WorldWideScience

Sample records for mesocorticolimbic dopamine system

  1. Autoradiographic localization of mu and delta opioid receptors in the mesocorticolimbic dopamine system

    Energy Technology Data Exchange (ETDEWEB)

    Dilts, R.P. Jr.

    1989-01-01

    In vitro autoradiographic techniques were coupled with selective chemical lesions of the A10 dopamine cells and intrinsic perikarya of the region to delineate the anatomical localization of mu and delta opioid receptors, as well as, neurotensin receptors. Mu opioid receptors were labeled with {sup 125}I-DAGO. Delta receptors were labeled with {sup 125}I-DPDPE. Neurotensin receptors were labeled with {sup 125}I-NT3. Unilateral lesions of the dopamine perikarya were produced by injections of 6-OHDA administered in the ventral mesencephalon. Unilateral lesions of intrinsic perikarya were induced by injections of quinolinic acid in to the A10 dopamine cell region. Unilateral lesions produced with 6-OHDA resulted in the loss of neurotensin receptors in the A10 region and within the terminal fields. Mu opioid receptors were unaffected by this treatment, but delta opioid receptors increased in the contralateral striatum and nucleus accumbens following 6-OHDA administration. Quinolinic acid produced a reduction of mu opioid receptors within the A10 region with a concomitant reduction in neurotensin receptors in both the cell body region and terminal fields. These results are consistent with a variety of biochemical and behavioral data which suggest the indirect modulation of dopamine transmission by the opioids. In contrast these results strongly indicate a direct modulation of the mesolimbic dopamine system by neurotensin.

  2. Autoradiographic localization of delta opioid receptors within the mesocorticolimbic dopamine system using radioiodinated (2-D-penicillamine, 5-D-penicillamine)enkephalin ( sup 125 I-DPDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Dilts, R.P.; Kalivas, P.W. (Washington State Univ., Pullman (USA))

    1990-01-01

    The enkephalin analog (2-D-penicillamine, 5-D-penicillamine)enkephalin was radioiodinated (125I-DPDPE) and shown to retain a pharmacological selectivity characteristic of the delta opioid receptor in in vitro binding studies. The distributions of 125I-DPDPE binding, using in vitro autoradiographic techniques, were similar to those previously reported for the delta opioid receptor. The nucleus accumbens, striatum, and medial prefrontal cortex contain dense gradients of 125I-DPDPE binding in regions known to receive dopaminergic afferents emanating from the mesencephalic tegmentum. Selective chemical lesions of the ventral tegmental area and substantia nigra were employed to deduce the location of the 125I-DPDPE binding within particular regions of the mesocorticolimbic dopamine system. Unilateral lesions of dopamine perikarya (A9 and A10) within the ventral tegmental area and substantia nigra produced by mesencephalic injection of 6-hydroxydopamine resulted in significant (20-30%) increases in 125I-DPDPE binding contralateral to the lesion within the striatum and nucleus accumbens. Lesions of the perikarya (dopaminergic and nondopaminergic) of the ventral tegmental area, induced by quinolinic acid injections, caused increases of less magnitude within these same nuclei. No significant alterations in 125I-DPDPE binding were observed within the mesencephalon as a result of either treatment. The specificity of the lesions was confirmed by immunocytochemistry for tyrosine hydroxylase. These results suggest that the enkephalins and opioid agonists acting through delta opioid receptors do not directly modulate dopaminergic afferents but do regulate postsynaptic targets of the mesocorticolimbic dopamine system.

  3. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction.

    NARCIS (Netherlands)

    van Huijstee, A.N.; Mansvelder, H.D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review

  4. The role of mesocorticolimbic dopamine in regulating interactions between drugs of abuse and social behavior.

    Science.gov (United States)

    Young, Kimberly A; Gobrogge, Kyle L; Wang, Zuoxin

    2011-01-01

    The use of addictive drugs can have profound short- and long-term consequences on social behaviors. Similarly, social experiences and the presence or absence of social attachments during early development and throughout life can greatly influence drug intake and the susceptibility to drug abuse. The following review details this reciprocal interaction, focusing on common drugs of abuse (e.g., psychostimulants, opiates, alcohol and nicotine) and social behaviors (e.g., maternal, sexual, play, aggressive and bonding behaviors). The neural mechanisms underlying this interaction are discussed, with a particular emphasis on the involvement of the mesocorticolimbic dopamine system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Directory of Open Access Journals (Sweden)

    Aile evan Huijstee

    2015-01-01

    Full Text Available Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behaviour, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA. This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc and the prefrontal cortex (PFC, with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioural symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodelling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction.

  6. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Science.gov (United States)

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  7. Effects of Methylphenidate on Resting-State Functional Connectivity of the Mesocorticolimbic Dopamine Pathways in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2013-08-01

    Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction.

  8. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    Science.gov (United States)

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction. © 2015 Elsevier Inc. All rights reserved.

  9. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat.

    Science.gov (United States)

    Ugur, Muzeyyen; Kaya, Egemen; Gozen, Oguz; Koylu, Ersin O; Kanit, Lutfiye; Keser, Aysegul; Balkan, Burcu

    2017-09-01

    Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied. © 2017 Wiley Periodicals, Inc.

  10. Dopamine

    International Nuclear Information System (INIS)

    Walters, L.

    1983-01-01

    Dopamine is an important neurotransmittor in the central nervous system. The physiological function of the peripheral dopamine receptors is unknown, but they are of therapeutic importance as dopamine is used to improve renal blood flow in shocked patients. There are 4 dopamine receptors. The classification of these dopamine receptors has been made possible by research with radiopharmaceuticals. Dopamine sensitive adenylate cyclase is an inherent part of the dopamine-1-receptor. Dopamine-1-receptors are stimulated by micromolar (physiological) concentrations of dopamine and inhibited by micromolar (supratherapeutic) concentrations of the antipsychotic drugs. The vascular effect of dopamine is mediated through the dopamine-1-receptors. Dopamine-2-receptors are responsible for the effect of dopamine at the mesolimbic, nigrostriatal and chemoreceptortrigger areas. It is activated by micromolar concentrations of dopamine and blocked by nanomolar (therapeutic) concentrations of the anti-psychotic drugs. Dopamine-3-receptors are activated by nanomolar concentrations of dopamine and inhibited by micromolar concentrations of the antipsychotic drugs. They occur on presynaptic nerve terminals and have a negative feedback effect on the liberation of dopamine, noradrenaline and serotonin. The dopamine-4-receptors are activated by nanomolar concentrations of dopamine. These are the only dopamine receptors that could be responsible for effects in the hypophysis as only nanomolar concentrations of dopamine occur there. These receptors are blocked by nanomolar concentrations of the antipsychotic drugs

  11. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    2008-06-01

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  12. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    Energy Technology Data Exchange (ETDEWEB)

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  13. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats.

    Science.gov (United States)

    Rao, P S S; Goodwani, S; Bell, R L; Wei, Y; Boddu, S H S; Sari, Y

    2015-06-04

    Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. The evolution of dopamine systems in chordates

    Directory of Open Access Journals (Sweden)

    Kei eYamamoto

    2011-03-01

    Full Text Available Dopamine (DA neurotransmission in the central nervous system (CNS is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory-motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2 revealed new populations of DA synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g. teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain-hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.

  15. Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats.

    Science.gov (United States)

    Deehan, Gerald A; Hauser, Sheketha R; Waeiss, R Aaron; Knight, Christopher P; Toalston, Jamie E; Truitt, William A; McBride, William J; Rodd, Zachary A

    2015-12-01

    The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.

  16. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  17. The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system.

    Science.gov (United States)

    Viggiano, Davide; Vallone, Daniela; Welzl, Hans; Sadile, Adolfo G

    2002-09-01

    The Naples High- (NHE) and Low-Excitability (NLE) rat lines have been selected since 1976 on the basis of behavioral arousal to novelty (Làt-maze). Selective breeding has been conducted under continuous genetic pressure, with no brother-sister mating. The behavioral analyses presented here deal with (1) activity in environments of different complexity, i.e., holeboard and Làt maze; (2) maze learning in hexagonal tunnel, Olton, and Morris water mazes and; (3) two-way active avoidance and conditioned taste aversion tests. Morphometric analyses deal with central dopaminergic systems at their origin and target sites, as well as the density of dopamine transporter immunoreactivity. Molecular biology analyses are also presented, dealing with recent experiments on the prefrontal cortex (PFc), cloning and identifying differentially expressed genes using subtractive libraries and RNAase protection. The divergence between NLE and NHE rats varies as a function of the complexity level of the environment, with an impaired working and reference memory in both lines compared to random bred (NRB) controls. Moreover, data from the PFc of NHE rats show a hyperdopaminergic innervation, with overexpression of mRNA species involved in basal metabolism, and down-regulation of dopamine D1 receptors. Altogether, the evidence gathered so far supports a hyperfunctioning mesocorticolimbic system that makes NHE rats a useful tool for the study of hyperactivity and attention deficit, learning and memory disabilities, and drug abuse.

  18. The dopamine motive system: implications for drug and food addiction.

    Science.gov (United States)

    Volkow, Nora D; Wise, Roy A; Baler, Ruben

    2017-11-16

    Behaviours such as eating, copulating, defending oneself or taking addictive drugs begin with a motivation to initiate the behaviour. Both this motivational drive and the behaviours that follow are influenced by past and present experience with the reinforcing stimuli (such as drugs or energy-rich foods) that increase the likelihood and/or strength of the behavioural response (such as drug taking or overeating). At a cellular and circuit level, motivational drive is dependent on the concentration of extrasynaptic dopamine present in specific brain areas such as the striatum. Cues that predict a reinforcing stimulus also modulate extrasynaptic dopamine concentrations, energizing motivation. Repeated administration of the reinforcer (drugs, energy-rich foods) generates conditioned associations between the reinforcer and the predicting cues, which is accompanied by downregulated dopaminergic response to other incentives and downregulated capacity for top-down self-regulation, facilitating the emergence of impulsive and compulsive responses to food or drug cues. Thus, dopamine contributes to addiction and obesity through its differentiated roles in reinforcement, motivation and self-regulation, referred to here as the 'dopamine motive system', which, if compromised, can result in increased, habitual and inflexible responding. Thus, interventions to rebalance the dopamine motive system might have therapeutic potential for obesity and addiction.

  19. Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Rochellys Diaz Heijtz

    2018-02-01

    Interpretation: Naturally occurring genetic variation in the dopamine system can influence treatment outcomes in children with cerebral palsy. A polygenic dopamine score might be valid for treatment outcome prediction and for designing individually tailored interventions for children with cerebral palsy.

  20. Development and function of the midbrain dopamine system: what we know and what we need to

    OpenAIRE

    Bissonette, G. B.; Roesch, M. R.

    2015-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson’s disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, in...

  1. Study and development of retinal dopamine nervous system in experimental myopia

    International Nuclear Information System (INIS)

    Zhao Juan; Liu Xingdang

    2007-01-01

    Myopia is the most familiar ametropia. Animal experimental models include form deprivation myopia and defocus myopia. Experimental animals we often use are chicken and mammals. The retinal dopamine system and vision experience have close relations with the regulation of eyeball's growth after birth, while the change of dopamine transporter may reflect the change of dopamine in the synaptic cleft more directly. (authors)

  2. Regenerative, Highly-Sensitive, Non-Enzymatic Dopamine Sensor and Impact of Different Buffer Systems in Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    Saumya Joshi

    2018-01-01

    Full Text Available Carbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic conducting medium, among its other properties. In this work, we demonstrate highly-sensitive regenerative dopamine sensors and the impact of varying buffer composition and type on the electrolyte gated field effect sensors. The role of the buffer system is an often ignored condition in the electrical characterization of sensors. Non-enzymatic dopamine sensors are fabricated and regenerated in hydrochloric acid (HCl solution. The sensors are finally measured against four different buffer solutions. The impact of the nature and chemical structure of buffer molecules on the dopamine sensors is shown, and the appropriate buffer systems are demonstrated.

  3. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Science.gov (United States)

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  4. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  5. Dopamine, nitric oxide and their interactions in models for the study of schizophrenia / Dopamina, óxido nítrico e suas interações em modelos para o estudo da esquizofrenia

    Directory of Open Access Journals (Sweden)

    Cristiane Salum

    2008-01-01

    Full Text Available Experimental models based on the increase of dopaminergic neurotransmission mimic behavioral and neurochemical schizophrenia-like aspects. Psychostimulants, as amphetamine, are used with this purpose because they increase extracellular dopamine levels in mesocorticolimbic and mesostriatal pathways. The limitations of direct manipulation uniquely based on the dopamine system in animal models have encouraged the use of new approaches. Nitric oxide (NO, an atypical neurotransmitter which inhibits dopamine reuptake and stimulates its release, seems to modulate dopamine-controlled behaviors. The prepulse inhibition test reveals deficits on the sensorimotor filter found in schizophrenics or after psichotomimetic treatments. This review presents evidences for the interaction between NO and DA systems on schizophrenia models as a new tool for the investigation of this pathology.

  6. A Dopamine Hypothesis of Autism Spectrum Disorder.

    Science.gov (United States)

    Pavăl, Denis

    2017-01-01

    Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. While several theories have emerged, the pathogenesis of ASD remains unknown. Although studies report dopamine signaling abnormalities in autistic patients, a coherent dopamine hypothesis which could link neurobiology to behavior in ASD is currently lacking. In this paper, we present such a hypothesis by proposing that autistic behavior arises from dysfunctions in the midbrain dopaminergic system. We hypothesize that a dysfunction of the mesocorticolimbic circuit leads to social deficits, while a dysfunction of the nigrostriatal circuit leads to stereotyped behaviors. Furthermore, we discuss 2 key predictions of our hypothesis, with emphasis on clinical and therapeutic aspects. First, we argue that dopaminergic dysfunctions in the same circuits should associate with autistic-like behavior in nonautistic subjects. Concerning this, we discuss the case of PANDAS (pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections) which displays behaviors similar to those of ASD, presumed to arise from dopaminergic dysfunctions. Second, we argue that providing dopamine modulators to autistic subjects should lead to a behavioral improvement. Regarding this, we present clinical studies of dopamine antagonists which seem to have improving effects on autistic behavior. Furthermore, we explore the means of testing our hypothesis by using neuroreceptor imaging, which could provide comprehensive evidence for dopamine signaling dysfunctions in autistic subjects. Lastly, we discuss the limitations of our hypothesis. Along these lines, we aim to provide a dopaminergic model of ASD which might lead to a better understanding of the ASD pathogenesis. © 2017 S. Karger AG, Basel.

  7. Reward and aversion in a heterogeneous midbrain dopamine system.

    Science.gov (United States)

    Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C

    2014-01-01

    The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development and function of the midbrain dopamine system: what we know and what we need to.

    Science.gov (United States)

    Bissonette, G B; Roesch, M R

    2016-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Effects of Pro-Gly-Pro tripeptide on the dopamine system.

    Science.gov (United States)

    Meshavkin, V K; Batishcheva, E Yu; Kost, N V; Sokolov, O Yu; Trufanova, A V; Samonina, G E

    2011-08-01

    Tripeptide Pro-Gly-Pro interacted with dopamine receptors in vitro and reduced behavioral manifestations of apomorphine-induced hyperfunction of the dopamine system in verticalization, stereotypy, and yawning tests. Presumably, the behavioral effects of Pro-Gly-Pro tripeptide were mediated through post- and presynaptic D(2)and D(3)receptors.

  10. Dopamine systems adaptation during acquisition and consolidation of a skill

    Directory of Open Access Journals (Sweden)

    Wolfgang H Sommer

    2014-11-01

    Full Text Available The striatum plays a key role in motor learning. Striatal function depends strongly on dopaminergic neurotransmission, but little is known about neuroadaptions of the dopamine system during striatal learning. Using an established task that allows differentiation between acquisition and consolidation of motor learning, we here investigate D1 and D2-like receptor binding and transcriptional levels after initial and long-term training of mice. We found profound reduction in D1 binding within the dorsomedial striatum (DMS after the first training session on the accelerated rotarod and a progressive reduction in D2-like binding within the dorsolateral striatum (DLS after extended training. Given that similar phase- and region-specific striatal neuroadaptations have been found also during learning of complex procedural tasks including habit formation and automatic responding, the here observed neurochemical alterations are important for our understanding of neuropsychiatric disorders that show a dysbalance in the function of striatal circuits, such as in addictive behaviours.

  11. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release.

    Directory of Open Access Journals (Sweden)

    Roy A Wise

    Full Text Available Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI--a cocaine analogue that does not cross the blood brain barrier--on glutamate (excitatory input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals.

  12. Modulation of the mesolimbic dopamine system by leptin.

    Science.gov (United States)

    Opland, Darren M; Leinninger, Gina M; Myers, Martin G

    2010-09-02

    Nutritional status modulates many forms of reward-seeking behavior, with caloric restriction increasing the drive for drugs of abuse as well as for food. Understanding the interactions between the mesolimbic dopamine (DA) system (which mediates the incentive salience of natural and artificial rewards) and the neural and hormonal systems that sense and regulate energy balance is thus of significant importance. Leptin, which is produced by adipocytes in proportion to fat content as a hormonal signal of long-term energy stores, acts via its receptor (LepRb) on multiple populations of central nervous system neurons to modulate neural circuits in response to body energy stores. Leptin suppresses feeding and plays a central role in the control of energy balance. In addition to demonstrating that leptin modulates hypothalamic and brainstem circuits to promote satiety, recent work has begun to explore the mechanisms by which leptin influences the mesolimbic DA system and related behaviors. Indeed, leptin diminishes several measures of drug and food reward, and promotes a complex set of changes in the mesolimbic DA system. While many of the details remain to be worked out, several lines of evidence suggest that leptin regulates the mesolimbic DA system via multiple neural pathways and processes, and that distinct sets of LepRb neurons each modulate unique aspects of the mesolimbic DA system and behavior in response to leptin. 2010 Elsevier B.V. All rights reserved.

  13. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    Science.gov (United States)

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author

  14. Characterization of D1 dopamine receptors in the central nervous system

    International Nuclear Information System (INIS)

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D 1 dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D 1 dopamine receptor antagonists, SCH23390. [ 3 H]SCH23390 represents a superior radioligand for labeling the two-state striatal D 1 dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D 1 dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D 1 dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity

  15. Measurements, in vivo, of parameters of the dopamine system

    International Nuclear Information System (INIS)

    Friedman, A.M.; DeJesus, O.T.; Dinerstein, R.; Revenaugh, J.

    1983-01-01

    This paper discusses methods of measuring important parameters of the dopamine system in the living animal by use of PET techniques. One primary concern is the density and binding affinity of post-synaptic neuroreceptors. A second concern is the activity of neurons. In vivo, this is generally related to the turnover of neurotransmitter and can also be related to the uptake of precursor compounds by the neurons. If the transmitter and neuroleptic compound compete for the same binding sites (on the receptor molecule) these two effects are interwoven and are not easily isolated. It appears that the movement of neuroleptic drugs from the brain is slow enough to allow equilibrium to be maintained between ligand and receptor, especially after some time for the initial washout and translocation in the brain. To test the consequences of equilibrium binding and the possible use of the model for measurement of receptor densities by emission tomography we have modified Clark's equilibrium model of ligand binding. In this note we will describe the solutions of the equations and some comparisons of the predictions of the model with data, as well as its application to tomographic measurements

  16. Antidepressant activity of curcumin: involvement of serotonin and dopamine system.

    Science.gov (United States)

    Kulkarni, Shrinivas K; Bhutani, Mohit Kumar; Bishnoi, Mahendra

    2008-12-01

    Curcumin is a major active principle of Curcuma longa, one of the widely used preparations in the Indian system of medicine. It is known for its diverse biological actions. The present study was designed to investigate the involvement of monoaminergic system(s) in the antidepressant activity of curcumin and the effect of piperine, a bioavailability enhancer, on the bioavailability and biological effects of curcumin. Behavioral (forced swim test), biochemical (monoamine oxidase (MAO) enzyme inhibitory activity), and neurochemical (neurotransmitter levels estimation) tests were carried out. Curcumin (10-80 mg/kg, i.p.) dose dependently inhibited the immobility period, increased serotonin (5-hydroxytryptamine, 5-HT) as well as dopamine levels (at higher doses), and inhibited the monoamine oxidase enzymes (both MAO-A and MAO-B, higher doses) in mice. Curcumin (20 mg/kg, i.p.) enhanced the anti-immobility effect of subthreshold doses of various antidepressant drugs like fluoxetine, venlafaxine, or bupropion. However, no significant change in the anti-immobility effect of imipramine and desipramine was observed. Furthermore, combination of subthreshold dose of curcumin and various antidepressant drugs resulted in synergistic increase in serotonin (5-HT) levels as compared to their effect per se. There was no change in the norepinephrine levels. The coadministration of piperine (2.5 mg/kg, i.p.), a bioavailability enhancing agent, with curcumin (20 and 40 mg/kg, i.p.) resulted in potentiation of pharmacological, biochemical, and neurochemical activities. The study provides evidences for mechanism-based antidepressant actions of curcumin. The coadministration of curcumin along with piperine may prove to be a useful and potent natural antidepressant approach in the management of depression.

  17. The risky business of dopamine agonists in Parkinson disease and impulse control disorders

    NARCIS (Netherlands)

    Claassen, D.O.; van den Wildenberg, W.P.M.; Ridderinkhof, K.R.; Jessup, C.K.; Harrison, M.B.; Wooten, G.F.; Wylie, S.A.

    2011-01-01

    Risk-taking behavior is characterized by pursuit of reward in spite of potential negative consequences. Dopamine neurotransmission along the mesocorticolimbic pathway is a potential modulator of risk behavior. In patients with Parkinson's disease (PD), impulse control disorder (ICD) can result from

  18. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    Science.gov (United States)

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  20. [Neurotensin-like oligopeptides as potential antipsychotics: effect on dopamine system].

    Science.gov (United States)

    Kost, N V; Meshavkin, V K; Batishcheva, E Iu; Sokolov, O Iu; Andreeva, L A; Miasoedov, N F

    2011-01-01

    According to published data, peptide neurotensin is considered as endogenous antipsychotic agent. A series of oligopeptides have been synthesized based on the proposed active center of neurotensin. These oligopeptides (called neurotensin-like peptides, NLPs) have been studied on behavioral models, in which the functional state of the dopamine system of animals was modified by apomorphine injections. The results of verticalization, stereotypy, and yawning tests revealed NLPs that behave as antagonists of dopamine receptors. Radioligand analysis showed that these peptides compete for specific binding to these receptors with sulpiride, which is a D2-type selective antagonist of dopamine receptors. The high degree of NLPs efficiency manifested in the behavioral tests and radioligand analysis suggests that the their antipsychotic action can be mediated by dopamine receptors.

  1. Oxytocin, Motivation and the Role of Dopamine

    Science.gov (United States)

    Love, Tiffany M.

    2013-01-01

    The hypothalamic neuropeptide oxytocin has drawn the attention of scientists for more than a century. The understanding of the function of oxytocin has expanded dramatically over the years from a simple peptide adept at inducing uterine contractions and milk ejection to a complex neuromodulator with a capacity to shape human social behavior. Decades of research have outlined oxytocin’s ability to enhance intricate social activities ranging from pair bonding, sexual activity, affiliative preferences, and parental behaviors. The precise neural mechanisms underlying oxytocin’s influence on such behaviors have just begun to be understood. Research suggests that oxytocin interacts closely with the neural pathways responsible for processing motivationally relevant stimuli. In particular, oxytocin appears to impact dopaminergic activity within the mesocorticolimbic dopamine system, which is crucial not only for reward and motivated behavior but also for the expression of affiliative behaviors. Though most of the work performed in this area has been done using animal models, several neuroimaging studies suggest similar relationships may be observed in humans. In order to introduce this topic further, this paper will review the recent evidence that oxytocin may exert some of its social-behavioral effects through its impact on motivational networks. PMID:23850525

  2. APRESS: apical regulatory super system, serotonin, and dopamine interaction

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-08-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USABackground: The monoamines serotonin and dopamine are known to exist in two separate states: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless."Methods: A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined.Results: Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless.Conclusion: The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.Keywords: catecholamine, monoamine, competitive inhibition state

  3. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered 'wanting' for reward: entire core and medial shell mapped as substrates for PIT enhancement.

    Science.gov (United States)

    Peciña, Susana; Berridge, Kent C

    2013-05-01

    Pavlovian cues [conditioned stimulus (CS+)] often trigger intense motivation to pursue and consume related reward [unconditioned stimulus (UCS)]. But cues do not always trigger the same intensity of motivation. Encountering a reward cue can be more tempting on some occasions than on others. What makes the same cue trigger more intense motivation to pursue reward on a particular encounter? The answer may be the level of incentive salience ('wanting') that is dynamically generated by mesocorticolimbic brain systems, influenced especially by dopamine and opioid neurotransmission in the nucleus accumbens (NAc) at that moment. We tested the ability of dopamine stimulation (by amphetamine microinjection) vs. mu opioid stimulation [by d-Ala, nMe-Phe, Glyol-enkephalin (DAMGO) microinjection] of either the core or shell of the NAc to amplify cue-triggered levels of motivation to pursue sucrose reward, measured with a Pavlovian-Instrumental Transfer (PIT) procedure, a relatively pure assay of incentive salience. Cue-triggered 'wanting' in PIT was enhanced by amphetamine or DAMGO microinjections equally, and also equally at nearly all sites throughout the entire core and medial shell (except for a small far-rostral strip of shell). NAc dopamine/opioid stimulations specifically enhanced CS+ ability to trigger phasic peaks of 'wanting' to obtain UCS, without altering baseline efforts when CS+ was absent. We conclude that dopamine/opioid stimulation throughout nearly the entire NAc can causally amplify the reactivity of mesocorticolimbic circuits, and so magnify incentive salience or phasic UCS 'wanting' peaks triggered by a CS+. Mesolimbic amplification of incentive salience may explain why a particular cue encounter can become irresistibly tempting, even when previous encounters were successfully resisted before. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    Science.gov (United States)

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  5. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    Science.gov (United States)

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  6. Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use

    Science.gov (United States)

    Ernst, Monique; Luciana, Monica

    2015-01-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  7. Dopamine mediates testosterone-induced social reward in male Syrian hamsters.

