping might be due to the mass of the particles and not the quark content. A stronger radial boost at LHC compared to RHIC seems to offer a consistent explanation to such observation. However, recalling that ϕ mesons decouple from the hadronic medium before additional radial flow is built up in the hadronic phase, a similar pattern in ϕ meson and proton v2 may not be due to radial flow alone. Our study reveals that models incorporating ϕ -meson production from K K ¯ fusion in the hadronic rescattering phase also predict a comparable magnitude of ϕ meson and proton v2 particularly in the intermediate region of pT. Whereas, v2 of ϕ mesons created in the partonic phase is in agreement with quark-coalescence motivated baryon-meson grouping of hadron v2. This observation seems to provide a plausible alternative interpretation for the apparent mass-like behavior of ϕ -meson v2. We have also observed a violation of hydrodynamical mass ordering between proton and ϕ meson v2 further supporting that ϕ mesons are negligibly affected by the collective radial flow in the hadronic phase due to the small in-medium hadronic interaction cross sections.
Isoscalar-isovector mass splittings in excited mesons
Geiger, P
1994-01-01
Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.
Comparison of moving boundary and finite-volume heat exchanger models in the modelica language
Adriano Desideri; Bertrand Dechesne; Jorrit Wronski; Martijn van den Broek; Sergei Gusev; Vincent Lemort; Sylvain Quoilin
2016-01-01
When modeling low capacity energy systems, such as a small size (5–150 kWel) organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, th...
QCD string in excited heavy-light mesons and heavy-quark hybrids
Kalashnikova, Yu S
2016-01-01
The QCD string model is employed to evaluate the masses of orbitally and radially excited heavy-light mesons and lightest hybrids in the spectrum of charmonium and bottomonium. The number of parameters of the model is reduced to only seven which are the string tension, the two values of the strong coupling constant (one for heavy-light and $\\bar{c}c$ mesons and one for $\\bar{b}b$ mesons), and the four overall spectrum shift constants which depend on the quark contents of the particular meson or hybrid family. A few well-established states in the spectrum of heavy-light and heavy-heavy mesons are used to fix these parameters, and then the masses of other mesons and hybrids come out as predictions of the model which are confronted with the existing experimental data, and a few suggestions are made concerning yet not measured quantum numbers of some states in the spectrum of charmonium and bottomonium.
Palazzi, Paolo
2007-01-01
The neglected 35 MeV/c2 particle mass quantization hypothesis has recently been reassessed for all known meson states. The rule is found to be statistically relevant, once the states are grouped by quark composition and JPC, with slightly different mass units for each group. In certain groups the mass unit is spin-dependent. Also the mass units are linearly quantized, with highly structured correlation patterns. The baryon masses are organized along similar lines. These results support an indication that hadrons might be shell-structured.
Physics opportunities with meson beams
Energy Technology Data Exchange (ETDEWEB)
Briscoe, William J.; Doering, Michael; Haberzettl, Helmut; Strakovsky, Igor I. [The George Washington University, Washington, DC (United States); Manley, D.M. [Kent State University, Kent, OH (United States); Naruki, Megumi [Kyoto University, Kyoto (Japan); Swanson, Eric S. [University of Pittsburgh, Pittsburgh, PA (United States)
2015-10-15
Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility. (orig.)
Physics Opportunities with Meson Beams
Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S
2015-01-01
Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.
A probabilistic model of a porous heat exchanger
Agrawal, O. P.; Lin, X. A.
1995-01-01
This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
The hybrid mesons quest: the MesonEx experiment at Jefferson Laboratory
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Alessandro [Univ. of Rome Tor Vergata (Italy)
2016-03-01
The meson spectroscopy plays nowadays a central role in the investigation of hadron structure thanks to the possible existence of exotic hybrid mesons, quark-antiquark-gluon bound states. Their explicit gluonic degrees of freedom which should clearly emerge from a Partial Wave Analysis (PWA) of the corresponding Dalitz plot of the exotic particle decay, may result in final JPC configurations not allowed in the constituent quark model. Besides this clear signature, hybrid mesons are also expected to have a large particle multiplicity decays, requiring for their search an experimental apparatus with high performances in terms of rate capability, resolution and almost a full acceptance to apply PWA methods. New-generation experiments are planned at Thomas Jefferson National Laboratory (VA, USA) for which an unprecedented statistics of large multiplicity decay events with fully reconstructed kinematics will be available. In particular for the MesonEx (CLAS12) experiment in Hall B, a wide scientific program that will start in 2016 has been deployed to study the meson spectrum at energies up to 11 GeV. A key role in such program is played by the Forward Tagger apparatus of the experiment, which will allow to extend the study of meson electro-production to very low Q2 values, in a quasi-real photo production kinematical region, where the production of hybrid mesons is expected to be favorite. Currently a new analysis framework for the search of the hybrid mesons is being set up by the HASPECT network, an international structure which gather people involved into theoretical and experimental hadronic physics all over the world. The goals of the network is to develop new analysis models and statistical techniques to unfold the signal and background distributions in high-statistics datasets. In this work are briefly presented the first preliminary results from the application of a statistical technique, namely the sPlot, to the data already acquired by the CLAS experiment for
Helicity probabilities for heavy quark fragmentation into excited mesons
Yuan, T C
1995-01-01
Abstract: In the fragmentation of a heavy quark into a heavy meson whose light degrees of freedom have angular momentum 3/2, all the helicity probabilities are completely determined in the heavy quark limit up to a single probability w_{3/2}. We point out that this probability depends on the longitudinal momentum fraction z of the meson and on its transverse momentum p_\\bot relative to the jet axis. We calculate w_{3/2} as a function of scaling variables corresponding to z and p_\\bot for the heavy quark limit of the perturbative QCD fragmentation functions for b quark to fragment into (b \\bar c) mesons. In this model, the light degrees of freedom prefer to have their angular momentum aligned transverse to, rather than along, the jet axis. Implications for the production of excited heavy mesons, like D^{**} and B^{**}, are discussed.