    Science.gov (United States)

    Bell, Margaret R; Sisk, Cheryl L

    2013-03-01

    Adolescent maturation of responses to social stimuli is essential for adult-typical sociosexual behavior. Naturally occurring developmental changes in male Syrian hamster responses to a salient social cue, female hamster vaginal secretions (VS), provide a good model system for investigating neuroendocrine mechanisms of adolescent change in social reward. Sexually naïve adult, but not juvenile, males show a conditioned place preference (CPP) to VS, indicating that VS is not rewarding before puberty. In this series of experiments, the authors examined the roles of testosterone and dopamine receptor activation in mediating the adolescent gain in positive valence of VS. Experiment 1 showed that testosterone replacement is necessary for gonadectomized adult hamsters to form a CPP to VS. Experiment 2 showed that testosterone treatment is sufficient for juvenile hamsters to form a CPP to VS, and that the dopamine receptor antagonist haloperidol blocks formation of a CPP to VS in these animals. Experiments 3 and 4 demonstrated that the disruption of VS CPP with low doses of haloperidol is the result of a reduction in the attractive properties of VS and not attributable to aversive properties of haloperidol. Together, these studies demonstrate that the unconditioned rewarding properties of a social cue necessary for successful adult sociosexual interactions come about as the result of the pubertal increase in circulating testosterone in male hamsters. Furthermore, this social reward can be prevented by dopamine receptor antagonism, indicating that hypothalamic and/or mesocorticolimbic dopaminergic circuits are targets for hormonal activation of social reward.

  8. Polymorphisms in Dopamine System Genes Are Associated with Individual Differences in Attention in Infancy

    Science.gov (United States)

    Holmboe, Karla; Nemoda, Zsofia; Fearon, R. M. Pasco; Csibra, Gergely; Sasvari-Szekely, Maria; Johnson, Mark H.

    2010-01-01

    Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase ("COMT") and the…

  9. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata

    Science.gov (United States)

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  10. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  11. Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles.

    Science.gov (United States)

    Das, Arunangshu; Verma, Anita; Mukherjee, Krishna J

    2017-09-14

    L-Dopa and dopamine are important pathway intermediates toward the synthesis of catecholamine such as epinephrine and norepinephrine from amino acid L-tyrosine. Dopamine, secreted from dopaminergic nerve cells, serves as an important neurotransmitter. We report the synthesis of dopamine by extending the aromatic amino acid pathway of Escherichia coli DH5α by the expression of 4-hydroxyphenylacetate-3-hydrolase (HpaBC) from E. coli and an engineered dopa decarboxylase (DDC) from pig kidney cell. The activity of HpaBC and DDC require 200 µM iron supplementation and 50 µM vitamin B6, respectively as additives to the growth media. The maximum concentration of L-dopa and dopamine obtained from the broth was around 26 and 27 mg/L after 24 hr of separate shake flask studies. We observed that in the presence of dopamine synthesized in vivo host growth was remarkably enhanced. These observations lead us to an interesting finding about the role of these catecholamines on bacterial growth. It is clear that synthesis of dopamine in vivo actually promotes growth much efficiently as compared to when dopamine is added to the system from outside. From HPLC and GC-MS data it was further observed that L-dopa was stable within the observable time of experiments whereas dopamine actually was subjected to degradation via oxidation and host consumption.

  12. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  13. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress.

    Science.gov (United States)

    Grace, Anthony A

    2010-11-01

    The dopamine system is under multiple forms of regulation, and in turn provides effective modulation of system responses. Dopamine neurons are known to exist in several states of activity. The population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine tegmentum (PPTg). When an animal is exposed to a behaviorally salient stimulus, the PPTg elicits a burst of action potentials in the dopamine neurons. However, this bursting only occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed to carry information related to the environmental context. Thus, the ventral subiculum will adjust the responsivity of the dopamine system based on the needs of the organism and the characteristics of the environment. However, this finely tuned system can be disrupted in disease states. In schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state. Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site of therapeutic intervention in the treatment or even the prevention of schizophrenia.

  14. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    Science.gov (United States)

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  15. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    Science.gov (United States)

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  16. A top-down perspective on dopamine, motivation and memory.

    Science.gov (United States)

    Phillips, Anthony G; Vacca, Giada; Ahn, Soyon

    2008-08-01

    Dopamine (DA) activity, in the form of increased neural firing or enhanced release of transmitter from nerve terminals and varicosities, is linked to a number of important psychological processes including: movement; hedonic reactions to positive reward; provision of an error detection signal during the acquisition of new learning; response to novel stimuli; provision of reinforcement signals essential for acquisition of new action patterns; and incentive motivation. This review focuses primarily on our research linking dynamic changes in DA efflux on the timescale of minutes, with incentive motivation, as revealed by brain dialysis experiments in behaving animals. Recent experiments on sensory-specific satiety and successive positive and negative contrast are discussed along with the distinction between preparatory behaviors that precede contact with biologically significant stimuli and subsequent consummatory behaviors. The relationship between DA efflux in the medial prefrontal cortex (mPFC) and foraging for food based on working memory is also discussed in support of the conjecture that DA may serve as a link between motivation and memory functions. Evidence in support of 'top-down' regulation of dopaminergic activity in the mesocorticolimbic DA pathways is reviewed briefly to introduce a mechanism by which activation of ascending DA projections in this manner might optimize dopaminergic modulation of executive function within regions such as the mPFC. Collectively, these processes could ensure coordination between cognitive processes that assess current opportunities and the motivational systems that select and engage patterns of approach behavior that bring organisms into contact with the essentials for survival.

  17. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry.

    Science.gov (United States)

    Filbey, Francesca M; Claus, Eric; Audette, Amy R; Niculescu, Michelle; Banich, Marie T; Tanabe, Jody; Du, Yiping P; Hutchison, Kent E

    2008-05-01

    A growing number of imaging studies suggest that alcohol cues, mainly visual, elicit activation in mesocorticolimbic structures. Such findings are consistent with the growing recognition that these structures play an important role in the attribution of incentive salience and the pathophysiology of addiction. The present study investigated whether the presentation of alcohol taste cues can activate brain regions putatively involved in the acquisition and expression of incentive salience. Using functional magnetic resonance imaging, we recorded BOLD activity while delivering alcoholic tastes to 37 heavy drinking but otherwise healthy volunteers. The results yielded a pattern of BOLD activity in mesocorticolimbic structures (ie prefrontal cortex, striatum, ventral tegmental area/substantia nigra) relative to an appetitive control. Further analyses suggested strong connectivity between these structures during cue-elicited urge and demonstrated significant positive correlations with a measure of alcohol use problems (ie the Alcohol Use Disorders Identification Test). Thus, repeated exposure to the taste alcohol in the scanner elicits activation in mesocorticolimbic structures, and this activation is related to measures of urge and severity of alcohol problems.

  18. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    Science.gov (United States)

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  19. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    Science.gov (United States)

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  20. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong; Hu Mingyang; Pan Shangren; Wang Bocheng

    1996-01-01

    To study preparation of central nerves system dopamine D2 imaging agent 131 I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated 125 I-IBZM and 131 I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of 125 I-IBZM and 131 I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: K d = 0.53 +- 0.06 nmol/L, B max = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high 125 I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high 125 -IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. 131 I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat's and rabbit's central nerves system dopamine D2 receptors

  1. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    Energy Technology Data Exchange (ETDEWEB)

    Yansong, Lin; Xiangtong, Lin; Mingyang, Hu; Shangren, Pan; Bocheng, Wang [Huashan Hospital of Shanghai Medical Univ., Shanghai (China)

    1996-11-01

    To study preparation of central nerves system dopamine D2 imaging agent {sup 131}I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated {sup 125}I-IBZM and {sup 131}I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of {sup 125}I-IBZM and {sup 131}I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: K{sub d} = 0.53 +- 0.06 nmol/L, B{sub max} = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high {sup 125}I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high {sup 125}-IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. {sup 131}I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat`s and rabbit`s central nerves system dopamine D2 receptors.

  2. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  3. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.

    Science.gov (United States)

    Le Heron, Campbell; Plant, Olivia; Manohar, Sanjay; Ang, Yuen-Siang; Jackson, Matthew; Lennox, Graham; Hu, Michele T; Husain, Masud

    2018-05-01

    Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson's disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in animal models and humans. Furthermore, the dopaminergic system plays a core role in motivating effortful behaviour for reward, and its dysfunction has been proposed to play a crucial role in the aetiology of apathy in Parkinson's disease. We hypothesized that disrupted effort-based decision-making underlies the syndrome of apathy in Parkinson's disease, and that this disruption may be modulated by the dopaminergic system. An effort-based decision-making task was administered to 39 patients with Parkinson's disease, with and without clinical apathy, ON and OFF their normal dopaminergic medications across two separate sessions, as well as 32 healthy age- and gender-matched controls. On a trial-by-trial basis, participants decided whether to accept or reject offers of monetary reward in return for exerting different levels of physical effort via handheld, individually calibrated dynamometers. Effort and reward were manipulated independently, such that offers spanned the full range of effort/reward combinations. Apathy was assessed using the Lille apathy rating scale. Motor effects of the dopamine manipulation were assessed using the Unified Parkinson's Disease Rating Scale part three motor score. The primary outcome variable was choice (accept/decline offer) analysed using a hierarchical generalized linear mixed effects model, and the vigour of squeeze (Newtons exerted above required force). Both apathy and dopamine depletion were associated with reduced acceptance of offers. However, these effects were driven by dissociable patterns of responding. While apathy was characterized by increased rejection of predominantly low reward offers, dopamine increased responding to

  4. Epigenetic dysregulation of the dopamine system in diet-induced obesity.

    Science.gov (United States)

    Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M

    2012-03-01

    Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  5. Specificity and impact of adrenergic projections to the midbrain dopamine system

    Science.gov (United States)

    Mejias-Aponte, Carlos A.

    2016-01-01

    Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson’s disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. PMID:26820641

  6. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit.

    Science.gov (United States)

    Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.

  7. Systemic effects of low-dose dopamine during administration of cytarabine.

    Science.gov (United States)

    Connelly, James; Benani, Dina J; Newman, Matthew; Burton, Bradley; Crow, Jessica; Levis, Mark

    2017-09-01

    Purpose Low-dose dopamine has been utilized to improve renal blood flow, urine output, and reduce drug-induced nephrotoxicity. The purpose of this study was to assess changes in renal function, cardiovascular adverse events, and neurologic toxicity in patients receiving cytarabine with or without low-dose dopamine. Methods A retrospective, single-center, cohort study of patients receiving cytarabine at 667 mg/m 2 /dose or greater, with or without dopamine at ≤5 mcg/kg/min. Cohorts were based upon initiation or absence of low-dose dopamine; cytarabine only, cytarabine + pre- and day of low-dose dopamine, and cytarabine + post-low-dose dopamine. Renal outcomes (urine output, serum creatinine, and creatinine clearance) were compared with baseline and between cohorts. Safety endpoints (arrhythmias, tachycardia, and neurotoxicity) were compared between cohorts based on low-dose dopamine exposure. Results There was no difference in urine output from baseline in all cohorts. Comparing cytarabine only and pre- and day of low-dose dopamine cohorts, there was no difference in urine output. In those receiving low-dose dopamine, there was no difference in serum creatinine and creatinine clearance from baseline. No arrhythmias were documented during the study period, and there was no difference in the incidence of tachycardia between groups (P = 0.66). Neurotoxicity was reported in three patients who were on low-dose dopamine. Conclusion Though variation existed in individual patients administered low-dose dopamine, the use of low-dose dopamine did not significantly impact renal function in this small sample at a single institution. In addition, low-dose dopamine did not negatively impact cardiovascular function.

  8. Reversal of dopamine system dysfunction in response to high-fat diet.

    Science.gov (United States)

    Carlin, Jesselea; Hill-Smith, Tiffany E; Lucki, Irwin; Reyes, Teresa M

    2013-12-01

    To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention. Copyright © 2013 The Obesity Society.

  9. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitoxicity and Environmental, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2002-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S...

  10. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2005-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S...

  11. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice.

    Science.gov (United States)

    Lippert, Rachel N; Ellacott, Kate L J; Cone, Roger D

    2014-05-01

    The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.

  12. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  13. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study

    NARCIS (Netherlands)

    da Silva Alves, Fabiana; Schmitz, Nicole; Figee, Martijn; Abeling, Nico; Hasler, Gregor; van der Meer, Johan; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-01-01

    Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity

  14. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    Science.gov (United States)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  15. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats.

    Science.gov (United States)

    Flagel, Shelly B; Watson, Stanley J; Robinson, Terry E; Akil, Huda

    2007-04-01

    The way an individual responds to cues associated with rewards may be a key determinant of vulnerability to compulsive behavioral disorders. We studied individual differences in Pavlovian conditioned approach behavior and examined the expression of neurobiological markers associated with the dopaminergic system, the same neural system implicated in incentive motivational processes. Pavlovian autoshaping procedures consisted of the brief presentation of an illuminated retractable lever (conditioned stimulus) followed by the response-independent delivery of a food pellet (unconditioned stimulus), which lead to a Pavlovian conditioned response. In situ hybridization was performed on brains obtained either following the first or last (fifth) day of training. Two phenotypes emerged. Sign-trackers (ST) exhibited behavior that seemed to be largely controlled by the cue that signaled impending reward delivery; whereas goal-trackers (GT) preferentially approached the location where the reward was delivered. Following a single training session, ST showed greater expression of dopamine D1 receptor mRNA relative to GT. After 5 days of training, GT exhibited greater expression levels of tyrosine hydroxylase, dopamine transporter, and dopamine D2 receptor mRNA relative to ST. These findings suggest that the development of approach behavior towards signals vs goal leads to distinct adaptations in the dopamine system. The sign-tracker vs goal-tracker phenotype may prove to be a valuable animal model to investigate individual differences in the way incentive salience is attributed to environmental stimuli, which may contribute to the development of addiction and other compulsive behavioral disorders.

  16. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    Science.gov (United States)

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2001-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is rapidly becoming a widespread problem and drug of abuse throughout the U.S...

  19. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2000-01-01

    .... Similarly, the psycho stimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is rapidly becoming a widespread problem and drug of abuse throughout the U.S...

  20. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism.

    Science.gov (United States)

    Nakasato, Akane; Nakatani, Yasushi; Seki, Yoshinari; Tsujino, Naohisa; Umino, Masahiro; Arita, Hideho

    2008-02-08

    Several clinical reports have suggested that there is a hyperactivation of the dopaminergic system in people with autism. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we measured dopamine (DA) levels in samples collected from the frontal cortex (FC) using in vivo microdialysis and HPLC. The basal DA level in FC was significantly higher in VPA-exposed rats relative to controls. Since the mesocortical DA system is known to be sensitive to physical and psychological stressors, we measured DA levels in FC before, during, and after a 60-min forced swim test (FST). There were further gradual increases in FC DA levels during the FST in the VPA-exposed rats, but not in the control rats. Behavioral analysis during the last 10 min of the FST revealed a significant decrease in active, escape-oriented behavior and an increase in immobility, which is thought to reflect the development of depressive behavior that disengages the animal from active forms of coping with stressful stimuli. These results suggest that this rodent model of autism exhibits a hyperactive mesocortical DA system, which is exaggerated by swim stress. This abnormality may be responsible for depressive and withdrawal behavior observed in autism.

  1. The nigrostriatal dopamine system of aging GFRα-1 heterozygous mice: neurochemistry, morphology and behavior

    Science.gov (United States)

    Zaman, Vandana; Boger, Heather A.; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A.; Hoffer, Barry J.; Middaugh, Lawrence D.

    2009-01-01

    Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)α-1 (GFRα-1+/−), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRα-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRα-1+/− mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRα-1+/− mice. DA in the striatum was reduced in the GFRα-1+/− mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRα-1+/− mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRα-1+/− mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRα-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRα-1 can contribute to the degenerative changes observed in this system during the aging process. PMID:18973577

  2. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  3. Administration of secretin for autism alters dopamine metabolism in the central nervous system.

    Science.gov (United States)

    Toda, Yoshihiro; Mori, Kenji; Hashimoto, Toshiaki; Miyazaki, Masahito; Nozaki, Satoshi; Watanabe, Yasuyoshi; Kuroda, Yasuhiro; Kagami, Shoji

    2006-03-01

    We evaluated the clinical effects of intravenously administered secretin in 12 children with autism (age range: 4-6 years, median age: 9 years, boy:girl=8:4). In addition, we investigated the association between improvement in symptoms and changes in the cerebrospinal fluid (CSF) homovanillic acid (HVA),5-hydroxyindole-3-acetic acid (5-HIAA), and 6R-5,6,7,8-tetrahydro-L-biopterin (BH(4)) levels after administration. After administration of secretin, the Autism Diagnostic Interview-Revised (ADI-R) score improved in 7 of the 12 children. However, the score deteriorated in 2 of the 12 children (in the item of 'restricted and repetitive, stereotyped interests and behaviors'). The HVA and BH(4) levels in CSF were increased in all children with improvement in the ADI-R score. In contrast, no patient without the elevation of the BH(4) level showed improvement in the score. These findings suggest that secretin activated metabolic turnover of dopamine in the central nervous system via BH(4), improving symptoms.

  4. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  5. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Chen Yang

    Full Text Available High-voltage spindles (HVSs have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1 in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  6. Dopamina, óxido nítrico e suas interações em modelos para o estudo da esquizofrenia Dopamine, nitric oxide and their interactions in models for the study of schizophrenia

    Directory of Open Access Journals (Sweden)

    Cristiane Salum

    2008-01-01

    Full Text Available Modelos experimentais baseados no aumento da neurotransmissão dopaminérgica mimetizam aspectos comportamentais e neuroquímicos característicos da esquizofrenia. Psicoestimulantes, como a anfetamina, são utilizados com esta finalidade, pois aumentam os níveis de dopamina extracelular nas vias mesocorticolímbica e mesoestriatal. As limitações da manipulação direta do sistema dopaminérgico nos modelos animais incentivam abordagens complementares. O óxido nítrico (NO, um neurotransmissor atípico que inibe a recaptação de dopamina e estimula sua liberação, parece modular comportamentos controlados pelo sistema dopaminérgico. O teste de inibição pré-pulso revela uma deficiência no filtro sensório-motor, verificada em esquizofrênicos ou após tratamentos com psicotomiméticos, podendo ser prevenida pela inibição do NO. Esta revisão apresenta evidências da interação do NO com o sistema dopaminérgico em modelos para o estudo da esquizofrenia como uma nova ferramenta de investigação desta patologia.Experimental models based on the increase of dopaminergic neurotransmission mimic behavioral and neurochemical schizophrenia-like aspects. Psychostimulants, as amphetamine, are used with this purpose because they increase extracellular dopamine levels in mesocorticolimbic and mesostriatal pathways. The limitations of direct manipulation uniquely based on the dopamine system in animal models have encouraged the use of new approaches. Nitric oxide (NO, an atypical neurotransmitter which inhibits dopamine reuptake and stimulates its release, seems to modulate dopamine-controlled behaviors. The prepulse inhibition test reveals deficits on the sensorimotor filter found in schizophrenics or after psichotomimetic treatments. This review presents evidences for the interaction between NO and DA systems on schizophrenia models as a new tool for the investigation of this pathology.

  7. Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish

    Science.gov (United States)

    Robinson, Bonnie L.; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1–0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression. PMID:26898327

  8. Potentiation of Morphine-Induced Antinociception by Propranolol: The Involvement of Dopamine and GABA Systems

    Directory of Open Access Journals (Sweden)

    Elham A. Afify

    2017-11-01

    Full Text Available Tolerance to the analgesic effect of morphine is a major clinical problem which can be managed by co-administration of another drug. This study investigated the ability of propranolol to potentiate the antinociceptive action of morphine and the possible mechanisms underlying this effect. Antinociception was assessed in three nociceptive tests (thermal, hot plate, (visceral, acetic acid, and (inflammatory, formalin test in mice and quantified by measuring the percent maximum possible effect, the percent inhibition of acetic acid-evoked writhing response, and the area under the curve values of number of flinches for treated mice, respectively. The study revealed that propranolol (0.25–20 mg/Kg, IP administration did not produce analgesia in mice. However, 10 mg/Kg propranolol, enhanced the antinociceptive effect of sub-analgesic doses of morphine (0.2, 1, and 2 mg/Kg, IP in the three nociceptive tests. It also shifted the dose response curve of morphine to the left. The combined effect of propranolol and morphine was attenuated by haloperidol (D2 receptor antagonist, 1.5 mg/Kg, IP, and bicuculline (GABAA receptor antagonist, 2 mg/Kg, IP. Repeated daily administration of propranolol (10 mg/Kg, IP did not alter the nociceptive responses in the three pain tests, but it significantly potentiated morphine-induced antinociception in the hot plate, acetic acid-evoked writhing, and in the second phase of formalin tests. Together, the data suggest that a cross-talk exists between the opioidergic and adrenergic systems and implicate dopamine and GABA systems in this synergistic effect of morphine-propranolol combination. Propranolol may serve as an adjuvant therapy to potentiate the effect of opioid analgesics.

  9. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  10. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    Science.gov (United States)

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  11. Effect of dopamine injection on the hemocyte count and prophenoloxidase system of the white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Pan, Luqing; Hu, Fawen; Zheng, Debin

    2011-09-01

    Effects of dopamine injection on the hemocyte count, phenoloxidase activity, serine proteinase activity, proteinase inhibitor activity and α2-macroglobulin-like activity in L. vannamei were studied. Results showed that dopamine injection resulted in a significant effect on the parameters measured ( P < 0.05), while no significant difference was observed in the control group (0.85% NaCl). In the experimental groups, the hemocyte count reached the minimum in 3 h; granular and semi-granular cells became stable after 12 h and hyaline cells and the total hemocyte count became stable after 18 h. Phenoloxidase activity reached the minimum in 6 h, and then became stable after 9 h. Serine protease activity and proteinase inhibitor activity reached the minimum in 3 h, and α2-macroglobulin-like activity reached the maximum in 3 h, and all the three parameters became stable after 12 h. The results suggest that the activating mechanisms of the proPO system triggered by dopamine are different from those triggered by invasive agents or spontaneously activated under a normal physical condition.

  12. Dopamine and Stress System Modulation of Sex Differences in Decision Making.

    Science.gov (United States)

    Georgiou, Polymnia; Zanos, Panos; Bhat, Shambhu; Tracy, J Kathleen; Merchenthaler, Istvan J; McCarthy, Margaret M; Gould, Todd D

    2018-01-01

    Maladaptive decision making is associated with several neuropsychiatric disorders, including problem gambling and suicidal behavior. The prevalence of these disorders is higher in men vs women, suggesting gender-dependent regulation of their pathophysiology underpinnings. We assessed sex differences in decision making using the rat version of the Iowa gambling task. Female rats identified the most optimal choice from session 1, whereas male rats from session 5. Male, but not female rats, progressively improved their advantageous option responding and surpassed females. Estrus cycle phase did not affect decision making. To test whether pharmacological manipulations targeting the dopaminergic and stress systems affect decision making in a sex-dependent manner, male and female rats received injections of a dopamine D 2 receptor (D 2 R) antagonist (eticlopride), D 2 R agonist (quinpirole), corticotropin-releasing factor 1 (CRF 1 ) antagonist (antalarmin), and α 2 -adrenergic receptor antagonist (yohimbine; used as a pharmacological stressor). Alterations in mRNA levels of D 2 R and CRF 1 were also assessed. Eticlopride decreased advantageous responding in male, but not female rats, whereas quinpirole decreased advantageous responding specifically in females. Yohimbine dose-dependently decreased advantageous responding in female rats, whereas decreased advantageous responding was only observed at higher doses in males. Antalarmin increased optimal choice responding only in female rats. Higher Drd2 and Crhr1 expression in the amygdala were observed in female vs male rats. Higher amygdalar Crhr1 expression was negatively correlated with advantageous responding specifically in females. This study demonstrates the relevance of dopaminergic- and stress-dependent sex differences to maladaptive decision making.

  13. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    Science.gov (United States)

    2005-07-01

    K. (1995) Methamphetamine -induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents...glutamate receptors is protective against methamphetamine neurotoxicity . JNeurosci 22, 2135-2141. Beer R., Franz G., Srinivasan A., Hayes R. L., Pike B. R...1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole

  14. Voluntary Exercise Improves Performance of a Discrimination Task through Effects on the Striatal Dopamine System

    Science.gov (United States)

    Eddy, Meghan C.; Stansfield, Katherine J.; Green, John T.

    2014-01-01

    We have previously demonstrated that voluntary exercise facilitates discrimination learning in a modified T-maze. There is evidence implicating the dorsolateral striatum (DLS) as the substrate for this task. The present experiments examined whether changes in DLS dopamine receptors might underlie the exercise-associated facilitation. Infusing a…

  15. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice

    OpenAIRE

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear con...

  16. ETUDE FONCTIONNELLE DES SYSTEMES DE CAPTURE SYNAPTOSOMALE ET VESICULAIRE DE DOPAMINE

    Directory of Open Access Journals (Sweden)

    M SLIMANI

    2001-06-01

    Full Text Available L‘injection stéréotaxique unilatérale dans la substance noire de la 6 hydroxy-dopamine ( 6OH-DA se traduit par une chute  parallèle  de  la   capture de dopamine tritiée au  niveau  synaptosomale de  l'ordre  de -70 % et dans les préparations vésiculaires de l'ordre de -69 %, comparées aux préparations issues de Rats non lésés. Ces résultats montrent que ces deux préparations synaptosomales et vésiculaires sont bien d'origine dopaminergique. D'autre part, une étude comparative de l'effet de quelques agents pharmacologiques (β carbolines, imipraminiques, amphétamine et les inhibiteurs purs de la capture synaptosomale sur la capture synaptosomale et vésiculaire de la dopamine tritiée in-vitro, montre qu'ils agissent comme de puissants inhibiteurs. Nous montrons également que le transporteur vésiculaire diffère du transporteur synaptosomal par sa stéréospécificité et sa sensibilité aux agents pharmacologiques.