The Effect of Vector Meson Decays on Dihadron Fragmentation Functions
Matevosyan, Hrayr H; Bentz, Wolfgang
2014-01-01
Dihadron Fragmentation Functions (DFF) provide a vast amount of information on the intricate details of the parton hadronization process. Moreover, they provide a unique access to the "clean" extraction of nucleon transversity parton distribution functions in semi inclusive deep inelastic two hadron production process with a transversely polarised target. On the example of the u \\to \\pi^+ \\pi^-, we analyse the properties of unpolarised DFFs using their probabilistic interpretation. We use both the NJL-jet hadronization model and PYTHIA 8.1 event generator to explore the effect of the strong decays of the vector mesons produced in the quark hadronization process on the pseudoscalar DFFs. Our study shows that, even though it is less probable to produce vector mesons in the hadronization process than pseudo scalar mesons of the same charge, the products of their strong decays drastically affect the DFFs for pions because of the large combinatorial factors. Thus, an accurate description of both vector meson produ...
The Contribution of Reggeon in Charge Exchange Processes
Yu Feng Zhou; Lian Shou Liu; Yufeng, Zhou; Hongan, Peng; Lianshou, Liu
1998-01-01
We discuss in this paper The experimental results on maximum psedo-rapidity Collaboration at HERA. We calculate the contributions of \\regg ($\\rho$-Reggeon associated with $\\rho$ meson) from regge phenomenology and $\\pi^{+}$-exchange from pion cloud model. The results show that neither the \\regg-exchange nor the pion cloud model alone can explain the experimental data well, but after considering both these two processes together, by using Monte Carlo simulation, a good agreement between theoretical results and experimental data is found. This means that in discussing the large rapidity gap phenomena in deep inelastic scattering, both of the two processes play substantial role.
Grube, Boris
2015-01-01
The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, t...
Energy Technology Data Exchange (ETDEWEB)
Crowe, K.M.
1992-01-01
The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p[bar p] annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.
Energy Technology Data Exchange (ETDEWEB)
Crowe, K.M.
1992-12-01
The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p{bar p} annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.
Directory of Open Access Journals (Sweden)
Grube Boris
2016-01-01
Full Text Available The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly π− and positive (p, π+ hadron beams with a momentum of 190 GeV/c. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV=c2. The flagship channel is the π−π−π+ final state, for which COMPASS has recorded the currently world’s largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the a1(1420, with unusual properties. Novel analysis techniques have been developed to extract also the amplitude of the π−π+ subsystem as a function of 3π mass from the data. The findings are confirmed by the analysis of the π−π0π0 final state.
Grube, Boris
2016-11-29
The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^-\\pi^+$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. Novel analysis techniques have been...
Grube, Boris
2016-11-01
The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly π-) and positive (p, π+) hadron beams with a momentum of 190 GeV/c. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV=c)2. The flagship channel is the π-π-π+ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the a1(1420), with unusual properties. Novel analysis techniques have been developed to extract also the amplitude of the π-π+ subsystem as a function of 3π mass from the data. The findings are confirmed by the analysis of the π-π0π0 final state.
QCD monopole and sigma meson coupling
Iwazaki, Aiichi
2016-01-01
Under the assumption of the Abelian dominance in QCD, we show that chiral condensate is locally present around a QCD monopole. The appearance of the chiral condensate around a GUT monopole was shown in the previous analysis of the Rubakov effect. We apply a similar analysis to the QCD monopole. It follows that the condensation of the monopole carrying the chiral condensate leads to the chiral symmetry breaking as well as quark confinement. To realize the result explicitly, we present a phenomenological linear sigma model coupled with the monopoles, in which the monopole condensation causes the chiral symmetry breaking as well as confinement. The monopoles are assumed to be described by a model of dual superconductor. We identify the monopoles with scalar isoscalar $f_0$ mesons with masses $1400\\sim 1700$ MeV as well as dual gauge fields with $h_1$ vector mesons with masses $\\sim 1500$MeV.
A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange
Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.
2012-01-01
A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…
Conflict measures in cooperative exchange models of collective decision-making
van Assen, Marcel; Stokman, Frans; van Oosten, Reinier
2003-01-01
This study focuses on externalities of exchanges of voting positions in collective decision-making. Exchanges are represented by nonconstant two-person cooperative games. It is assumed that the rate of exchange is specified by the Raiffa-Kalai-Smorodinsky solution, and a model is specified to identi
A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange
Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.
2012-01-01
A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…
Strong Two--Body Decays of Light Mesons
Ricken, R; Merten, D; Metsch, B C; Ricken, Ralf; Koll, Matthias; Merten, Dirk; Metsch, Bernard C.