  17. Different loss of dopamine transporter according to subtype of multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Won [Keimyung University Dongsan Medical Center, Department of Nuclear Medicine, Daegu (Korea, Republic of); Keimyung University, Department of Nuclear Medicine, School of Medicine, Jung-gu, Daegu (Korea, Republic of); Kim, Jae Seung; Oh, Minyoung; Oh, Jungsu S.; Lee, Sang Joo; Oh, Seung Jun [University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Songpa-gu, Seoul (Korea, Republic of); Chung, Sun Ju; Lee, Chong Sik [University of Ulsan College of Medicine, Department of Neurology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The aim of this study was to evaluate whether striatal dopamine transporter (DAT) loss as measured by {sup 18}F-fluorinated-N-3-fluoropropyl-2-b-carboxymethoxy-3-b-(4-iodophenyl) nortropane ([{sup 18}F]FP-CIT) PET differs according to the metabolic subtype of multiple system atrophy (MSA) as assessed by [{sup 18}F]FDG PET. This retrospective study included 50 patients with clinically diagnosed MSA who underwent [{sup 18}F]FP-CIT and [{sup 18}F]FDG brain PET scans. The PET images were analysed using 12 striatal subregional volume-of-interest templates (bilateral ventral striatum, anterior caudate, posterior caudate, anterior putamen, posterior putamen, and ventral putamen). The patients were classified into three metabolic subtypes according to the [{sup 18}F]FDG PET findings: MSA-P{sub m} (striatal hypometabolism only), MSA-mixed{sub m} (both striatal and cerebellar hypometabolism), and MSA-C{sub m} (cerebellar hypometabolism only). The subregional glucose metabolic ratio (MR{sub gluc}), subregional DAT binding ratio (BR{sub DAT}), and intersubregional ratio (ISR{sub DAT}; defined as the BR{sub DAT} ratio of one striatal subregion to that of another striatal subregion) were compared according to metabolic subtype. Of the 50 patients, 13 presented with MSA-P{sub m}, 16 presented with MSA-mixed{sub m}, and 21 presented with MSA-C{sub m}. The BR{sub DAT} of all striatal subregions in the MSA-P{sub m} and MSA-mixed{sub m} groups were significantly lower than those in the MSA-C{sub m} group. The posterior putamen/anterior putamen ISR{sub DAT} and anterior putamen/ventral striatum ISR{sub DAT} in the MSA-P{sub m} and MSA-mixed{sub m} groups were significantly lower than those in the MSA-C{sub m} group. Patients with MSA-P{sub m} and MSA-mixed{sub m} showed more severe DAT loss in the striatum than patients with MSA-C{sub m}. Patients with MSA-C{sub m} had more diffuse DAT loss than patients with MSA-P{sub m} and MSA-mixed{sub m}. (orig.)

  18. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    Science.gov (United States)

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  19. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Wang, Xiao H; Souders, Christopher L; Zhao, Yuan H; Martyniuk, Christopher J

    2018-01-01

    The dipyridyl herbicide paraquat induces oxidative stress in cells and is implicated in adult neurodegenerative diseases. However, less is known about paraquat toxicity in early stages of vertebrate development. To address this gap, zebrafish (Danio rerio) embryos were exposed to 1, 10 and 100 μM paraquat for 96 h. Paraquat did not induce significant mortality nor deformity in embryos and larvae, but it did accelerate time to hatch. To evaluate whether mitochondrial respiration was related to earlier hatch times, oxygen consumption rate was measured in whole embryos. Maximal respiration of embryos exposed to 100 μM paraquat for 24 h was reduced by more than 70%, suggesting that paraquat negatively impacts mitochondrial bioenergetics in early development. Based upon this evidence for mitochondrial dysfunction, transcriptional responses of oxidative stress- and apoptosis-related genes were measured. Fish exposed to 1 μM paraquat showed higher expression levels of superoxide dismutase 2, heat shock protein 70, Bcl-2-associated X protein, and B-cell CLL/lymphoma 2a compared to control fish. No differences among groups were detected in larvae exposed to 10 and 100 μM paraquat, suggesting a non-monotonic response. We also measured endpoints related to larval behavior and dopaminergic signaling as paraquat is associated with degeneration of dopamine neurons. Locomotor activity was stimulated with 100 μM paraquat and dopamine transporter and dopamine receptor 3 mRNA levels were increased in larvae exposed to 1 μM paraquat, interpreted to be a compensatory response at lower concentrations. This study improves mechanistic understanding into the toxic actions of paraquat on early developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats.

    Science.gov (United States)

    Engleman, Eric A; Keen, Elizabeth J; Tilford, Sydney S; Thielen, Richard J; Morzorati, Sandra L

    2011-09-01

    Moderate ethanol exposure produces neuroadaptive changes in the mesocorticolimbic dopamine (DA) system in nondependent rats and increases measures of DA neuronal activity in vitro and in vivo. Moreover, moderate ethanol drinking and moderate systemic exposure elevates extracellular DA levels in mesocorticolimbic projection regions. However, the neuroadaptive changes subsequent to moderate ethanol drinking on basal DA levels have not been investigated in the ventral tegmental area (VTA). In the present study, adult female alcohol-preferring (P) rats were divided into alcohol-naive, alcohol-drinking, and alcohol-deprived groups. The alcohol-drinking group had continuous access to water and ethanol (15%, vol/vol) for 8 weeks. The alcohol-deprived group had 6 weeks of access followed by 2 weeks of ethanol deprivation, 2 weeks of ethanol re-exposure, followed again by 2 weeks of deprivation. The deprived rats demonstrated a robust alcohol deprivation effect (ADE) on ethanol reinstatement. The alcohol-naïve group had continuous access to water only. In the last week of the drinking protocol, all rats were implanted with unilateral microdialysis probes aimed at the posterior VTA and no-net-flux microdialysis was conducted to quantify extracellular DA levels and DA clearance. Results yielded significantly lower basal extracellular DA concentrations in the posterior VTA of the alcohol-drinking group compared with the alcohol-naive and alcohol-deprived groups (3.8±0.3nM vs. 5.0±0.5nM [Palcohol-drinking and alcohol-naive groups (72±2% vs. 46±4%, respectively) and not significantly different (P=.051) between alcohol-deprived and alcohol-naive groups (61±6% for the alcohol-deprived group). The data indicate that reductions in basal DA levels within the posterior VTA occur after moderate chronic ethanol intake in nondependent P rats. This reduction may result, in part, from increased DA uptake and may be important for the maintenance of ethanol drinking. These adaptations

  1. Regulation of the mesolimbic dopamine circuit by feeding peptides.

    Science.gov (United States)

    Liu, S; Borgland, S L

    2015-03-19

    Polypeptides produced in the gastrointestinal tract, stomach, adipocytes, pancreas and brain that influence food intake are referred to as 'feeding-related' peptides. Most peptides that influence feeding exert an inhibitory effect (anorexigenic peptides). In contrast, only a few exert a stimulating effect (orexigenic peptides), such as ghrelin. Homeostatic feeding refers to when food consumed matches energy deficits. However, in western society where access to palatable energy-dense food is nearly unlimited, food is mostly consumed for non-homeostatic reasons. Emerging evidence implicates the mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), as a key substrate for non-homeostatic feeding. VTA dopamine neurons encode cues that predict rewards and phasic release of dopamine in the ventral striatum motivates animals to forage for food. To elucidate how feeding-related peptides regulate reward pathways is of importance to reveal the mechanisms underlying non-homeostatic or hedonic feeding. Here, we review the current knowledge of how anorexigenic peptides and orexigenic peptides act within the VTA. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  3. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats.

    Science.gov (United States)

    Sinclair, Elaine B; Culbert, Kristen M; Gradl, Dana R; Richardson, Kimberlei A; Klump, Kelly L; Sisk, Cheryl L

    2015-12-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex

  4. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats

    Directory of Open Access Journals (Sweden)

    Toshikatsu Okumura

    2016-02-01

    Subcutaneously (80 mg/rat or intracisternally (2.5 μg/rat administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain.

  5. Reward system and addiction: what dopamine does and doesn't do.

    Science.gov (United States)

    Di Chiara, Gaetano; Bassareo, Valentina

    2007-02-01

    Addictive drugs share with palatable food the property of increasing extracellular dopamine (DA), preferentially in the nucleus accumbens shell rather than in the core. However, by acting directly on the brain, drugs bypass the adaptive mechanisms (habituation) that constrain the responsiveness of accumbens shell DA to food reward, abnormally facilitating Pavlovian incentive learning and promoting the acquisition of abnormal DA-releasing properties by drug conditioned stimuli. Thus, whereas Pavlovian food conditioned stimuli release core but not shell DA, drug conditioned stimuli do the opposite, releasing shell but not core DA. This process, which results in the acquisition of excessive incentive-motivational properties by drug conditioned stimuli, initiates the drug addiction process. Neuroadaptive processes related to the chronic influence of drugs on subcortical DA might secondarily impair the function of prefronto-striatal loops, resulting in impairments in impulse control and decision making that form the basis for the compulsive feature of drug seeking and its relapsing character.

  6. Role of prefrontal cortex and the midbrain dopamine system in working memory updating

    Science.gov (United States)

    D’Ardenne, Kimberlee; Eshel, Neir; Luka, Joseph; Lenartowicz, Agatha; Nystrom, Leigh E.; Cohen, Jonathan D.

    2012-01-01

    Humans are adept at switching between goal-directed behaviors quickly and effectively. The prefrontal cortex (PFC) is thought to play a critical role by encoding, updating, and maintaining internal representations of task context in working memory. It has also been hypothesized that the encoding of context representations in PFC is regulated by phasic dopamine gating signals. Here we use multimodal methods to test these hypotheses. First we used functional MRI (fMRI) to identify regions of PFC associated with the representation of context in a working memory task. Next we used single-pulse transcranial magnetic stimulation (TMS), guided spatially by our fMRI findings and temporally by previous event-related EEG recordings, to disrupt context encoding while participants performed the same working memory task. We found that TMS pulses to the right dorsolateral PFC (DLPFC) immediately after context presentation, and well in advance of the response, adversely impacted context-dependent relative to context-independent responses. This finding causally implicates right DLPFC function in context encoding. Finally, using the same paradigm, we conducted high-resolution fMRI measurements in brainstem dopaminergic nuclei (ventral tegmental area and substantia nigra) and found phasic responses after presentation of context stimuli relative to other stimuli, consistent with the timing of a gating signal that regulates the encoding of representations in PFC. Furthermore, these responses were positively correlated with behavior, as well as with responses in the same region of right DLPFC targeted in the TMS experiment, lending support to the hypothesis that dopamine phasic signals regulate encoding, and thereby the updating, of context representations in PFC. PMID:23086162

  7. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage.

    Science.gov (United States)

    Rukavina Mikusic, Natalia L; Kouyoumdzian, Nicolás M; Del Mauro, Julieta S; Cao, Gabriel; Trida, Verónica; Gironacci, Mariela M; Puyó, Ana M; Toblli, Jorge E; Fernández, Belisario E; Choi, Marcelo R

    2018-01-01

    Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na + , K + -ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  9. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.

    Science.gov (United States)

    Ikemoto, Satoshi

    2010-11-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area. Published by Elsevier Ltd.

  10. The influence of leptin on the dopamine system and implications for ingestive behavior.

    Science.gov (United States)

    DiLeone, R J

    2009-06-01

    Food intake is regulated by many factors, including sensory information, metabolic hormones and the state of hunger. In modern humans, the drive to eat has proven to be incompatible with the excess food supply present in industrialized societies. A result of this imbalance is the dramatically increased rates of obesity during the last 20 years. The rise in obesity rates poses one of the most significant public health issues facing the United States and yet we do not understand the neural basis of ingestive behavior, and specifically, our motivation to eat. Understanding how the brain controls eating will lay the foundation for systematic dissection, understanding and treatment of obesity and related disorders. The lack of control over food intake bears resemblance to drug addiction, where loss of control over behavior leads to compulsive drug use. Work in laboratory animals has long suggested that there exist common neural substrates underlying both food and drug intake behaviors. Recent studies have shown direct leptin effects on dopamine neuron function and behavior. This provides a new mechanism by which peripheral hormones influence behavior and contribute to a more comprehensive model of neural control over food intake.

  11. Nature of rate-limiting steps in a compartmentalized enzyme system. Quantitation of dopamine transport and hydroxylation rates in resealed chromaffin granule ghosts

    International Nuclear Information System (INIS)

    Ahn, N.G.; Klinman, J.P.

    1989-01-01

    Using isolated chromaffin granule ghosts from bovine adrenal medullae, we have studied the kinetics of dopamine beta-monooxygenase (D beta M) activity as it is linked to dopamine transport. Measurements of the initial rates of transport and of transport-linked norepinephrine formation suggested that enzyme activity may be partially rate-limiting in the coupled carrier/enzyme system. This was confirmed by (i) measurements of initial rates of norepinephrine formation using deuterated substrate, which gave isotope effects greater than 2.0, and (ii) kinetic measurements using ghosts pulsed with varying concentrations of labeled dopamine, which indicated substantial substrate accumulation in the vesicle interior as a function of time. Initial rates of product formation, when combined with approximations of internal substrate concentrations, allowed estimates of Kcat and Km for intravesicular D beta M. Activation by external reductant was apparent in both initial rate parameters and the measurements of transients. Under conditions of optimal D beta M activity, the enzyme rate parameters (kcat = 0.31 nmol/s.mg and Km = 2 mM) indicated partial rate limitation compared to dopamine transport (kcat = 0.38 nmol/s.mg and Km = 32 microM). Compartmental analysis of the time curves, performed using numerical nonlinear least squares methods, gave least squares estimates of rate constants for a simple carrier mechanism and kcat values for D beta M which were consistent with estimates from initial rates

  12. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  13. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3 is activated by dopamine and is widely expressed in the nervous system.

    Directory of Open Access Journals (Sweden)

    Fouad El-Shehabi

    Full Text Available Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3 that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of "orphan" amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs.

  15. Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    Activated neutrophil (PMN) adherence to vascular endothelium comprises a key step for both transendothelial migration and initiation of potentially deleterious release of PMN products. The biogenic amine, dopamine (DA), has been used for several decades in patients to maintain hemodynamic stability. The effect of dopamine on PMN transendothelial migration and adhesion receptor expression and on the endothelial molecules, E-selectin and ICAM-1, was evaluated. PMN were isolated from healthy controls, stimulated with lipopolysaccharide (LPS), and tumor necrosis factor-alpha (TNF-alpha) and treated with dopamine. CD 11b and CD 18 PMN adhesion receptor expression were assessed flow cytometrically. In a separate experiment, the chemoattractant peptide, IL-8, was placed in the lower chamber of transwells, and PMN migration was assessed. Human umbilical vein endothelial cells (HUVEC) were stimulated with LPS\\/TNF-alpha and incubated with dopamine. ICAM-1 and E-selectin endothelial molecule expression were assessed flow cytometrically. There was a significant increase in transendothelial migration in stimulated PMN compared with normal PMN (40 vs. 14%, P < 0.001). In addition, PMN CD11b\\/CD18 was significantly upregulated in stimulated PMN compared with normal PMN (252.4\\/352.4 vs. 76.7\\/139.4, P < 0.001) as were endothelial E-selectin\\/ICAM-1 expression compared with normal EC (8.1\\/9 vs. 3.9\\/3.8, P < 0.05). After treatment with dopamine, PMN transmigration was significantly decreased compared with stimulated PMN (8% vs. 40%, P < 0.001). Furthermore, dopamine also attenuated PMN CD11b\\/CD18 and the endothelial molecules E-selectin and ICAM-1 compared with stimulated PMN\\/EC that were not treated dopamine (174\\/240 vs. 252\\/352, P < 0.05 and 4\\/4.4 vs. 8.1\\/9, P < 0.05. respectively). The chemoattractant effect of IL-8 was also attenuated. These results identify for the first time that dopamine attenuates the initial interaction between PMN and the endothelium

  16. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Science.gov (United States)

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-09-01

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [ 3 H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  17. Fighting food temptations: the modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation.

    Science.gov (United States)

    Siep, Nicolette; Roefs, Anne; Roebroeck, Alard; Havermans, Remco; Bonte, Milene; Jansen, Anita

    2012-03-01

    The premise of cognitive therapy is that one can overcome the irresistible temptation of highly palatable foods by actively restructuring the way one thinks about food. Testing this idea, participants in the present study were instructed to passively view foods, up-regulate food palatability thoughts, apply cognitive reappraisal (e.g., thinking about health consequences), or suppress food palatability thoughts and cravings. We examined whether these strategies affect self-reported food craving and mesocorticolimbic activity as assessed by functional magnetic resonance imaging. It was hypothesized that cognitive reappraisal would most effectively inhibit the mesocorticolimbic activity and associated food craving as compared to suppression. In addition, it was hypothesized that suppression would lead to more prefrontal cortex activity, reflecting the use of more control resources, as compared to cognitive reappraisal. Self-report results indicated that up-regulation increased food craving compared to the other two conditions, but that there was no difference in craving between the suppression and cognitive reappraisal strategy. Corroborating self-report results, the neuroimaging results showed that up-regulation increased activity in important regions of the mesocorticolimbic circuitry, including the ventral tegmental area, ventral striatum, operculum, posterior insular gyrus, medial orbitofrontal cortex and ventromedial prefrontal cortex. Contrary to our hypothesis, suppression more effectively decreased activity in the core of the mesocorticolimbic circuitry (i.e., ventral tegmental area and ventral striatum) compared to cognitive reappraisal. Overall, the results support the contention that appetitive motivation can be modulated by the application of short-term cognitive control strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Effect of U and 137Cs chronic contamination on dopamine and serotonin metabolism in the central nervous system of the rat

    International Nuclear Information System (INIS)

    Houpert, P.; Lestaevel, P.; Amourette, C.; Dhieux, B.; Bussy, C.; Paquet, F.

    2004-01-01

    Following the Chernobyl accident, the most significant problem for the population of the former Soviet Union for the next 50-70 years will be chronic internal contamination by radionuclides. One of the few experiments carried out in this field reported that neurotransmitter metabolism in the central nervous system of the rat was disturbed after feeding with oats contaminated by 137 Cs for 1 month. The present study assessed the effect of chronic contamination by depleted U or 137 Cs on the metabolism of two neurotransmitters in cerebral areas of rats. Dopamine and serotonin were chosen because their metabolism has been shown to be disturbed after external irradiation, even at moderate doses. Dopamine, serotonin, and some of their catabolites were measured by high-pressure liquid chromatography coupled with an electrochemical detector in five cerebral structures of rats contaminated over a 1-month period by drinking water (40 mg U·L -1 or 6500 Bq 137 Cs·L -1 ). In the striatum, hippocampus, cerebral cortex, thalamus, and cerebellum, the dopamine, serotonin, and catabolite levels were not significantly different between the control rats and rats contaminated by U or 137 Cs. These results are not in accordance with those previously described. (author)

  19. A Transient Dopamine Signal Represents Avoidance Value and Causally Influences the Demand to Avoid

    Science.gov (United States)

    Pultorak, Katherine J.; Schelp, Scott A.; Isaacs, Dominic P.; Krzystyniak, Gregory

    2018-01-01

    Abstract While an extensive literature supports the notion that mesocorticolimbic dopamine plays a role in negative reinforcement, recent evidence suggests that dopamine exclusively encodes the value of positive reinforcement. In the present study, we employed a behavioral economics approach to investigate whether dopamine plays a role in the valuation of negative reinforcement. Using rats as subjects, we first applied fast-scan cyclic voltammetry (FSCV) to determine that dopamine concentration decreases with the number of lever presses required to avoid electrical footshock (i.e., the economic price of avoidance). Analysis of the rate of decay of avoidance demand curves, which depict an inverse relationship between avoidance and increasing price, allows for inference of the worth an animal places on avoidance outcomes. Rapidly decaying demand curves indicate increased price sensitivity, or low worth placed on avoidance outcomes, while slow rates of decay indicate reduced price sensitivity, or greater worth placed on avoidance outcomes. We therefore used optogenetics to assess how inducing dopamine release causally modifies the demand to avoid electrical footshock in an economic setting. Increasing release at an avoidance predictive cue made animals more sensitive to price, consistent with a negative reward prediction error (i.e., the animal perceives they received a worse outcome than expected). Increasing release at avoidance made animals less sensitive to price, consistent with a positive reward prediction error (i.e., the animal perceives they received a better outcome than expected). These data demonstrate that transient dopamine release events represent the value of avoidance outcomes and can predictably modify the demand to avoid. PMID:29766047

  20. Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death

    OpenAIRE

    Arodin, Lisa; Miranda-Vizuete, Antonio; Swoboda, Peter; Fernandes, Aristi P.

    2014-01-01

    Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 an...

  1. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    Science.gov (United States)

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  2. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  3. Early social deprivation impairs pair bonding and alters serum corticosterone and the NAcc dopamine system in mandarin voles.

    Science.gov (United States)

    Yu, Peng; An, Shucheng; Tai, Fadao; Wang, Jianli; Wu, Ruiyong; Wang, Bo

    2013-12-01

    Early life stress has a long-term negative impact on emotion, learning, memory and adult sexual behavior, and these deficits most likely impair pair bonding. Here, we investigated whether early social deprivation (ED) affects the formation of pair bonds in socially monogamous mandarin voles (Microtus mandarinus). In a partner preference test (PPT), ED-reared adult females and males did not show a preference for their partner, spent more time exploring the cage of an unfamiliar animal and directed high levels of aggression toward unfamiliar animals. In social interaction test, ED increased exploring behavior only in females, but increased movement around the partner and reduced inactivity in both males and females. Three days of cohabitation did not alter serum corticosterone levels in ED-reared males, but increased corticosterone levels in males that received bi-parental care (PC). Interestingly, serum corticosterone levels in ED- and PC-reared females declined after cohabitation. ED significantly increased basal serum corticosterone levels in males, but had no effect on females. ED significantly up-regulated the levels of dopamine and the mRNA expression of dopamine 1-type receptor (D1R) in the nucleus accumbens (NAcc) in females and males. ED suppressed dopamine 2-type receptor mRNA (D2R) expression in females, but increased this in males. After three days of cohabitation, levels of D1R mRNA and D2R mRNA expression changed in opposite directions in PC-reared voles, but in the same direction in ED-reared males, and only the expression of D2R mRNA increased in ED-reared females. Our results indicate that early social deprivation inhibits pair bonding at adulthood. This inhibition is possibly associated with sex-specific alterations in serum corticosterone, levels of dopamine and mRNA expression of two types of dopamine receptors in the NAcc. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  5. Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach.

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    Full Text Available Traditional behavioral genetic studies (e.g., twin, adoption studies have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP. 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001. Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional

  6. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  7. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  8. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  9. You are what you eat: influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct- and indirect-acting dopamine receptor agonists.

    Science.gov (United States)

    Baladi, Michelle G; Daws, Lynette C; France, Charles P

    2012-07-01

    The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. This article is part of a Special Issue entitled 'Central Control of Food Intake'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10.  α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies

    Directory of Open Access Journals (Sweden)

    Shityakov S

    2012-06-01

    Full Text Available Sergey Shityakov, Jens Broscheit, Carola FörsterDepartment of Anesthesiology and Critical Care, University of Würzburg, Würzburg, GermanyAbstract: This paper attempts to predict and emphasize molecular interactions of dopamine, levodopa, and their derivatives (Dopimid compounds containing 2-phenyl-imidazopyridine moiety with the α-cyclodextrin dimer in order to assess and improve drug delivery to the central nervous system. The molecular docking method is used to determine the energetic profiles, hydrogen bond formation, and hydrophobic effect of 14 host–guest complexes. The results show that the “chemical branching” represented by additional ethyl-acetate residue is energetically unfavorable and promotes a conformational shift due to the high root mean square deviation levels. This phenomenon is characterized by a low number of H-bonds and a significant decrease of the host–guest hydrophobic potential surface. Finally, the overall docking procedure presents a powerful rationale for screening and analyzing various sets of promising drug-like chemical compounds in the fields of supramolecular chemistry, molecular sensing, synthetic receptors, and nanobiotechnology.Keywords: dopamine, levodopa, Dopimid compounds, α-CD dimer, molecular docking, complexation

  11. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  12. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  13. Presence and function of dopamine transporter (DAT in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Directory of Open Access Journals (Sweden)

    Javier A Urra

    Full Text Available Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT, serotonin (SERT and norepinephrine (NET transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylaminostyryl]-N-methylpyridinium iodide (ASP(+, as substrate. In addition, we also showed that dopamine (1 mM treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909 and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  14. Contribution of a mesocorticolimbic subcircuit to drug context-induced reinstatement of cocaine-seeking behavior in rats.

    Science.gov (United States)

    Lasseter, Heather C; Xie, Xiaohu; Arguello, Amy A; Wells, Audrey M; Hodges, Matthew A; Fuchs, Rita A

    2014-02-01

    Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)-basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC-BLA functional interactions. Thus, a VTA-OFC-BLA neural circuit promotes drug context-induced motivated behavior.

  15. Role of dopamine receptors in the ventral tegmental area in conditioned fear.

    Science.gov (United States)

    de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira

    2009-05-16

    The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.

  16. α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies

    Science.gov (United States)

    Shityakov, Sergey; Broscheit, Jens; Förster, Carola

    2012-01-01

    This paper attempts to predict and emphasize molecular interactions of dopamine, levodopa, and their derivatives (Dopimid compounds) containing 2-phenyl-imidazopyridine moiety with the α-cyclodextrin dimer in order to assess and improve drug delivery to the central nervous system. The molecular docking method is used to determine the energetic profiles, hydrogen bond formation, and hydrophobic effect of 14 host–guest complexes. The results show that the “chemical branching” represented by additional ethyl-acetate residue is energetically unfavorable and promotes a conformational shift due to the high root mean square deviation levels. This phenomenon is characterized by a low number of H-bonds and a significant decrease of the host–guest hydrophobic potential surface. Finally, the overall docking procedure presents a powerful rationale for screening and analyzing various sets of promising drug-like chemical compounds in the fields of supramolecular chemistry, molecular sensing, synthetic receptors, and nanobiotechnology. PMID:22811606

  17. The risky business of dopamine agonists in Parkinson disease and impulse control disorders.

    Science.gov (United States)

    Claassen, Daniel O; van den Wildenberg, Wery P M; Ridderinkhof, K Richard; Jessup, Charles K; Harrison, Madaline B; Wooten, G Frederick; Wylie, Scott A

    2011-08-01

    Risk-taking behavior is characterized by pursuit of reward in spite of potential negative consequences. Dopamine neurotransmission along the mesocorticolimbic pathway is a potential modulator of risk behavior. In patients with Parkinson's disease (PD), impulse control disorder (ICD) can result from dopaminergic medication use, particularly dopamine agonists (DAA). Behaviors associated with ICD include hypersexuality as well as compulsive gambling, shopping, and eating, and these behaviors are potentially linked to alterations to risk processing. Using the Balloon Analogue Risk Task, we assessed the role of agonist therapy on risk-taking behavior in PD patients with (n = 22) and without (n = 19) active ICD symptoms. Patients performed the task both "on" and "off" DAA. DAA increased risk-taking in PD patients with active ICD symptoms, but it did not affect risk behavior of PD controls. DAA dose was also important in explaining risk behavior. Both groups similarly reduced their risk-taking in high compared to low risk conditions and following the occurrence of a negative consequence, suggesting that ICD patients do not necessarily differ in their abilities to process and adjust to some aspects of negative consequences. Our findings suggest dopaminergic augmentation of risk-taking behavior as a potential contributing mechanism for the emergence of ICD in PD patients. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  18. Dopamine hypothesis of mania

    OpenAIRE

    Cookson, John

    2014-01-01

    s­of­the­Speakers­/­Konuşmacı­leriThe discovery of dopamine and its pathwaysDopamine (DA) was first synthesized in 1910 from 3,4-dihydroxy phenyl alanine (DOPA) by Barger and Ewens at Wellcome Laboratories in London. It is a cathecholamine and in the 1940s Blaschko in Cambridge proposed that DA was a precursor in synthesis of the cat-echolamine neurotransmitters noradrenaline (norepinephrine) and adrenaline (epinephrine). In 1957 it was shown to be present in the brain with other catecholamin...

  19. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  20. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  1. Illicit dopamine transients: reconciling actions of abused drugs.

    Science.gov (United States)

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    Science.gov (United States)

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  3. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dopamins renale virkninger

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1990-01-01

    is frequently employed in cases of acute oliguric renal failure but the results available concerning the therapeutic effect are frequently retrospective and uncontrolled. The results suggest that early treatment with 1-3 micrograms/kg/min dopamine combined with furosemide can postpone or possibly render...

  5. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  6. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  7. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  8. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  9. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral analysis.

    Directory of Open Access Journals (Sweden)

    Taro eUeno

    2014-09-01

    Full Text Available Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling.

  10. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  11. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  12. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  13. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  14. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  15. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  16. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    Science.gov (United States)

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-05-01

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparison between a dual-head and a brain-dedicated SPECT system in the measurement of the loss of dopamine transporters with [123I]FP-CIT

    International Nuclear Information System (INIS)

    Varrone, Andrea; Sansone, Valeria; Pappata, Sabina; Salvatore, Marco; Pellecchia, Maria T.; Salvatore, Elena; de Michele, Giuseppe; Filla, Alessandro; Barone, Paolo; Amboni, Marianna

    2008-01-01

    Dual-head SPECT systems are used by many clinical departments for [ 123 I]FP-CIT SPECT imaging, while triple-head or brain-dedicated systems with better imaging performance are more commonly used by research institutions. There are limited data comparing the capability of the two types of system to measure dopamine transporter (DAT) loss in vivo. The aim of this study was to compare the ability of a dual-head and a brain-dedicated SPECT system to estimate the degree of DAT loss in different movement disorders with variable nigrostriatal impairment, with [ 123 I]FP-CIT. Four patients with essential tremor, 24 with Parkinson's disease (PD), six with spinocerebellar ataxia type 2 and six controls were studied with [ 123 I]FP-CIT. SPECT scans were performed on a dual-head (E.CAM - Siemens) and subsequently on a brain-dedicated system (Ceraspect - DSI). Striatal DAT outcome measures on the E.CAM and the Ceraspect were strongly correlated and the putamen-to-caudate ratios were almost identical. Although the measured values were lower by 52 ± 25% in caudate and by 51 ± 31% in putamen on the E.CAM (p < 0.0001), the average striatal DAT decrease in each patient group compared with controls was similar for both systems. In PD patients, similar correlations (p < 0.05) were found between motor UPDRS or Hoehn and Yahr stage and striatal DAT density. Despite underestimation of striatal DAT outcome measures, the E.CAM showed similar capability as the Ceraspect in measuring the degree of nigrostriatal dopaminergic deficit and assessing the correlation between DAT outcome measures and clinical variables of PD severity and stage. (orig.)

  18. Chronic treatment with extended release methylphenidate does not alter dopamine systems or increase vulnerability for cocaine self-administration: a study in nonhuman primates.

    Science.gov (United States)

    Gill, Kathryn E; Pierre, Peter J; Daunais, James; Bennett, Allyson J; Martelle, Susan; Gage, H Donald; Swanson, James M; Nader, Michael A; Porrino, Linda J

    2012-11-01

    Despite the widespread use of stimulant medications for the treatment of attention deficit hyperactivity disorder, few studies have addressed their long-term effects on the developing brain or susceptibility to drug use in adolescence. Here, we determined the effects of chronic methylphenidate (MPH) treatment on brain dopamine (DA) systems, developmental milestones, and later vulnerability to substance abuse in juvenile nonhuman primates. Male rhesus monkeys (approximately 30 months old) were treated daily with either a sustained release formulation of MPH or placebo (N=8 per group). Doses were titrated to achieve initial drug blood serum levels within the therapeutic range in children and adjusted throughout the study to maintain target levels. Growth, including measures of crown-rump length and weight, was assessed before and after 1 year of treatment and after 3-5 months washout. In addition, positron emission tomography scans were performed to quantify binding availability of D2/D3 receptors and dopamine transporters (DATs). Distribution volume ratios were calculated to quantify binding of [¹⁸F]fluoroclebopride (DA D2/D3) and [¹⁸F]-(+)-N-(4-fluorobenzyl)-2β-propanoyl-3β-(4-chlorophenyl)tropane (DAT). Chronic MPH did not differentially alter the course of weight gain or other measures of growth, nor did it influence DAT or D2/D3 receptor availability after 1 year of treatment. However, after washout, the D2/D3 receptor availability of MPH-treated animals did not continue to decline at the same rate as control animals. Acquisition of intravenous cocaine self-administration was examined by first substituting saline for food reinforcement and then cocaine doses (0.001-0.1 mg/kg per injection) in ascending order. Each dose was available for at least five consecutive sessions. The lowest dose of cocaine that maintained response rates significantly higher than saline-contingent rates was operationally defined as acquisition of cocaine reinforcement. There

  19. The dopamine theory of addiction: 40 years of highs and lows.

    Science.gov (United States)

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  20. Differences in [99mTc]TRODAT-1 SPECT binding to dopamine transporters in patients with multiple system atrophy and Parkinson's disease

    International Nuclear Information System (INIS)

    Swanson, Randel L.; Newberg, Andrew B.; Acton, Paul D.; Siderowf, Andrew; Wintering, Nancy; Alavi, Abass; Mozley, P. David; Plossl, Karl; Udeshi, Michelle; Hurtig, Howard

    2005-01-01

    Multiple system atrophy (MSA), a disorder causing autonomic dysfunction, parkinsonism, and cerebellar dysfunction, is difficult to differentiate from other movement disorders, particularly early in the course of disease. This study evaluated whether [ 99m Tc]TRODAT-1 binding to the dopamine transporter differentiates MSA from other movement disorders. Single-photon emission computed tomographic brain scans were acquired in 25 MSA patients, 48 age-matched controls, and 130 PD patients, 3 h after the injection of 740 MBq (20 mCi) of [ 99m Tc]TRODAT-1. Regions of interest (ROIs) were placed manually on subregions of both basal ganglia and distribution volume ratios (DVRs) were calculated. Regional DVRs were compared between study groups in MSA patients. Student's ttests were used to compare MSA patients with other study groups. Spearman correlations were used to compare DVRs with NP measures. Based upon various motor scores, MSA and PD patients had comparable motor impairment, and were significantly impaired compared with controls. Mean DVRs in the basal ganglia of MSA patients were significantly less than those of controls, but generally higher (p 99m Tc]TRODAT-1 binding, particularly in the posterior putamen, compared with PD patients and significantly lower binding compared with controls. This may reflect different pathophysiological processes of the two neurodegenerative diseases. (orig.)

  1. Overexpression of Thioredoxin-1 Blocks Morphine-Induced Conditioned Place Preference Through Regulating the Interaction of γ-Aminobutyric Acid and Dopamine Systems.

    Science.gov (United States)

    Li, Xiang; Huang, Mengbing; Yang, Lihua; Guo, Ningning; Yang, Xiaoyan; Zhang, Zhimin; Bai, Ming; Ge, Lu; Zhou, Xiaoshuang; Li, Ye; Bai, Jie

    2018-01-01

    Morphine is one kind of opioid, which is currently the most effective widely utilized pain relieving pharmaceutical. Long-term administration of morphine leads to dependence and addiction. Thioredoxin-1 (Trx-1) is an important redox regulating protein and works as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, whether overexpression of Trx-1 can block morphine-induced conditioned place preference (CPP) in mice is still unknown. In this study, we first examined whether overexpression of Trx-1 affects the CPP after morphine training and further examined the dopamine (DA) and γ-aminobutyric acid (GABA) systems involved in rewarding effects. Our results showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic (TG) mice. Trx-1 expression was induced by morphine in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in wild-type (WT) mice, which was not induced in Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH) and D1 were induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA level and expression of GABA B R were decreased by morphine, which were restored in Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine through regulating the expressions of D1, TH, and GABA B R in the VTA and NAc.

  2. Overexpression of Thioredoxin-1 Blocks Morphine-Induced Conditioned Place Preference Through Regulating the Interaction of γ-Aminobutyric Acid and Dopamine Systems

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2018-05-01

    Full Text Available Morphine is one kind of opioid, which is currently the most effective widely utilized pain relieving pharmaceutical. Long-term administration of morphine leads to dependence and addiction. Thioredoxin-1 (Trx-1 is an important redox regulating protein and works as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, whether overexpression of Trx-1 can block morphine-induced conditioned place preference (CPP in mice is still unknown. In this study, we first examined whether overexpression of Trx-1 affects the CPP after morphine training and further examined the dopamine (DA and γ-aminobutyric acid (GABA systems involved in rewarding effects. Our results showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic (TG mice. Trx-1 expression was induced by morphine in the ventral tegmental area (VTA and nucleus accumbens (NAc in wild-type (WT mice, which was not induced in Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH and D1 were induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA level and expression of GABABR were decreased by morphine, which were restored in Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine through regulating the expressions of D1, TH, and GABABR in the VTA and NAc.

  3. Activation of mesocorticolimbic reward circuits for assessment of relief of ongoing pain: a potential biomarker of efficacy.

    Science.gov (United States)

    Xie, Jennifer Y; Qu, Chaoling; Patwardhan, Amol; Ossipov, Michael H; Navratilova, Edita; Becerra, Lino; Borsook, David; Porreca, Frank

    2014-08-01

    Preclinical assessment of pain has increasingly explored operant methods that may allow behavioral assessment of ongoing pain. In animals with incisional injury, peripheral nerve block produces conditioned place preference (CPP) and activates the mesolimbic dopaminergic reward pathway. We hypothesized that activation of this circuit could serve as a neurochemical output measure of relief of ongoing pain. Medications commonly used clinically, including gabapentin and nonsteroidal anti-inflammatory drugs (NSAIDs), were evaluated in models of post-surgical (1 day after incision) or neuropathic (14 days after spinal nerve ligation [SNL]) pain to determine whether the clinical efficacy profile of these drugs in these pain conditions was reflected by extracellular dopamine (DA) release in the nucleus accumbens (NAc) shell. Microdialysis was performed in awake rats. Basal DA levels were not significantly different between experimental groups, and no significant treatment effects were seen in sham-operated animals. Consistent with clinical observation, spinal clonidine produced CPP and produced a dose-related increase in net NAc DA release in SNL rats. Gabapentin, commonly used to treat neuropathic pain, produced increased NAc DA in rats with SNL but not in animals with incisional, injury. In contrast, ketorolac or naproxen produced increased NAc DA in animals with incisional but not neuropathic pain. Increased extracellular NAc DA release was consistent with CPP and was observed selectively with treatments commonly used clinically for post-surgical or neuropathic pain. Evaluation of NAc DA efflux in animal pain models may represent an objective neurochemical assay that may serve as a biomarker of efficacy for novel pain-relieving mechanisms. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  5. Successful treatment of dopamine dysregulation syndrome with dopamine D2 partial agonist antipsychotic drug

    Directory of Open Access Journals (Sweden)

    Mizushima Jin

    2012-07-01

    Full Text Available Abstract Dopamine dysregulation syndrome (DDS consists of a series of complications such as compulsive use of dopaminergic medications, aggressive or hypomanic behaviors during excessive use, and withdrawal states characterized by dysphoria and anxiety, caused by long-term dopaminergic treatment in patients with Parkinson’s disease (PD. Although several ways to manage DDS have been suggested, there has been no established treatment that can manage DDS without deterioration of motor symptoms. In this article, we present a case of PD in whom the administration of the dopamine D2 partial agonistic antipsychotic drug aripiprazole improved DDS symptoms such as craving and compulsive behavior without worsening of motor symptoms. Considering the profile of this drug as a partial agonist at D2 receptors, it is possible that it exerts its therapeutic effect on DDS by modulating the dysfunctional dopamine system.

  6. Clinical usefulness of dopamine transporter imaging

    International Nuclear Information System (INIS)

    Kim, Jong Min; Kim, Yu Kyeong; Kim, Sang Eun; Jeon, Beom S.

    2007-01-01

    Imaging of the dopamine transporter (DAT) provides a marker for the integrity of presynaptic nigrostriatal dopaminergic system. DAT density is reduced in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. In patients with suspicious parkinsonism, normal DAT imaging suggests an alternative diagnosis such as essential tremor, vascular parkinsonism, or drug-induced parkinsonism. DAT imaging is a useful tool to aid clinician's differential diagnosis in parkinsonism

  7. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  8. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Directory of Open Access Journals (Sweden)

    Rothmond Debora A

    2012-02-01

    Full Text Available Abstract Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5, catechol-O-methyltransferase, and monoamine oxidase (A and B in the developing human DLPFC (6 weeks -50 years. Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p O-methyltransferase (p = 0.024 were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027. In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002 and dopamine D1 receptor protein expression increased throughout development (p Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.

  9. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats.

    Science.gov (United States)

    Castro, Beatriz; Sánchez, Pilar; Torres, Jesús M; Ortega, Esperanza

    2015-10-01

    Early-life exposure to the endocrine disruptor bisphenol A (BPA) affects brain function and behavior, which might be attributed to its interference with hormonal steroid signaling and/or neurotransmitter systems. Alternatively, the use of structural analogs of BPA, mainly bisphenol F (BPF) and bisphenol S (BPS), has increased recently. However, limited in vivo toxicity data exist. We investigated the effects of BPA, BPF and BPS on 5α-reductase (5α-R), a key enzyme involved in neurosteroidogenesis, as well as on dopamine (DA)- and serotonin (5-HT)-related genes, in the prefrontal cortex (PFC) of juvenile female rats. Gestating Wistar rats were treated with either vehicle or 10 μg/kg/day of BPA, BPF or BPS from gestational day 12 to parturition. Then, female pups were exposed from postnatal day 1 through day 21 (PND21), when they were euthanized and RT-PCR, western blot and quantitative PCR-array experiments were performed. BPA decreased 5α-R2 and 5α-R3 mRNA and protein levels, while both BPF and BPS decreased 5α-R3 mRNA levels in PFC at PND21. Further, BPA, BPF and BPS significantly altered, respectively, the transcription of 25, 56 and 24 genes out of the 84 DA and 5-HT-related genes assayed. Of particular interest was the strong induction by all these bisphenols of Cyp2d4, implicated in corticosteroids synthesis. Our results demonstrate for the first time that BPA, BPF and BPS differentially affect 5α-R and genes related to DA/5-HT systems in the female PFC. In vivo evidence of the potential adverse effects of BPF and BPS in the brain of mammals is provided in this work, raising questions about the safety of these chemicals as substitutes for BPA. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The roles of serine protease, intracellular and extracellular phenoloxidase in activation of prophenoloxidase system, and characterization of phenoloxidase from shrimp haemocytes induced by lipopolysaccharide or dopamine

    Science.gov (United States)

    Xie, Peng; Pan, Luqing; Xu, Wujie; Yue, Feng

    2013-09-01

    We investigated the effects of lipopolysaccharide (LPS) and dopamine (DA) on the activation of the prophenoloxidase (proPO) system of Litopenaeus vannamei. LPS and DA were shown with a negative dose-dependent effect on hyalne cells (HC), semi-granular cells (SGC), large granular cells (LGC), and total haemocyte count (THC). When haemocytes were treated with LPS or DA, serine proteinase activity and intracellular phenoloxidase (PO) activity were significantly reduced, but extracellular PO activity increased significantly. These findings indicated that the reduction in haemocyte counts was mainly because of the degranulation and activation of the proPO system from semi-granule and large granule cells. The PKC inhibitor, chelerythrine, and the TPK inhibitor, genistein, had an inhibitory effect on extracellular PO activity, while serine proteinase and intracellular PO activity increased. This suggests that the LPS and DA induce the activation of proPO in haemocytes via PKC and TPK-related signaling pathways, but serine proteinase may be activated only by PKC, as the genistein effects were not statistically significant. Electrophoresis analysis revealed that POs induced by LPS or DA have the same molecular mass and high diphenolase activity. Two PO bands at 526 kDa and 272 kDa were observed in PAGE, while in the haemocyte lysate supernatant (HLS), only a 272-kDa band was observed. This band was resolved after SDS-PAGE under non-reducing and reducing conditions into two groups of POs, 166 kDa and 126 kDa, and 78.1 kDa and 73.6 kDa, respectively, suggesting that PO in L. vannamei is an oligomer, which may have different compositions intra- and extracellularly.

  11. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    DEFF Research Database (Denmark)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica

    2008-01-01

    of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated...

  12. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Science.gov (United States)

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  13. Could dopamine agonists aid in drug development for anorexia nervosa?

    Science.gov (United States)

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  14. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Directory of Open Access Journals (Sweden)

    Guido eFrank

    2014-11-01

    Full Text Available Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  15. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  16. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [11C]raclopride to measure...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  17. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  18. Dopamine Signaling in reward-related behaviors

    OpenAIRE

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specifi...

  19. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  20. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    OpenAIRE

    Gantz, Stephanie C.; Levitt, Erica S.; Llamosas Muñozguren, Nerea; Neve, Kim A.; Williams, John T.

    2015-01-01

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigr...

  2. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant No. 14-04-00173.

  3. Immunomodulatory Effects Mediated by Dopamine

    Science.gov (United States)

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  4. Immunomodulatory Effects Mediated by Dopamine

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2016-01-01

    Full Text Available Dopamine (DA, a neurotransmitter in the central nervous system (CNS, has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R and D2-like receptors (D2R, D3R, and D4R. The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS, there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.

  5. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  6. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  7. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  8. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    Science.gov (United States)

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  9. The Dopamine Receptor D4 Gene ("DRD4") Moderates Family Environmental Effects on ADHD

    Science.gov (United States)

    Martel, Michelle M.; Nikolas, Molly; Jernigan, Katherine; Friderici, Karen; Waldman, Irwin; Nigg, Joel T.

    2011-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a prime candidate for exploration of gene-by-environment interaction (i.e., G x E), particularly in relation to dopamine system genes, due to strong evidence that dopamine systems are dysregulated in the disorder. Using a G x E design, we examined whether the "DRD4" promoter 120-bp tandem repeat…

  10. Neuropharmacology of novel dopamine modulators

    NARCIS (Netherlands)

    Beek, Erik Tomas te

    2014-01-01

    De neurotransmitter dopamine speelt een essentiële rol in diverse neurofysiologische functies en is betrokken bij de pathofysiologie van diverse neuropsychiatrische aandoeningen, waaronder de ziekte van Parkinson, schizofrenie, drugsverslaving en hyperprolactinemie. De huidige

  11. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  12. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  13. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  14. [Effect of Corydalis Rhizoma and L-tetrahydropalmatine on dopamine system of hippocampus and striatum in morphine-induced conditioned place preference rats].

    Science.gov (United States)

    Yu, Shou-Yang; Bai, Wei-Feng; Tu, Ping; Qiu, Cheng-Kai; Yang, Pei-Run; Luo, Su-Yuan

    2016-10-01

    To investigate the effects of Corydalis Rhizoma and L-tetrahydropalma-tine (L-THP) on the levels of dopamine neurotransmitter (DA), dopamine transporter (DAT) and the second dopamine receptor (D2R) in learning and memory-related brain areas, hippocampus and striatum, the DA, DAT and D2R were detected in conditioned place preference (CPP) rats suffered from morphine. And comparation the degree of similarity and consistency of the pharmacological effects was also studied. The rats were trained in black compartments and white ones (drug-paired compartment) with the increasing doses of morphine for 10 days (hypodermically injected from 10 mg•kg⁻¹ to 100 mg•kg⁻¹). Models of CPP were validated in those psychological dependence rats after 48 h training. The dopamine contents were detected as soon as the materials of hippocampus and striatum are harvested from rats of NS control group and model group. The DAT and D2R levels are measured by Western blot. The high, medium and low dose group of Corydalis Rhizoma are given Corydalis Rhizoma 2, 1, 0.5 g•kg⁻¹ water extraction liquid respectively (which contains L-THP were 0.274, 0.137 and 0.137 mg respectively), and the high, medium and low dose group of L-THP were given L-THP 3.76, 1.88, 0.94 mg•kg⁻¹ lavage treatment respectively, NS treatment group were lavaged normal saline for 6 days and they were killed after test of CPP, again tested DA levels and expression of DAT and D2R similar to the front of materials. The reduction effects of CPP were observed in the groups of both Corydalis Rhizoma (2, 1 g•kg⁻¹) and L-THP (3.76, 1.88 mg•kg⁻¹) subjected to medicine for 6 days (Peffect of L-THP. The similar effects were observed on the neurotransmitter dopamine, DAT and D2R in learning and memory-related brain areas, hippocampus and striatum of the morphine- dependent rats. Copyright© by the Chinese Pharmaceutical Association.

  15. Dopamine and extinction: A convergence of theory with fear and reward circuitry

    Science.gov (United States)

    Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew

    2014-01-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353

  16. Addiction: beyond dopamine reward circuitry.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  17. Imaging dopamine transmission in schizophrenia

    International Nuclear Information System (INIS)

    Laruelle, M.

    1998-01-01

    Over the last ten years, several positron emission tomography (PET) and single photon computerized tomography (SPECT) studies of the dopamine (DA) system in patients with schizophrenia were performed to test the hypothesis that DA hyperactivity is associated with this illness. In this paper are reviewed the results of fifteen brain imaging studies comparing indices of DA function in drug naive or drug free patients with schizophrenia and healthy controls: thirteen studies included measurements of Da D 2 receptor density, two studies compared amphetamine-induced DA release, and two studies measured DOPA decarboxylase activity, an enzyme involved in DA synthesis. It was conducted a meta-analysis of the studies measuring D 2 receptor density parameters, under the assumption that all tracers labeled the same population of D 2 receptors. This analysis revealed that, compared to healthy controls, patients with schizophrenia present a significant but mild elevation of D 2 receptor density parameters and a significant larger variability of these indices. It was found no statistical evidence that studies performed with radiolabeled butyrophenones detected a larger increase in D 2 receptor density parameters than studies performed with other radioligands, such as benzamides. Studies of presynaptic activity revealed an increase in DA transmission response to amphetamine challenge, and an increase in DOPA decarboxylase activity. Together, these data are compatible with both pre- and post-synaptic alterations of DA transmission in schizophrenia. Future studies should aim at a better characterization of these alterations, and at defining their role in the pathophysiology of the illness

  18. Addiction: Beyond dopamine reward circuitry

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-01-01

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  19. Addiction: Beyond dopamine reward circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  20. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  1. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice

    DEFF Research Database (Denmark)

    Thomsen, Annika Højrup Runegaard; Jensen, Kathrine L; Fitzpatrick, Ciarán M

    2017-01-01

    assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice...

  2. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  3. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.

    Science.gov (United States)

    Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang

    2017-10-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  5. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  6. Behavioural effects of chemogenetic dopamine neuron activation

    NARCIS (Netherlands)

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific

  7. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  8. Reward-based hypertension control by a synthetic brain-dopamine interface.

    Science.gov (United States)

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  9. Graphene Oxide Modified Electrodes for Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2017-01-01

    Full Text Available Dopamine (DA is one of the most important catecholamine neurotransmitters that plays an important role in the central nervous, renal, hormonal, and cardiovascular systems. Since its discovery, tremendous effort has been made and various techniques have been developed for the DA detection. Recently, graphene-based materials have attracted a tremendous amount of attention due to their high sensitivity and rapid response towards effective detection of DA. This review focuses on current advances of graphene-based materials for DA detection based on recent articles published in the last five years.

  10. Preparation of (7,8-3H) dopamine

    International Nuclear Information System (INIS)

    Shen Qiyuan; Tang Guozhong; Guo Zili

    1986-01-01

    Dopamine is a neurotransmitter in the central nervous system. (7,8- 3 H) dopamine is an important tracer for the study of physiological functions and metabolic processes. It was prepared by catalytic reduction of 3-hydroxy-4-methoxy-8-nitro-styrene with tritium gas. At the end of reaction, hydrobromic acid was added and heated to remove the methoxyl group. The crude product was purified by paper chromatography. The purity of (7,8- 3 H) dopamine was identified by IR, UV, PC and 3 H-NMR spectra. The radiochemical purity was over 95% and the specific activity was 1.26 x 10 12 Bq/mmol (34 Ci/mmol). The distribution of labelled tritium in molecule was shown as follows: 55.4% at position 7 and 44.6% at position 8

  11. The involvement of dopaminergic system on LH secretion Nelore heifers Sistema dopaminérgico na secreção de LH de novilhas Nelore

    Directory of Open Access Journals (Sweden)

    Silvia Helena Venturoli Perri

    2009-12-01

    Full Text Available The aim of this study was to evaluate the response of sulpiride administration (dopamine D2 antagonist, 0.59 m/kg body weight, s.c. and blood collected every 15 min for 10 h thereafter on Luteinizing Hormone (LH secretion in B. indicus pre-pubertal heifers at 8, 12 and 16 month of age. LH was quantified by RIA, sensitivity (0.039 ng/ml and CV (15.51%. In heifers given sulpiride treatment didn’t differ (P≥0.05 in LH concentration, total secretion area, peak total area, number of peaks, area of highest secretion peak and time to highest peak occurrence and maximum LH secretion, from control group. The results suggest absence of dopamine D2 antagonist effect on LH secretion in pre-pubertal Nellore heifers, didn’t neurotransmitter participating on sexual maturation.O presente trabalho foi realizado com o objetivo de investigar a variação na secreção do Hormônio Luteinizante (LH em resposta ao tratamento com sulpiride, antagonista de receptor (D2 dopaminérgico, com administração de 0,59mg/kg, s.c. e colheita de amostras de sangue a cada 15min, por 10h. Foram utilizadas 10 novilhas da raça Nelore pré-púberes, aos 8, 12 e 16 meses de idade. A concentração de LH foi quantificada por radioimunoensaio, e o coeficiente de variação intra, o interensaio e a sensibilidade dos ensaios de LH foram respectivamente de: 11,86%; 15,51%; 0,039ng/mL. O tratamento com sulpiride não diferiu na concentração média de LH, área total de secreção de LH e picos, número de picos, área do maior pico, tempo necessário ao aparecimento do maior pico de secreção de LH e amplitude máxima de LH, em comparação ao grupo controle. Os resultados indicam ausência de efeito da dopamina, através de receptores D2, durante a fase pré-púbere, em novilhas da raça Nelore, o que sinaliza a não participação como neurotransmissora na secreção de LH durante o processo de maturação sexual.