2003-01-01
In this paper, we present results on strong two-body decay widths of light $q\\bar q$ mesons calculated in a covariant quark model. The model is based on the Bethe-Salpeter equation in its instantaneous approximation and has already been used for computing the complete meson mass spectrum and many electroweak decay observables. Our approach relies on the use of a phenomenological confinement potential with an appropriate spinorial Dirac structure and 't Hooft's instanton--induced interaction as a residual force for pseudoscalar and scalar mesons. The transition matrix element for the decay of one initial meson into two final mesons is evaluated in lowest order by considering conventional decays via quark loops as well as Zweig rule violating instanton--induced decays generated by the six--quark vertex of 't Hooft's interaction; the latter mechanism only contributes if all mesons in the decay have zero total angular momentum. We show that the interference of both decay mechanisms plays an important role in the ...
Energy Technology Data Exchange (ETDEWEB)
Santini, Elvira
2008-02-15
The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)
In-medium rho-meson properties in a light-front approach
de Melo, J P B C
2016-01-01
Properties of \\r{ho}-meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in vacuum to calculate the \\r{ho}-meson electromagnetic properties, namely, charge G 0 , magnetic G 1 , and quadrupole G 2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the \\r{ho}-meson electromagnetic form factors in symmetric nuclear matter.
Non-conventional mesons at PANDA
Giacosa, Francesco
2015-04-01
Non-conventional mesons, such as glueballs and tetraquarks, will be in the focus of the PANDA experiment at the FAIR facility. In this lecture we recall the basic properties of QCD and describe some features of unconventional states. We focus on the search of the not-yet discovered glueballs and the use of the extended Linear Sigma Model for this purpose, and on the already discovered but not-yet understood X, Y, Z states.
Exclusive ω meson production at COMPASS
Directory of Open Access Journals (Sweden)
Nowak Wolf-Dieter
2016-01-01
Full Text Available Exclusive ω meson production is studied by the COMPASS Collaboration using the CERN 160 GeV/c muon beam and a transversely polarised proton target. Single-spin and double-spin asymmetries are measured, some of which are sensitive to the Generalised Parton Distributions E that are related to quark orbital angular momenta. The results, which are sensitive also to the pion-pole contribution to the production mechanism, are compared to the predictions of a phenomenological model.
Exclusive ω meson production at COMPASS
Nowak, Wolf-Dieter; Sznajder, Paweł
2016-11-01
Exclusive ω meson production is studied by the COMPASS Collaboration using the CERN 160 GeV/c muon beam and a transversely polarised proton target. Single-spin and double-spin asymmetries are measured, some of which are sensitive to the Generalised Parton Distributions E that are related to quark orbital angular momenta. The results, which are sensitive also to the pion-pole contribution to the production mechanism, are compared to the predictions of a phenomenological model.
Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models
Güreşen, Erkam; Kayakutlu, Gülgün
Forecasting stock exchange rates is an important financial problem that is receiving increasing attention. During the last few years, a number of neural network models and hybrid models have been proposed for obtaining accurate prediction results, in an attempt to outperform the traditional linear and nonlinear approaches. This paper evaluates the effectiveness of neural network models; recurrent neural network (RNN), dynamic artificial neural network (DAN2) and the hybrid neural networks which use generalized autoregressive conditional heteroscedasticity (GARCH) and exponential generalized autoregressive conditional heteroscedasticity (EGARCH) to extract new input variables. The comparison for each model is done in two view points: MSE and MAD using real exchange daily rate values of Istanbul Stock Exchange (ISE) index XU10).
Self-Service Banking: Value Creation Models and Information Exchange
Directory of Open Access Journals (Sweden)
Ragnvald Sannes
2001-01-01
Full Text Available This paper argues that most banks have failed to exploit the potential of self-service banking because they base their service design on an incomplete business model for self-service. A framework for evaluation of self-service banking concepts is developed on the basis of Stabell and Fjeldstad's three value configurations. The value network and the value shop are consistent with self-service banking while the value chain is inappropriate. The impact of the value configurations on information exchange and self-service functionality is discussed, and a framework for design of such services proposed. Current self-service banking practices are compared to the framework, and it is concluded that current practice matches the concept of a value network and not the value shop. However, current practices are only a partial implementation of a value network-based self-service banking concept.
Enterprise Networks for Competences Exchange: A Simulation Model
Remondino, Marco; Pironti, Marco; Pisano, Paola
A business process is a set of logically related tasks performed to achieve a defined business and related to improving organizational processes. Process innovation can happen at various levels: incrementally, redesign of existing processes, new processes. The knowledge behind process innovation can be shared, acquired, changed and increased by the enterprises inside a network. An enterprise can decide to exploit innovative processes it owns, thus potentially gaining competitive advantage, but risking, in turn, that other players could reach the same technological levels. Or it could decide to share it, in exchange for other competencies or money. These activities could be the basis for a network formation and/or impact the topology of an existing network. In this work an agent based model is introduced (E3), aiming to explore how a process innovation can facilitate network formation, affect its topology, induce new players to enter the market and spread onto the network by being shared or developed by new players.
Isotope exchange kinetics in metal hydrides I : TPLUG model.
Energy Technology Data Exchange (ETDEWEB)
Larson, Rich; James, Scott Carlton; Nilson, Robert H.
2011-05-01
A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show
Isotope exchange kinetics in metal hydrides I : TPLUG model.
Energy Technology Data Exchange (ETDEWEB)
Larson, Rich; James, Scott Carlton; Nilson, Robert H.
2011-05-01
A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show
Modelling system level health information exchange: an ontological approach.
McMurray, J; Zhu, L; McKillop, I; Chen, H
2015-01-01
Investment of resources to purposively improve the movement of information between health system providers is currently made with imperfect information. No inventories of system-level digital information flows currently exist, nor do measures of inter-organizational electronic information. exchange (HIE). Using Protégé 4, an open-source OWL Web ontology language editor and knowledge-based framework we formalized a model that decomposes inter-organizational electronic health information flow into derivative concepts such as diversity, breadth, volume, structure, standardization and connectivity. Self-reported data from a regional health system is used to measure HIE; the ontology identifies providers with low and high HIE, useful for planners, and using a related database is used to monitor data quality.
Phase transition in kinetic exchange opinion models with independence
Crokidakis, Nuno
2014-01-01
In this work we study the critical behavior of a three-state ($+1$, $-1$, $0$) opinion model with independence. Each agent has a probability $q$ to act as independent, i.e., he/she can choose his/her opinion independently of the opinions of the other agents. On the other hand, with the complementary probability $1-q$ the agent interacts with a randomly chosen individual through a kinetic exchange. Our analytical and numerical results show that the independence mechanism acts as a noise that induce an order-disorder transition at critical points $q_{c}$ that depend on the individuals' flexibility. For a special value of this flexibility the system undergoes a transition to an absorbing state with all opinions $0$.
Modelling the ion-exchange equilibrium in nanoporous materials
Directory of Open Access Journals (Sweden)
M. Lukšič
2012-06-01
Full Text Available Distribution of a two component electrolyte mixture between the model adsorbent and a bulk aqueous electrolyte solution was studied using the replica Ornstein-Zernike theory and the grand canonical Monte Carlo method. The electrolyte components were modelled to mimic the HCl/NaCl and HCl/CaCl2 mixtures, respectively. The matrix, invaded by the primitive model electrolyte mixture, was formed from monovalent negatively charged spherical obstacles. The solution was treated as a continuous dielectric with the properties of pure water. Comparison of the pair distribution functions (obtained by the two methods between the various ionic species indicated a good agreement between the replica Ornstein-Zernike results and machine calculations. Among thermodynamic properties, the mean activity coefficient of the invaded electrolyte components was calculated. Simple model for the ion-exchange resin was proposed. The selectivity calculations yielded qualitative agreement with the following experimental observations: (i selectivity increases with the increasing capacity of the adsorbent (matrix concentration, (ii the adsorbent is more selective for the ion having higher charge density if its fraction in mixture is smaller.
A heat transfer model of a horizontal ground heat exchanger
Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.
2016-04-01
Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.
Comparison of Properties of the Simplest Neutron Stars in Three RMF Models
Institute of Scientific and Technical Information of China (English)
WANG Guo-Hua; FU Wei-Jie; LIU Yu-Xin
2008-01-01
@@ We study some properties of the simplest neutron stars (NSs) in the Glendenning-Moszkowski (GM) model, the hybrid derivative coupling (HD) model and the Zimanyi-Moszkowski (ZM) model in the framework of relativistic mean field (RMF) theory with and without the interaction by exchanging the δ-meson. We show that the maximal mass of the NSs becomes smaller, but the redshift becomes larger from the GM model to the HD model, then to the ZM model. The interaction with the δ-meson exchange enlarges the maximal mass of neutron stars, increases the relative population of charged particles (proton, electron and muon) and descends the relative population of neutron.
Pseudovector mesons, hybrids and glueballs
Burakovsky, L; Burakovsky, Leonid; Page, Philip R.
2000-01-01
We consider glueball- (hybrid) meson mixing for the low-lying four pseudovector states. The h_1'(1380) decays dominantly to K*K with some presence in rho pi and omega eta. The newly observed h_1(1600) has a D- to S-wave width ratio to omega eta which does not enable differentiation between a conventional and hybrid meson interpretation. We predict the decay pattern of the isopartner conventional or hybrid meson b_1(1650). A notably narrow s sbar partner h_1'(1810) is predicted.
Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells
Ulusoy, Sehribani
results showed that the fuel performance can be improved by using flow field designs alleviating the reactant depletion along the channels and supplying more uniform reactant distribution. Stepped flow field was found to show better performance when compared to straight and tapered ones. ANSYS FLUENT model is evaluated in terms of predicting the two phase flow in the fuel cell components. It is proposed that it is not capable of predicting the entire fuel cell polarization due to the lack of agglomerate catalyst layer modeling and well-established two-phase flow modeling. Along with the comprehensive modeling efforts, also an analytical model has been computed by using MathCAD and it is found that this simpler model is able to predict the performance in a general trend according to the experimental data obtained for a new novel membrane. Therefore, it can be used for robust prediction of the cell performance at different operating conditions such as temperature and pressure, and the electrochemical properties such as the catalyst loading, the exchange current density and the diffusion coefficients of the reactants. In addition to the modeling efforts, this thesis also presents a very comprehensive literature review on the models developed in the literature so far, the modeling efforts in fuel cell sandwich including membrane, catalyst layer and gas diffusion layer and fuel cell model properties. Moreover, a summary of possible directions of research in fuel cell analysis and computational modeling has been presented.
An Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Zong-Ye; YU You-Wen; WANG Ping; DAI Lian-Rong
2003-01-01
The chiral SU(3) quark model is extended by including the vector meson exchanges to describe the short range interactions. The phase shifts of NN scattering are studied in this model. Compared with the results of the chiral SU(3) quark model in which only the pseudo-scalar and scalar chiralfields are considered, the phase shifts of 1 So wave are obviously improved.