  12. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    Science.gov (United States)

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  13. Study of the dopamine effect into cell solutions by impedance analysis

    Science.gov (United States)

    Paivana, G.; Apostolou, T.; Kaltsas, G.; Kintzios, S.

    2017-11-01

    Electrochemical Impedance Spectroscopy (EIS) has become a technique that is frequently used for biological assays. Impedance is defined as a complex - valued generalization of resistance and varies depending on its use per application field. In health sciences, bioimpedance is widely used as non-invasive and low cost alternative in many medical areas that provides valuable information about health status. This work focuses on assessing the effects of a bioactive substance applied to immobilized cells. Dopamine was used as a stimulant in order to implement impedance analysis with a specific type of cells. Dopamine constitutes one of the most important catecholamine neurotransmitters in both the mammalian central and peripheral nervous systems. The main purpose is to extract calibration curves at different frequencies with known dopamine concentrations in order to describe the behavior of cells applied to dopamine using an impedance measurement device. For comparison purposes, non-immobilized cells were tested for the same dopamine concentrations.

  14. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs.

    Science.gov (United States)

    Nash, Abigail I

    2017-10-01

    In the setting of rising rates of obesity and metabolic syndrome, characterized in part by hyperinsulinemia, it is increasingly important to understand the mechanisms that contribute to insulin dysregulation. The higher risk for metabolic syndrome imparted by antipsychotic medication use highlights one such mechanism. Though there is great variation in the number and types of signaling pathways targeted by these medications, the one common mechanism of action is through dopamine. Dopamine's effects on insulin signaling begin at the level of insulin secretion from the pancreas and continue through the central nervous system. In a reciprocal fashion, insulin also affects dopamine signaling, with specific effects on dopamine reuptake from the synapse. This review probes the dopamine-insulin connection to provide a comprehensive examination of how antipsychotics may contribute towards insulin resistance. Published by Elsevier B.V.

  15. Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Alicia Gonzalo-Gomez

    Full Text Available HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

  16. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  17. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2010-06-01

    Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a

  18. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  19. Dopamine natriuresis in salt-repleted, water-loaded humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Olsen, M H; Bonde, J

    1997-01-01

    The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers....

  20. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J.M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C.M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A.H.

    Background:Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  1. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J. M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C. M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A. H.

    2017-01-01

    BACKGROUND: Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  2. Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.

    Science.gov (United States)

    Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T

    2015-09-15

    Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence

    Directory of Open Access Journals (Sweden)

    Pierre eTrifilieff

    2013-06-01

    Full Text Available Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the Positron Emission Tomography (PET imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.

  4. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine

    Science.gov (United States)

    Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya

    2018-05-01

    A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.

  5. Increased brain dopamine and dopamine receptors in schizophrenia

    International Nuclear Information System (INIS)

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-01-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients

  6. Peripheral Dopamine in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2018-03-01

    Full Text Available Objective/BackgroundRestless Legs Syndrome (RLS is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs in RLS.Patients/MethodsDopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry.ResultsBlood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only.ConclusionDownregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

  7. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes

  8. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    Science.gov (United States)

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  9. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation.

    Science.gov (United States)

    Privman, Eve; Venton, B Jill

    2015-11-01

    Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 μM/s in the protocerebrum was significantly higher than the Vmax of 0.05 μM/s in the VNC. The average Km of 0.11 μM in the protocerebrum was not significantly different from the Km of 0.10 μM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions. © 2015 International Society for Neurochemistry.

  10. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques.

    Science.gov (United States)

    Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T; Lovinger, David M; Mateo, Yolanda; Jimenez, Vanessa A; Helms, Christa M; Grant, Kathleen A; Jones, Sara R

    2016-04-01

    Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are not fully understood. Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Female rhesus macaques completed 1 year of daily (22 h/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa opioid receptor agonist) induced inhibition of dopamine release. Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa opioid receptors, which both act as negative regulators of presynaptic dopamine release, was moderately and robustly enhanced in ethanol drinkers. Greater uptake rates and sensitivity to D2-type autoreceptor and kappa opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system and suggest that the dopamine and dynorphin/kappa opioid receptor systems may be efficacious pharmacotherapeutic targets in the treatment of alcohol use disorders.

  11. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Science.gov (United States)

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  13. [Scans without Evidence of Dopamine Deficit (SWEDDs)].

    Science.gov (United States)

    Mukai, Yohei; Murata, Miho

    2016-01-01

    Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis.

  14. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    Science.gov (United States)

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  15. Functionally distinct dopamine signals in nucleus accumbens core and shell in the freely moving rat

    DEFF Research Database (Denmark)

    Dreyer, Jakob K.; Vander Weele, Caitlin M.; Lovic, Vedran

    2016-01-01

    Dynamic signaling of mesolimbic dopamine (DA) neurons has been implicated in reward learning, drug abuse, and motivation. However, this system is complex because firing patterns of these neurons are heterogeneous; subpopulations receive distinct synaptic inputs, and project to anatomically...

  16. Dopamine agents for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Junker, Anders Ellekær; Als-Nielsen, Bodil; Gluud, Christian

    2014-01-01

    BACKGROUND: Patients with hepatic encephalopathy may present with extrapyramidal symptoms and changes in basal ganglia. These changes are similar to those seen in patients with Parkinson's disease. Dopamine agents (such as bromocriptine and levodopa, used for patients with Parkinson's disease) have...... therefore been assessed as a potential treatment for patients with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of dopamine agents versus placebo or no intervention for patients with hepatic encephalopathy. SEARCH METHODS: Trials were identified through the Cochrane...... hepatic encephalopathy that were published during 1979 to 1982 were included. Three trials assessed levodopa, and two trials assessed bromocriptine. The mean daily dose was 4 grams for levodopa and 15 grams for bromocriptine. The median duration of treatment was 14 days (range seven to 56 days). None...

  17. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  18. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Import...

  19. Effect of acute administration of hypericum perforatum-CO2 extract on dopamine and serotonin release in the rat central nervous system.

    Science.gov (United States)

    Di Matteo, V; Di Giovanni, G; Di Mascio, M; Esposito, E

    2000-01-01

    The hydromethanolic extract of Hypericum perforatum has been shown to be an effective antidepressant, although its mechanism of action is still unclear. In this study, in vivo microdialysis was used to investigate the effects of Hypericum perforatum-CO2 extract on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) release in various areas of brain. Administration of Hypericum perforatum extract (1 mg/kg, p.o.) caused a slight, but significant increase of DA outflow both in the nucleus accumbens and the striatum. The maximal increase of DA efflux (+19.22+/-1.93%, relative to the control group) in the nucleus accumbens occurred 100 min after administration of Hypericum perforatum. In the striatum, the extract maximally enhanced DA outflow (+24.83+/-7.49 %, relative to the control group) 80 min after administration. Extraneuronal DOPAC levels were not significantly affected by Hypericum perforatum treatment. Moreover, Hypericum perforatum (1 mg/kg, p.o.) did not produce any significant effect on either 5-HT or 5-HIAA efflux in the ventral hippocampus. This study shows for the first time that Hypericum perforatum extract is capable of increasing in vivo DA release.

  20. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson's disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM.

  1. Individual differences and vulnerability to drug addiction: a focus on the endocannabinoid system.

    Science.gov (United States)

    Sagheddu, Claudia; Melis, Miriam

    2015-01-01

    Vulnerability to drug addiction depends upon the interactions between the biological makeup of the individual, the environment, and age. These interactions are complex and difficult to tease apart. Since dopamine is involved in the rewarding effects of drugs of abuse, it is postulated that innate differences in mesocorticolimbic pathway can influence the response to drug exposure. In particular, higher and lower expression of dopamine D2 receptors in the ventral striatum (i.e. a marker of dopamine function) has been considered a putative protective and a risk factor, respectively, that can influence one's susceptibility to continued drug abuse as well as the transition to addiction. This phenomenon, which is phylogenetically preserved, appears to be a compensatory change to increased impulse activity of midbrain dopamine neurons. Hence, dopamine neuronal excitability plays a fundamental role in the diverse stages of the drug addiction cycle. In this review, a framework for the evidence that modulation of dopamine neuronal activity plays in the context of vulnerability to drug addiction will be presented. Furthermore, since endogenous cannabinoids serve as retrograde messengers to shape afferent neuronal activity in a short- and long-lasting fashion, their role in individual differences and vulnerability to drug addiction will be discussed.

  2. Dopamine signaling in reward-related behaviors.

    Science.gov (United States)

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  3. Dopamine Signaling in reward-related behaviors

    Directory of Open Access Journals (Sweden)

    Ja-Hyun eBaik

    2013-10-01

    Full Text Available Dopamine (DA regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DAmesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural rewards such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  4. Decrease in the number of rat brain dopamine and muscarinic receptors after chronic alcohol intake

    International Nuclear Information System (INIS)

    Syvaelahti, E.K.G.; Hietala, J.; Roeyttae, M.; Groenroos, J.

    1988-01-01

    The effect of 32 weeks' alcohol treatment on the number and affinity of dopamine and muscarinic receptor sites in rat striatum were measured using 3 H-spiperone and 3 H-quinuclidinylbenzilate ( 3 H-QNB) as radioligans. The number of dopamine receptor sites was 38 per cent and the number of muscarinic receptor sites 36 per cent lower in the alcohol group than in control rats. The differences in receptor affinities were less marked. In conclusion, a long-term alcohol intake with rather moderate doses seems to induce a pronounced down-regulation in dopamine and muscarinic receptor systems in rat striatum. (author)

  5. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    Science.gov (United States)

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  6. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  7. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males.

    Science.gov (United States)

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2009-01-01

    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior.

  8. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  9. The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness : longitudinal evidence for gene-environment interactions

    NARCIS (Netherlands)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods:

  10. Dopamine plasma clearance is increased in piglets compared to neonates during continuous dopamine infusion

    DEFF Research Database (Denmark)

    Rasmussen, Martin B; Gramsbergen, Jan Bert; Eriksen, Vibeke Ramsgaard

    2018-01-01

    pharmacokinetics. METHODS: Arterial blood samples were drawn from six neonates admitted to the neonatal intensive care unit of Copenhagen University Hospital and 20 newborn piglets during continuous dopamine infusion. Furthermore, to estimate the piglet plasma dopamine half-life, blood samples were drawn at 2.......5-minute intervals after the dopamine infusion was discontinued. The plasma dopamine content was analysed by high-performance liquid chromatography with electrochemical detection. RESULTS: The dopamine displayed first-order kinetics in piglets and had a half-life of 2.5 minutes, while the median plasma...

  11. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia.

    Science.gov (United States)

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin M

    2017-01-01

    The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D 2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Prefrontal cortex, dopamine, and jealousy endophenotype.

    Science.gov (United States)

    Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo

    2013-02-01

    Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.

  13. Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine

    OpenAIRE

    Siciliano, Cody A.; Fordahl, Steve C.; Jones, Sara R.

    2016-01-01

    Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Her...

  14. The treatment of Parkinson's disease with dopamine agonists

    Directory of Open Access Journals (Sweden)

    Frank, Wilhelm

    2008-06-01

    Full Text Available Parkinson’s disease is a chronic degenerative organic disease with unknown causes. A disappearance of cells with melanin in the substantia nigra is considered as biological artefact of the disease, which causes a degenerative loss of neurons in the corpus striatum of mesencephalon. This structure produces also the transmitter substance dopamine. Due to this disappearance of cells dopamine is not produced in a sufficient quantity which is needed for movement of the body. The questions of this report are concerned the efficiency and safety of a treatment with dopamine agonists. Furthermore the cost-effectiveness is investigated as well as ethic questions. The goal is to give recommendation for the use of dopamine agonists to the German health system. A systematic literature search was done. The identified studies have different methodological quality and investigate different hypothesis and different outcome criteria. Therefore a qualitative method of information synthesis was chosen. Since the introduction of L-Dopa in the 1960´s it is considered as the most effective substance to reduce all the cardinal symptoms of Parkinson disease. This substance was improved in the course of time. Firstly some additional substances were given (decarbonxylase inhibitors, catechol-o-transferase inhibitors (COMT-inhibitors, monoaminoxydase-inhibitors (MAO-inhibitors and NMDA-antagonists (N-Methyl-d-aspartat-antagonists. In the practical therapy of Parkinson dopamine agonists play an important role, because they directly use the dopamine receptors. The monotherapy of Parkinson disease is basically possible and is used in early stages of the disease. Clinical practise has shown, that an add on therapy with dopamine agonists can led to a reduction of the dose of L-dopa and a reduction of following dyskinesia. The studies for effectiveness include studies for the initial therapy, monotherapy and add-on-therapy. Basically there is a good effectiveness of dopamine

  15. Modulation for emergent networks: serotonin and dopamine.

    Science.gov (United States)

    Weng, Juyang; Paslaski, Stephen; Daly, James; VanDam, Courtland; Brown, Jacob

    2013-05-01

    In autonomous learning, value-sensitive experiences can improve the efficiency of learning. A learning network needs be motivated so that the limited computational resources and the limited lifetime are devoted to events that are of high value for the agent to compete in its environment. The neuromodulatory system of the brain is mainly responsible for developing such a motivation system. Although reinforcement learning has been extensively studied, many existing models are symbolic whose internal nodes or modules have preset meanings. Neural networks have been used to automatically generate internal emergent representations. However, modeling an emergent motivational system for neural networks is still a great challenge. By emergent, we mean that the internal representations emerge autonomously through interactions with the external environments. This work proposes a generic emergent modulatory system for emergent networks, which includes two subsystems - the serotonin system and the dopamine system. The former signals a large class of stimuli that are intrinsically aversive (e.g., stress or pain). The latter signals a large class of stimuli that are intrinsically appetitive (e.g., pleasure or sweet). We experimented with this motivational system for two settings. The first is a visual recognition setting to investigate how such a system can learn through interactions with a teacher, who does not directly give answers, but only punishments and rewards. The second is a setting for wandering in the presence of a friend and a foe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  17. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    Science.gov (United States)

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  18. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  19. Interactions between dopamine and oxytocin in the control of sexual behaviour.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2008-01-01

    Dopamine and oxytocin are two key neuromodulators involved in reproductive behaviours, such as mating and maternal care. Much evidence underlies their separate roles in such behaviours, but particularly in sexual behaviour. It is generally believed that central dopaminergic and oxytocinergic systems work together to regulate the expression of penile erection, but relatively little is known regarding how they interact. Thus, this review aims to discuss neuroanatomical proof, neuromodulator secretory profiles in the hypothalamus and behavioural pharmacological evidence which support a dopamine-oxytocin link in three hypothalamic nuclei that have been implicated in sexual behaviour, namely the medial preoptic nucleus, supraoptic nucleus and paraventricular nucleus (PVN). We also aim to provide an overview of potential dopamine-mediated transduction pathways that occur within these nuclei and are correlated with the exhibition of penile erection. The PVN provides the most convincing evidence for a dopamine-oxytocin link and it is becoming increasingly apparent that parvocellular oxytocinergic neurons in the PVN, in part, mediate the effects of dopamine to elicit penile erection. However, while we show that oxytocin neurons express dopamine receptors, other evidence on whether dopaminergic activation of PVN oxytocin cells involves a direct and/or indirect mechanism is inconclusive and further evidence is required to establish whether the two systems interact synergistically or sequentially in the regulation of penile erection.

  20. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder.

    Science.gov (United States)

    Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A

    2013-12-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.

  1. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    International Nuclear Information System (INIS)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and 3 H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by α-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S 2 episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. 3 H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system

  2. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  3. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  4. Stereoselectivity of presynaptic autoreceptors modulating dopamine release

    International Nuclear Information System (INIS)

    Arbilla, S.; Langer, S.Z.

    1981-01-01

    The effects of the (R)- and (S)-enantiomers of sulpiride and butaclamol were studied on the spontaneous and field stimulation-evoked release of total radioactivity from slices of rabbit caudate nucleus prelabelled with [ 3 H]dopamine. (S)-Sulpiride in concentrations ranging from 0.01-1μM enhanced the electrically evoked release of [ 3 H]dopamine while (R)-sulpiride was 10 times less potent than (S)-sulpiride. Exposure to (S)-butaclamol (0.1-1 μM) but not to (R)-butaclamol (0.1-10μM) enhanced the field-stimulated release of [ 3 H]dopamine. The facilitatory effects of (S)- and (R)-sulpiride and (S)-butaclamol on the stimulated release of the labelled neurotransmitter were observed under conditions in which these drugs did not modify the spontaneous outflow of radioactivity. Only the active enantiomers of sulpiride and butaclamol antagonized the inhibition by apomorphine (1μM) of the stimulated release of [ 3 H]dopamine. Our results indicate that the presynaptic inhibitory dopamine autoreceptors modulating the stimulation-evoked release of [ 3 H]dopamine in the caudate nucleus are, like the classical postsynaptic dopamine receptors, chemically stereoselective. (Auth.)

  5. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis

    Directory of Open Access Journals (Sweden)

    Albert C. Yang

    2017-08-01

    Full Text Available Schizophrenia has been primarily associated with dopamine dysfunction, and treatments have been developed that target the dopamine pathway in the central nervous system. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid (GABA signaling, which may lead to aberrant functioning of interneurons that manifest as cognitive, behavioral, and social dysfunction through altered functioning of a broad range of macro- and microcircuits. The interactions between neurotransmitters can be modeled as nodes and edges by using graph theory, and oxidative balance, immune, and glutamatergic systems may represent multiple nodes interlocking at a central hub; imbalance within any of these nodes might affect the entire system. Therefore, this review attempts to address novel treatment targets beyond the dopamine hypothesis, including glutamate, serotonin, acetylcholine, GABA, and inflammatory cytokines. Furthermore, we outline that these treatment targets can be possibly integrated with novel treatment strategies aimed at different symptoms or phases of the illness. We anticipate that reversing anomalous activity in these novel treatment targets or combinations between these strategies might be beneficial in the treatment of schizophrenia.

  6. Human dopamine receptor and its uses

    Energy Technology Data Exchange (ETDEWEB)

    Civelli, Olivier (Portland, OR); Van Tol, Hubert Henri-Marie (Toronto, CA)

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  7. The role of genes, stress and dopamine in the development of schizophrenia

    Science.gov (United States)

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin

    2017-01-01

    The dopamine hypothesis is the longest standing pathoaetiological theory of schizophrenia. As it was initially based on indirect evidence and findings in patients with established schizophrenia it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity, and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in-line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also impact on presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis and psychosocial stress. Included among the many genes associated with risk of schizophrenia, are the gene encoding the DRD2 receptor and those involved in the up-stream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acid (GABA)-ergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitise the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. PMID:27720198

  8. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions.

    Science.gov (United States)

    Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu

    2017-12-28

    One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host

  9. Structural and Functional Effect of an Oscillating Electric Field on the Dopamine-D3 Receptor: A Molecular Dynamics Simulation Study.

    Directory of Open Access Journals (Sweden)

    Zohreh Fallah

    Full Text Available Dopamine as a neurotransmitter plays a critical role in the functioning of the central nervous system. The structure of D3 receptor as a member of class A G-protein coupled receptors (GPCRs has been reported. We used MD simulation to investigate the effect of an oscillating electric field, with frequencies in the range 0.6-800 GHz applied along the z-direction, on the dopamine-D3R complex. The simulations showed that at some frequencies, the application of an external oscillating electric field along the z-direction has a considerable effect on the dopamine-D3R. However, there is no enough evidence for prediction of changes in specific frequency, implying that there is no order in changes. Computing the correlation coefficient parameter showed that increasing the field frequency can weaken the interaction between dopamine and D3R and may decrease the Arg128{3.50}-Glu324{6.30} distance. Because of high stability of α helices along the z-direction, applying an oscillating electric field in this direction with an amplitude 10-time higher did not have a considerable effect. However, applying the oscillating field at the frequency of 0.6 GHz along other directions, such as X-Y and Y-Z planes, could change the energy between the dopamine and the D3R, and the number of internal hydrogen bonds of the protein. This can be due to the effect of the direction of the electric field vis-à-vis the ligands orientation and the interaction of the oscillating electric field with the dipole moment of the protein.

  10. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  11. Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains

    Science.gov (United States)

    Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.

    2017-01-01

    Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings

  12. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Sven I Walaas

    2011-08-01

    Full Text Available Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly DARPP-32, RCS (Regulator of Calmodulin Signaling and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.

  13. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain.

    Science.gov (United States)

    Sinclair, Duncan; Purves-Tyson, Tertia D; Allen, Katherine M; Weickert, Cynthia Shannon

    2014-04-01

    Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.

  14. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra

    International Nuclear Information System (INIS)

    Hargraves, R.; Freed, W.J.

    1987-01-01

    This study examined the effects of continuously supplied dopamine delivered directly into the dopamine-deficient striatum. Rats received unilateral lesions of the substantia nigra by stereotaxic administration of 6-hydroxydopamine and were tested for apomorphine-induced rotational behavior and general activity. Osmotic mini-pumps were filled with dopamine in various concentrations, implanted subcutaneously and connected to a cannula implanted directly into the striatum. The system delivered solution at a rate of .5 μl/hr for two weeks. Dopamine in a dosage of 0.5 μg/per hour reduced apomorphine-induced rotational behavior by a mean of 52 +/- 5.8% (mean +/- SEM n=20) with a maximal individual decrease of 99%. There was no change in general activity or increase in stereotype behavior. Infusions of vehicle solutions did not decrease rotational behavior. Spread of the infused dopamine and its metabolites was estimated by adding 3 H-dopamine to the pumps in tracer quantities. Radioactivity was highly concentrated at the infusion site and decreased rapidly within a few mm from the infusion site. Continuous infusion methods may eventually prove to be effective in the treatment of nigro-striatal degenerative disease. 12 references, 4 figures

  15. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    Directory of Open Access Journals (Sweden)

    Stephanie C. Gantz

    2015-08-01

    Full Text Available Imbalance between the dopamine and serotonin (5-HT neurotransmitter systems has been implicated in the comorbidity of Parkinson’s disease (PD and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission.

  16. Detection of dopamine neurotransmission in 'real time'

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    2013-07-01

    Full Text Available Current imaging techniques have limited ability to detect neurotransmitters released during brain processing. It is a critical limitation because neurotransmitters have significant control over the brain activity. In this context, recent development of single-scan dynamic molecular imaging technique is important because it allows detection, mapping, and measurement of dopamine released in the brain during task performance. The technique exploits the competition between endogenously released dopamine and its receptor ligand for occupancy of receptor sites. Dopamine released during task performance is detected by dynamically measuring concentration of intravenously injected radiolabeled ligand using a positron emission tomography camera. Based on the ligand concentration, values of receptor kinetic parameters are estimated. These estimates allow detection of dopamine released in the human brain during task performance.

  17. DOPA, norepinephrine, and dopamine in rat tissues

    DEFF Research Database (Denmark)

    Eldrup, E; Richter, Erik; Christensen, N J

    1989-01-01

    We studied the effect of unilateral sympathectomy on rat quadriceps and gastrocnemius muscle concentrations of endogenous dihydroxyphenylalanine (DOPA), dopamine (DA), and norepinephrine (NE) and assessed the relationships between these catecholamines in several rat tissues. Catecholamines were...

  18. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  19. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    Science.gov (United States)

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  20. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  1. On the role of subsecond dopamine release in conditioned avoidance

    Directory of Open Access Journals (Sweden)

    Erik B Oleson

    2013-06-01

    Full Text Available Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: 1 fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, 2 the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, 3 over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety 4 the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain’s incentive-motivational circuitry.

  2. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease.

    Science.gov (United States)

    Merims, Doron; Giladi, Nir

    2008-01-01

    Degeneration of the dopaminergic system in Parkinson's disease and longstanding exposure to dopaminergic drugs may cause reward system malfunction. This may manifest as addiction to l-dopa and behavioral disturbances associated with the impulse control system. These disturbances include: gambling, excessive spending (shopping), hypersexuality and binge eating. We included one such patient's personal story to emphasize the devastating consequences of these potentially reversible phenomena: the patient describes in his own words how gambling induced by an exposure dopamine agonist therapy significantly worsened his disease-related difficulties.

  3. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium

    DEFF Research Database (Denmark)

    Larsen, Trine R; Rossen, Sine; Gramsbergen, Jan B

    2008-01-01

    Organotypic mesencephalic cultures provide an attractive in vitro alternative to study development of the nigrostriatal system and pathophysiological mechanisms related to Parkinson's disease. However, dopamine (DA) release mechanisms have been poorly characterized in such cultures. We report her...

  4. Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome.

    Science.gov (United States)

    Khan, Farhan H; Ahlberg, Caitlyn D; Chow, Christopher A; Shah, Divya R; Koo, Brian B

    2017-08-01

    Restless legs syndrome (RLS) is a common, chronic neurologic condition, which causes a persistent urge to move the legs in the evening that interferes with sleep. Human and animal studies have been used to study the pathophysiologic state of RLS and much has been learned about the iron and dopamine systems in relation to RLS. Human neuropathologic and imaging studies have consistently shown decreased iron in different brain regions including substantia nigra and thalamus. These same areas also demonstrate a state of relative dopamine excess. While it is not known how these changes in dopamine or iron produce the symptoms of RLS, genetic and hormone studies of RLS have identified other biologic systems or genes, such as the endogenous opioid and melanocortin systems and BTBD9 and MEIS1, that may explain some of the iron or dopamine changes in relation to RLS. This manuscript will review what is known about the pathophysiology of RLS, especially as it relates to changes in iron, dopamine, genetics, and hormonal systems.

  5. Mapping of central dopamine synthesis in man, using positron emission tomography with L-[β-11C]DOPA

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Shidahara, Miho; Takano, Harumasa; Takahashi, Hidehiko; Nozaki, Shoko; Suhara, Tetsuya

    2007-01-01

    The objective of this study was to estimate the presynaptic function of the central dopaminergic system, positron emission tomography measurement of the endogenous dopamine synthesis rate was performed with L-[β- 11 C]dihydroxyphenylanine (DOPA). In the present study, we developed a simple method for calculating an indicator of the dopamine synthesis rate with L-[β- 11 C]DOPA on a voxel-by-voxel basis for parametric mapping. After intravenous injection of L-[β- 11 C]DOPA, dynamic scanning was performed on ten healthy men for 89 min. The dopamine synthesis ratio was calculated on a voxel-by-voxel basis as the ratio of the area under the time-activity curves of brain regions to the reference brain region, that is, occipital cortex. The overall uptake rate constant as an indicator of dopamine synthesis was also calculated by kinetic and graphical analyses. The dopamine synthesis ratio calculated by the present method was in good agreement with the indicators of dopamine synthesis calculated by kinetic and graphical analyses, although a systemic underestimation was observed, especially when the integration interval was set in the early phase of the scan duration. In particular, underestimations were prominent in brain regions with relatively lower influx rate constant K 1 . By this method, regional dopamine synthesis could be estimated on a voxel-by-voxel basis. This method does not need an arterial input function and should prove to be useful for clinical research. (author)

  6. [11]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy

    International Nuclear Information System (INIS)

    Fowler, Joanna S.; Volkow, Nora D.; Wang, Gene-Jack; Gatley, S. John; Logan, Jean

    2001-01-01

    Cocaine was initially labeled with carbon-11 in order to track the distribution and pharmacokinetics of this powerful stimulant and drug of abuse in the human brain and body. It was soon discovered that [ 11 C]cocaine was not only useful for measuring cocaine pharmacokinetics and its relationship to behavior but that it is also a sensitive radiotracer for dopamine transporter (DAT) availability. Measures of DAT availability were facilitated by the development of a graphical analysis method (Logan Plot) for reversible systems which streamlined kinetic analysis. This expanded the applications of [ 11 C]cocaine to studies of DAT availability in the human brain and allowed the first comparative measures of the degree of DAT occupancy by cocaine and another stimulant drug methylphenidate. This article will summarize preclinical and clinical research with [ 11 C]cocaine

  7. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo.