Das, Swapan
2015-01-01
The coherent $\\eta$ meson energy $E_\\eta$ distribution spectra in the proton nucleus reaction have been calculated to investigate the $\\pi^0 - \\eta$ mesons' interference, in addition to the study of resonance $N^*$ dynamics in the nucleus. The elementary reaction occurring in the nucleus is assumed to proceed as $ pN \\to pN^* $; $ N^* \\to N\\eta $. Born terms in the intermediate state is also considered. In a scalar-isovector nucleus, this reaction occurs because of $\\pi^0$ and $\\eta$ meson exchange interactions for the forward going proton and $\\eta$ meson; other meson exchange potentials do not contribute in this process. The sensitivity of the cross section to the hadron nucleus interactions, and the beam energy dependence of the cross section are studied for this reaction.
Mesons in strong magnetic fields: (I) General analyses
Hattori, Koichi; Su, Nan
2015-01-01
We study properties of neutral and charged mesons in strong magnetic fields |eB|>> Lambda_QCD^2 with Lambda_QCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger-Dyson and Bethe-Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B^2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compare...
Heavy meson spectroscopy under strong magnetic field
Yoshida, Tetsuya
2016-01-01
Spectra of the neutral heavy mesons, $\\eta_c(1S,2S)$, $J/psi$, $\\psi(2S)$, $\\eta_b(1S,2S,3S)$, $\\Upsilon(1S,2S,3S)$, $D$, $D^\\ast$, $B$, $B^\\ast$, $B_s$ and $B_s^\\ast$, in a homogeneous magnetic field are analyzed in a potential model of constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic field are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.
Molecular States and 1^-+ Exotic Mesons
Zhang, R; Li Xue Qian; Page, P R; Zhang, Rui; Ding, Yi-Bing; Li, Xue-Qian; Page, Philip R.
2002-01-01
This work investigates whether the observed 1^-+ exotic mesons are molecular states. We first use a potential model to calculate the spectra and lifetimes of the f_0(980) and a_0(980), taken to be loosely bound molecular states of K Kbar, then apply the same scenario to the 1^-+ exotic states pi_1(1400) and pi_1(1600), assuming them to be pi eta(1295) and pi eta(1440) molecules respectively. We derive the effective potential in the framework of field theory at the hadronic level. Our results indicate that the present data on pi_1(1400) and pi_1(1600) rule out the specific molecular ansatz. We show that the lifetime of a loosely bound heavy-light molecule with enough angular momentum is fully determined by the lifetimes of its constituent mesons.
The lightest hybrid meson supermultiplet in QCD
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef J
2011-10-01
We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.
Exclusive electroproduction of $\\phi$ mesons at HERA
Chekanov, S; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Allfrey, P D; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Behrens, U; Bell, M A; Bellagamba, L; Bellan, P M; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Büttner, C; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cassel, D G; Catterall, C D; Abramowicz, H; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Corradi, M; Corriveau, F; Costa, M; Cottrell, A; Cui, Y; D'Agostini, G; Dal Corso, F; Danilov, P; De Pasquale, S; Dementiev, R K; Derrick, M; Devenish, R C E; Dhawan, S; Dobur, D; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Everett, A; Ferrando, J; Ferrero, M I; Figiel, J; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fry, C; Gabareen, A; Galas, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Goncalo, R; González, O; Gosau, T; Göttlicher, P; Grabowska-Bold, I; Graciani-Díaz, R; Grigorescu, G; Grijpink, S; Groys, M; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, C; Hartmann, H; Hartner, G; Heaphy, E A; Heath, G P; Helbich, M; Hilger, E; Hochman, D; Holm, U; Horn, C; Iacobucci, G; Iga, Y; Irrgang, P; Jakob, H P; Jiménez, M; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Karshon, U; Karstens, F; Kasemann, M; Kataoka, M; Katkov, I I; Kcira, D; Keramidas, A; Khein, L A; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowalski, H; Kramberger, G; Kreisel, A; Krumnack, N; Kulinski, P; Kuze, M; Kuzmin, V A; Labarga, L; Lammers, S; Lelas, D; Levchenko, B B; Levy, A; Li, L; Lightwood, M S; Lim, H; Limentani, S; Ling, T Y; Liu, C; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukasik, J; Lukina, O Yu; Luzniak, P; Ma, K J; Maddox, E; Magill, S; Malka, J; Mankel, R; Margotti, A; Marini, G; Martin, J F; Martínez, M; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Miglioranzi, S; Milite, M; Mirea, A; Monaco, V; Montanari, A; Musgrave, B; Nagano, K; Namsoo, T; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Noor, U; Notz, D; Nowak, R J; Nuncio-Quiroz, A E; Oh, B Y; Olkiewicz, K; Ota, O; Padhi, S; Palmonari, F; Patel, S; Paul, E; Pavel, Usan; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Piotrzkowski, K; Plamondon, M; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Ri, Y D; Rinaldi, L; Robins, S; Rosin, M; Ruspa, M; Ryan, P; Sacchi, R; Salehi, H; Santamarta, R; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schleper, P; Schmidke, W B; Schneekloth, U; Schörner-Sadenius, T; Sciulli, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Stösslein, U; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutiak, J; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tapper, A D; Targett-Adams, C; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Tyszkiewicz, A; Ukleja, A; Ukleja, J; Vázquez, M; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Whitmore, J J; Whyte, J; Wichmann, K; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wlasenko, M; Wolf, G; Yagues-Molina, A G; Yamada, S; Yamazaki, Y; Yoshida, R; Youngman, C; Zambrana, M; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zhou, C; Zichichi, A; Ziegler, A; Zotkin, D S; Zotkin, S A; De Favereau, J; De Wolf, E; Del Peso, J
2005-01-01
Exclusive electroproduction of $\\phi$ mesons has been studied in $e^\\pm p$ collisions at $\\sqrt{s}=318 \\gev$ with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb$^{-1}$. The $\\gamma^*p$ cross section is presented in the kinematic range $2mesons. The ratios $R$ of the cross sections for longitudinally and transversely polarized virtual photons are presented as functions of $Q^2$ and $W$. The data are also compared to predictions from theoretical models.
The lightest hybrid meson supermultiplet in QCD
Dudek, Jozef J
2011-01-01
We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called `hybrids', in which the qqbar pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with JPC = (0,1,2)-+, 1-- built from a gluonic excitation of chromomagnetic character coupled to qqbar in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.
Production of Pseudoscalar Mesons
Briscoe, W J; Strakovsky, I I; Workman, R L
2003-01-01
Experiments that study the hadronic and electromagnetic production of the pseudoscalar mesons -- pions, etas and kaons, contribute to our knowledge of the properties of baryon and hyperon resonances. Fixed-target programs at hadronic facilities such as BNL-AGS have been phased out. However, the availability of modern experimental facilities with pseudo-monochromatic or tagged medium-energy photon beams at GRAAL, SPring-8, Bonn, Mainz, and Jefferson Lab, together with LEGS, Max-Lab, and HIGS at lower energies, are beginning to produce high-quality results. These new data have smaller statistical uncertainties and better understood systematic uncertainties, than those obtained at the older bremsstrahlung facilities, for measurements of differential and integrated cross sections, as well as polarization and asymmetry. Experimental results are compared with the predictions of QCD-based approaches, such as the lattice-gauge calculations of baryon properties, and Chiral Perturbation Theory applied to threshold phot...
2013-01-01
Based on the relevant data from 1985 to 2010, this thesis uses a quantile regression model to make an empirical research about the effect of GDP and exchange rate on foreign exchange reserve. The findings show that: Both GDP and exchange rate have a remarkable influence on the size of foreign exchange reserve and the effect of exchange rate on foreign exchange reserve is higher than GDP at mean place and middle and lower quantile, smaller than GDP at higher quantile. At all the examined quant...
Holographic picture of heavy vector meson melting
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)
2016-11-15
The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)
Minimal model quantification of pulmonary gas exchange in intensive care patients
DEFF Research Database (Denmark)
Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Hans Steen
2011-01-01
Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange ...
The associated photoproduction of K+ meson off proton within a coupled-channels K-matrix approach
Shyam, R; Lenske, H
2009-01-01
We investigate the p(gamma,K+)Lambda and p(gamma,K+)Sigma^0 reactions within a coupled-channels effective-Lagrangian method which is based on the K-matrix approach. The two-body final channels included are pi-N, eta-N, phi-N, rho-N, gamma-N, K-Lambda, and K-Sigma. Non-resonant meson-baryon interactions are included in the model via nucleon intermediate states in the s- and u-channels and meson exchanges in the t-channel amplitude and the u-channel resonances. The nucleon resonances S11 (1535), S11 (1650), S31 (1620), P11 (1440), P11 (1710), P13 (1720), P33 (1232), P33 (1600), D13 (1520), D13 (1700), and D33 (1700) are included explicitly in the calculations. With a single parameter set which was derived earlier from our analysis of the eta meson photoproduction, the model describes well all the available cross section and polarization data of the SAPHIR collaboration for the two investigated channels. The description of the data of the CLAS collaboration, however, is not of the same quality. In contrast to so...
Study of various charged p-meson masses in asymmetric nuclear matter
Institute of Scientific and Technical Information of China (English)
YAO Hai-Bo; WU Shi-Shu
2009-01-01
We study the effective masses of p-mesons for different charged states in asymmetric nuclear matter (ANM) using the Quantum Hadrodynamics II model.The closed form analytical results are presented for the effective masses of p-mesons.We have shown that the different charged p-mesons have mass splitting similar to various charged pions.The effect of the Dirac sea is also examined, and it is found that this effect is very important and leads to a reduction of the different charged p-meson masses in ANM.
Model-free measurement of exchange market pressure
F.J.G.M. Klaassen; H. Jager
2006-01-01
If there is exchange market pressure (EMP), monetary authorities can use the interest rate and official interventions to offset this depreciation tendency, or they can let the exchange rate change. We introduce a new approach to derive how these three variables should be combined to measure EMP. Thi
Molecular components in P-wave charmed-strange mesons
Ortega, Pablo G.
2016-01-01
Results obtained by various experiments show that the $D_{s0}^{\\ast}(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located below the $DK$ and $D^{\\ast}K$ thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the $c\\bar{s}$ ground states with quantum numbers $J^{P}=0^{+}$ ($D_{s0}^{\\ast}(2317)$) and $J^{P}=1^{+}$ ($D_{s1}(2460)$) due to their coupling with $S$-wave $D^{(\\ast)}K$ thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a modified version of the $^{3}P_{0}$ decay model. We observe that the coupling of the $0^{+}$ $(1^{+})$ mes...
Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers
Energy Technology Data Exchange (ETDEWEB)
Shen, Bo [ORNL; Bhandari, Mahabir S [ORNL
2016-01-01
Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.
An exchange rate determination model for central banks＇interventions in financial markets
Institute of Scientific and Technical Information of China (English)
林浚清; 黄祖辉; 战明华
2002-01-01
We establish an exchange rate determination model for central banks' interventiorm in financial markets.The model shows that central banks can adjuct exchange rate by several policy instruments and that different instruments may have different effects on exchange rate determination.It specifies potetial policy instruments for central banks as well as their policy effects.Based on these effects,feasible matches of policy instruments in contingent intervention are put forth.