    Science.gov (United States)

    Cooper, B R; Hester, T J; Maxwell, R A

    1980-10-01

    Bupropion (BW 323U; Wellbutrin), a novel compound with antidepressant effects in man, was found to reduce immobility in an "experimental helplessness" forced swimming antidepressant test in rats as did imipramine and amitriptyline. Higher doses produced elevated locomotor activity in an automated open field and produced stereotyped sniffing which was contrasted with apomorphine. When bupropion or desmethylimipramine was given before intracisternal injections of 6-hydroxydopamine, bupropion produced a dose-related selective antagonism of the destruction of dopamine neurons, while under the same conditions, desmethylimipramine produced a dose-related selective antagonism of the destruction of noradrenergic neurons. Studies in which the dose of bupropion and the dose of 6-hydroxydopamine were varied revealed that a dose-related selective antagonism of dopamine depletion by 6-hydroxydopamine occurred when doses up to and including 50 mg/kg i.p. to bupropion were administered. Some antagonism of norepinephrine depletion also occurred at 100 mg/kg of bupropion i.p. Bupropion also selectively reversed the dopamine depletion produced by alpha-methyl-m-tyrosine, a finding which is consistent with the view that bupropion is a dopamine uptake inhibitor in vivo. The importance of dopamine systems for the behavioral effects of bupropion were also studied. When the locomotor stimulant effects of bupropion were tested in rats with chronic destruction of dopamine neurons produced by 6-hydroxydopamine, bupropion failed to elevate locomotor activity. Rats treated with procedures using 6-hydroxydopamine to produce relatively selective norepinephrine depletions responded to bupropion with locomotor activity stimulation like controls. Rats with similar depletions of either dopamine or norepinephrine were also tested for the ability of low doses of bupropion to reduce immobility in the "experimental helplessness" forced swim antidepressant test. Prior destruction of dopamine neurons

  8. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  9. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    International Nuclear Information System (INIS)

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-01-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ∼ 25 and ∼ 40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: ► Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: ≤ 1, ≤ 10, 25 and 40 μg/dL ► Gestational lead exposure dose-dependently decreased the number of TH

  10. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells.

    Science.gov (United States)

    Silwal, Achut P; Yadav, Rajeev; Sprague, Jon E; Lu, H Peter

    2017-07-19

    Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm -1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm -1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm -1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm -1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.

  11. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  12. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  13. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    Science.gov (United States)

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. D-2 dopamine receptor activation reduces free [3H]arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    International Nuclear Information System (INIS)

    Canonico, P.L.

    1989-01-01

    Dopamine reduces the stimulation of intracellular [ 3 H]arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited [ 3 H]arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular [ 3 H]arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels

  15. Prefrontal Dopamine in Associative Learning and Memory

    Science.gov (United States)

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  16. Prefrontal dopamine in associative learning and memory.

    Science.gov (United States)

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  18. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia

    Directory of Open Access Journals (Sweden)

    James P. Kesby

    2013-07-01

    Full Text Available Schizophrenia is a heterogeneous group of disorders with unknown aetiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesised that abnormal dopamine signalling in the adult patient may result from altered dopamine signalling during foetal brain development. Environmental and genetic risk factors can be modelled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the aetiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD deficiency. DVD-deficient adult rats display an altered behavioural profile in response to dopamine releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters dopamine metabolism in the developing brain. We speculate such alterations in foetal brain development may change the trajectory of dopamine neuron ontogeny to induce the behavioural abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in dopamine ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.

  19. Apo-ghrelin receptor (apo-GHSR1a Regulates Dopamine Signaling in the Brain

    Directory of Open Access Journals (Sweden)

    Andras eKern

    2014-08-01

    Full Text Available The orexigenic peptide hormone ghrelin is synthesized in the stomach and its receptor growth hormone secretagogue receptor (GHSR1a is expressed mainly in the central nervous system (CNS. In this review we confine our discussion to the physiological role of GHSR1a in the brain. Paradoxically, despite broad expression of GHSR1a in the CNS, other than trace amounts in the hypothalamus, ghrelin is undetectable in the brain. In our efforts to elucidate the function of the ligand-free ghrelin receptor (apo-GHSR1a we identified subsets of neurons that co-express GHSR1a and dopamine receptors. In this review we focus on interactions between apo-GHSR1a and dopamine-2 receptor (DRD2 and formation of GHSR1a:DRD2 heteromers in hypothalamic neurons that regulate appetite, and discuss implications for the treatment of Prader-Willi syndrome. GHSR1a antagonists of distinct chemical structures, a quinazolinone and a triazole, respectively enhance and inhibit dopamine signaling through GHSR1a:DRD2 heteromers by an allosteric mechanism. This finding illustrates a potential strategy for designing the next generation of drugs for treating eating disorders as well as psychiatric disorders caused by abnormal dopamine signaling. Treatment with a GHSR1a antagonist that enhances dopamine/DRD2 activity in GHSR1a:DRD2 expressing hypothalamic neurons has the potential to inhibit the uncontrollable hyperphagia associated with Prader-Willi syndrome. DRD2 antagonists are prescribed for treating schizophrenia, but these block dopamine signaling in all DRD2 expressing neurons and are associated with adverse side effects, including enhanced appetite and excessive weight gain. A GHSR1a antagonist of structural class that allosterically blocks dopamine/DRD2 action in GHSR1a:DRD2 expressing neurons would have no effect on neurons expressing DRD2 alone; therefore, the side effects of DRD2 antagonists would potentially be reduced thereby enhancing patient compliance.

  20. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  1. Characterization of alternate reductant binding and electron transfer in the dopamine β-monooxygenase reaction

    International Nuclear Information System (INIS)

    Stewart, L.C.; Klinman, J.P.

    1987-01-01

    The steady-state limiting kinetic parameters V/sub max/, V/K/sub DA/, and V/K/sub O 2 /, together with deuterium isotope effects on these parameters, have been determined for the dopamine β-monooxygenase (DβM) reaction in the presence of structurally distinct reductants. The results show the one-electron reductant ferrocyanide to be nearly as kinetically competent as the presumed in vivo reductant ascrobate. Further, a reductant system of ferricyanide plus substrate dopamine yields steady-state kinetic parameters and isotope effects very similar to those measured solely in the presence of ferrocyanide, indicating a role for catecholamine in the rapid recycling of oxidized ferrocyanide. Use of substrate dopamine as the sole reductant is found to lead to a highly unusual kinetic independence of oxygen concentration, as well as significantly reduced values of V/sub max/ and V/K/sub DA/, and the authors conclude that dopamine reduces enzymic copper in a rate-limiting step that is 40-fold slower than with ascorbate. The near-identical kinetic parameters measured in the presence of either ascorbate or ferrocyanide, together with markedly reduced rates with dopamine, are interpreted in terms of a binding site for reductant that is physically distinct from the substrate binding site. This view is supported by molecular modeling, which reveals ascorbate and ferrocyanide to possess an unexpected similarity in potential sites for interaction with enzymic residues. With regard to electron flux, identical values of V/K/sub O 2 / have been measured with [2,2- 2 H 2 ]dopamine as substrate both in the presence and in the absence of added ascorbate. This key result unambiguously rules out an entry of electrons to enzyme forms leading from the enzyme-dopamine complex to enzyme-bound product and, hence, reaction mechanisms involving a reductive activation of the putative Cu(II)-OOH prior to substrate hydroxylation

  2. Comparing the Rates of Dopamine Hemodynamic Effect Onset after Infusion through Peripheral Veins in Three Regions

    Directory of Open Access Journals (Sweden)

    Deokkyu Kim

    2017-02-01

    Full Text Available Background Dopamine is an inotropic agent that is often selected for continuous infusion. For hemodynamic stability, the rate of infusion is controlled in the range of 5-15 μg/kg/min. This study aimed to compare the time intervals from the administration of dopamine to the onset of its hemodynamic effects when dopamine was administered through three different peripheral veins (the cephalic vein [CV], the great saphenous vein [GSV], and the external jugular vein [EJV]. Methods Patients in group 1, group 2, and group 3 received dopamine infusions in the CV, GSV, and EJV, respectively. A noninvasive continuous cardiac output monitor (NICCOMO™, Medis, Ilmenau, Germany was used to assess cardiac output (CO and systemic vascular resistance (SVR. Six minutes after intubation, baseline heart rate (HR, systolic blood pressure (BP, diastolic BP, mean arterial pressure (MAP, CO, and SVR values were recorded and dopamine infusion was initiated at a dose of 10 μg/kg/min. Hemodynamic changes at 0, 4, 8, 12, and 15 minutes postinfusion were recorded. Results No statistically significant differences were observed among the three groups with respect to the rate of hemodynamic change. In all groups, systolic BP, diastolic BP, MAP, and SVR tended to increase after decreasing for the first 4 minutes; in contrast, HR and CO decreased until 8 minutes, after which they tended to reach a plateau. Conclusions For patients under general anesthesia receiving dopamine at 10 μg/kg/min, there were no clinical differences in the effect of dopamine administered through three different peripheral veins.

  3. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion.

    Science.gov (United States)

    de Wit, Sanne; Standing, Holly R; Devito, Elise E; Robinson, Oliver J; Ridderinkhof, K Richard; Robbins, Trevor W; Sahakian, Barbara J

    2012-01-01

    Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not well understood. We present the first investigation of the effect of reducing dopamine function in healthy volunteers on the balance between habitual and goal-directed action control. The dietary intervention of acute dietary phenylalanine and tyrosine depletion (APTD) was adopted to study the effects of reduced global dopamine function on action control. Participants were randomly assigned to either the APTD or placebo group (ns = 14) to allow for a between-subjects comparison of performance on a novel three-stage experimental paradigm. In the initial learning phase, participants learned to respond to different stimuli in order to gain rewarding outcomes. Subsequently, an outcome-devaluation test and a slips-of-action test were conducted to assess whether participants were able to flexibly adjust their behaviour to changes in the desirability of the outcomes. APTD did not prevent stimulus-response learning, nor did we find evidence for impaired response-outcome learning in the subsequent outcome-devaluation test. However, when goal-directed and habitual systems competed for control in the slips-of-action test, APTD tipped the balance towards habitual control. These findings were restricted to female volunteers. We provide direct evidence that the balance between goal-directed and habitual control in humans is dopamine dependent. The results are discussed in light of gender differences in dopamine function and psychopathologies.

  4. Effects of dopamine medication on sequence learning with stochastic feedback in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Moonsang Seo

    2010-08-01

    Full Text Available A growing body of evidence suggests that the midbrain dopamine system plays a key role in reinforcement learning and disruption of the midbrain dopamine system in Parkinson's disease (PD may lead to deficits on tasks that require learning from feedback. We examined how changes in dopamine levels (‘ON’ and ‘OFF’ their dopamine medication affect sequence learning from stochastic positive and negative feedback using Bayesian reinforcement learning models. We found deficits in sequence learning in patients with PD when they were ‘ON’ and ‘OFF’ medication relative to healthy controls, but smaller differences between patients ‘OFF’ and ‘ON’. The deficits were mainly due to decreased learning from positive feedback, although across all participant groups learning was more strongly associated with positive than negative feedback in our task. The learning in our task is likely mediated by the relatively depleted dorsal striatum and not the relatively intact ventral striatum. Therefore, the changes we see in our task may be due to a strong loss of phasic dopamine signals in the dorsal striatum in PD.

  5. Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8)

    International Nuclear Information System (INIS)

    Murphy, R.B.; Schuster, D.I.

    1982-01-01

    Cholecystokinin-octapeptide (CCK-8) is a putative neurotransmitter which has been demonstrated previously to occur in midbrain dopamine neurones. We observe that CCK-8 causes changes in both the affinity and density of binding sites for [ 3 H]-dopamine in rat striatal homogenates, in vitro, upon incubation with the peptide at a concentration of 1 micromolar. A dose-response study of the competetion of CCK-8 with [ 3 H]-dopamine binding indicates an IC50 for the peptide of 450 nM; desulfated CCK-8 and the related peptide caerulin are at least 4-fold less active than CCK-8. CCK-8 was also administered to rats in a separate study; the binding of [ 3 H]-dopamine was evaluated to homogenates of striata and olfactory tubercles obtained from these animals, which had been treated with systemic injection at a dose of 20 micrograms/kg, daily, for four days. A decrease in the number of striatal binding sites for the radioligand was observed, with a concomitant increase in the number of binding sites in the olfactory tubercle. These data collectively suggest a possible regulatory role for CCK-8 in the ascending dopamine systems

  6. Glutamate and dopamine in schizophrenia: an update for the 21st century

    Science.gov (United States)

    Howes, Oliver; McCutcheon, Rob; Stone, James

    2016-01-01

    The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an up- date on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on the in vivo neuroimaging studies in patients and clinical high risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed. PMID:25586400

  7. Effects of Dopamine Medication on Sequence Learning with Stochastic Feedback in Parkinson's Disease

    Science.gov (United States)

    Seo, Moonsang; Beigi, Mazda; Jahanshahi, Marjan; Averbeck, Bruno B.

    2010-01-01

    A growing body of evidence suggests that the midbrain dopamine system plays a key role in reinforcement learning and disruption of the midbrain dopamine system in Parkinson's disease (PD) may lead to deficits on tasks that require learning from feedback. We examined how changes in dopamine levels (“ON” and “OFF” their dopamine medication) affect sequence learning from stochastic positive and negative feedback using Bayesian reinforcement learning models. We found deficits in sequence learning in patients with PD when they were “ON” and “OFF” medication relative to healthy controls, but smaller differences between patients “OFF” and “ON”. The deficits were mainly due to decreased learning from positive feedback, although across all participant groups learning was more strongly associated with positive than negative feedback in our task. The learning in our task is likely mediated by the relatively depleted dorsal striatum and not the relatively intact ventral striatum. Therefore, the changes we see in our task may be due to a strong loss of phasic dopamine signals in the dorsal striatum in PD. PMID:20740077

  8. Synaptic Effects of Dopamine Breakdown and Their Relation to Schizophrenia-Linked Working Memory Deficits

    Directory of Open Access Journals (Sweden)

    Andrew D. Bolton

    2018-06-01

    Full Text Available Working memory is the ability to hold information “online” over a time delay in order to perform a task. This kind of memory is encoded in the brain by persistent neural activity that outlasts the presentation of a stimulus. Patients with schizophrenia perform poorly in working memory tasks that require the brief memory of a target location in space. This deficit indicates that persistent neural activity related to spatial locations may be impaired in the disease. At the circuit level, many studies have shown that NMDA receptors and the dopamine system are involved in both schizophrenia pathology and working memory-related persistent activity. In this Hypothesis and Theory article, we examine the possible connection between NMDA receptors, the dopamine system, and schizophrenia-linked working memory deficits. In particular, we focus on the dopamine breakdown product homocysteine (HCY, which is consistently elevated in schizophrenia patients. Our previous studies have shown that HCY strongly reduces the desensitization of NMDA currents. Here, we show that HCY likely affects NMDA receptors in brain regions that support working memory; this is because these areas favor dopamine breakdown over transport to clear dopamine from synapses. Finally, within the context of two NMDA-based computational models of working memory, we suggest a mechanism by which HCY could give rise to the working memory deficits observed in schizophrenia patients.

  9. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  10. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  11. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat.

    Science.gov (United States)

    Becker, J B; Rudick, C N; Jenkins, W J

    2001-05-01

    Dopamine in dialysate from the nucleus accumbens (NAcc) increases during sexual and feeding behavior and after administration of drugs of abuse, even those that do not directly activate dopaminergic systems (e.g., morphine or nicotine). These findings and others have led to hypotheses that propose that dopamine is rewarding, predicts that reinforcement will occur, or attributes incentive salience. Examining increases in dopamine in NAcc or striatum during sexual behavior in female rats provides a unique situation to study these relations. This is because, for the female rat, sexual behavior is associated with an increase in NAcc dopamine and conditioned place preference only under certain testing conditions. This experiment was conducted to determine what factors are important for the increase in dopamine in dialysate from NAcc and striatum during sexual behavior in female rats. The factors considered were the number of contacts by the male, the timing of contacts by the male, or the ability of the female to control contacts by the male. The results indicate that increased NAcc dopamine is dependent on the timing of copulatory stimuli, independent of whether the female rat is actively engaged in regulating this timing. For the striatum, the timing of copulatory behavior influences the magnitude of the increase in dopamine in dialysate, but other factors are also involved. We conclude that increased extracellular dopamine in the NAcc and striatum conveys qualitative or interpretive information about the rewarding value of stimuli. Sexual behavior in the female rat is proposed as a model to determine the role of dopamine in motivated behavior.

  12. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    Science.gov (United States)

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  13. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    Science.gov (United States)

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  14. Cerebral vascular effects of hypovolemia and dopamine infusions

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2012-01-01

    Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature.......Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature....

  15. Synthesis of stereo (R and S) and geometric (E and Z) [F-18]fluoro-β-fluoromethylene-M-tyrosine derivatives: specific PET probes for central dopamine systems

    International Nuclear Information System (INIS)

    Lacan, G.; Barrio, J.R.; Satyamurthy, N.; Yu, D.C.; Huang, S.C.; Phelps, M.E.

    1994-01-01

    Racemic β-fluoromethylene-m-tyrosine (FMMl) was developed as an aromatic amino acid decarboxylase (AAAD)- activated monoamine oxidase (MAO) suicide inhibitor. Direct [F-18] fluorination of pure enantiomers, R and S-(E)-β- fluoromethylene-m-tyrosine (E-FMMT) and the racemic geometric isomer R,S(Z)-β-fluoromethylene-m-tyrosine (Z-FMMT) with [F- 18] acetylhypofluorite, afforded 6- and 2[F-18] fluoro positional isomers as the major products. Regioselective radiofluorodestannylation of the respective 4-trimethylstannyl R,S- (E) - FMMT with [F-18]F 2 yielded the 4[F-18] fluoro derivative, thus allowing for the systematic evaluation of the regio- and stereo radiofluorinated AAAD probes. Macacca nemestrina monkeys were injected iv with purified radiofluorinated FMMT analogs and the distribution of activity in the central dopaminergic system was studied with positron emission tomography (PET). Radiofluorinated stereo and geometric FMMT derivatives showed significant differences in their in vivo striatal localization, with radioprobe localization decreasing in the order: 6F-S-(E)-FMMT >> 2F-S-(E)- FMMT >> 4F-R,S-(E)-FMMT. Neither radiofluorinated analogs of R-(E)- FMMT and R,S-(Z)-FMMT showed any significant striatal localization in vivo. (author)

  16. ORAL IBOPAMINE SUBSTITUTION IN PATIENTS WITH INTRAVENOUS DOPAMINE DEPENDENCE

    NARCIS (Netherlands)

    GIRBES, ARJ; MILNER, AR; MCCLOSKEY, BV; ZWAVELING, JH; VANVELDHUISEN, DJ; ZIJLSTRA, JG; LIE, KI

    1995-01-01

    In a prospective open study we evaluated whether intravenous dopamine infusions can be safely switched to enterally administered ibopamine in dopamine-dependent patients. Six patients defined as being clinically stable, normovolaemic, but dopamine dependent, i.e. with repeated inability to stop

  17. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  18. Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*

    Science.gov (United States)

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-01-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577

  19. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  20. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  1. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells.

    Science.gov (United States)

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Dréan, Yves Le; Saligaut, Christian

    2017-07-01

    Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  3. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    International Nuclear Information System (INIS)

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J.

    1991-01-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd [binding affinity] and Bmax [number of binding sites]) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism

  4. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex

    Directory of Open Access Journals (Sweden)

    Anna Maria Haarmann

    2014-11-01

    Full Text Available Introduction: Spreading depression (SD is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. Methods: The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP in the neocortex was also evaluated. Results: The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. Discussion: These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.

  5. Attenuated Tonic and Enhanced Phasic Release of Dopamine in Attention Deficit Hyperactivity Disorder.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available It is unclear whether attention deficit hyperactive disorder (ADHD is a hypodopaminergic or hyperdopaminergic condition. Different sets of data suggest either hyperactive or hypoactive dopamine system. Since indirect methods used in earlier studies have arrived at contradictory conclusions, we directly measured the tonic and phasic release of dopamine in ADHD volunteers. The tonic release in ADHD and healthy control volunteers was measured and compared using dynamic molecular imaging technique. The phasic release during performance of Eriksen's flanker task was measured in the two groups using single scan dynamic molecular imaging technique. In these experiments volunteers were positioned in a positron emission tomography (PET camera and administered a dopamine receptor ligand (11C-raclopride intravenously. After the injection PET data were acquired dynamically while volunteers either stayed still (tonic release experiments or performed the flanker task (phasic release experiments. PET data were analyzed to measure dynamic changes in ligand binding potential (BP and other receptor kinetic parameters. The analysis revealed that at rest the ligand BP was significantly higher in the right caudate of ADHD volunteers suggesting reduced tonic release. During task performance significantly lower ligand BP was observed in the same area, indicating increased phasic release. In ADHD tonic release of dopamine is attenuated and the phasic release is enhanced in the right caudate. By characterizing the nature of dysregulated dopamine neurotransmission in ADHD, the results explain earlier findings of reduced or increased dopaminergic activity.

  6. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.

    Science.gov (United States)

    Bardo, M T

    1998-01-01

    Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.

  7. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    Science.gov (United States)

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  8. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  9. Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine.

    Science.gov (United States)

    Rincón-Cortés, Millie; Grace, Anthony A

    2017-10-01

    Stress constitutes a risk factor across several psychiatric disorders. Moreover, females are more susceptible to stress-related disorders, such as depression, than males. Although dopamine system underactivation is implicated in the pathophysiology of depression, little is known about the female dopamine system at baseline and post-stress. The effects of chronic mild stress were examined on ventral tegmental area dopamine neuron activity and forced swim test immobility by comparing male and female rats. The impact of a single dose of the rapid antidepressant ketamine (10 mg/kg, i.p.) on forced swim test immobility and ventral tegmental area function was then tested. Baseline ventral tegmental area dopamine activity was comparable in both sexes. At baseline, females exhibited roughly double the forced swim test immobility duration than males, which corresponded to ~50% decrease in ventral tegmental area dopamine population activity compared with similarly treated (i.e., post-forced swim test) males. Following chronic mild stress, there was greater immobility duration in both sexes and reduced ventral tegmental area dopamine neuron activity by approximately 50% in males and nearly 75% in females. Ketamine restored behavior and post-forced swim test ventral tegmental area dopamine activity for up to 7 days in females as well as in both male and female chronic mild stress-exposed rats. These data suggest increased female susceptibility to depression-like phenotypes (i.e., greater immobility, ventral tegmental area hypofunction) is associated with higher dopamine system sensitivity to both acute and repeated stress relative to males. Understanding the neural underpinnings of sex differences in stress vulnerability will provide insight into mechanisms of disease and optimizing therapeutic approaches in both sexes. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  10. Interactive Effects of Dopamine Baseline Levels and Cycle Phase on Executive Functions: The Role of Progesterone

    Directory of Open Access Journals (Sweden)

    Esmeralda Hidalgo-Lopez

    2017-07-01

    Full Text Available Estradiol and progesterone levels vary along the menstrual cycle and have multiple neuroactive effects, including on the dopaminergic system. Dopamine relates to executive functions in an “inverted U-shaped” manner and its levels are increased by estradiol. Accordingly, dopamine dependent changes in executive functions along the menstrual cycle have been previously studied in the pre-ovulatory phase, when estradiol levels peak. Specifically it has been demonstrated that working memory is enhanced during the pre-ovulatory phase in women with low dopamine baseline levels, but impaired in women with high dopamine baseline levels. However, the role of progesterone, which peaks in the luteal cycle phase, has not been taken into account previously. Therefore, the main goals of the present study were to extend these findings (i to the luteal cycle phase and (ii to other executive functions. Furthermore, the usefulness of the eye blink rate (EBR as an indicator of dopamine baseline levels in menstrual cycle research was explored. 36 naturally cycling women were tested during three cycle phases (menses–low sex hormones; pre-ovulatory–high estradiol; luteal–high progesterone and estradiol. During each session, women performed a verbal N-back task, as measure of working memory, and a single trial version of the Stroop task, as measure of response inhibition and cognitive flexibility. Hormone levels were assessed from saliva samples and spontaneous eye blink rate was recorded during menses. In the N-back task, women were faster during the luteal phase the higher their progesterone levels, irrespective of their dopamine baseline levels. In the Stroop task, we found a dopamine-cycle interaction, which was also driven by the luteal phase and progesterone levels. For women with higher EBR performance decreased during the luteal phase, whereas for women with lower EBR performance improved during the luteal phase. These findings suggest an important

  11. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  12. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Directory of Open Access Journals (Sweden)

    Rodrigo eEspaña

    2012-08-01

    Full Text Available The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine.

  13. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Science.gov (United States)

    Calipari, Erin S.; España, Rodrigo A.

    2012-01-01

    The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine. PMID:22933994

  14. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    OpenAIRE

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  15. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  16. Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis

    Science.gov (United States)

    Burke, Andrew R.; Miczek, Klaus A.

    2014-01-01

    Rationale Research on adolescence and drug abuse increased substantially in the past decade. However, drug-addiction related behaviors following stressful experiences during adolescence are less studied. We focus on rodent models of adolescent stress cross-sensitization to drugs of abuse. Objectives Review the ontogeny of behavior, dopamine, corticotropin-releasing factor (CRF), and the hypothalamic pituitary adrenal (HPA) axis in adolescent rodents. We evaluate evidence that stressful experiences during adolescence engender hypersensitivity to drugs of abuse and offer potential neural mechanisms. Results and Conclusions Much evidence suggests that final maturation of behavior, dopamine systems, and HPA axis occurs during adolescence. Stress during adolescence increases amphetamine- and ethanol-stimulated locomotion, preference, and self-administration under many conditions. The influence of adolescent stress on subsequent cocaine- and nicotine-stimulated locomotion and preference is less clear. The type of adolescent stress, temporal interval between stress and testing, species, sex, and the drug tested are key methodological determinants for successful cross-sensitization procedures. The sensitization of the mesolimbic dopamine system is proposed to underlie stress cross-sensitization to drugs of abuse in both adolescents and adults through modulation by CRF. Reduced levels of mesocortical dopamine appear to be a unique consequence of social stress during adolescence. Adolescent stress may reduce the final maturation of cortical dopamine through D2 dopamine receptor regulation of dopamine synthesis or glucocorticoid-facilitated pruning of cortical dopamine fibers. Certain rodent models of adolescent adversity are useful for determining neural mechanisms underlying the cross-sensitization to drugs of abuse. PMID:24370534

  17. Maternal High-Fat Diet and Obesity Impact Palatable Food Intake and Dopamine Signaling in Nonhuman Primate Offspring

    Science.gov (United States)

    Rivera, Heidi M.; Kievit, Paul; Kirigiti, Melissa A.; Bauman, Leigh Ann; Baquero, Karalee; Blundell, Peter; Dean, Tyler A.; Valleau, Jeanette C.; Takahashi, Diana L.; Frazee, Tim; Douville, Luke; Majer, Jordan; Smith, M. Susan; Grove, Kevin L.; Sullivan, Elinor L.

    2015-01-01

    Objective To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food. We will also examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding. Methods The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. We also examined the influence of maternal HFD consumption on the development of the prefrontal cortex-dopamine system at 13 months of age. Results During a preference test, offspring exposed to maternal obesity and HFD consumption displayed increased intake of food high in fat and sugar content relative to offspring from lean control mothers. Maternal HFD consumption suppressed offspring dopamine signaling (as assessed by immunohistochemistry) relative to control offspring. Specifically, there was decreased abundance of dopamine fibers and of dopamine receptor 1 and 2 protein. Conclusion Our findings reveal that offspring exposed to both maternal HFD consumption and maternal obesity during early development are at increased risk for obesity due to overconsumption of palatable energy-dense food, a behavior that may be related to reduced central dopamine signaling. PMID:26530932

  18. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  20. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  1. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse

  2. DOPAMINE EFFECT ON CARDIAC REMODELING IN EXPERIMENT

    Directory of Open Access Journals (Sweden)

    V. R. Veber

    2009-01-01

    Full Text Available Aim. To study morphologic changes in myocardium of Wistar rats caused by single and long term dopamine administration.Methods. In acute study dopamine 10 mkg/kg was administrated to 15 rats by a single intraperitoneal injection. The material was taken in 2, 6, 24 hours and in 1 month after drug administration. In chronic study dopamine 10 mkg/kg was administrated to 15 rats 3 times a day by intraperitoneal injections during 2 weeks. The material was taken just after the drug administration was stopped and in 1 month of animals keeping without stress and drug influences. Control group included 15 rats comparable with experimental animals in age and weight. They were keeped without stress and drug influences. Morphometric parameters of left and right ventricles were evaluated as well as density of cardiomyocytes, collagen, vessels and volume of extracellular space.Results. The enlargement of cardiac fibrosis is found both in acute, and in chronic study. In acute study cardiac fibrosis was located mainly in a right ventricle. In chronic study cardiac fibrosis was located in both ventricles, but also mainly in a right one.Conclusion. Significant morphological «asynchronism» of the left and right ventricles remodeling requires elaboration of methods of myocardium protection and cardiac function control during dopamine administration. 

  3. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  4. Single photon emission tomography (SPET) imaging of dopamine D2 receptors in the course of dopamine replacement therapy in patients with nocturnal myoclonus syndrome (NMS)

    International Nuclear Information System (INIS)

    Staedt, J.; Stoppe, G.; Riemann, H.; Hajak, G.; Ruether, E.; Koegler, A.; Emrich, D.

    1995-01-01

    Single photon emission tomography (SPET) permits the in vivo measurements of regional cerebral radioactivity in the human brain following the administration of compounds labeled with photon-emitting isotopes. According to our SPET findings of a reduced binding of [ 123 I]labeled (S)-2-hydroxy-3-iodo-6-methoxy-([1-ethyl-2-pyrrolidinyl]methyl) benzamide (IBZM) (a highly selective CNS D 2 dopamine receptor ligand) to D 2 dopamine receptors in striatal structures in untreated patients with nocturnal myoclonus syndrome (NMS) it seemed to be of interest to investigate whether there are changes in D 2 receptor binding under dopamine replacement therapy or not. We studied the uptake and distribution of [ 123 I]IBZM before and in the course of dopamine replacement therapy in four patients with severe insomnia caused by nocturnal myoclonus syndrome (NMS). We found an increase of the IBZM binding to D 2 receptors in the course of treatment, which was associated with an improvement of sleep quality. Reasons for this are discussed. The [ 123 I]IBZM SPET technique in conclusion offers an interesting tool for in vivo investigations of functional changes in the dopaminergic neurotransmitter system in longitudinal studies. (author)

  5. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    OpenAIRE

    Maria A de Souza Silva; C. eMattern; C. eMattern; C.I. eDecheva; Joseph P. Huston; A. eSadile; M. eBeu; H.W. eMüller; Susanne eNikolaus

    2016-01-01

    Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We ...

  6. Dopamine Modulates Option Generation for Behavior.

    Science.gov (United States)

    Ang, Yuen-Siang; Manohar, Sanjay; Plant, Olivia; Kienast, Annika; Le Heron, Campbell; Muhammed, Kinan; Hu, Michele; Husain, Masud

    2018-05-21

    Animals make innumerable decisions every day, each of which involves evaluating potential options for action. But how are options generated? Although much is now known about decision making when a fixed set of potential options is provided, surprisingly little progress has been made on self-generated options. Some researchers have proposed that such abilities might be modulated by dopamine. Here, we used a new measure of option generation that is quantitative, objective, and culture fair to investigate how humans generate different behavioral options. Participants were asked to draw as many different paths (options) as they could between two points within a fixed time. Healthy individuals (n = 96) exhibited a trade-off between uniqueness (how individually different their options were) and fluency (number of options), generating either many similar or few unique options. To assess influence of dopamine, we first examined patients with Parkinson's disease (n = 35) ON and OFF their dopaminergic medication and compared them to elderly healthy controls (n = 34). Then we conducted a double-blind, placebo-controlled crossover study of the D2 agonist cabergoline in healthy older people (n = 29). Across both studies, dopamine increased fluency but diminished overall uniqueness of options generated, due to the effect of fluency trading off with uniqueness. Crucially, however, when this trade-off was corrected for, dopamine was found to increase uniqueness for any given fluency. Three carefully designed control studies showed that performance on our option-generation task was not related to executing movements, planning actions, or selecting between generated options. These findings show that dopamine plays an important role in modulating option generation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan; Bruin, Kora de; Habraken, Jan B.A. [Department of Nuclear Medicine, F2N, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Voorn, Pieter [Department of Anatomy, Vrije Universiteit Medical Center, Amsterdam (Netherlands)

    2002-09-01

    To date, the vast majority of investigations on the dopaminergic system in small animals have been in vitro studies. In comparison with in vitro studies, single-photon emission tomography (SPET) or positron emission tomography (PET) imaging of the dopaminergic system in small animals has the advantage of permitting repeated studies within the same group of animals. Dopamine transporter imaging is a valuable non-invasive tool with which to investigate the integrity of dopaminergic neurons. The purpose of this study was to investigate the feasibility of assessing dopamine transporter density semi-quantitatively in rats using a recently developed high-resolution pinhole SPET system. This system was built exclusively for imaging of small animals. In this unique single-pinhole system, the animal rotates instead of the collimated detector. The system has proven to have a high spatial resolution. We performed SPET imaging with [{sup 123}I]FP-CIT to quantify striatal dopamine transporters in rat brain. In all seven studied control rats, symmetrical striatal binding to dopamine transporters was seen 2 h after injection of the radiotracer, with striatal-to-cerebellar binding ratios of approximately 3.5. In addition, test/retest variability of the striatal-to-cerebellar binding ratios was studied and found to be 14.5%. Finally, in unilaterally 6-hydroxydopamine-lesioned rats, striatal binding was only visible on the non-lesioned side. Quantitative analysis revealed that striatal-to-cerebellar SPET ratios were significantly lower on the lesioned (mean binding ratio 2.2{+-}0.2) than on the non-lesioned (mean ratio 3.1{+-}0.4) side. The preliminary results of this study indicate that semi-quantitative assessment of striatal dopamine transporter density using our recently developed high-resolution single-pinhole SPET system is feasible in living rat brain. (orig.)

  8. The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication

    NARCIS (Netherlands)

    da Silva Alves, Fabiana; Figee, Martijn; van Amelsvoort, Thérèse; Veltman, Dick; de Haan, Lieuwe

    2008-01-01

    The revised dopamine (DA) hypothesis states that clinical symptoms of schizophrenia are caused by an imbalance of the DA system. In this article, we aim to review evidence for this hypothesis by evaluating functional magnetic resonance imaging studies in schizophrenia. Because atypical drugs are

  9. Opposite Actions of Dopamine on Aversive and Appetitive Memories in the Crab

    Science.gov (United States)

    Klappenbach, Martin; Maldonado, Hector; Locatelli, Fernando; Kaczer, Laura

    2012-01-01

    The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive…

  10. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    International Nuclear Information System (INIS)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-01-01

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 μM and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 μM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 μM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D 2 -dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 μM. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, 3 H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D 1 - and D 2 -dopamine receptors. 33 references, 3 figures, 2 tables

  11. Imaging the Passionate Stage of Romantic Love by Dopamine Dynamics

    Directory of Open Access Journals (Sweden)

    Kayo eTakahashi

    2015-04-01

    Full Text Available Using [11C]raclopride, a dopamine D2/D3 receptor antagonist, we undertook a positron emission tomography (PET study to investigate the involvement of the dopaminergic neurotransmitter system when subjects viewed the pictures of partners to whom they were romantically attached. Ten subjects viewed pictures of their romantic partners and, as a control, of friends of the same sex for whom they had neutral feelings during the PET study. We administered [11C]raclopride to subjects using a timing for injecting the antagonist which had been determined in previous studies to be optimal for detecting increases in the amount of dopamine released by stimulation. The results demonstrated statistically significant activation of the dopaminergic system in two regions, the medial orbitofrontal cortex and medial prefrontal cortex, the former of which has been strongly implicated in a variety of rewarding experiences, including that of beauty and love. A positive correlation was obtained in medial orbitofrontal cortex between excitement levels and dopaminergic activation only in the love but not in the control condition.

  12. Maternal separation affects dopamine transporter function in the Spontaneously Hypertensive Rat: An in vivo electrochemical study

    Directory of Open Access Journals (Sweden)

    Womersley Jacqueline S

    2011-12-01

    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT in ways that distinguish SHR from control rat strains. Methods SHR and control Wistar-Kyoto (WKY rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Results Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1 in SHR striatum. Consistent with this observation, the dopamine clearance time (T100 was increased in SHR. These results suggest that the chronic mild stress of

  13. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    Science.gov (United States)

    Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A

    2015-08-01

    Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.

  14. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    Energy Technology Data Exchange (ETDEWEB)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  15. Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards.

    Science.gov (United States)

    Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M

    2014-11-01

    Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Differences in striatal dopamine transporter density between tremor dominant and non-tremor Parkinson's disease

    International Nuclear Information System (INIS)

    Kaasinen, Valtteri; Kinos, Maija; Joutsa, Juho; Seppaenen, Marko; Noponen, Tommi

    2014-01-01

    Parkinson's disease (PD) can manifest with a tremor-dominant or a non-tremor (akinetic-rigid) phenotype. Although the tremor-dominant subtype may show a better prognosis, there is limited information on the phenotypic differences regarding the level of striatal dopamine transmission. The present study investigated striatal dopamine transporter (DAT) binding characteristics in a large sample of patients with and without tremor. [ 123 I]FP-CIT SPECT scans of 231 patients with a clinical diagnosis of PD and abnormal FP-CIT binding (157 with tremor, 74 without tremor) and 230 control patients with normal FP-CIT binding (148 with tremor, 82 without tremor) were analysed using an automated region-of-interest analysis of the scans (BRASS). Specific striatal binding ratios were compared between phenotypes and groups using age, sex, and symptom duration, predominant side of symptoms, dopaminergic medications and scanner as covariates. Patients with PD had 28.1 - 65.0 % lower binding in all striatal regions compared to controls (p < 0.001). The mean FP-CIT caudate nucleus uptake and the left caudate nucleus uptake were higher in PD patients with tremor than in PD patients without tremor (mean 9.0 % higher, left 10.5 % higher; p < 0.05), whereas there were no differences between tremor and non-tremor control patients. No significant effects of tremor on DAT binding were observed in the anterior or posterior putamen. The motor phenotype is associated with the extent of caudate dopamine terminal loss in PD, as dopamine function is relatively more preserved in tremor patients. Symptom type is related to caudate dopamine function only in association with Parkinsonian dopaminergic degeneration, not in intact dopamine systems in patients with non-PD tremor. (orig.)

  17. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2018-01-01

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  18. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats.

    Science.gov (United States)

    Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón

    2018-07-02

    Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Simultaneous 99mTC and 123I Dual-Isotope Brain Striatal Phantom Single Photon Emission Computed Tomography: Validation of 99mTC-Trodat-1 and 123I-IBZM Simultaneous Dopamine System Brain Imaging

    OpenAIRE

    Pan-Fu Kao; Shiaw-Pyng Wey; An-Shoei Yang

    2009-01-01

    [2[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3,2,1]-oct-2-yl]-methyl](2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3-)-N2,N2′,S2,S2]oxo-[1R-exo-exo)])-[99mTc]-technetium (99mTc-TRODAT-1) and 123I-iodobenzamide (123I-IBZM) are radiotracers for brain dopamine preand postsynaptic neuron imaging. The purpose of this study was to evaluate imaging parameters and crossed energy interference using simultaneous single photon emission computed tomography (SPECT) 99mTc and 123I data acquisition...

  20. Reduced striatal dopamine D2/3 receptor availability in Body Dysmorphic Disorder.

    Science.gov (United States)

    Vulink, Nienke C; Planting, Robin S; Figee, Martijn; Booij, Jan; Denys, Damiaan

    2016-02-01

    Though the dopaminergic system is implicated in Obsessive Compulsive and Related Disorders (OCRD), the dopaminergic system has never been investigated in-vivo in Body Dysmorphic Disorder (BDD). In line with consistent findings of reduced striatal dopamine D2/3 receptor availability in Obsessive Compulsive Disorder (OCD), we hypothesized that the dopamine D2/3 receptor availability in the striatum will be lower in patients with BDD in comparison to healthy subjects. Striatal dopamine D2/3 receptor Binding Potential (BPND) was examined in 12 drug-free BDD patients and 12 control subjects pairwise matched by age, sex, and handedness using [(123)I]iodobenzamide Single Photon Emission Computed Tomography (SPECT; bolus/constant infusion technique). Regions of interest were the caudate nucleus and the putamen. BPND was calculated as the ratio of specific striatal to binding in the occipital cortex (representing nonspecific binding). Compared to controls, dopamine D2/3 receptor BPND was significantly lower in BDD, both in the putamen (p=0.017) and caudate nucleus (p=0.022). This study provides the first evidence of a disturbed dopaminergic system in BDD patients. Although previously BDD was classified as a separate disorder (somatoform disorder), our findings give pathophysiological support for the recent reclassification of BDD to the OCRD in DSM-5. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. The effect of modafinil on the rat dopamine transporter and dopamine receptors D1-D3 paralleling cognitive enhancement in the radial arm maze

    Directory of Open Access Journals (Sweden)

    Yasemin eKarabacak

    2015-08-01

    Full Text Available A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT and norepinephrine (NET by modafinil was tested. 60 male Sprague Dawley rats were divided into six groups (modafinil-treated 1-5-10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days and tested in a radial arm maze (RAM, a paradigm for testing spatial WM. Hippocampi were taken six hours following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC and complexes containing the D1-3 dopamine receptor subunits (D1-D3-CC were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50=11.11; SERT 1547; NET 182. From day 8 (day 9 for 1 mg/kg body weight modafinil was decreasing WM errors in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1-D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1-3-CC is proposed as a possible mechanism of action.

  2. The Food and Drug Addiction Epidemic: Targeting Dopamine Homeostasis.

    Science.gov (United States)

    Blum, Kenneth; Thanos, Panayotis K; Wang, Gene-Jack; Febo, Marcelo; Demetrovics, Zsolt; Modestino, Edward Justin; Braverman, Eric R; Baron, David; Badgaiyan, Rajendra D; Gold, Mark S

    2018-02-12

    Obesity is damaging the lives of more than 300 million people worldwide and maintaining a healthy weight using popular weight loss tactics remains a very difficult undertaking. Managing the obesity problem seems within reach, as better understanding develops, of the function of our genome in drug/nutrient responses. Strategies indicated by this understanding of nutriepigenomics and neurogenetics in the treatment and prevention of metabolic syndrome and obesity include moderation of mRNA expression by DNA methylation, and inhibition of histone deacetylation. Based on an individual's genetic makeup, deficient metabolic pathways can be targeted epigenetically by, for example, the provision of dietary supplementation that includes phytochemicals, vitamins, and importantly functional amino acids. Also, the chromatin structure of imprinted genes that control nutrients during fetal development can be modified. Pathways affecting dopamine signaling, molecular transport and nervous system development are implicated in these strategies. Obesity is a subtype of Reward Deficiency Syndrome (RDS) and these new strategies in the treatment and prevention of obesity target improved dopamine function. It is not merely a matter of gastrointestinal signaling linked to hypothalamic peptides, but alternatively, finding novel ways to improve ventral tegmental area (VTA) dopaminergic function and homeostasis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Dopamine Does Not Appear to Affect Mental Rotation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Gregory P. Crucian

    2014-10-01

    Full Text Available ObjectivePatients with Parkinson’s disease (PD often have deficits with mental rotation (MR. The neuropathological factors underlying these deficits, however, remain to be elucidated. One hypothesis suggests that dopamine depletion in nigro-striatal systems adversely influences MR. Another hypothesis suggests that deterioration of cortical (fronto-temporo-parietal basal ganglia networks that mediate this function are responsible for this deficit. The goal of this study was to test the dopamine hypothesis by determining if dopamine abstinence negatively influences MR performance. MethodsThirty three non-demented right-handed individuals with PD were assess for their ability to perform a pencil and paper MR test while “on” and “off” dopaminergic medications. Dopamine abstinence followed the typical overnight withdrawal procedures. ResultsNo differences in mental rotation abilities were found between “on” and “off” dopaminergic medications. ConclusionsThese results suggest that other neuropathological factors, such as cortical-basal ganglia neurodegeneration, or dysfunction of other neurotransmitters systems, might account for these cognitive deficits and future research will have to test these alternative hypotheses.

  4. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    Directory of Open Access Journals (Sweden)

    Caitlin B O'Hara

    Full Text Available This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN, specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17 and healthy controls (HC, n = 15 were recruited. The acute phenylalanine/tyrosine depletion (APTD method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.

  6. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    -reactive rhodamine red derivatives. The resulting N-substituted (JHC 1-64) and 2-substituted (JHC 1-53) ligands showed high affinity binding to DAT expressed in HEK 293 cells (Ki= 6.4 and 29 nM, respectively). Their ability to selectively label the DAT was demonstrated by confocal laser scanning microscopy of HEK......To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...... in untransfected control cells. The possibility of using these ligands for direct labeling of the DAT in living cells represents a new and important approach for understanding cellular targeting and trafficking of the DAT. Moreover, these fluorescent ligands might also provide the molecular tools...

  7. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  8. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  10. Linking unfounded beliefs to genetic dopamine availability

    Science.gov (United States)

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  11. Linking unfounded beliefs to genetic dopamine availability

    Directory of Open Access Journals (Sweden)

    Katharina eSchmack

    2015-09-01

    Full Text Available Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity towards unfounded beliefs. 109 healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818 and rs4680, also known as val158met that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioural experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity towards unfounded beliefs, and that this effect was mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world.

  12. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    Science.gov (United States)

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  13. Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance

    Directory of Open Access Journals (Sweden)

    Andrii eDomanskyi

    2014-09-01

    Full Text Available The proteins Foxa1 and Foxa2 belong to the forkhead family of transcription factors and are involved in the development of several tissues, including liver, pancreas, lung, prostate, and the neural system. Both Foxa1 and Foxa2 are also crucial for the specification and differentiation of dopamine (DA neurons during embryonic development, while about 30% of mice with an embryonic deletion of a single allele of the Foxa2 gene exhibit an age-related asymmetric loss of DA neurons and develop locomotor symptoms resembling Parkinson’s disease (PD. Notably, both Foxa1 and Foxa2 factors continue to be expressed in the adult dopamine system. To directly assess their functions selectively in adult DA neurons, we induced genetic deletions of Foxa1/2 transcription factors in mice using a tamoxifen inducible tissue-specific CreERT2 recombinase expressed under control of the dopamine transporter (DAT promoter (DATCreERT2. The conditional DA neurons-specific ablation of both genes, but not of Foxa2 alone, in early adulthood, caused a decline of striatal dopamine and its metabolites, along with locomotor deficits. At early pre-symptomatic stages, we observed a decline in aldehyde dehydrogenase family 1, subfamily A1 (Aldh1a1 protein expression in DA neurons. Further analyses revealed a decline of aromatic amino acid decarboxylase (AADC and a complete loss of DAT expression in these neurons. These molecular changes ultimately led to a reduction of DA neuron numbers in the substantia nigra pars compacta (SNpc of aged cFoxa1/2-/- mice, resembling the progressive course of PD in humans. Altogether, in this study, we address the molecular, cellular and functional role of both Foxa1 and Foxa2 factors in the maintenance of the adult dopamine system which may help to find better approaches for PD treatment.

  14. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    OpenAIRE

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abuse...

  15. The dopamine transporter: role in neurotoxicity and human disease

    International Nuclear Information System (INIS)

    Bannon, Michael J.

    2005-01-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  16. The dopamine transporter: role in neurotoxicity and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Bannon, Michael J [Department of Psychiatry and Behavioral Neuroscience, Pharmacology, and Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  17. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  18. Practical Approach for the Clinical Use of Dopamine Transporter Imaging

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2008-01-01

    Dopamine transporter imaging is useful in the diagnosis of Parkinson's disease and the most successful technique in the clinical use of neuroreceptor imaging. Recently, several radiopharmaceuticals including I-123 FP-CIT, Tc-99m TRODAT, and F-18 FP-CIT for dopamine transporter imaging have been approved for the routine clinical use in several European countries, Taiwan and Korea, respectively. This review summarized the practical issue for the routine clinical examination of dopamine transporter imaging

  19. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    Science.gov (United States)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  20. Brain dopamine and serotonin transporter binding are associated with visual attention bias for food in lean men

    NARCIS (Netherlands)

    Koopman, K. E.; Roefs, A.; Elbers, D. C. E.; Fliers, E.; Booij, J.; Serlie, M. J.; La Fleur, S. E.

    2016-01-01

    In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between

  1. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    DEFF Research Database (Denmark)

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul

    2010-01-01

    to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials....

  2. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  3. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  4. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behaviour Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  5. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds

    Science.gov (United States)

    Puig, M. Victoria; Rose, Jonas; Schmidt, Robert; Freund, Nadja

    2014-01-01

    In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain. PMID:25140130

  6. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds.

    Science.gov (United States)

    Puig, M Victoria; Rose, Jonas; Schmidt, Robert; Freund, Nadja

    2014-01-01

    In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain.

  7. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds

    Directory of Open Access Journals (Sweden)

    M. Victoria ePuig

    2014-08-01

    Full Text Available In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain.

  8. Demonstration of conjugated dopamine in monkey CSF by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Elchisak, M A; Powers, K H; Ebert, M H

    1982-09-01

    A method for measuring unconjugated and conjugated dopamine in body tissues and fluids is described. Conjugated dopamine was hydrolyzed in acid to unconjugated dopamine, separated from the sample matrix by alumina chromatography, and assayed by gas chromatography-mass spectrometry. Conjugated dopamine was detected in greater concentrations than unconjugated dopamine in CSF taken from lateral ventricle or thecal sac of the Rhesus monkey. Haloperidol administration did not increase the levels of conjugated dopamine in lumbar CSF.

  9. Measurement of striatal dopamine metabolism with 6-[18F]-fluoro-L-dopa and PET

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Otsuka, M.; Ichiya, Y.; Yoshikai, T.; Fukumura, T.; Masuda, K.; Kato, M.; Taniwaki, T.

    1992-01-01

    Striatal dopamine metabolism was studied with 6-[ 18 F]-fluoro-L-dopa ( 18 F-DOPA) and PET. The subjects were normal controls, and patients with Parkinson's disease (PD), parkinsonism, multiple system atrophy (MSA), progressive supranuclear palsy (PSP), Alzheimer's disease (AD), Huntington's disease (HD) and other cerebral disorders. Cerebral glucose metabolism (CMRGlc) was also measured in these patients. Striatal dopamine metabolism was evaluated by the relative striatal uptake of 18 F-DOPA referring cerebellum (S/C ratio). In normal controls, the S/C ratio was 2.82 ± 0.32 (n = 6, mean ± SD) at 120 min after injection of 18 F-DOPA. The S/C ratio was low in patients with PD, parkinsonism, MSA and PSP compared to the normal controls and thus coincident with the symptoms of parkinsonism due to decrease in striatal dopamine concentration. The decrease in the striatal CMRGlc was also observed in patients with parkinsonism and PSP, and it was preserved in patients with PD, thus representing that more neurons were damaged in patients with parkinsonism and PSP than in patients with PD. A patient with AD having symptoms of parkinsonism also showed a decrease in S/C ratio. In a patient with HD, the striatal CMRGlc sharply decreased, but the S/C ratio was normal. The measurements of striatal dopamine and glucose metabolism with PET may be useful for studying the pathophysiological mechanism in patients with cerebral disorders. (author)

  10. Dopamine and Mushroom Bodies in Drosophila: Experience-Dependent and -Independent Aspects of Sexual Behavior

    Science.gov (United States)

    Neckameyer, Wendi S.