An exchange rate determination model for central banks' interventions in financial markets
Institute of Scientific and Technical Information of China (English)
林浚清; 黄祖辉; 战明华
2002-01-01
We establish an exchange rate determination model for central banks' in terventions in financial markets. The model shows that central banks can adjust exchange rate by several policy instruments and that different instruments may h ave different effects on exchange rate determination. It specifies potential pol icy instruments for central banks as well as their policy effects. Based on thes e effects, feasible matches of policy instruments in contingent intervention are put forth.
Institute of Scientific and Technical Information of China (English)
Jinglan Wu; Pengfei Jiao; Wei Zhuang; Jingwei Zhou; Hanjie Ying
2016-01-01
L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimental y and theoretical y. A modified Donnan ion-exchange (DIX) model, which takes the activity into account, was established to predict the uptake of L-phenyl-alanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest L-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model wil lay the foundation for the prediction of dynamic behavior of fixed bed separation process.
Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.
Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M
2016-08-25
Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.
Asymmetric vector mesons produced in nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Dremin, I.M.; Nechitailo, V.A. [Lebedev Physical Institute, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)
2016-09-15
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation. (orig.)
Asymmetric vector mesons produced in nuclear collisions
Dremin, I. M.; Nechitailo, V. A.
2016-09-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.
Holographic Picture of Heavy Vector Meson Melting
Braga, Nelson R F; Diles, Saulo
2016-01-01
The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton proton collision, serves as an important indication of the formation of a thermal medium, the quark gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one fla...
Leptonic Decays of Charged Pseudoscalar Mesons - 2015
Rosner, Jonathan L; Van de Water, Ruth S
2015-01-01
We review the physics of purely leptonic decays of $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ pseudoscalar mesons. The measured decay rates are related to the product of the relevant weak-interaction-based CKM matrix element of the constituent quarks and a strong interaction parameter related to the overlap of the quark and antiquark wave-functions in the meson, called the decay constant $f_P$. The leptonic decay constants for $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ mesons can be obtained with controlled theoretical uncertainties and high precision from {\\it ab initio} lattice-QCD simulations. The combination of experimental leptonic decay-rate measurements and theoretical decay-constant calculations enables the determination of several elements of the CKM matrix within the standard model. These determinations are competitive with those obtained from semileptonic decays, and also complementary because they are sensitive to different quark flavor-changing currents. They can also be use...
Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties
Hansen, B J; Klebaner, A; 10.1063/1.4706971
2012-01-01
Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger ...
Bayesian analysis for exponential random graph models using the adaptive exchange sampler
Jin, Ick Hoon
2013-01-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.
Caldas, H C G
2001-01-01
Feynman's functional formulation of statistical mechanics is used to study the renormalizability of the well known Linear Chiral Sigma Model in the presence of fermionic fields at finite temperature in an alternative way. It is shown that the renormalization conditions coincide with those of the zero temperature model.
Minimal model quantification of pulmonary gas exchange in intensive care patients
DEFF Research Database (Denmark)
Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Steen
2011-01-01
of both oxygen and carbon dioxide. Three models of varying complexity were compared for their ability to fit measured data from intensive care patients and to provide adequate description of patients' gas exchange abnormalities. Pairwise F-tests showed that a two parameter model provided superior fit......Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange...... to patient data compared to a shunt only model (p...
Land-use change arising from rural land exchange : an agent-based simulation model
Bakker, Martha M.; Alam, Shah Jamal; van Dijk, Jerry; Rounsevell, Mark D. A.
2015-01-01
Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing farmer
Kinetic Description of a Finite Temperature Meson Gas
Tan, Z G; Terranova, S; Bonasera, A; Tan, Zhi Guang; Zhou, Dai-Mei
2006-01-01
A transport model based on the mean free path approach for an interacting meson system at finite temperatures is discussed. A transition to a quark gluon plasma is included within the framework of the bag model. We discuss some calculations for a pure meson gas where the Hagedorn limiting temperature is reproduced when including the experimentally observed resonances. Next we include the possibility for a QGP formation based on the MIT bag model. The results obtained compare very well with Lattice QCD calculations. In particular the cross over to the QGP at about 175 MeV temperature is nicely reproduced.
Heavy-Light Mesons in Chiral AdS/QCD
Liu, Yizhuang
2016-01-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
A Model for Trading the Foreign Exchange Market
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2015-06-01
Jun 1, 2015 ... The electronic Foreign Exchange (FOREX) market where currencies are bought and sold has .... the signal and .... indicator computations to generating trading ..... [4] Sher, G. I., (2012), Evolving Chart Pattern Sensitive Neural ...
Dynamic modeling of heat exchanger tube-to-support interaction
Energy Technology Data Exchange (ETDEWEB)
Azizian, R.; Mureithi, N.W.; Sawadog, T.P.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)
2009-07-01
Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60 percent, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5 percent compared to 26.6 percent for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)
Constraining New Physics with D meson decays
Energy Technology Data Exchange (ETDEWEB)
Barranco, J.; Delepine, D.; Gonzalez Macias, V. [Departamento de Física, División de Ciencias e Ingeniería, Universidad de Guanajuato, Campus León, León 37150 (Mexico); Lopez-Lozano, L. [Departamento de Física, División de Ciencias e Ingeniería, Universidad de Guanajuato, Campus León, León 37150 (Mexico); Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184, Pachuca, HGO (Mexico)
2014-04-04
Latest Lattice results on D form factors evaluation from first principles show that the Standard Model (SM) branching ratios prediction for the leptonic D{sub s}→ℓν{sub ℓ} decays and the semileptonic SM branching ratios of the D{sup 0} and D{sup +} meson decays are in good agreement with the world average experimental measurements. It is possible to disprove New Physics hypothesis or find bounds over several models beyond the SM. Using the observed leptonic and semileptonic branching ratios for the D meson decays, we performed a combined analysis to constrain non-standard interactions which mediate the cs{sup ¯}→lν{sup ¯} transition. This is done either by a model-independent way through the corresponding Wilson coefficients or in a model-dependent way by finding the respective bounds over the relevant parameters for some models beyond the Standard Model. In particular, we obtain bounds for the Two Higgs Doublet Model Type-II and Type III, the Left–Right model, the Minimal Supersymmetric Standard Model with explicit R-parity violation and Leptoquarks. Finally, we estimate the transverse polarization of the lepton in the D{sup 0} decay and we found it can be as high as P{sub T}=0.23.
A General Model for Cost Estimation in an Exchange
Directory of Open Access Journals (Sweden)
Benzion Barlev
2014-03-01
Full Text Available Current Generally Accepted Accounting Principles (GAAP state that the cost of an asset acquired for cash is the fair value (FV of the amount surrendered, and that of an asset acquired in a non-monetary exchange is the FV of the asset surrendered or, if it is more “clearly evident,” the FV of the acquired asset. The measurement method prescribed for a non-monetary exchange ignores valuable information about the “less clearly evident” asset. Thus, we suggest that the FV in any exchange be measured by the weighted average of the exchanged assets’ FV estimations, where the weights are the inverse of the variances’ estimations. This alternative valuation process accounts for the uncertainty involved in estimating the FV of each of the asset in the exchange. The proposed method suits all types of exchanges: monetary and non-monetary. In a monetary transaction, the weighted average equals the cash paid because the variance of its FV is nil.
Exclusive semileptonic decays of charmed and b-flavored mesons
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Tripathy, S.K. [Physics Department, Utkal University, Bhubaneswar-751004 (India); Kar, S.; Dash, P.C. [Physics Department, Prananath College, Khurda-752057 (India)
1997-10-01
We investigate the exclusive semileptonic decays of (B,B{sub s};D,D{sub s}) mesons into less heavy as well as light mesons in a field-theoretic framework based on the independent quark model with a confining potential in scalar-vector-harmonic form. With the recoil effect properly taken into account, the present model describes consistently the semileptonic decays of charmed and b-flavored mesons, agreeing well with the experimental data. The transition form factors in the heavy to heavy decays, in particular, comply with the heavy quark symmetry relations expected from HQET. The CKM parameters extracted in this formalism are close to the existing data. The model prediction also satisfies the Isgur-Wise relation connecting the form factors of the semileptonic (B{r_arrow}{rho}e{nu}) and that of rare radiative decay (B{r_arrow}{rho}{gamma}). {copyright} {ital 1997} {ital The American Physical Society}
Test of the standard model in the B-meson sector by mixing phenomena and rare decays
Urbán, J
1999-01-01
Calculations for the rare decays b -> s gamma and b -> s g, as well as the BB sup - -mixing inclusive QCD-corrections in Next-to-Leading-Log-Approximation are presented throughout this work. The decays and the mixing are caused by Flavor Changing Neutral Current (FCNC) processes, which are absent on the tree-level within the framework of the Standard-Model. Hence these processes are qualified to test the validity of the Standard-Model, because possible extensions may provide similar contributions. Considered extensions are the 2-Higgs-Doublet-Model, Left-Right-Models and the Minimal Supersymmetric Standard-Model. It is shown that the determination of the Wilson-coefficients is independent of the treatment of the light fields for the case of the BB sup - -mixing. For this proof the dimensional regularisation of the IR-divergences on one side and a regulator mass for the light fields on the other side is utilized. The well-known value for the mass splitting ''Delta m B'' available from the BB sup - -oscillation...
Khan, T.; Agnan, Y.; Obrist, D.; Selin, N. E.; Urban, N. R.; Wu, S.; Perlinger, J. A.
2015-12-01
Inadequate representation of process-based mechanisms of exchange behavior of elemental mercury (Hg0) and decoupled treatment of deposition and emission are two major limitations of parameterizations of atmosphere-surface exchange flux commonly incorporated into chemical transport models (CTMs). Of nineteen CTMs for Hg0 exchange we reviewed (ten global, nine regional), eight global and seven regional models have decoupled treatment of Hg0 deposition and emission, two global models include no parameterization to account for emission, and the remaining two regional models include coupled deposition and emission parameterizations (i.e., net atmosphere-surface exchange). The performance of atmosphere-surface exchange parameterizations in CTMs depends on parameterization uncertainty (in terms of both accuracy and precision) and feasibility of implementation. We provide a comparison of the performance of three available parameterizations of net atmosphere-surface exchange. To evaluate parameterization accuracy, we compare predicted exchange fluxes to field measurements conducted over a variety of surfaces compiled in a recently developed global database of terrestrial Hg0 surface-atmosphere exchange flux measurements. To assess precision, we estimate the sensitivity of predicted fluxes to the imprecision in parameter input values, and compare this sensitivity to that derived from analysis of the global Hg0 flux database. Feasibility of implementation is evaluated according to the availability of input parameters, computational requirements, and the adequacy of uncertainty representation. Based on this assessment, we provide suggestions for improved treatment of Hg0 net exchange processes in CTMs.