    1998-01-01

    Depletion of dopamine in Drosophila melanogaster adult males, accomplished through systemic introduction of the tyrosine hydroxylase inhibitor 3-iodo-tyrosine, severely impaired the ability of these flies to modify their courtship responses to immature males. Mature males, when first exposed to immature males, will perform courtship rituals; the intensity and duration of this behavior rapidly diminshes with time. Dopamine is also required for normal female sexual receptivity; dopamine-depleted females show increased latency to copulation. One kilobase of 5′ upstream information from the Drosophila tyrosine hydroxylase (DTH) gene, when fused to the Escherichia coli β-galactosidase reporter and transduced into the genome of Drosophila melanogaster, is capable of directing expression of the reporter gene in the mushroom bodies, which are believed to mediate learning acquisition and memory retention in flies. Ablation of mushroom bodies by treatment of newly hatched larva with hydroxyurea resulted in the inability of treated mature adult males to cease courtship when placed with untreated immature males. However, functional mushroom bodies were not required for the dopaminergic modulation of an innate behavior, female sexual receptivity. These data suggest that dopamine acts as a signaling molecule within the mushroom bodies to mediate a simple form of learning. PMID:10454380

  11. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  12. Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats

    Science.gov (United States)

    Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.

    2013-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060

  13. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes.

    Science.gov (United States)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Celebanska, Anna; Niedziolka-Jonsson, Joanna; Opallo, Marcin

    2014-06-07

    There is a continuous need for the construction of detection systems in microfluidic devices. In particular, electrochemical detection allows the separation of signals from the analyte and interfering substances in the potential domain. Here, a simple microfluidic device for the sensitive and selective determination of dopamine in the presence of interfering substances was constructed and tested. It employs a carbon nanoparticulate electrode allowing the separation of voltammetric signals of dopamine and common interfering substances (ascorbic acid and acetaminophen) both in quiescent conditions and in flow due to the electrocatalytic effect. These voltammograms were also successfully simulated. The limit of detection of dopamine detected by square wave voltammetry in 1 mM solutions of interfering substances in phosphate buffered saline is about 100 nM. In human serum a clear voltammetric signal could be seen for a 200 nM solution, sufficient to detect dopamine in the cerebral fluid. Flow injection analysis allows a decrease in the limit of detection down to 3.5 nM.

  14. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  15. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults.

    Science.gov (United States)

    Billino, Jutta; Hennig, Jürgen; Gegenfurtner, Karl R

    2016-01-01

    There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val 158 Met polymorphism and the SLC6A3 3'-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val 158 Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3'-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients.

  16. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  17. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Directory of Open Access Journals (Sweden)

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  18. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system.

    Science.gov (United States)

    Montagud-Romero, Sandra; Nuñez, Cristina; Blanco-Gandia, M Carmen; Martínez-Laorden, Elena; Aguilar, María A; Navarro-Zaragoza, Javier; Almela, Pilar; Milanés, Maria-Victoria; Laorden, María-Luisa; Miñarro, José; Rodríguez-Arias, Marta

    2017-07-01

    Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.

  19. Conditioned Contribution of Peripheral Cocaine Actions to Cocaine Reward and Cocaine-Seeking

    OpenAIRE

    Wang, Bin; You, Zhi-Bing; Oleson, Erik B; Cheer, Joseph F; Myal, Stephanie; Wise, Roy A

    2013-01-01

    Cocaine has actions in the peripheral nervous system that reliably precede—and thus predict—its soon-to-follow central rewarding effects. In cocaine-experienced animals, the peripheral cocaine signal is relayed to the central nervous system, triggering excitatory input to the ventral tegmental origin of the mesocorticolimbic dopamine system, the system that mediates the rewarding effects of the drug. We used cocaine methiodide, a cocaine analog that does not cross the blood–brain barrier, to ...

  20. Characterization of nociceptive response to chemical, mechanical, and thermal stimuli in adolescent rats with neonatal dopamine depletion.

    Science.gov (United States)

    Ogata, M; Noda, K; Akita, H; Ishibashi, H

    2015-03-19

    Rats with dopamine depletion caused by 6-hydroxydopamine (6-OHDA) treatment during adulthood and the neonatal period exhibit akinetic motor activity and spontaneous motor hyperactivity during adolescence, respectively, indicating that the behavioral effects of dopamine depletion depend on the period of lesion development. Dopamine depletion during adulthood induces hyperalgesic response to mechanical, thermal, and/or chemical stimuli, whereas the effects of neonatal dopamine depletion on nociceptive response in adolescent rats are yet to be examined. The latter aspect was addressed in this study, and behavioral responses were examined using von-Frey, tail flick, and formalin tests. The formalin test revealed that rats with neonatal dopamine depletion exhibited a significant increase in nociceptive response during interphase (6-15min post formalin injection) and phase 2 (16-75min post formalin injection). This increase in nociceptive response to the formalin injection was not reversed by pretreatment with methamphetamine, which ameliorates motor hyperactivity observed in adolescent rats with neonatal 6-OHDA treatment. The von-Frey filament and tail flick tests failed to reveal significant differences in withdrawal thresholds between neonatal 6-OHDA-treated and vehicle-treated rats. The spinal neuronal response to the formalin injection into the rat hind paw was also examined through immunohistochemical analysis of c-Fos protein. Significantly increased numbers of c-Fos-immunoreactive cells were observed in laminae I-II and V-VI of the ipsilateral spinal cord to the site of the formalin injection in rats with neonatal dopamine depletion compared with vehicle-treated rats. These results suggest that the dopaminergic neural system plays a crucial role in the development of a neural network for tonic pain, including the spinal neural circuit for nociceptive transmission, and that the mechanism underlying hyperalgesia to tonic pain is not always consistent with that of

  1. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  2. Dopamine and serotonin levels following prenatal viral infection in mouse--implications for psychiatric disorders such as schizophrenia and autism.

    Science.gov (United States)

    Winter, Christine; Reutiman, Teri J; Folsom, Timothy D; Sohr, Reinhard; Wolf, Rainer J; Juckel, Georg; Fatemi, S Hossein

    2008-10-01

    Prenatal viral infection has been associated with neurodevelopmental disorders such as schizophrenia and autism. It has previously been demonstrated that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and middle-late second trimester (E18) administration of influenza virus. Neurochemical analysis following infection on E18 using this model has revealed significantly altered levels of serotonin, 5-hydroxyindoleacetic acid, and taurine, but not dopamine. In order to monitor these different patterns of monoamine expression in exposed offspring in more detail and to see if there are changes in the dopamine system at another time point, pregnant C57BL6J mice were infected with a sublethal dose of human influenza virus or sham-infected using vehicle solution on E16. Male offspring of the infected mice were collected at P0, P14, and P56, their brains removed and cerebellum dissected and flash frozen. Dopamine and serotonin levels were then measured using HPLC-ED technique. When compared to controls, there was a significant decrease in serotonin levels in the cerebella of offspring of virally exposed mice at P14. No differences in levels of dopamine were observed in exposed and control mice, although there was a significant decrease in dopamine at P14 and P56 when compared to P0. The present study shows that the serotonergic system is disrupted following prenatal viral infection, potentially modelling disruptions that occur in patients with schizophrenia and autism.

  3. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  4. Implantable microencapsulated dopamine (DA): prolonged functional release of DA in denervated striatal tissue.

    Science.gov (United States)

    McRae, A; Hjorth, S; Mason, D; Dillon, L; Tice, T

    1990-01-01

    Biodegradable controlled-release microcapsule systems made with the biocompatible biodegradable polyester excipient poly [DL-lactide-co-gly-colide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microcapsules encapsulated within two different polymer excipients into denervated striatal tissue assures a prolonged release of the transmitter in vivo. This technology has a considerable potential for basic and possibly clinical research.

  5. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    DEFF Research Database (Denmark)

    Borg, J; Cervenka, S; Kuja-Halkola, R

    2016-01-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A...

  6. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    Science.gov (United States)

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present

  7. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction.

    Science.gov (United States)

    Blum, Kenneth; Thanos, Peter K; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C; Dushaj, Kristina; Gold, Mark S

    Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes "surfeit" compared to" deficit" in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: "liking", "learning", and "wanting". They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the "surfeit theory". Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The "dopamine hypotheses" originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied to dopamine deficiency

  8. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    Science.gov (United States)

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  9. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    International Nuclear Information System (INIS)

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked [ 3 H] acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity

  11. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  12. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  13. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...

  14. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...

  15. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  16. Serotonin transporter and dopamine transporter imaging in the canine brain

    Energy Technology Data Exchange (ETDEWEB)

    Peremans, Kathelijne [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Goethals, Ingeborg [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); De Vos, Filip [Laboratory of Radiopharmacy, Pharmaceutical Sciences, Ghent University, B-9000 Ghent (Belgium); Dobbeleir, A. [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Ham, Hamphrey [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); Van Bree, Henri [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Heeringen, Cees van [Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium); Audenaert, Kurt [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium) and Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium)]. E-mail: kurt.audenaert@ugent.be

    2006-10-15

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [{sup 123}I]-{beta}-CIT and [{sup 123}I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models.

  17. Serotonin transporter and dopamine transporter imaging in the canine brain

    International Nuclear Information System (INIS)

    Peremans, Kathelijne; Goethals, Ingeborg; De Vos, Filip; Dobbeleir, A.; Ham, Hamphrey; Van Bree, Henri; Heeringen, Cees van; Audenaert, Kurt

    2006-01-01

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [ 123 I]-β-CIT and [ 123 I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models

  18. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.

    Science.gov (United States)

    Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J

    2016-01-01

    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.

  20. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD.

    Science.gov (United States)

    Cherkasova, Mariya V; Faridi, Nazlie; Casey, Kevin F; O'Driscoll, Gillian A; Hechtman, Lily; Joober, Ridha; Baker, Glen B; Palmer, Jennifer; Dagher, Alain; Leyton, Marco; Benkelfat, Chawki

    2014-05-01

    Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.

  1. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    Science.gov (United States)

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  2. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks.

    Science.gov (United States)

    Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain

    2014-09-01

    Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Unilateral Lesion of Dopamine Neurons Induces Grooming Asymmetry in the Mouse.

    Science.gov (United States)

    Pelosi, Assunta; Girault, Jean-Antoine; Hervé, Denis

    2015-01-01

    Grooming behaviour is the most common innate behaviour in animals. In rodents, it consists of sequences of movements organized in four phases, executed symmetrically on both sides of the animal and creating a syntactic chain of behavioural events. The grooming syntax can be altered by stress and novelty, as well as by several mutations and brain lesions. Grooming behaviour is known to be affected by alterations of the dopamine system, including dopamine receptor modulation, dopamine alteration in genetically modified animals, and after brain lesion. While a lot is known about the initiation and syntactic modifications of this refined sequence of movements, effects of unilateral lesion of dopamine neurons are unclear particularly regarding the symmetry of syntactic chains. In the present work we studied grooming in mice unilaterally lesioned in the medial forebrain bundle by 6-hydroxydopamine. We found a reduction in completion of grooming bouts, associated with reduction in number of transitions between grooming phases. The data also revealed the development of asymmetry in grooming behaviour, with reduced tendency to groom the contralateral side to the lesion. Symmetry was recovered following treatment with L-DOPA. Thus, the present work shows that unilateral lesion of dopamine neurons reduces self-grooming behaviour by affecting duration and numbers of events. It produces premature discontinuation of grooming chains but the sequence syntax remains correct. This deficient grooming could be considered as an intrinsic symptom of Parkinson's disease in animal models and could present some similarities with abnormalities of motor movement sequencing seen in patients. Our study also suggests grooming analysis as an additional method to screen parkinsonism in animal models.

  4. Dopamine modulates hemocyte phagocytosis via a D1-like receptor in the rice stem borer, Chilo suppressalis

    Science.gov (United States)

    Dopamine (DA) is a signal moiety bridging the nervous and immune systems. DA dysregulation is linked to serious human diseases, including addiction, schizophrenia, and Parkinson's disease. However, DA actions in the immune system remain incompletely understood. In this study, we found that DA modula...

  5. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  6. Dopamine transporter imaging in rapid eye movement sleep behavior disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Yoon, In Young; Kim, Jong Min; Jeong, Seok Hoon; Kim, Ji Sun; Lee, Byung Chul; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    The pathogenesis of rapid eye movement (REM) sleep behavior disorder (RBD) is still unknown. However, involvement of dopaminergic system in RBD has been hypothesized because of frequent association with degenerative movement disorders such as Parkinson's disease. The purpose of this study was to examine the extent and pattern of loss of dopamine transporter in RBD using FP-CIT SPECT. Fourteen patient with idiopathic RBD (mean age:665 yrs, M:F=10:3) participated in this study. Polysonmography confirmed loss of REM atonia and determined RBD severities by amount of tonic/phasic muscle activity during REM sleep in all cases. To compare with RBD, 14 early idiopathic Parkinson's disease rated as Hoehn and Yahr stage 1 (IPD) and 12 healthy controls were also selected. All participants performed single-photon emission computed tomography (SPECT) imaging 3 hours after injection of [123I]FP-CIT. Regions of interest were drawn on bilateral caudate and putamen, whole striatum and occipital cortex. Specific binding for dopamine transporters (DAT) were calculated using region to occipital uptake ratio based on the transient equilibrium method. Overall mean of DAT density in the striatum was lower in RBD group than controls, and higher than IPD group, However, DAT density in most individual RBD was still within normal range, and total striatal DAT density was not correlated with severity of RBD. Meanwhile, the caudate to putamen uptake ratio (C/P ratio) in RBD group was insignificantly higher than those in healthy controls. Nevertheless, C/P ratio within RBD group was reversely correlated with the RBD severity. Our study suggested that nigrostriatal dopaminergic degeneration could be a part of the pathogenesis of RBD, but not essential for the development of RBD. Further longitudinal evaluation of presynaptic dopaminergic system in idiopathic RBD may guarantee the more understanding for RBD and associated neurodegenerative disease.

  7. Dopamine transporter imaging in rapid eye movement sleep behavior disorder

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Yoon, In Young; Kim, Jong Min; Jeong, Seok Hoon; Kim, Ji Sun; Lee, Byung Chul; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    The pathogenesis of rapid eye movement (REM) sleep behavior disorder (RBD) is still unknown. However, involvement of dopaminergic system in RBD has been hypothesized because of frequent association with degenerative movement disorders such as Parkinson's disease. The purpose of this study was to examine the extent and pattern of loss of dopamine transporter in RBD using FP-CIT SPECT. Fourteen patient with idiopathic RBD (mean age:665 yrs, M:F=10:3) participated in this study. Polysonmography confirmed loss of REM atonia and determined RBD severities by amount of tonic/phasic muscle activity during REM sleep in all cases. To compare with RBD, 14 early idiopathic Parkinson's disease rated as Hoehn and Yahr stage 1 (IPD) and 12 healthy controls were also selected. All participants performed single-photon emission computed tomography (SPECT) imaging 3 hours after injection of [123I]FP-CIT. Regions of interest were drawn on bilateral caudate and putamen, whole striatum and occipital cortex. Specific binding for dopamine transporters (DAT) were calculated using region to occipital uptake ratio based on the transient equilibrium method. Overall mean of DAT density in the striatum was lower in RBD group than controls, and higher than IPD group, However, DAT density in most individual RBD was still within normal range, and total striatal DAT density was not correlated with severity of RBD. Meanwhile, the caudate to putamen uptake ratio (C/P ratio) in RBD group was insignificantly higher than those in healthy controls. Nevertheless, C/P ratio within RBD group was reversely correlated with the RBD severity. Our study suggested that nigrostriatal dopaminergic degeneration could be a part of the pathogenesis of RBD, but not essential for the development of RBD. Further longitudinal evaluation of presynaptic dopaminergic system in idiopathic RBD may guarantee the more understanding for RBD and associated neurodegenerative disease

  8. Retinal dopamine mediates multiple dimensions of light-adapted vision.

    Science.gov (United States)

    Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila; Abey, Jane; Gamble, Karen; Stanwood, Greg; Palmiter, Richard D; Iuvone, P Michael; McMahon, Douglas G

    2012-07-04

    Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.

  9. Free and conjugated dopamine in human ventricular fluid

    International Nuclear Information System (INIS)

    Sharpless, N.S.; Thal, L.J.; Wolfson, L.I.; Tabaddor, K.; Tyce, G.M.; Waltz, J.M.

    1981-01-01

    Free dopamine and an acid hydrolyzable conjugate of dopamine were measured in human ventricular fluid specimens with a radioenzymatic assay and by high performance liquid chromatography (HPLC) with electrochemical detection. Only trace amounts of free norepinephrine and dopamine were detected in ventricular fluid from patients with movement disorders. When the ventricular fluid was hydrolyzed by heating in HClO 4 or by lyophilization in dilute HClO 4 , however, a substantial amount of free dopamine was released. Values for free plus conjugated dopamine in ventricular fluid from patients who had never taken L-DOPA ranged from 139 to 340 pg/ml when determined by HPLC and from 223 to 428 pg/ml when measured radioenzymatically. The correlation coefficient for values obtained by the two methods in the same sample of CSF was 0.94 (P<0.001). Patients who had been treated with L-DOPA had higher levels of conjugated dopamine in their ventricular CSF which correlated inversely with the time between the last dose of L-DOPA and withdrawal of the ventricular fluid. Additionally, one patient with acute cerebral trauma had elevated levels of free norepinephrine and both free and conjugated dopamine in his ventricular fluid. Conjugation may be an important inactivation pathway for released dopamine in man. (Auth.)

  10. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  11. Novos agonistas dopaminérgicos

    Directory of Open Access Journals (Sweden)

    MATTOS JAMES PITÁGORAS DE

    1999-01-01

    Full Text Available Apresentamos breve revisão da literatura sobre os agonistas dopaminérgicos. Referimos os cinco receptores conhecidos e onde estão localizados, as vantagens e as desvantagens de sua utilização nos pacientes com a doença de Parkinson.Introduzidos com o objetivo principal de controlar as limitações da levodopa, aumentando a janela terapêutica, analisamos a farmacocinética, a eficácia e os efeitos colaterais da cabergolina, do ropinirole e do pramipexole.

  12. Altered neurocircuitry in the dopamine transporter knockout mouse brain.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    2010-07-01

    Full Text Available The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI. Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn(2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn(2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn(2+ transport into more posterior midbrain nuclei and contralateral

  13. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  14. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  15. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Rodthongkum, Nadnudda, E-mail: Nadnudda.R@chula.ac.th [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Ruecha, Nipapan [Program in Macromolecular Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Rangkupan, Ratthapol [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Center of Innovative Nanotechnology, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Vachet, Richard W. [Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01002 (United States); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2013-12-04

    Graphical abstract: -- Highlights: •A novel electrode based on electrospun graphene/polyaniline/polystyrene nanofibers has been developed. •The proposed system provides ultrahigh sensitivity, good selectivity and wide linearity for the determination of dopamine. •This system was successfully applied to determine dopamine in complex biological environment with excellent reproducibility. -- Abstract: A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN){sub 6}]{sup 3−/4−} couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility.

  16. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cell

    Directory of Open Access Journals (Sweden)

    Lei eXing

    2015-09-01

    Full Text Available Radial glial cells (RGCs are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

  17. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    Science.gov (United States)

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  18. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  19. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  20. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    Science.gov (United States)

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  2. Dopamine receptors in the Parkinsonian brain

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, U K; Loennberg, P; Koskinen, V [Turku Univ. (Finland). Dept. of Neurology

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using /sup 3/H-spiroperidol. The specific binding of /sup 3/H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of /sup 3/H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of /sup 3/H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy.

  3. Dopamine receptors in the Parkinsonian brain

    International Nuclear Information System (INIS)

    Rinne, U.K.; Loennberg, P.; Koskinen, V.

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using 3 H-spiroperidol. The specific binding of 3 H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of 3 H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of 3 H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy. (author)

  4. Synthesis of 3-[18F]fluoromethyl-BTCP and evaluation as a potential PET radioligand for the dopamine transporter in baboons

    International Nuclear Information System (INIS)

    Ponchant, M.; Crouzel, C.; Varastet, M.; Hantraye, P.;

    1993-01-01

    In an attempt to visualize in vivo the dopamine transporter and evaluate its potential as an imaging tool for monitoring dopamine fiber degeneration by positron emission tomography, the 18 F-positron-emitting analogue of 3-fluoromethyl-1-[2-benzothienyl)-cyclohexyl]-piperidine, [ 18 F]BTCP, was synthesized and tested in a primate model of hemiparkinsonism. When comparing binding ratios between the intact and the dopamine-denervated striatum, there was a modest loss of binding in denervated striatum, suggesting that degeneration of dopaminergic fibers could be detected using 3-[ 18 F]fluoromethyl-BTCP. However due to a high non-specific binding in vivo, the interest of 3-[ 18 F]fluoromethyl-BTCP to image the dopamine reuptake system in vivo appears limited. (author)

  5. Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jaewook; Kang, Ikjoong [Gachon Univ., Seongnam (Korea, Republic of)

    2014-01-15

    This research was aimed to fabricate an optical fiber-based SERS substrate which can detect dopamine neurotransmitters. Chitosan nanoparticles (NPs) were firstly anchored on the surface of optical fiber, and then gold layer was subseque N{sub T}ly deposited on the anchored chitosan NPs via electroless plating method. Finally, chitosan-gold nanocomposites combined with optical fiber reacted with dopamine molecules of 100-1500 mg/ day which is a standard daily dose for Parkinson's disease patientss. The amplified Raman signal at 1348 cm{sup -1} obtained from optical fiber-based SERS substrate was plotted versus dopamine concentrations (1-10 mM), demonstrating an approximate linearity of Y = 303.03X + 2385.8 (R{sup 2} = 0.97) with narrow margin errors. The optical fiber-based Raman system can be potentially applicable to in-vitro (or in-vivo) detection of probe molecules.

  6. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  7. No evidence of association between structural polymorphism at the dopamine D3 receptor locus and alcoholism in the Japanese

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Susumu; Muramatsu, Taro; Matsushita, Sachio [National Institute on Alcoholism, Kanagawa (Japan); Murayama, Masanobu [Akagi Kougen Hospital, Gunma (Japan)

    1996-07-26

    Dopaminergic systems mediate reward mechanisms and are involved in reinforcing self-administration of dependence-forming substances, including alcohol. Studies have reported that polymorphisms of the dopamine D2 receptor, whose structure and function are similar to those of the dopamine D3 receptor, increase the susceptibility to alcoholism. The observations led to the examination of the possible association between a structural polymorphism of the D3 receptor gene and alcoholism. Genotyping results, employing a PCR-RFLP method, showed no difference in allele and genotype frequencies of the D3 BalI polymorphism (Ser{sup 9}/Gly{sup 9}) between Japanese alcoholics and controls. Moreover, these frequencies were not altered in alcoholics with inactive aldehyde dehydrogenase-2 (ALDH2), a well-defined negative risk factor for alcoholism. These results strongly suggest that the dopamine D3 receptor is not associated with alcoholism. 19 refs., 1 fig., 1 tab.

  8. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  9. Preliminary studies with (/sup 18/F)haloperidol: a radioligand for in vivo studies of the dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Tewson, T J; Raichle, M E; Welch, M J [Washington Univ., St. Louis, MO (USA). Edward Mallinckrodt Inst. of Radiology

    1980-06-16

    The authors report a synthesis of (/sup 18/F)haloperidol of sufficiently high specific activity to permit the mapping of dopamine receptors in vivo in man using PET. The preliminary work with this radioligand in vivo in monkeys clearly suggests that haloperidol enters brain from blood by means of carrier-mediated, facilitated diffusion rather than simple diffusion. This rather surprising observation not only assumes special importance in the interpretation of in vivo pharmacokinetic data on dopamine receptors in man or animals but may also be important in considerations of the possible mode of action of this drug on the central nervous system.

  10. Preliminary studies with [18F]haloperidol: a radioligand for in vivo studies of the dopamine receptors

    International Nuclear Information System (INIS)

    Tewson, T.J.; Raichle, M.E.; Welch, M.J.

    1980-01-01

    The authors report a synthesis of [ 18 F]haloperidol of sufficiently high specific activity to permit the mapping of dopamine receptors in vivo in man using PET. The preliminary work with this radioligand in vivo in monkeys clearly suggests that haloperidol enters brain from blood by means of carrier-mediated, facilitated diffusion rather than simple diffusion. This rather surprising observation not only assumes special importance in the interpretation of in vivo pharmacokinetic data on dopamine receptors in man or animals but may also be important in considerations of the possible mode of action of this drug on the central nervous system. (Auth.)

  11. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Science.gov (United States)

    Mensen, Armand; Poryazova, Rositsa; Huegli, Gordana; Baumann, Christian R; Schwartz, Sophie; Khatami, Ramin

    2015-01-01

    The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP), which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN) potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  12. Serotonin and Dopamine Transporter Binding in Children with Autism Determined by SPECT

    Science.gov (United States)

    Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M.; Kuikka, Jyrki T.

    2008-01-01

    Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8y 8mo [SD 3y 10mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9y 10mo [SD 2y 8mo]) using…

  13. Thinking and doing: the effects of dopamine and oxytocin genes and executive function on mothering behaviours.

    Science.gov (United States)

    Tombeau Cost, K; Unternaehrer, E; Plamondon, A; Steiner, M; Meaney, M; Atkinson, L; Kennedy, J L; Fleming, A S

    2017-02-01

    Animal and human studies suggest that initial expression of maternal behaviour depends on oxytocin and dopamine systems. However, the mechanism by which these systems affect parenting behaviours and the timing of these effects are not well understood. This article explores the role of mothers' executive function in mediating the relation between oxytocin and dopamine gene variants and maternal responsiveness at 48 months post-partum. Participants (n = 157) were mothers recruited in the Maternal Adversity, Vulnerability and Neurodevelopment Study, which assesses longitudinally two cohorts of mothers and children in Canada. We examined single nucleotide polymorphisms (SNPs) related to the dopamine and oxytocin systems (DRD1 rs686, DRD1 rs265976, OXTR rs237885 and OXTR rs2254298), assessed mothers' decision-making at 48 months using the Cambridge Neurological Automated Testing Battery (CANTAB) and evaluated maternal responsiveness from videotaped interactions during the Etch-A-Sketch co-operation task. Mediation analyses showed that OXTR rs2254298 A-carriers had an indirect effect on positive parenting which was mediated by mothers' performance on decision-making task (estimate = 0.115, P Dopamine SNPs were not associated with any measure of executive function or parenting (all P > 0.05). While oxytocin has previously been associated with only the early onset of maternal behaviour, we show that an OXTR polymorphism is involved in maternal behaviour at 48 months post-partum through mothers' executive function. This research highlights the importance of the oxytocin system to maternal parenting beyond infancy. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Directory of Open Access Journals (Sweden)

    Armand Mensen

    Full Text Available The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP, which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  15. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    Science.gov (United States)

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine

    Science.gov (United States)

    Siciliano, Cody A.; Fordahl, Steve C.

    2016-01-01

    Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a “primed” state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action

  17. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  18. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  19. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  20. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil