WorldWideScience

Sample records for meso-scale controlled motion

  1. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick-slip motion

    Science.gov (United States)

    Kokorian, Jaap; Merlijn van Spengen, W.

    2017-11-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  2. Optogenetic stimulation of a meso-scale human cortical model

    Science.gov (United States)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  3. Development of a Meso-Scale Fiberoptic Rotation Sensor for a Torsion Actuator.

    Science.gov (United States)

    Sheng, Jun; Desai, Jaydev P

    2018-01-01

    This paper presents the development of a meso-scale fiberoptic rotation sensor for a shape memory alloy (SMA) torsion actuator for neurosurgical applications. Within the sensor, a rotary head with a reflecting surface is capable of modulating the light intensity collected by optical fibers when the rotary head is coupled to the torsion actuator. The mechanism of light intensity modulation is modeled, followed by experimental model verification. Meanwhile, working performances for different rotary head designs, optical fibers, and fabrication materials are compared. After the calibration of the fiberoptic rotation sensor, the sensor is capable of precisely measuring rotary motion and controlling the SMA torsion actuator with feedback control.

  4. Unifying Inference of Meso-Scale Structures in Networks.

    Science.gov (United States)

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  5. Unifying Inference of Meso-Scale Structures in Networks.

    Directory of Open Access Journals (Sweden)

    Birkan Tunç

    Full Text Available Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities of the brain, as well as its auxiliary characteristics (core-periphery.

  6. Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication

    International Nuclear Information System (INIS)

    Lee, P. H.; Nam, T. S.; Li, Cheng Jun; Lee, S. W.

    2010-01-01

    This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and MoS 2 nanofluid MQL are used. For process characterization, the micro and meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish

  7. A three-dimensional meso-scale modeling for helium bubble growth in metals

    International Nuclear Information System (INIS)

    Suzudo, T.; Kaburaki, H.; Wakai, E.

    2007-01-01

    A three-dimensional meso-scale computer model using a Monte-Carlo simulation method has been proposed to simulate the helium bubble growth in metals. The primary merit of this model is that it enables the visual comparison between the microstructure observed by the TEM imaging and those by calculations. The modeling is so simple that one can control easily the calculation by tuning parameters. The simulation results are confirmed by the ideal gas law and the capillary relation. helium bubble growth, meso-scale modeling, Monte-Carlo simulation, the ideal gas law and the capillary relation. (authors)

  8. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  9. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  10. Scaling of water vapor in the meso-gamma (2-20km) and lower meso-beta (20-50km) scales from tall tower time series

    Science.gov (United States)

    Pressel, K. G.; Collins, W.; Desai, A. R.

    2011-12-01

    Deficiencies in the parameterization of boundary layer clouds in global climate models (GCMs) remains one of the greatest sources of uncertainty in climate change predictions. Many GCM cloud parameterizations, which seek to include some representation of subgrid-scale cloud variability, do so by making assumptions regarding the subgrid-scale spatial probability density function (PDF) of total water content. Properly specifying the form and parameters of the total water PDF is an essential step in the formulation of PDF based cloud parameterizations. In the cloud free boundary layer, the PDF of total water mixing ratio is equivalent to the PDF of water vapor mixing ratio. Understanding the PDF of water vapor mixing ratio in the cloud free atmosphere is a necessary step towards understanding the PDF of water vapor in the cloudy atmosphere. A primary challenge in empirically constraining the PDF of water vapor mixing ratio is a distinct lack of a spatially distributed observational dataset at or near cloud scale. However, at meso-beta (20-50km) and larger scales, there is a wealth of information on the spatial distribution of water vapor contained in the physically retrieved water vapor profiles from the Atmospheric Infrared Sounder onboard NASA`s Aqua satellite. The scaling (scale-invariance) of the observed water vapor field has been suggested as means of using observations at satellite observed (meso-beta) scales to derive information about cloud scale PDFs. However, doing so requires the derivation of a robust climatology of water vapor scaling from in-situ observations across the meso- gamma (2-20km) and meso-beta scales. In this work, we present the results of the scaling of high frequency (10Hz) time series of water vapor mixing ratio as observed from the 447m WLEF tower located near Park Falls, Wisconsin. Observations from a tall tower offer an ideal set of observations with which to investigate scaling at meso-gamma and meso-beta scales requiring only the

  11. Meso-beta scale perturbations of the wind field by thunderstorm cells

    Science.gov (United States)

    Ulanski, S. L.; Heymsfield, G. M.

    1986-01-01

    Data from the high density storm-scale rawinsonde network of the Severe Environmental Storms and Mesoscale Experiment revealed temporal and spatial changes in the divergence fields of the troposphere in response to severe storm evolution on May 2, 1979; these changes were detectable on the meso-beta scale. This unique set of data was subsequently used to study the evolution of the wind, divergence and vertical motion fields in the presence of intense convection. Mid- and upper-tropospheric divergence was superimposed over low-level convergence. The divergence, which has a maximum value of .0004/s, occurred 75 to 100 km upwind as well as over the tornadic cells. To the south of the storm cells, the kinematic pattern was in reverse, upper level convergence was superimposed over low-level divergence. A vertical motion doublet was found to ascend over the squall line and descend about 70 km south of the squall line. It is suggested that the following effects are accountable for the nature of the kinematic fields: (1) blocking of tropospheric environmental flow by the storm cells, (2) anvil outflows, particularly from the tornadic cells, and (3) divergence from the exit region of the jet stream.

  12. Onset of meso-scale turbulence in active nematics

    NARCIS (Netherlands)

    Doostmohammadi, A.; Shendruk, T.N.; Thijssen, K.; Yeomans, J.M.

    2017-01-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the

  13. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Schröter, Kai; Merz, Bruno

    2016-05-01

    Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  14. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2016-05-01

    Full Text Available Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB.In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  15. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    1999-08-01

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  16. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.

    Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  17. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  18. An interview with James Wilbur, Ph.D. General Manager, Life Sciences, Meso Scale Discovery.

    Science.gov (United States)

    Wilbur, James

    2004-06-01

    James L. Wilbur, Ph.D. received a Bachelor's degree from the University of California, San Diego and a Ph.D. in Chemistry from Stanford University. After completing an NIH Postdoctoral Fellowship with Professor George M. Whitesides in the Department of Chemistry at Harvard University, he joined IGEN International, Inc., where he held a variety of positions in Research and Development. During that time, he was part of the team that developed the core technology and products for Meso Scale Discovery. He assumed his current position in 2001 when Meso Scale Discovery launched the products discussed here.

  19. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    Science.gov (United States)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  20. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yongle, E-mail: yongle.sun@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Zhang, Xun [Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, Upper Brook Street, Manchester M13 9PL (United Kingdom); Shao, Zhushan [School of Civil Engineering, Xi' an University of Architecture & Technology, Xi' an 710055 (China); Li, Q.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-03-14

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  1. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    International Nuclear Information System (INIS)

    Sun, Yongle; Zhang, Xun; Shao, Zhushan; Li, Q.M.

    2017-01-01

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  2. LBM estimation of thermal conductivity in meso-scale modelling

    International Nuclear Information System (INIS)

    Grucelski, A

    2016-01-01

    Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)

  3. Resolving meso-scale seabed variability using reflection measurements from an autonomous underwater vehicle.

    Science.gov (United States)

    Holland, Charles W; Nielsen, Peter L; Dettmer, Jan; Dosso, Stan

    2012-02-01

    Seabed geoacoustic variability is driven by geological processes that occur over a wide spectrum of space-time scales. While the acoustics community has some understanding of horizontal fine-scale geoacoustic variability, less than O(10(0)) m, and large-scale variability, greater than O(10(3)) m, there is a paucity of data resolving the geoacoustic meso-scale O(10(0)-10(3)) m. Measurements of the meso-scale along an ostensibly "benign" portion of the outer shelf reveal three classes of variability. The first class was expected and is due to horizontal variability of layer thicknesses: this was the only class that could be directly tied to seismic reflection data. The second class is due to rapid changes in layer properties and/or boundaries, occurring over scales of meters to hundreds of meters. The third class was observed as rapid variations of the angle/frequency dependent reflection coefficient within a single observation and is suggestive of variability at scales of meter or less. Though generally assumed to be negligible in acoustic modeling, the second and third classes are indicative of strong horizontal geoacoustic variability within a given layer. The observations give early insight into possible effects of horizontal geoacoustic variability on long-range acoustic propagation and reverberation. © 2012 Acoustical Society of America

  4. Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2013-01-01

    This review highlights the importance of developing multi-scale characterisation techniques for analysing operating catalysts in their working environment. We emphasise that a hierarchy of insitu techniques that provides macro-, meso- and nano-scale information is required to elucidate and optimise....../heat/mass transport gradients in shaped catalysts and catalyst grains and c)meso- and nano-scale information about particles and clusters, whose physical and electronic properties are linked directly to the micro-kinetic behaviour of the catalysts. Techniques such as X-ray diffraction (XRD), infrared (IR), Raman, X......-ray photoelectron spectroscopy (XPS), UV/Vis, and X-ray absorption spectroscopy (XAS), which have mainly provided global atomic scale information, are being developed to provide the same information on a more local scale, often with sub-second time resolution. X-ray microscopy, both in the soft and more recently...

  5. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  6. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.

    2011-11-15

    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as Energinet.dk, project no. 2007-1-7141. (Author)

  7. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  8. Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution

    Science.gov (United States)

    2017-03-01

    for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics ...managers because foredunes provide ecosystem services and can reduce storm damages to coastal infrastructure, both of which increase the resiliency...MS 2 U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Duck, NC ERDC/CHL CHETN-II-57 March 2017 2 models of

  9. A CFD Analysis of The Performance of Pin-Fin Laminar Flow Micro/Meso Scale Heat Exchangers

    National Research Council Canada - National Science Library

    Dimas, Sotirios

    2005-01-01

    A full three dimensional computational study was carried out using a finite-volume based solver for analyzing the performance of pin-fin based micro/meso scale heat exchangers with air as the working fluid...

  10. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  11. Influence of the ammonium hydroxide concentration in morphological control of meso porous silica particles

    International Nuclear Information System (INIS)

    Yoon, Sukbon; Jung, Chonghun; Yoon, Inho; Kim, Changki; Choi, Wangkyu; Moon, Jeikwon

    2012-01-01

    The discovery of new M41S meso porous silica families in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these meso porous silicas has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Meanwhile, many studies have been conducted on the application as catalysts, adsorbents, and packing materials for separation columns due to their unique properties such as high specific surface area, large pore volume, tuneable pore size, and narrow pore size distribution. The pore sizes of these materials can be easily controlled by changing the alkyl-chain length of the surfactant used. However, the control of the morphology and the pore structure is not so common. The morphological control of these materials in particular is one of the major challenges for their industrial application. Recently, the meso porous silica materials with various shapes such as fibers, films, polyhedral particles, and spheres have been reported. In our previous study, the core-shell nanoparticles with a silica core and a meso porous shell under basic conditions were synthesized using the silica nanoparticles as a core and tetraethyl orthosilicate (TEOS)-cetyltrimethylammonium bromide (CTABr)-NH 4 OH-H 2 O-C 2 H 5 OH system. In this work, we report the synthesis of the most well known hexagonal MCM-41 among three main mesophases in the M41S families using TEOS-CTABr-NH 4 OH-H 2 O system. Also, in the control of the morphology and pore structure of the meso porous silica materials, the influence of the NH 4 OH concentration was investigated

  12. Control the Morphologies and the Pore Architectures of Meso porous Silicas through a Dual-Templating Approach

    International Nuclear Information System (INIS)

    Wang, H.; Chen, H.; Xu, Z.; Wang, S.; Li, B.; Li, Y.

    2012-01-01

    Meso porous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the meso porous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the meso porous silicas. It was also found that meso porous silica nano flakes can be prepared by adding tetrahydrofuran to the reaction mixtures.

  13. From a meso- to micro-scale connectome: Array Tomography and mGRASP

    Directory of Open Access Journals (Sweden)

    Jinhyun eKim

    2015-06-01

    Full Text Available Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing, combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

  14. The plastic rotation effect in an isotropic gradient plasticity model for applications at the meso scale

    NARCIS (Netherlands)

    Poh, Leong Hien; Peerlings, R.H.J.

    2016-01-01

    Although formulated to represent a large system of polycrystals at the macroscopic level, isotropic gradient plasticity models have routinely been adopted at the meso scale. For such purposes, it is crucial to incorporate the plastic rotation effect in order to obtain a reasonable approximation of

  15. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  16. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  17. Meso-optics for science and industry

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1996-01-01

    The paper represents a concise overview of the meso-optical devices which provide very high selectivity and productivity. The source of these advantages is governed by the absence of the traditional 3D scanning operations. The information compression is accomplished on-line via conical wavefronts without any computer data processing. The factor of merits is of the order of 100:1. Meso-optical Fourier transition microscope for nuclear emulsion sees only straight line particle tracks and does not require depth scanning. Confocal meso-optical microscope accomplishes selective observation of the vertical particle tracks. In the meso-optical profilometer we use the phenomenon of the longitudinal interference of the conical waves. Meso-optical undulator as inserted device in the photon factories transforms conical waves into spherical ones and then into a point. Self-focusing undulator focuses side-going synchrotron radiation. Meso-optical conicometer accomplishes precise control of the conical surfaces both internal and external. Meso-optical interferometer with multipass transmission of the conical waves is used for on-line observation of the deviation of the surface of the industrial parts from the conical etalon without any scanning operations. 23 refs., 23 figs

  18. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    Science.gov (United States)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  19. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    Science.gov (United States)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE

  20. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  1. Meso- and Micro-scale flow modelling in the Gulf of Suez, Arab Republic of Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Frank, Helmut Paul

    2003-01-01

    The results of a comprehensive, 10-year wind resource assessment programme in the Gulf of Suez are presented. The primary purpose has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricity producing wind-turbine installatio...... and power density are quite steep. The combination of meso- and micro-scale flow models – here the KAMM/WAsP methodology or the Numerical Wind Atlas – seem necessary in order to make reliable wind resource assessments in all parts of the Gulf of Suez.......The results of a comprehensive, 10-year wind resource assessment programme in the Gulf of Suez are presented. The primary purpose has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricity producing wind-turbine installations......; a secondary purpose has been to evaluate the applicability of current wind resource estimation and siting tools – in particular the European Wind Atlas methodology – to this region where the meso-scale effects are pronounced and the climatic conditions (e.g. atmospheric stability) somewhat extreme. The wind...

  2. Carbon budgets of biological soil crusts at micro-, meso-, and global scales

    Science.gov (United States)

    Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina

    2016-01-01

    The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

  3. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  4. Green's Kernels and meso-scale approximations in perforated domains

    CERN Document Server

    Maz'ya, Vladimir; Nieves, Michael

    2013-01-01

    There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domai...

  5. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    Science.gov (United States)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  6. Controlling Urban Lighting by Human Motion Patterns results from a full Scale Experiment

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    This paper presents a full-scale experiment investigating the use of human motion intensities as input for interactive illumination of a town square in the city of Aalborg in Denmark. As illuminators sixteen 3.5 meter high RGB LED lamps were used. The activity on the square was monitored by three...... thermal cameras and analysed by computer vision software from which motion intensity maps and peoples trajectories were estimated and used as input to control the interactive illumination. The paper introduces a 2-layered interactive light strategy addressing ambient and effect illumination criteria...... totally four light scenarios were designed and tested. The result shows that in general people immersed in the street lighting did not notice that the light changed according to their presence or actions, but people watching from the edge of the square noticed the interaction between the illumination...

  7. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  8. Experiences with the ALICE Mesos infrastructure

    Science.gov (United States)

    Berzano, D.; Eulisse, G.; Grigoraş, C.; Napoli, K.

    2017-10-01

    Apache Mesos is a resource management system for large data centres, initially developed by UC Berkeley, and now maintained under the Apache Foundation umbrella. It is widely used in the industry by companies like Apple, Twitter, and Airbnb and it is known to scale to 10 000s of nodes. Together with other tools of its ecosystem, such as Mesosphere Marathon or Metronome, it provides an end-to-end solution for datacenter operations and a unified way to exploit large distributed systems. We present the experience of the ALICE Experiment Offline & Computing in deploying and using in production the Apache Mesos ecosystem for a variety of tasks on a small 500 cores cluster, using hybrid OpenStack and bare metal resources. We will initially introduce the architecture of our setup and its operation, we will then describe the tasks which are performed by it, including release building and QA, release validation, and simple Monte Carlo production. We will show how we developed Mesos enabled components (called “Mesos Frameworks”) to carry out ALICE specific needs. In particular, we will illustrate our effort to integrate Work Queue, a lightweight batch processing engine developed by University of Notre Dame, which ALICE uses to orchestrate release validation. Finally, we will give an outlook on how to use Mesos as resource manager for DDS, a software deployment system developed by GSI which will be the foundation of the system deployment for ALICE next generation Online-Offline (O2).

  9. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.

    2017-05-15

    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  10. Modelling of rate effects at multiple scales

    DEFF Research Database (Denmark)

    Pedersen, R.R.; Simone, A.; Sluys, L. J.

    2008-01-01

    , the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of  a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from  the micro-scale.......At the macro- and meso-scales a rate dependent constitutive model is used in which visco-elasticity is coupled to visco-plasticity and damage. A viscous length scale effect is introduced to control the size of the fracture process zone. By comparison of the widths of the fracture process zone...

  11. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola.

    Directory of Open Access Journals (Sweden)

    Ariñe Crespo

    Full Text Available Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  12. Three scales of motions associated with tornadoes

    International Nuclear Information System (INIS)

    Forbes, G.S.

    1978-03-01

    This dissertation explores three scales of motion commonly associated with tornadoes, and the interaction of these scales: the tornado cyclone, the tornado, and the suction vortex. The goal of the research is to specify in detail the character and interaction of these scales of motion to explain tornadic phenomena

  13. On micro-meso relations homogenizing electrical properties of transversely cracked laminated composites

    KAUST Repository

    Lubineau, Gilles

    2013-11-01

    A practical way to track the development of transverse cracking in a laminated composite is to monitor the change of its electrical resistance. Yet, the relations between transverse cracking and the global modification of resistivity is still unclear that makes difficult to interpret these non-destructive-testing results. Here, we introduce the homogenization process that defines at the meso scale an equivalent homogeneous ply that is energetically equivalent to the cracked one. It is shown that this equivalent ply mainly depends on the cracking level while it can be considered independent on the rest of the laminated structure. The direct consequence is that the meso scale is a pertinent one to perform the homogenization. Then, non-destructive electrical measurements can be considered as a reliable technique to access meso scale damage indicators. © 2013 Elsevier Ltd.

  14. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  15. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  16. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  17. Terahertz Generation & Vortex Motion Control in Superconductors

    Science.gov (United States)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  18. Probabilistic flood damage modelling at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  19. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  20. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  1. Controlled release of ibuprofen by meso-macroporous silica

    Science.gov (United States)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.

    2014-02-01

    Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.

  2. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    International Nuclear Information System (INIS)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.

    2009-01-01

    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  3. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    Energy Technology Data Exchange (ETDEWEB)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.

    2009-07-01

    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  4. Evaluation of the performance of a meso-scale NWP model to forecast solar irradiance on Reunion Island for photovoltaic power applications

    Science.gov (United States)

    Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe

    2013-04-01

    Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that

  5. Combined meso-scale modeling and experimental investigation of the effect of mechanical damage on the transport properties of cementitious composites

    Science.gov (United States)

    Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham

    2016-09-01

    The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.

  6. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  7. Overview of the Meso-NH model version 5.4 and its applications

    Directory of Open Access Journals (Sweden)

    C. Lac

    2018-05-01

    Full Text Available This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998 and provide an overview of recent applications and couplings.

  8. Development of a Shipboard Remote Control and Telemetry Experimental System for Large-Scale Model's Motions and Loads Measurement in Realistic Sea Waves.

    Science.gov (United States)

    Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe

    2017-10-29

    Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship's navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign.

  9. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong

    2017-01-05

    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  10. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  11. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Branchini, Enzo [Department of Physics, Universita Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Davis, Marc, E-mail: adi@physics.technion.ac.il, E-mail: branchin@fis.uniroma3.it, E-mail: mdavis@berkeley.edu [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States)

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  12. Meso-structures of dynamical chaos and E-infinity theory

    International Nuclear Information System (INIS)

    Mukhamedov, A.M.

    2009-01-01

    A novel proposal is made to develop a unified theory of dynamical chaos using an idea of extra-coordinates. It is supposed that chaos is capable to translate influences from quantum level of description to the classical macroscopic one and vise versa. The notion of macroscopically prepared microstates is proposed to determine a special case of extra-coordinates induced by cooperative effects at quantum resolution of dynamical events. Meso-structures mediating quantum and classical appearances of chaotic motion are studied in the light of E-infinity theory.

  13. CH of masonry materials via meshless meso-modeling

    Directory of Open Access Journals (Sweden)

    Giuseppe Giambanco

    2014-07-01

    Full Text Available In the present study a multi-scale computational strategy for the analysis of masonry structures is presented. The structural macroscopic behaviour is obtained making use of the Computational Homogenization (CH technique based on the solution of the boundary value problem (BVP of a detailed Unit Cell (UC chosen at the meso-scale and representative of the heterogeneous material. The smallest UC is composed by a brick and half of its surrounding joints, the former assumed to behave elastically while the latter considered with an elastoplastic softening response. The governing equations at the macroscopic level are formulated in the framework of finite element method while the Meshless Method (MM is adopted to solve the BVP at the mesoscopic level. The work focuses on the BVP solution. The consistent tangent stiffness matrix at a macroscopic quadrature point is evaluated on the base of BVP results for the UC together with a localisation procedure. Validation of the MM procedure at the meso-scale level is demonstrated by numerical examples that show the results of the BVP for the simple cases of normal and shear loading of the UC.

  14. Development of a portable power system with meso-scale vortex combustor and thermo-electric device

    International Nuclear Information System (INIS)

    Shimokuri, D; Hara, T; Ishizuka, S

    2014-01-01

    In this study, a small scale power generation system with a meso-scale vortex combustor has been developed. The system was consisted of a couple of thermo-electric device and a heat medium. The medium was made of duralumin, 40 × 40 × 20 mm and 52 g weight, and the vortex combustion chamber of 7 mm inner diameter was embedded in it. It was found that a stable flame could be established in the narrow 7 mm channel even the mean axial velocity reached 1.2 m/s. And furthermore, the vortex flow significantly enhanced the heat transfer from the burned gas to combustion chamber, and as a result, the medium was heated to 300°C quickly (within 5 minutes) by the combustion of propane / air mixture for 145W input energy. The system could successfully generate 1.98 W (4.3 V and 0.46 A), which corresponded to the energy conversion rate of 0.7 % per unit thermo-electric device

  15. Implications of meso- to micro-scale deformation for fault sealing capacity: Insights from the Lenghu5 fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau

    Science.gov (United States)

    Xie, Liujuan; Pei, Yangwen; Li, Anren; Wu, Kongyou

    2018-06-01

    As faults can be barriers to or conduits for fluid flow, it is critical to understand fault seal processes and their effects on the sealing capacity of a fault zone. Apart from the stratigraphic juxtaposition between the hanging wall and footwall, the development of fault rocks is of great importance in changing the sealing capacity of a fault zone. Therefore, field-based structural analysis has been employed to identify the meso-scale and micro-scale deformation features and to understand their effects on modifying the porosity of fault rocks. In this study, the Lenghu5 fold-and-thrust belt (northern Qaidam Basin, NE Tibetan Plateau), with well-exposed outcrops, was selected as an example for meso-scale outcrop mapping and SEM (Scanning Electron Microscope) micro-scale structural analysis. The detailed outcrop maps enabled us to link the samples with meso-scale fault architecture. The representative rock samples, collected in both the fault zones and the undeformed hanging walls/footwalls, were studied by SEM micro-structural analysis to identify the deformation features at the micro-scale and evaluate their influences on the fluid flow properties of the fault rocks. Based on the multi-scale structural analyses, the deformation mechanisms accounting for porosity reduction in the fault rocks have been identified, which are clay smearing, phyllosilicate-framework networking and cataclasis. The sealing capacity is highly dependent on the clay content: high concentrations of clay minerals in fault rocks are likely to form continuous clay smears or micro- clay smears between framework silicates, which can significantly decrease the porosity of the fault rocks. However, there is no direct link between the fault rocks and host rocks. Similar stratigraphic juxtapositions can generate fault rocks with very different magnitudes of porosity reduction. The resultant fault rocks can only be predicted only when the fault throw is smaller than the thickness of a faulted bed, in

  16. Application and comparison of the SCS-CN-based rainfall-runoff model in meso-scale watershed and field scale

    Science.gov (United States)

    Luo, L.; Wang, Z.

    2010-12-01

    Soil Conservation Service Curve Number (SCS-CN) based hydrologic model, has widely been used for agricultural watersheds in recent years. However, there will be relative error when applying it due to differentiation of geographical and climatological conditions. This paper introduces a more adaptable and propagable model based on the modified SCS-CN method, which specializes into two different scale cases of research regions. Combining the typical conditions of the Zhanghe irrigation district in southern part of China, such as hydrometeorologic conditions and surface conditions, SCS-CN based models were established. The Xinbu-Qiao River basin (area =1207 km2) and the Tuanlin runoff test area (area =2.87 km2)were taken as the study areas of basin scale and field scale in Zhanghe irrigation district. Applications were extended from ordinary meso-scale watershed to field scale in Zhanghe paddy field-dominated irrigated . Based on actual measurement data of land use, soil classification, hydrology and meteorology, quantitative evaluation and modifications for two coefficients, i.e. preceding loss and runoff curve, were proposed with corresponding models, table of CN values for different landuse and AMC(antecedent moisture condition) grading standard fitting for research cases were proposed. The simulation precision was increased by putting forward a 12h unit hydrograph of the field area, and 12h unit hydrograph were simplified. Comparison between different scales show that it’s more effectively to use SCS-CN model on field scale after parameters calibrated in basin scale These results can help discovering the rainfall-runoff rule in the district. Differences of established SCS-CN model's parameters between the two study regions are also considered. Varied forms of landuse and impacts of human activities were the important factors which can impact the rainfall-runoff relations in Zhanghe irrigation district.

  17. Development of a Shipboard Remote Control and Telemetry Experimental System for Large-Scale Model’s Motions and Loads Measurement in Realistic Sea Waves

    Directory of Open Access Journals (Sweden)

    Jialong Jiao

    2017-10-01

    Full Text Available Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign.

  18. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  19. Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy

    KAUST Repository

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2015-01-01

    For electrical impedance tomography (EIT) to be useful in monitoring transverse cracks in composites, it is imperative to establish the relation between conductivity and cracking density. Micro to meso scale homogenization has been developed

  20. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  1. Meso-scale modeling of irradiated concrete in test reactor

    International Nuclear Information System (INIS)

    Giorla, A.; Vaitová, M.; Le Pape, Y.; Štemberk, P.

    2015-01-01

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  2. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  3. Thermal performance of a meso-scale liquid-fuel combustor

    International Nuclear Information System (INIS)

    Vijayan, V.; Gupta, A.K.

    2011-01-01

    Research highlights: → Demonstrated successful combustion of liquid fuel-air mixtures in a novel meso-scale combustor. → Flame quenching was eliminated using heat recirculation in a swiss roll type combustor that also extended the flammability limits. → Liquid fuel was rapidly vaporized with the use of hot narrow channel walls that eliminated the need of a fuel atomizer. → Maximum power density of the combustor was estimated to be about 8.5 GW/m3 and heat load in the range of 50-280W. → Overall efficiency of the combustor was estimated in the range of 12 to 20%. - Abstract: Combustion in small scale devices poses significant challenges due to the quenching of reactions from wall heat losses as well as the significantly reduced time available for mixing and combustion. In the case of liquid fuels there are additional challenges related to atomization, vaporization and mixing with the oxidant in the very short time-scale liquid-fuel combustor. The liquid fuel employed here is methanol with air as the oxidizer. The combustor was designed based on the heat recirculating concept wherein the incoming reactants are preheated by the combustion products through heat exchange occurring via combustor walls. The combustor was fabricated from Zirconium phosphate, a ceramic with very low thermal conductivity (0.8 W m -1 K -1 ). The combustor had rectangular shaped double spiral geometry with combustion chamber in the center of the spiral formed by inlet and exhaust channels. Methanol and air were introduced immediately upstream at inlet of the combustor. The preheated walls of the inlet channel also act as a pre-vaporizer for liquid fuel which vaporizes the liquid fuel and then mixes with air prior to the fuel-air mixture reaching the combustion chamber. Rapid pre-vaporization of the liquid fuel by the hot narrow channel walls eliminated the necessity for a fuel atomizer. Self-sustained combustion of methanol-air was achieved in a chamber volume as small as 32.6 mm 3

  4. Seasonal meso- and microhabitat selection by the northern snakehead (Channa argus) in the Potomac river system

    Science.gov (United States)

    Lapointe, N.W.R.; Thorson, J.T.; Angermeier, P.L.

    2010-01-01

     The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso- and microhabitat scales using radio-telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September–November), northern snakeheads preferred offshore Eurasian water-milfoil (Myriophyllum spicatum) beds with shallow water (∼115 cm) and soft substrate. In the winter (November–April), these fish moved to deeper water (∼135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (∼95 cm) in the prespawn season (April–June) and used milfoil and other cover. Habitat selection was the strongest at both meso- and microhabitat scales during the spawning season (June–September), when fish preferred macrophytes and cover in shallow water (∼88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences.

  5. Characterisation of stable isotopes to identify residence times and runoff components in two meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia

    NARCIS (Netherlands)

    Tekleab, S.; Wenninger, J.W.; Uhlenbrook, S.

    2014-01-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as

  6. Identifying residence times and streamflow generation processes using ?18O and ?2H in meso-scale catchments in the Abay/Upper Blue Nile, Ethiopia

    NARCIS (Netherlands)

    Teklaeb, S.; Wenninger, J.W.; Uhlenbrook, S.

    2013-01-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin.

  7. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  8. Synthesis and crystallographic analysis of meso-2,3-difluoro-1,4-butanediol and meso-1,4-dibenzyloxy-2,3-difluorobutane

    Directory of Open Access Journals (Sweden)

    Bruno Linclau

    2010-06-01

    Full Text Available A large-scale synthesis of meso-2,3-difluoro-1,4-butanediol in 5 steps from (Z-but-2-enediol is described. Crystallographic analysis of the diol and the corresponding benzyl ether reveals an anti conformation of the vicinal difluoride moiety. Monosilylation of the diol is high-yielding but all attempts to achieve chain extension through addition of alkyl Grignard and acetylide nucleophiles failed.

  9. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Science.gov (United States)

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  10. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    Science.gov (United States)

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

  11. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  12. ``Large''- vs Small-scale friction control in turbulent channel flow

    Science.gov (United States)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2017-11-01

    We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.

  13. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Harry Keo [Univ. of California, Davis, CA (United States)

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed

  14. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    International Nuclear Information System (INIS)

    Liu Wenyan; Tang, Z.P.; Liu Yunxin

    2000-01-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers

  15. Content validity and electronic PRO (ePRO) usability of the Lung Cancer Symptom Scale-Mesothelioma (LCSS-Meso) in mesothelioma patients.

    Science.gov (United States)

    Gelhorn, Heather L; Skalicky, Anne M; Balantac, Zaneta; Eremenco, Sonya; Cimms, Tricia; Halling, Katarina; Hollen, Patricia J; Gralla, Richard J; Mahoney, Martin C; Sexton, Chris

    2018-02-01

    Obtaining qualitative data directly from the patient perspective enhances the content validity of patient-reported outcome (PRO) instruments. The objective of this qualitative study was to evaluate the content validity of the Lung Cancer Symptom Scale for Mesothelioma (LCSS-Meso) and its usability on an electronic device. A cross-sectional methodological study, using a qualitative approach, was conducted among patients recruited from four clinical sites. The primary target population included patients with pleural mesothelioma; data were also collected from patients with peritoneal mesothelioma on an exploratory basis. Semi-structured interviews were conducted consisting of concept elicitation, cognitive interviewing, and evaluation of electronic patient-reported outcome (ePRO) usability. Participants (n = 21) were interviewed in person (n = 9) or by telephone (n = 12); 71% were male with a mean age of 69 years (SD = 14). The most common signs and symptoms experienced by participants with pleural mesothelioma (n = 18) were shortness of breath, fluid build-up, pain, fatigue, coughing, and appetite loss. The most commonly described symptoms for those with peritoneal mesothelioma (n = 4) were bloating, changes in appetite, fatigue, fluid build-up, shortness of breath, and pain. Participants with pleural mesothelioma commonly described symptoms assessed by the LCSS-Meso in language consistent with the questionnaire and a majority understood and easily completed each of the items. The ePRO version was easy to use, and there was no evidence that the electronic formatting changed the way participants responded to the questions. Results support the content validity of the LCSS-Meso and the usability of the electronic format for use in assessing symptoms among patients with pleural mesothelioma.

  16. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  17. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  18. Meso- and Micro-scale Modelling in China: Wind atlas analysis for 12 meteorological stations in NE China (Dongbei)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Yang, Z.; Hansen, Jens Carsten

    As part of the “Meso-Scale and Micro-Scale Modelling in China” project, also known as the CMA component of the Sino-Danish Wind Energy Development Programme (WED), microscale modelling and analyses have been carried out for 12 meteorological stations in NE China. Wind speed and direction data from...... the twelve 70-m masts have been analysed using the Wind Atlas Analysis and Application Program (WAsP 10). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps...... constructed from Google Earth satellite imagery. The maps have been compared to Chinese topographical maps and adjusted accordingly. Summaries are given of the data measured at the 12 masts for the reference period 2009. The main result of the microscale modelling is an observational wind atlas for NE China...

  19. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  20. Muscle Synergy-Driven Robust Motion Control.

    Science.gov (United States)

    Min, Kyuengbo; Iwamoto, Masami; Kakei, Shinji; Kimpara, Hideyuki

    2018-04-01

    Humans are able to robustly maintain desired motion and posture under dynamically changing circumstances, including novel conditions. To accomplish this, the brain needs to optimize the synergistic control between muscles against external dynamic factors. However, previous related studies have usually simplified the control of multiple muscles using two opposing muscles, which are minimum actuators to simulate linear feedback control. As a result, they have been unable to analyze how muscle synergy contributes to motion control robustness in a biological system. To address this issue, we considered a new muscle synergy concept used to optimize the synergy between muscle units against external dynamic conditions, including novel conditions. We propose that two main muscle control policies synergistically control muscle units to maintain the desired motion against external dynamic conditions. Our assumption is based on biological evidence regarding the control of multiple muscles via the corticospinal tract. One of the policies is the group control policy (GCP), which is used to control muscle group units classified based on functional similarities in joint control. This policy is used to effectively resist external dynamic circumstances, such as disturbances. The individual control policy (ICP) assists the GCP in precisely controlling motion by controlling individual muscle units. To validate this hypothesis, we simulated the reinforcement of the synergistic actions of the two control policies during the reinforcement learning of feedback motion control. Using this learning paradigm, the two control policies were synergistically combined to result in robust feedback control under novel transient and sustained disturbances that did not involve learning. Further, by comparing our data to experimental data generated by human subjects under the same conditions as those of the simulation, we showed that the proposed synergy concept may be used to analyze muscle synergy

  1. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  2. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J. D., E-mail: pradeep.ramuhalli@pnnl.gov; Ramuhalli, P., E-mail: pradeep.ramuhalli@pnnl.gov; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R. [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); McCloy, J. S., E-mail: john.mccloy@wsu.edu; Xu, K., E-mail: john.mccloy@wsu.edu [Washington State University, PO Box 642920, Pullman, WA 99164 (United States)

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  3. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  4. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  5. Comparative efficiency of racemic- and meso-2,3-dimercaptosuccinic acid to mobilize mercury in rats

    International Nuclear Information System (INIS)

    Prester, Lj.; Restek Samarzija, N.; Blanusa, M.; Piasek, M.; Kostial, K.; Jones, M.M.; Singh, P.K.

    1996-01-01

    Two stereoisomeric forms of chelating agent 2,3-dimercaptosuccinic acid (DMSA), meso- and racemic (rac-) DMSA, were compared for mercury mobilization in rats (Experiment 1). Acute oral toxicity of both chelators (LD 50 ) was also tested (Experiment 2). Experiments were carried out on 6-7 weeks old albino Wistar female rats. In Experiment 1 three groups of 9-10 animals were given intraperitoneally 0.5 mg HgCl 2 /kg b.w. and 2.5 mCi (92.5 kBq) of radioactive mercury in the form of 203 Hg(NO 3 ) 2 .Five days after mercury, therapy with 1.0 mmol/kg/day of either meso- or rac-DMSA was started and continued for four days. Whole body radioactivity was measured during the four-day therapy, i.e. 24 hours after each chelator application. In Experiment 2, chelators were given by gastric tube. They were dissolved in 8% NaHCOP 3 with addition of NaOH in equivalent quantities to obtain soluble sodium salts. Meso-DMSA was given at doses of 6, 8 or 12 mmol/kg and rac-DMSA at doses of 12 or 18.7 mmol/kg (3 rats at each dose level). Rat mortality was recorded during 8 days. Results of Experiment 1 showed that the efficiency of rac-DMSA in reducing body retention of mercury-203 was significantly higher than of meso-DMSA. At the end of experiment, reduction of mercury -203 whole body retention was 62% of control in meso-DMSA compared to 29% of control in rac D MSA group. In Experiment 2, the approximate oral LD 50 value were estimated to be >18.7 mmol/kg for meso-DMSA and between 8 and 12 mmol/kg for rac-DMSA. In conclusion, rac-DMSA reduces more efficiently mercury body load than its meso-form. However, more studies are needed to evaluate advantage of rac-DMSA application in spite of its higher toxicity compared to meso-DMSA. (author)

  6. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  7. Compression instrument for tissue experiments (cite) at the meso-scale: device validation - biomed 2011.

    Science.gov (United States)

    Evans, Douglas W; Rajagopalan, Padma; Devita, Raffaella; Sparks, Jessica L

    2011-01-01

    Liver sinusoidal endothelial cells (LSECs) are the primary site of numerous transport and exchange processes essential for liver function. LSECs rest on a sparse extracellular matrix layer housed in the space of Disse, a 0.5-1LSECs from hepatocytes. To develop bioengineered liver tissue constructs, it is important to understand the mechanical interactions among LSECs, hepatocytes, and the extracellular matrix in the space of Disse. Currently the mechanical properties of space of Disse matrix are not well understood. The objective of this study was to develop and validate a device for performing mechanical tests at the meso-scale (100nm-100m), to enable novel matrix characterization within the space of Disse. The device utilizes a glass micro-spherical indentor attached to a cantilever made from a fiber optic cable. The 3-axis translation table used to bring the specimen in contact with the indentor and deform the cantilever. A position detector monitors the location of a laser passing through the cantilever and allows for the calculation of subsequent tissue deformation. The design allows micro-newton and nano-newton stress-strain tissue behavior to be quantified. To validate the device accuracy, 11 samples of silicon rubber in two formulations were tested to experimentally confirm their Young's moduli. Prior macroscopic unconfined compression tests determined the formulations of EcoFlex030 (n-6) and EcoFlex010 (n-5) to posses Young's moduli of 92.67+-6.22 and 43.10+-3.29 kPa respectively. Optical measurements taken utilizing CITE's position control and fiber optic cantilever found the moduli to be 106.4 kPa and 47.82 kPa.

  8. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  9. Preparation of gluten-free bread using a meso-structured whey protein particle system

    NARCIS (Netherlands)

    Riemsdijk, van L.E.; Goot, van der A.J.; Hamer, R.J.; Boom, R.M.

    2011-01-01

    This article presents a novel method for making gluten-free bread using mesoscopically structured whey protein. The use of the meso-structured protein is based on the hypothesis that the gluten structure present in a developed wheat dough features a particle structure on a mesoscopic length scale

  10. Genotoxicity of meso-2,3-dimercapto succinic acid-coated silver sulfide quantum dot

    Directory of Open Access Journals (Sweden)

    Deniz Özkan Vardar

    2015-06-01

    Full Text Available Nanotecnology products have been used in wide applications in chemistry, electronics, energy generation, and medicine. Despite significant interest in developing quantum dots (QDs for biomedical applications, many researchers are convinced that QDs will never be used for the treatment of patients because of their potential toxicity. In various in vitro cell culture studies, the cytotoxic properties of some QD have been demonstrated and they have been suggested to be toxic in humans. In this study, the cytotoxic properties of Ag2S-(Meso-2,3-Dimercapto Succinic acid nanomaterials in V79 cells (Chinese lung fibroblast cell line were determined by MTT assay. The genotoxic effects of Ag2S-(Meso-2,3-Dimercapto Succinic acid were evaluated by the alkaline single cell gel electrophoresis. The cells were treated with Ag2S-(Meso-2,3-Dimercapto Succinic acid at the concentrations of 5- 2000 µg/ml. No cytotoxic effect of Ag2S-(Meso-2,3-Dimercapto Succinic acid at all concentrations studied was observed. No significant increases in DNA damage were found at the studied concentrations when compared to negative control in V79 cells. In conclusion, further in vitro and in vivo studies are required to determine the safety doses of Ag2S-(Meso-2,3-Dimercapto Succinic acid.

  11. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  12. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  13. Tracer experiment data sets for the verification of local and meso-scale atmospheric dispersion models including topographic effects

    International Nuclear Information System (INIS)

    Sartori, E.; Schuler, W.

    1992-01-01

    Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)

  14. Species and Scale Dependence of Bacterial Motion Dynamics

    Science.gov (United States)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  15. A dual theory of price and value in a meso-scale economic model with stochastic profit rate

    Science.gov (United States)

    Greenblatt, R. E.

    2014-12-01

    The problem of commodity price determination in a market-based, capitalist economy has a long and contentious history. Neoclassical microeconomic theories are based typically on marginal utility assumptions, while classical macroeconomic theories tend to be value-based. In the current work, I study a simplified meso-scale model of a commodity capitalist economy. The production/exchange model is represented by a network whose nodes are firms, workers, capitalists, and markets, and whose directed edges represent physical or monetary flows. A pair of multivariate linear equations with stochastic input parameters represent physical (supply/demand) and monetary (income/expense) balance. The input parameters yield a non-degenerate profit rate distribution across firms. Labor time and price are found to be eigenvector solutions to the respective balance equations. A simple relation is derived relating the expected value of commodity price to commodity labor content. Results of Monte Carlo simulations are consistent with the stochastic price/labor content relation.

  16. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Science.gov (United States)

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  17. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Directory of Open Access Journals (Sweden)

    A. John Blacker

    2015-12-01

    Full Text Available The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  18. Study of the Arrangement Effect of Units on the Shear Strength Masonry Walls in Meso-Scale

    Directory of Open Access Journals (Sweden)

    M. Sepehrinia

    2016-12-01

    Full Text Available Masonry is one of the oldest building materials which have been used in most heritage structures and new construction. In this study by using a meso-scale finite element model, the behavior of masonry walls is investigated under monotonic loading by Abaqus software. The most important factor in determining the behavior of masonry structures is discontinuity joints which are interface between unit and mortar. In most previous studies cohesive element is used for modeling of interface element. But in this study, by ignoring cohesive elements that represents the interface element between unit and mortar in masonry structures, it can be seen that while reducing the computational requirements, the results are in good agreement with experimental studies. Another important factor in the behavior of masonry walls is the arrangement of masonry units. In this study the overlapping effect of rows of units on the shear strength and failure mode of masonry walls have been investigated. As a result, it was observed that by increasing overlap, shear resistance of masonry walls increased.

  19. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load

    Science.gov (United States)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu

    2018-04-01

    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  20. Multi-scale structural similarity index for motion detection

    Directory of Open Access Journals (Sweden)

    M. Abdel-Salam Nasr

    2017-07-01

    Full Text Available The most recent approach for measuring the image quality is the structural similarity index (SSI. This paper presents a novel algorithm based on the multi-scale structural similarity index for motion detection (MS-SSIM in videos. The MS-SSIM approach is based on modeling of image luminance, contrast and structure at multiple scales. The MS-SSIM has resulted in much better performance than the single scale SSI approach but at the cost of relatively lower processing speed. The major advantages of the presented algorithm are both: the higher detection accuracy and the quasi real-time processing speed.

  1. Universal CNC platform motion control technology for industrial CT

    International Nuclear Information System (INIS)

    Cheng Senlin; Wang Yang

    2011-01-01

    According to the more scanning methods and the higher speed of industrial CT, the higher precision of the motion location and the data collection sync-control is required at present, a new motion control technology was proposed, which was established based on the universal CNC system with high precision of multi-axis control. Aiming at the second and the third generation of CT scanning motion, a control method was researched, and achieved the demands of the changeable parameters and network control, Through the simulation of the second and the third generation of CT scanning motion process, the control precision of the rotation axis reached 0.001° and the linear axis reached 0.002 mm, Practical tests showed this system can meet the requirements of the multi-axis motion integration and the sync signal control, it also have advantages in the control precision and the performance. (authors)

  2. Modes of correlated angular motion in live cells across three distinct time scales

    International Nuclear Information System (INIS)

    Harrison, Andrew W; Kenwright, David A; Woodman, Philip G; Allan, Victoria J; Waigh, Thomas A

    2013-01-01

    Particle tracking experiments with high speed digital microscopy yield the positions and trajectories of lipid droplets inside living cells. Angular correlation analysis shows that the lipid droplets have uncorrelated motion at short time scales (τ 10 ms, becomes persistent, indicating directed movement. The motion at all time scales is associated with the lipid droplets being tethered to and driven along the microtubule network. The point at which the angular correlation changes from anti-persistent to persistent motion corresponds to the cross over between sub-diffusive and super diffusive motion, as observed by mean square displacement analysis. Correct analysis of the angular correlations of the detector noise is found to be crucial in modelling the observed phenomena. (paper)

  3. Required number of records for ASCE/SEI 7 ground-motion scaling procedure

    Science.gov (United States)

    Reyes, Juan C.; Kalkan, Erol

    2011-01-01

    The procedures and criteria in 2006 IBC (International Council of Building Officials, 2006) and 2007 CBC (International Council of Building Officials, 2007) for the selection and scaling ground-motions for use in nonlinear response history analysis (RHA) of structures are based on ASCE/SEI 7 provisions (ASCE, 2005, 2010). According to ASCE/SEI 7, earthquake records should be selected from events of magnitudes, fault distance, and source mechanisms that comply with the maximum considered earthquake, and then scaled so that the average value of the 5-percent-damped response spectra for the set of scaled records is not less than the design response spectrum over the period range from 0.2Tn to 1.5Tn sec (where Tn is the fundamental vibration period of the structure). If at least seven ground-motions are analyzed, the design values of engineering demand parameters (EDPs) are taken as the average of the EDPs determined from the analyses. If fewer than seven ground-motions are analyzed, the design values of EDPs are taken as the maximum values of the EDPs. ASCE/SEI 7 requires a minimum of three ground-motions. These limits on the number of records in the ASCE/SEI 7 procedure are based on engineering experience, rather than on a comprehensive evaluation. This study statistically examines the required number of records for the ASCE/SEI 7 procedure, such that the scaled records provide accurate, efficient, and consistent estimates of" true" structural responses. Based on elastic-perfectly-plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI 7 scaling procedure is applied to 480 sets of ground-motions. The number of records in these sets varies from three to ten. The records in each set were selected either (i) randomly, (ii) considering their spectral shapes, or (iii) considering their spectral shapes and design spectral-acceleration value, A(Tn). As compared to benchmark (that is, "true") responses from unscaled records using a larger catalog of ground-motions

  4. Combining spanwise morphing, inline motion and model based optimization for force magnitude and direction control

    Science.gov (United States)

    Scheller, Johannes; Braza, Marianna; Triantafyllou, Michael

    2016-11-01

    Bats and other animals rapidly change their wingspan in order to control the aerodynamic forces. A NACA0013 type airfoil with dynamically changing span is proposed as a simple model to experimentally study these biomimetic morphing wings. Combining this large-scale morphing with inline motion allows to control both force magnitude and direction. Force measurements are conducted in order to analyze the impact of the 4 degree of freedom flapping motion on the flow. A blade-element theory augmented unsteady aerodynamic model is then used to derive optimal flapping trajectories.

  5. Design and analysis of a rotary motion controller

    Directory of Open Access Journals (Sweden)

    Julio Cesar Caye

    2015-12-01

    Full Text Available This paper presents the design of a rotary motion controller based on the peritrochoid geometry of the rotary (Wankle engine. It uses an orifice limited flow of incompressible fluid between the chambers of the Wankle-type geometry to control the rotation of the rotor. The paper develops the theory of operation and then implements the design as a Matlab model to simulate the motion control under various conditions. It is found that the time to reach stabilised motion is determined by the orifice size and fluid density. When stabilised motion is achieved, the motion dependence on material and geometry factors is determined by the orifice flow equation. The angular velocity is also found to have a square root dependence on the applied torque when in the stabilised regime.

  6. Scale-free animal movement patterns: Levy walks outperform fractional Brownian motions and fractional Levy motions in random search scenarios

    International Nuclear Information System (INIS)

    Reynolds, A M

    2009-01-01

    The movement patterns of a diverse range of animals have scale-free characteristics. These characteristics provide necessary but not sufficient conditions for the presence of movement patterns that can be approximated by Levy walks. Nevertheless, it has been widely assumed that the occurrence of scale-free animal movements can indeed be attributed to the presence of Levy walks. This is, in part, because it is known that the super-diffusive properties of Levy walks can be advantageous in random search scenarios when searchers have little or no prior knowledge of target locations. However, fractional Brownian motions (fBms) and fractional Levy motions (fLms) are both scale-free and super-diffusive, and so it is possible that these motions rather than Levy walks underlie some or all occurrences of scale-free animal movement patterns. Here this possibility is examined in numerical simulations through a determination of the searching efficiencies of fBm and fLm searches. It is shown that these searches are less efficient than Levy walk searches. This finding does not rule out the possibility that some animals with scale-free movement patterns are executing fBm and fLm searches, but it does make Levy walk searches the more likely possibility.

  7. Caustic meso-optical confocal microscope for vertical particle tracks. Proposal

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1995-01-01

    The principal of the proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion is explained. The results of the experiments performed to illustrate the main features of this new meso-optical microscope are given. The proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion can be effectively used in the experimental investigation of such rare processes as ν μ - ν τ oscillations and of the Pb-Pb interactions. 2 refs., 7 figs

  8. Revolution at SOLEIL: review and prospect for motion control

    International Nuclear Information System (INIS)

    Corruble, D.; Betinelli-Deck, P.; Blache, F.; Coquet, J.; Leclercq, N.; Millet, R.; Tournieux, A.

    2012-01-01

    At any synchrotron facility, motors are numerous: they are the significant actuators of accelerators and the main actuators of beamlines. Since 2003, the Electronic Control and data Acquisition group at SOLEIL has defined a modular and reliable motion architecture integrating industrial products (Galil controller, Midi-Engineering and Phytron power boards). Simultaneously, the software control group has developed a set of dedicated Tango devices. At present, more than 1000 motors and 200 motion controller crates are in operation at SOLEIL. Aware that motion control is important in improving performance, given that the positioning of optical systems and samples is a key element of any beamline, SOLEIL wants to upgrade its motion controller in order to maintain the facility at a high performance level and be able to respond to new requirements: better accuracy, complex trajectory and coupling multi-axis devices such as hexa-pods. This project is called REVOLUTION (Reconsider Various controllers for your motion). (authors)

  9. Optimizing CMS build infrastructure via Apache Mesos

    CERN Document Server

    Abduracmanov, David; Degano, Alessandro; Elmer, Peter; Eulisse, Giulio; Mendez, David; Muzaffar, Shahzad

    2015-12-23

    The Offline Software of the CMS Experiment at the Large Hadron Collider (LHC) at CERN consists of 6M lines of in-house code, developed over a decade by nearly 1000 physicists, as well as a comparable amount of general use open-source code. A critical ingredient to the success of the construction and early operation of the WLCG was the convergence, around the year 2000, on the use of a homogeneous environment of commodity x86-64 processors and Linux. Apache Mesos is a cluster manager that provides efficient resource isolation and sharing across distributed applications, or frameworks. It can run Hadoop, Jenkins, Spark, Aurora, and other applications on a dynamically shared pool of nodes. We present how we migrated our continuos integration system to schedule jobs on a relatively small Apache Mesos enabled cluster and how this resulted in better resource usage, higher peak performance and lower latency thanks to the dynamic scheduling capabilities of Mesos.

  10. Quantitative study on crack of meso-damage and fracture concrete ...

    Indian Academy of Sciences (India)

    lysis of the meso-fracture process of concrete materials is performed. ... the result of the accumulation and development of damage and cracks at the meso-level. ... characteristics of concrete under uniaxial compression used fractal theory, and ...

  11. Contrast gain control in first- and second-order motion perception.

    Science.gov (United States)

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  12. Redox control of molecular motion in switchable artificial nanoscale devices.

    Science.gov (United States)

    Credi, Alberto; Semeraro, Monica; Silvi, Serena; Venturi, Margherita

    2011-03-15

    The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.

  13. Spatial design and control of graphene flake motion

    Science.gov (United States)

    Ghorbanfekr-Kalashami, H.; Peeters, F. M.; Novoselov, K. S.; Neek-Amal, M.

    2017-08-01

    The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate.

  14. Utilizing the meso-scale grain boundary stress to estimate the onset of delamination in 2099-T861 aluminium–lithium

    International Nuclear Information System (INIS)

    McDonald, Russell J; Beaudoin, Armand J

    2010-01-01

    Aluminium–lithium alloys provide a lower density and higher stiffness alternative to other high strength aluminium alloys. However, many Al–Li alloys exhibit a non-traditional failure mechanism called delamination, which refers to the failure of the elongated grain boundary interface. In this investigation, delaminations were observed after cyclic deformation of both uniaxial and torsion experiments. A cyclically stable rate-independent crystal plasticity framework with kinematic hardening was developed to address many experimental trends of stabilized cyclic plasticity. Utilizing this framework, meso-scale grain boundary interface stresses were estimated with uniform deformation and bi-crystal models. These models are computationally amenable to investigate both orientation dependence and the statistical nature of the grain boundary stresses for a given bulk texture and nominal loading. A coupled shear-normal Findley-based damage parameter was formulated to quantitatively characterize the nucleation of delamination consistently with experimental trends

  15. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  16. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  17. Electrohydrodynamic Liquid Disintegration in Micro-, Meso- and Nanoscopic Dimensions

    Science.gov (United States)

    Vertes, Akos

    2008-11-01

    The electrohydrodynamic dispersion of liquids spans length scales from 1 mm to 1 nm and involves temporal variations from 1 s to 10 ps. The disintegration mechanisms are diverse and, due to the differences in the dominating forces, vary on the micro-, meso- and nanoscale extending to lower boundaries of 1 μm, 10 nm and 1 nm, respectively. Using fast imaging, spray current measurements, phase Doppler anemometry and molecular dynamics calculations, we followed the behavior of electrified liquids in the three most common geometries, spherical, pendant drop and slender jet, with dimensions ranging from 100 μm to 1 nm. Microscale disintegration involves jet ejection from conical surface deformations, jet breakup due to varicose, kink and ramified jet instabilities, and asymmetric droplet fission resulting in side jets. As the liquid dimensions shift from the microscopic dimensions where the processes are governed by the surface tension and the Maxwell stress, to the meso- and nanoscale, thermal fluctuations become increasingly important. The presence of charges in nanodroplets leads to enhanced surface fluctuations, the formation of extreme protrusions and eventually solvated ion evaporation. Charging of slender nanojets results in longer shape relaxation times along with the fission of systems charged below the Rayleigh limit. In collaboration with Jelena Lusic and Peter Nemes, George Washington University.

  18. Control of a virtual ambulation influences body movement and motion sickness

    Directory of Open Access Journals (Sweden)

    Hagstrom Jens

    2011-12-01

    Full Text Available Drivers typically are less susceptible to motion sickness than passengers. The influence of vehicle control has theoretical implications for the etiology of motion sickness, and has practical implications for the design of virtual environments. In the present study, participants either controlled or did not control a nonvehicular virtual avatar (i.e., an ambulatory character in a console video game. We examined the incidence of motion sickness and patterns of movement of the head and torso as participants either played or watched the game. Motion sickness incidence was lower when controlling the virutal avatar than when watching an avatar that was controlled by someone else. Patterns of head and torso movement differed between particpants who did and did not control the avatar. Indepenently, patterns of movement differed between participants who reported motion sickness and those who did not. The results suggest that motion sickness is influenced by control of stimulus motion, whether that motion arises from a vehicle or from any other source. We consider implications for the design of humancomputer interfaces.

  19. Tornadoes and downbursts in the context of generalized planetary scales

    Science.gov (United States)

    Fujita, T. T.

    1981-01-01

    In order to cover a wide range of horizontal dimensions of airflow, the paper proposes a series of five scales, maso, meso, miso (to be read as my-so), moso and muso arranged in the order of the vowels, A, E, I, O, U. The dimensions decrease by two orders of magnitude per scale, beginning with the planet's equator length chosen to be the maximum dimension of masoscale for each planet. Mesoscale highs and lows were described on the basis of mesoanalyses, while sub-mesoscale disturbances were depicted by cataloging over 20,000 photographs of wind effects taken from low-flying aircraft during the past 15 years. Various motion thus classified into these scales led to a conclusion that extreme winds induced by thunderstorms are associated with misoscale and mososcale airflow spawned by the parent, mesoscale disturbances.

  20. Study on scaling law of PWR natural circulation with motion condition

    International Nuclear Information System (INIS)

    Lu Donghua; Xiao Zejun; Chen Bingde

    2009-01-01

    For some nuclear reactors installed on automobiles, boats or deep sea vehicles, it is an important way to investigate their system safety by performing natural circulation experiments under motion condition. This paper studied the natural circulation on moving plants based on work of static natural circulation scaling method. With rigid motion theory, acceleration at each point was obtained on primary system and introduced to momentum equation. Thus a set of motion similar criteria were obtained. Furthermore, equal and unequal height simulation were analyzed. As to the unequal one, non isochronous simulation was needed for displacement and angular acceleration. (authors)

  1. A Novel Pitch Control System of a Large Wind Turbine Using Two-Degree-of-Freedom Motion Control with Feedback Linearization Control

    Directory of Open Access Journals (Sweden)

    Ching-Sung Wang

    2016-09-01

    Full Text Available Pitch Control plays a significant role for a large wind turbine. This study investigates a novel robust hydraulic pitch control system of a large wind turbine. The novel hydraulic pitch control system is driven by a novel high efficiency and high response hydraulic servo system. The pitch controller, designed by two degree-of-freedom (2-DOF motion control with feedback linearization, is developed to enhance the controllability and stability of the pitch control system. Furthermore, the full-scale testbed of the hydraulic pitch control system of a large wind turbine is developed for practically experimental verification. Besides, the wind turbine simulation software FAST is used to analyze the motion of the blade which results are given to the testbed as the disturbance load command. The 2-DOF pitch controller contains a feedforward controller with feedback linearization theory to overcome the nonlinearities of the system and a feedback controller to improve the system robustness for achieving the disturbance rejection. Consequently, the novel hydraulic pitch control system shows excellent path tracking performance in the experiments. Moreover, the robustness test with a simulated disturbance load generated by FAST is performed to validate the reliability of the proposed pitch control system.

  2. Short-term meso-scale variability of mesozooplankton communities in a coastal upwelling system (NW Spain)

    Science.gov (United States)

    Roura, Álvaro; Álvarez-Salgado, Xosé A.; González, Ángel F.; Gregori, María; Rosón, Gabriel; Guerra, Ángel

    2013-02-01

    The short-term, meso-scale variability of the mesozooplankton community present in the coastal upwelling system of the Ría de Vigo (NW Spain) has been analysed. Three well-defined communities were identified: coastal, frontal and oceanic, according to their holoplankton-meroplankton ratio, richness, and total abundance. These communities changed from summer to autumn due to a shift from downwelling to upwelling-favourable conditions coupled with taxa dependent changes in life strategies. Relationships between the resemblance matrix of mesozooplankton and the resemblance matrices of meteorologic, hydrographic and community-derived biotic variables were determined with distance-based linear models (DistLM, 18 variables), showing an increasing amount of explained variability of 6%, 16.1% and 54.5%, respectively. A simplified model revealed that the variability found in the resemblance matrix of mesozooplankton was mainly described by the holoplankton-meroplankton ratio, the total abundance, the influence of lunar cycles, the upwelling index and the richness; altogether accounting for 64% of the total variability. The largest variability of the mesozooplankton resemblance matrix (39.6%) is accounted by the holoplankton-meroplankton ratio, a simple index that describes appropriately the coastal-ocean gradient. The communities described herein kept their integrity in the studied upwelling and downwelling episodes in spite of the highly advective environment off the Ría de Vigo, presumably due to behavioural changes in the vertical position of the zooplankton.

  3. [Distribution pattern of meso-micro soil fauna in Eucalyptus grandis plantation].

    Science.gov (United States)

    Huang, Yumei; Zhang, Jian; Yang, Wanqin

    2006-12-01

    In this paper, meso-micro soil fauna were extracted and collected by Baermann's and Tullgren' s method, and their distribution pattern in the Eucalyptus grandis plantation of Hongya County, Sichuan Province was studied. A total of 13 550 specimens were collected, belonging to 6 phyla, 13 classes, and 26 orders. Acarina, Nematoda, Collembola were the dominant groups, and Enchytraeidae was the frequent one. The group and individual numbers of meso-micro soil fauna varied with seasons, being the maximum in autumn or winter, fewer in summer, and the minimum in spring. The density of meso-micro soil fauna in soil profile decreased rapidly with increasing soil depth, but a converse distribution was observed from time to time in 5 - 10 cm and 10 - 15 cm soil layers. The meso-micro soil fauna collected by Baermann's and Tullgren's method had a density of 3. 333 x 10(3) - 2. 533 x 10(5) ind x m(-2) and 1.670 x 10(2) - 2.393 x 10(5) ind x m(-2), respectively, and the decreasing rate of the density with the increase of soil depth was higher for those collected by Tullgren's method. The density-group index of meso-micro soil fauna in the E. grandis plantation was the lowest in spring, but the highest in autumn or summer. There were no significant differences in the density of meso-micro soil fauna and in the density-group index between E. grandis plantation and Quercus acutissima secondary forest.

  4. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar

    2013-01-01

    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  5. Motion Control with Vision

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots

    2001-01-01

    This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with

  6. Meso-decorated self-healing gels: network structure and properties

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  7. How many records should be used in ASCE/SEI-7 ground motion scaling procedure?

    Science.gov (United States)

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.

  8. Study on coal mine macro, meso and micro safety management system

    Directory of Open Access Journals (Sweden)

    Longkang Wang

    2016-03-01

    Full Text Available In recent years, the coal mine safety production situation in our country improved year by year, but severe accidents still occurred; the accidents caused great economic loss to the national economy. According to statistical analysis, almost all of the coal mine accidents will expose the hidden danger in before, most of the accidents caused due to safety management not reaching the designated position and the hidden danger management does not take any decision in time. Based on the coal mine safety management holes in our country, the coal mine macro, meso and micro safety management system was established in this paper, which includes meaning and conception of the theories of the macro, meso and micro safety management, and also includes the matching hardware equipment, in order to achieve the hidden danger's closed-loop control and dynamic early warning in the process of coal mine production.

  9. Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions

    International Nuclear Information System (INIS)

    Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki

    2010-01-01

    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.

  10. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  11. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  12. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  13. Frequency domain performance analysis of nonlinearly controlled motion systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.

    2007-01-01

    At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity

  14. Meso-level analysis, the missing link in energy strategies

    International Nuclear Information System (INIS)

    Schenk, Niels J.; Moll, Henri C.; Schoot Uiterkamp, Anton J.M.

    2007-01-01

    Energy is essential for human societies. Energy systems, though, are also associated with several adverse environmental effects. So far societies have been unable to successfully change their energy systems in a way that addresses environmental and health concerns. Lack of policy consensus often resulted in so-called 'stop-go' policies, which were identified as some of the most important barriers regarding successful energy transitions. The lack of policy consensus and coherent long-term strategies may result from a lack of knowledge of energy systems' meso-level dynamics. The meso-level involves the dynamic behaviour of the individual system elements and the coupling of individual technologies, resulting in interdependencies and regimes. Energy systems are at the meso-level characterised by two typical aspects, i.e. dynamics driven by interactions between actors, and heterogeneous characteristics of actors. These aspects give rise to the ineffectiveness of traditional energy policies, which is illustrated with examples from the transport sector and household electricity consumption. We found that analysis of energy systems at the meso-level helps to better understand energy systems. To resolve persistent policy issues, the traditional 'one size fits all' energy policies are not sufficient. In order to tackle the difficult issues, 'redesign of system organisation', 'target group approach', or 'target group induced system re-orientation' are needed

  15. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    International Nuclear Information System (INIS)

    Wang, S.-K.; Mamontov, Eugene; Bai, M.; Hansen, F.Y.; Taub, H.; Copley, J.R.D.; Garcia Sakai, V.; Gasparovic, Goran; Jenkins, Timothy; Tyagi, M.; Herwig, Kenneth W.; Neumann, D.A.; Montfrooij, W.; Volkmann, U.G.

    2010-01-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a 'fast' motion corresponding to uniaxial rotation about the long molecular axis; and a 'slow' motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  16. Advanced Controllers for Electromechanical Motion Systems

    NARCIS (Netherlands)

    Nguyen, Duy Cuong

    2008-01-01

    The aim of this research is to develop advanced controllers for electromechanical motion systems. In order to increase efficiency and reliability, these control systems are required to achieve high performance and robustness in the face of model uncertainty, measurement noise, and reproducible

  17. Scaling laws for fractional Brownian motion with power-law clock

    International Nuclear Information System (INIS)

    O'Malley, Daniel; Cushman, John H; Johnson, Graham

    2011-01-01

    We study the mean first passage time (MFPT) for fractional Brownian motion (fBm) in a finite interval with absorbing boundaries at each end. Analytical arguments are used to suggest a simple scaling law for the MFPT and numerical experiments are performed to verify its accuracy. The same approach is used to derive a scaling law for fBm with a power-law clock (fBm-plc). The MFPT scaling laws are employed to develop scaling laws for the finite-size Lyapunov exponent (FSLE) of fBm and fBm-plc. We apply these results to diffusion of a large polymer in a region with absorbing boundaries. (letter)

  18. A General Cognitive System Architecture Based on Dynamic Vision for Motion Control

    Directory of Open Access Journals (Sweden)

    Ernst D. Dickmanns

    2003-10-01

    Full Text Available Animation of spatio-temporal generic models for 3-D shape and motion of objects and subjects, based on feature sets evaluated in parallel from several image streams, is considered to be the core of dynamic vision. Subjects are a special kind of objects capable of sensing environmental parameters and of initiating own actions in combination with stored knowledge. Object / subject recognition and scene understanding are achieved on different levels and scales. Multiple objects are tracked individually in the image streams for perceiving their actual state ('here and now'. By analyzing motion of all relevant objects / subjects over a larger time scale on the level of state variables in the 'scene tree representation' known from computer graphics, the situation with respect to decision taking is assessed. Behavioral capabilities of subjects are represented explicitly on an abstract level for characterizing their potential behaviors. These are generated by stereotypical feed-forward and feedback control applications on a separate systems dynamics level with corresponding methods close to the actuator hardware. This dual representation on an abstract level (for decision making and on the implementation level allows for flexibility and easy adaptation or extension. Results are shown for road vehicle guidance based on three cameras on a gaze control platform.

  19. Quantitative modelling of the closure of meso-scale parallel currents in the nightside ionosphere

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2004-01-01

    Full Text Available On 12 January 2000, during a northward IMF period, two successive conjunctions occur between the CUTLASS SuperDARN radar pair and the two satellites Ørsted and FAST. This situation is used to describe and model the electrodynamic of a nightside meso-scale arc associated with a convection shear. Three field-aligned current sheets, one upward and two downward on both sides, are observed. Based on the measurements of the parallel currents and either the conductance or the electric field profile, a model of the ionospheric current closure is developed along each satellite orbit. This model is one-dimensional, in a first attempt and a two-dimensional model is tested for the Ørsted case. These models allow one to quantify the balance between electric field gradients and ionospheric conductance gradients in the closure of the field-aligned currents. These radar and satellite data are also combined with images from Polar-UVI, allowing for a description of the time evolution of the arc between the two satellite passes. The arc is very dynamic, in spite of quiet solar wind conditions. Periodic enhancements of the convection and of electron precipitation associated with the arc are observed, probably associated with quasi-periodic injections of particles due to reconnection in the magnetotail. Also, a northward shift and a reorganisation of the precipitation pattern are observed, together with a southward shift of the convection shear. Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation – Magnetospheric physics (magnetosphere-ionosphere interactions

  20. Developmentally Regulated Production of meso-Zeaxanthin in Chicken Retinal Pigment Epithelium/Choroid and Retina.

    Science.gov (United States)

    Gorusupudi, Aruna; Shyam, Rajalekshmy; Li, Binxing; Vachali, Preejith; Subhani, Yumna K; Nelson, Kelly; Bernstein, Paul S

    2016-04-01

    meso-Zeaxanthin is a carotenoid that is rarely encountered in nature outside of the vertebrate eye. It is not a constituent of a normal human diet, yet this carotenoid comprises one-third of the primate macular pigment. In the current study, we undertook a systematic approach to biochemically characterize the production of meso-zeaxanthin in the vertebrate eye. Fertilized White Leghorn chicken eggs were analyzed for the presence of carotenoids during development. Yolk, liver, brain, serum, retina, and RPE/choroid were isolated, and carotenoids were extracted. The samples were analyzed on C-30 or chiral HPLC columns to determine the carotenoid composition. Lutein and zeaxanthin were found in all studied nonocular tissues, but no meso-zeaxanthin was ever detected. Among the ocular tissues, the presence of meso-zeaxanthin was consistently observed starting at embryonic day 17 (E17) in the RPE/choroid, several days before its consistent detection in the retina. If RPE/choroid of an embryo was devoid of meso-zeaxanthin, the corresponding retina was always negative as well. This is the first report of developmentally regulated synthesis of meso-zeaxanthin in a vertebrate system. Our observations suggest that the RPE/choroid is the primary site of meso-zeaxanthin synthesis. Identification of meso-zeaxanthin isomerase enzyme in the developing chicken embryo will facilitate our ability to determine the biochemical mechanisms responsible for production of this unique carotenoid in other higher vertebrates, such as humans.

  1. Motion control of servo cylinder using neural network

    International Nuclear Information System (INIS)

    Hwang, Un Kyoo; Cho, Seung Ho

    2004-01-01

    In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The neural network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control

  2. Atto-second control of collective electron motion in plasmas

    International Nuclear Information System (INIS)

    Borot, Antonin; Malvache, Arnaud; Chen, Xiaowei; Jullien, Aurelie; Lopez-Martens, Rodrigo; Geindre, Jean-Paul; Audebert, Patrick; Mourou, Gerard; Quere, Fabien

    2012-01-01

    Today, light fields of controlled and measured waveform can be used to guide electron motion in atoms and molecules with atto-second precision. Here, we demonstrate atto-second control of collective electron motion in plasmas driven by extreme intensity (approximate to 10 18 W cm -2 ) light fields. Controlled few-cycle near-infrared waves are tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide sub-cycle motion of electrons from the plasma with characteristic energies in the multi-kilo-electron-volt range-two orders of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent extreme ultraviolet radiation emerging from the light-plasma interaction allows us to probe this collective motion of charge with sub-200 as resolution. This is an important step towards atto-second control of charge dynamics in laser-driven plasma experiments. (authors)

  3. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    Science.gov (United States)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  4. Leap Motion controller application in augmented reality technology

    OpenAIRE

    Artemčiukas, Edgaras; Sakalauskas, Leonidas

    2014-01-01

    In this work the analysis of interaction techniques, devices and its’ possibilities were accomplished. It was determined that the problem, which many researchers tries to solve – more natural interaction between users and computers. Interaction system in augmented reality environment using Leap Motion controller was developed. To achieve this goal augmented reality NyARToolkit and Leap Motion controller libraries were used. Solution ensures extensive information about hand, finger...

  5. Neck motion, motor control, pain and disability: A longitudinal study of associations in neck pain patients in physiotherapy treatment.

    Science.gov (United States)

    Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar

    2016-04-01

    Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    Science.gov (United States)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  7. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    OpenAIRE

    Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0....

  8. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-11-01

    Full Text Available A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA topological structure, microspherical particle morphologies, and hierarchically intracrystalline micro-meso-macropores structure. With the Bond-Blocking principle, the external surface area and macro-mesoporosity of the hierarchical zeolite CaA can be adjusted by varying the organo-functionalized degree of the mesoporous silica surface. Similarly, the distribution of the micro-meso-macroporous structure in the zeolite CaA can be controlled purposely. Compared with the conventional microporous zeolite CaA, the hierarchical zeolite CaA as a catalyst in the conversion of methanol to dimethyl ether (DME, exhibited complete DME selectivity and stable catalytic activity with high methanol conversion. The catalytic performances of the hierarchical zeolite CaA results clearly from the micro-meso-macroporous structure, improving diffusion properties, favoring the access to the active surface and avoiding secondary reactions (no hydrocarbon products were detected after 3 h of reaction.

  9. AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion

    Science.gov (United States)

    Han, Z.; Fang, J. Y.; Xie, S. H.; Deng, J. G.; Liu, Y. X.; Dai, H. X.

    2018-05-01

    Three-dimensionally ordered mesoporous Mn2O3 (meso-Mn2O3) and its supported Au, Ru, and AuRu alloy (0.49 wt% Au/meso-Mn2O3, 0.48 wt% Ru/meso-Mn2O3, and 0.97 wt% AuRu/meso-Mn2O3 (Au/Ru molar ratio = 0.98)) nanocatalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected reduction methods, respectively. Physicochemical properties of the samples were characterized by means of numerous techniques, and their catalytic activities were evaluated for the combustion of methane. It is found that among all of the samples, 0.48 wt% Ru/meso-Mn 2O3 and 0.97 wt% AuRu/meso-Mn2O3 performed the best (the reaction temperature (T90% ) at 90% methane conversion was 530-540°C), but the latter showed a better thermal stability than the former. The partial deactivation of 0.97 wt% AuRu/meso-Mn2O3 due to H2O or CO2 introduction was reversible. It is concluded that the good catalytic activity and thermal stability of 0.97 wt% AuRu/meso-Mn2O3 was associated with the high dispersion of AuRu alloy NPs (2-5 nm) on the surface of meso-Mn2O3 and good low-temperature reducibility.

  10. Evaluation of ground motion scaling methods for analysis of structural systems

    Science.gov (United States)

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  11. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    Science.gov (United States)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  12. complexes based on meso-substituted dipyrrins

    Indian Academy of Sciences (India)

    Keywords. Coordination polymers; meso-substituted dipyrrins; heteroleptic; acetylacetonato; ... Room temperature magnetic susceptibility measurements were ... After cooling to ambient tem- perature it ... crystals of 1 were obtained from CH2Cl2/ hexane (1. : 1) solution. .... are air-stable, crystalline solids, soluble in common.

  13. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  14. Modellierung of meso- and macroscale river basins - a workshop held at Lauenburg; Modellierung in meso- bis makroskaligen Flusseinzugsgebieten - Tagungsband zum gleichnamigen Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sutmoeller, J.; Raschke, E. (eds.) [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2001-07-01

    During the past decade measuring and modelling of global and regional processes that exchange energy and water in the climate system of the Earth became a focus in hydrological and meteorological research. Besides climate research many more applications will gain from this effort, e.g. as weather forecasting, water management and agriculture. As large scale weather and climate applications diversify to water related issues such as water resources, reservoir management, and flood and drought forecasting hydrologists and meteorologists are challenged to work interdisciplinary. The workshop 'Modelling of meso- and macroscale river basins' brought together various current aspects of this issue, ranging from coupled atmosphere-hydrology models to integrated river basin management to land use change. Recent results are introduced and summarised in this report. (orig.)

  15. pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin-chitosan complexes

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Synytsya, Andriy.; Blafková, P.; Ederová, J.; Spěváček, Jiří; Slepička, P.; Král, V.; Volka, K.

    2009-01-01

    Roč. 10, č. 5 (2009), s. 1067-1076 ISSN 1525-7797 R&D Projects: GA ČR GA525/05/0273 Grant - others:GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) KAN200100801; GA AV ČR(CZ) KAN200200651; GA MŠk(CZ) LC06041; GA ČR(CZ) GA203/02/0420 Program:KA; KA; KA; LC; GA Institutional research plan: CEZ:AV0Z40500505 Keywords : self-assembling * meso-tetrakis(4-sulfonatophenyl)porphyrin- chitosan complex * spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.502, year: 2009

  16. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Li Ding

    2018-01-01

    Full Text Available In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. Finally, we give three examples to demonstrate the applicability of our obtained results.

  17. Low-latency wireless data transfer for motion control

    NARCIS (Netherlands)

    Boeij, de J.; Haazen, M.H.; Smulders, P.F.M.; Lomonova, E.A.

    2009-01-01

    This paper discusses a new approach for wireless motion control. Existing wireless techniques suffer from large closed loop delays of several milliseconds, which is unacceptable in precision motion systems. These large delays are mainly caused by the protocol used, since these are optimized for

  18. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    Science.gov (United States)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  19. Pitch Motion Stabilization by Propeller Speed Control Using Statistical Controller Design

    DEFF Research Database (Denmark)

    Nakatani, Toshihiko; Blanke, Mogens; Galeazzi, Roberto

    2006-01-01

    This paper describes dynamics analysis of a small training boat and a possibility of ship pitch stabilization by control of propeller speed. After upgrading the navigational system of an actual small training boat, in order to identify the model of the ship, the real data collected by sea trials...... were used for statistical analysis and system identification. This analysis shows that the pitching motion is indeed influenced by engine speed and it is suggested that there exists a possibility of reducing the pitching motion by properly controlling the engine throttle. Based on this observation...

  20. STUDY OF SUBCELLULAR DISTRIBUTION OF CRYSTALLINE MESO-TETRA(3-PYRIDYLBACTERIOCHLORIN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The results of the study of subcellular distribution of molecular meso-tetra(3-pyridylbacteriochlorin nanocrystals proposed as therapeutic agents for photodynamic therapy are represented in the article. Investigations and measurement of spectroscopic properties of molecular crystals of near-infrared photosensitizer were conducted using special device complex based on fiber-optic spectrometer. Investigation and analysis of the pattern of subcellular accumulation of meso-tetra(3-pyridylbacteriochlorin in molecular (dimethyl sulfoxide (DMSO as solvent and nanocrystalline forms on different cell lines: human monocytes (THP-1, human cervical cancer cells (HeLa and mouse malignant brain tumor cells (glioma C6. The dynamics of subcellylar accumulation of the agent at concentration of 5 and 10 mg/l was assessed with laser microscope-spectrum analyzer and by confocal microscopy. The study showed that in the course of interaction with cell lines molecular nanocrystals of the agent developed ability to fluorescence. Hence, in the cellular environment meso-tetra(3-pyridyl bacteriochlorin nanoparticles became phototoxic giving opportunities for their use for fluorescence diagnosis and photodynamic therapy. Specific role of meso-tetra(3-pyridylbacteriochlorin in the range of photosensitizers is determined by its spectral characteristics, i.e. absorption and fluorescence in near-infrared band, which allows measuring and affecting on deeper layers of biotissue. Thus, the use of meso-tetra(3-pyridylbacteriochlorin nanoparticles as nanophotosensitizers may improve the efficacy of diagnosis and treatment of deep-seated tumors.

  1. Modification of large-scale motions in a turbulent pipe flow

    Science.gov (United States)

    Senshu, Kohei; Shinozaki, Hiroaki; Sakakibara, Jun

    2017-11-01

    We performed experiments to modify the flow structures in a fully developed turbulent flow in a straight round pipe. The modification of the flow was achieved by installing a short coaxial inner pipe. The inner pipe has ability to add continuous suction or blowing disturbance through its outer surface. The experiments were conducted at a Reynolds number of 44,000 with seven different disturbance patterns. The wall static pressure was measured and pipe friction coefficient was evaluated. The velocity distribution was measured with PIV and very large scale motions (VLSMs) were visualized. Pipe friction coefficient was increased by installing the inner pipe, while turbulence intensities over the cross section were reduced. Slight change of the friction was observed if the disturbance was added. We decomposed fluctuating velocity field in the azimuthal direction by a Fourier series expansion. As a result, we obtained that contribution of lower azimuthal mode numbers (m = 2, 3, 4) reduced while the higher modes increased. This was consistent with the observation of visualized very large scale motions.

  2. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  3. Static Scale Conversion Weigh-In-Motion System; FINAL

    International Nuclear Information System (INIS)

    Beshears, D.L.

    2001-01-01

    In support of the Air Mobility Battle Lab (AMBL), the Defense Advanced Research Projects Agency (DARPA) Advanced Logistics Program and the U. S. Transportation Command (USTRANSCOM), the ultimate objective of this project is to develop and demonstrate a full-scale prototype static scale conversion weigh-in-motion/Profilometry (SSC-WIM/P) system to measure and record dimensional and weight information for the Department of Defense (DoD) equipment and cargo. The Oak Ridge National Laboratory (ORNL), along with the AMBL, and Intercomp, Inc. have developed a long-range plan for developing a dual-use system which can be used as a standard static scale or an accurate weigh-in-motion system. AMBL will work to define requirements for additional activities with U.S. Transportation Command, Air Mobility Command, and the Joint Warfighting Battle Lab for both the SSC-WIM/P and a portable Weigh-in-Motion System for individual units. The funding goal is to fully fund the development of two prototype test articles (a SSC-WIM kit, and a laser profilometer) and have at least one fully operational system by the early 2002 timeframe. The objective of this portion of the project will be to develop a SSC-WIM system, which at a later date can be fully integrated with a profilometry system; to fully characterize DOD wheeled vehicles and cargo (individual axle weights, total vehicle weight, center of balance, height, width and length measurements). The program will be completed in phases with the initial AMBL/DARPA funding being used to initiate the efforts while AMBL/USTC obtains funding to complete the first generation system effort. At the completion of an initial effort, the interface hardware and the data acquisition/analysis hardware will be developed, fabricated, and system principles and basic functionality evaluated, tested, and demonstrated. Additional funding, when made available, will allow the successful completion of a first generation prototype system. This effort will be

  4. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  5. The influence of scales of atmospheric motion on air pollution over Portugal

    Science.gov (United States)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  6. Large-scale ground motion simulation using GPGPU

    Science.gov (United States)

    Aoi, S.; Maeda, T.; Nishizawa, N.; Aoki, T.

    2012-12-01

    Huge computation resources are required to perform large-scale ground motion simulations using 3-D finite difference method (FDM) for realistic and complex models with high accuracy. Furthermore, thousands of various simulations are necessary to evaluate the variability of the assessment caused by uncertainty of the assumptions of the source models for future earthquakes. To conquer the problem of restricted computational resources, we introduced the use of GPGPU (General purpose computing on graphics processing units) which is the technique of using a GPU as an accelerator of the computation which has been traditionally conducted by the CPU. We employed the CPU version of GMS (Ground motion Simulator; Aoi et al., 2004) as the original code and implemented the function for GPU calculation using CUDA (Compute Unified Device Architecture). GMS is a total system for seismic wave propagation simulation based on 3-D FDM scheme using discontinuous grids (Aoi&Fujiwara, 1999), which includes the solver as well as the preprocessor tools (parameter generation tool) and postprocessor tools (filter tool, visualization tool, and so on). The computational model is decomposed in two horizontal directions and each decomposed model is allocated to a different GPU. We evaluated the performance of our newly developed GPU version of GMS on the TSUBAME2.0 which is one of the Japanese fastest supercomputer operated by the Tokyo Institute of Technology. First we have performed a strong scaling test using the model with about 22 million grids and achieved 3.2 and 7.3 times of the speed-up by using 4 and 16 GPUs. Next, we have examined a weak scaling test where the model sizes (number of grids) are increased in proportion to the degree of parallelism (number of GPUs). The result showed almost perfect linearity up to the simulation with 22 billion grids using 1024 GPUs where the calculation speed reached to 79.7 TFlops and about 34 times faster than the CPU calculation using the same number

  7. Efficient control of mechatronic systems in dynamic motion tasks

    Directory of Open Access Journals (Sweden)

    Despotova Desislava

    2018-01-01

    Full Text Available Robots and powered exoskeletons have often complex and non-linear dynamics due to friction, elasticity, and changing load. The proposed study addresses various-type robots that have to perform dynamic point-to-point motion tasks (PTPMT. The performance demands are for faster motion, higher positioning accuracy, and lower energy consumption. With given motion task, it is of primary importance to study the structure and controllability of the corresponding controlled system. The following natural decentralized controllability condition is assumed: the signs of any control input and the corresponding output (the acceleration are the same, at least when the control input is at its maximum absolute value. Then we find explicit necessary and sufficient conditions on the control transfer matrix that can guarantee robust controllability in the face of arbitrary, but bounded disturbances. Further on, we propose a generic optimisation approach for control learning synthesis of various type robotic systems in PTPMT. Our procedure for iterative learning control (LC has the following main steps: (1 choose a set of appropriate test control functions; (2 define the most relevant input-output pairs; and (3 solve shooting equations and perform control parameter optimisation. We will give several examples to explain our controllability and optimisation concepts.

  8. The plane motion control of the quadrocopter

    Directory of Open Access Journals (Sweden)

    A. N. Kanatnikov

    2015-01-01

    Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].

  9. Predictive piston motion control in a free-piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Jones, E.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-05-15

    A piston motion controller for a free-piston internal combustion engine is presented. To improve dynamic performance in the control of the piston motion and engine compression ratio, the controller response is determined from a prediction of engine top dead centre error rather than the measured value from the previous cycle. The proposed control approach showed superior performance compared with that of standard PI feedback control known from the literature due to a reduced control action time delay. The manipulation of fuel injection timing to reduce in-cylinder pressure peaks and cycle-to-cycle variations was also studied, indicating that with the piston motion estimation, the injection timing is a powerful control variable for this purpose. (author)

  10. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    OpenAIRE

    Xiao-Li Ding; Juan J. Nieto

    2018-01-01

    In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochast...

  11. Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma Liang; Liu Min; Peng Tianyou; Fan Ke; Lu Lanlan; Dai Ke

    2009-01-01

    A meso-macroporous TiO 2 film electrode was fabricated by using mesoporous TiO 2 (m-TiO 2 ) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO 2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption-desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO 2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO 2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO 2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

  12. On very-large-scale motions (VLSMs) and long-wavelength patterns in turbine wakes

    Science.gov (United States)

    Önder, Asim; Meyers, Johan

    2017-11-01

    It is now widely accepted that very-large-scale motions (VLSMs) are a prominent feature of thermally-neutral atmospheric boundary layers (ABL). Up to date, the influence of these very long active motions on wind-energy harvesting is not sufficiently explored. This work is an effort in this direction. We perform large-eddy simulation of a turbine row operating under neutral conditions. The ABL data is produced separately in a very long domain of 240 δ . VLSMs are isolated from smaller-scale ABL and wake motions using a spectral cutoff at streamwise wavelength λx = 3.125 δ . Reynolds-averaging of low-pass filtered fields shows that the interaction of VLSMs and turbines produce very-long-wavelength motions in the wake region, which contain about 20 % of the Reynolds-shear stress, and 30 % of the streamwise kinetic energy. A conditional analysis of filtered fields further reveals that these long-wavelength wakes are produced by modification of very long velocity streaks in ABL. In particular, the turbine row acts as a sharp boundary between low and high velocity streaks, and accompanying roller structures remain relatively unaffected. This reorganization creates a two-way flux towards the wake region, which elucidates the side-way domination in turbulent transport. The authors acknowledg funding from ERC Grant No 306471.

  13. Can the Fermi-motion of partons recover canonical scaling in hadronic high-psub(T) processes

    International Nuclear Information System (INIS)

    Halzen, F.; Ringland, G.A.; Roberts, R.G.

    1977-10-01

    A study is made of the effects on high psub(T) spectra of hadrons when partons are allowed to have transverse momentum (Fermi-motion). It is found that: (i) the importance of Fermi-motion depends crucially on the treatment of 'soft' parton-parton collisions; (ii) recent claims that values of approximately equal 0.6 GeV/c allow canonically scaling quark-quark scattering to describe the data are not confirmed; and (iii) even larger values of , however implausible, cannot reconcile canonical scaling with the present data. (author)

  14. Pengenalan Isyarat Tangan Menggunakan Leap Motion Controller untuk Pertunjukan Boneka Tangan Virtual

    OpenAIRE

    Dzulkarnain, Iskandar; Sumpeno, Surya; Christyowidiasmoro, Christyowidiasmoro

    2016-01-01

    Leap Motion Controller memiliki keterbatasan dalam menangkap gerak isyarat tangan. Keterbatasan tersebut menyebabkan gerakan tangan model boneka virtual tidak seakurat gerakan tangan pelakon. Selain itu, konfigurasi bone model dimensi tiga untuk Leap Motion Controller berbeda dengan konfigurasi bone dimensi tiga pada umumnya. Oleh karena itu, dilakukan pengenalan isyarat tangan menggunakan Leap Motion Controller untuk pertunjukan boneka tangan virtual. Pengenalan isyarat tangan tersebut dilak...

  15. Optimization of motion control laws for tether crawler or elevator systems

    Science.gov (United States)

    Swenson, Frank R.; Von Tiesenhausen, Georg

    1988-01-01

    Based on the proposal of a motion control law by Lorenzini (1987), a method is developed for optimizing motion control laws for tether crawler or elevator systems in terms of the performance measures of travel time, the smoothness of acceleration and deceleration, and the maximum values of velocity and acceleration. The Lorenzini motion control law, based on powers of the hyperbolic tangent function, is modified by the addition of a constant-velocity section, and this modified function is then optimized by parameter selections to minimize the peak acceleration value for a selected travel time or to minimize travel time for the selected peak values of velocity and acceleration. It is shown that the addition of a constant-velocity segment permits further optimization of the motion control law performance.

  16. The role of large scale motions on passive scalar transport

    Science.gov (United States)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  17. Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro.

    OpenAIRE

    Bopp, D; Jamet, E; Baumgartner, S; Burri, M; Noll, M

    1989-01-01

    Two new paired domain genes of Drosophila, Pox meso and Pox neuro, are described. In contrast to the previously isolated paired domain genes, paired and gooseberry, which contain both a paired and a homeo-domain (PHox genes), Pox meso and Pox neuro possess no homeodomain. Evidence suggesting that the new genes encode tissue-specific transcriptional factors and belong to the same regulatory cascade as the other paired domain genes includes (i) tissue-specific expression of Pox meso in the soma...

  18. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    Science.gov (United States)

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    Science.gov (United States)

    Lyons, Elizabeth J.; Tate, Deborah F.; Ward, Dianne S.; Ribisl, Kurt M.; Bowling, J. Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg−1 · hr−1) produced 0.10 kcal · kg−1 · hr−1 (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg−1 · hr−1, P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior. PMID:22028959

  20. Do Motion Controllers Make Action Video Games Less Sedentary? A Randomized Experiment

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Lyons

    2012-01-01

    Full Text Available Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100 were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12. An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal ⋅ kg-1 ⋅ hr-1 produced 0.10 kcal ⋅ kg-1 ⋅ hr-1 (95% confidence interval 0.03 to 0.17 greater energy expenditure than traditional control (0.86 [0.17] kcal ⋅ kg-1 ⋅ hr-1, P = .048. All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  1. Do motion controllers make action video games less sedentary? A randomized experiment.

    Science.gov (United States)

    Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  2. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

    Directory of Open Access Journals (Sweden)

    Victoria W. Oguntosin

    2017-07-01

    Full Text Available We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM. Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.

  3. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.

    Science.gov (United States)

    Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.

  4. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

    Science.gov (United States)

    Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514

  5. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    International Nuclear Information System (INIS)

    Serrato, M. G.

    2013-01-01

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  6. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  7. Specification of EDITH motion control system

    International Nuclear Information System (INIS)

    Breitwieser, H.; Frank, A.; Holler, E.; Suess, U.; Leinemann, K.

    1990-09-01

    EDITH is an experimental device for in vessel handling at NET/ITER. The purpose of EDITH is: Testing of ABS (articulated boom system) components; testing and validation of remote handling procedures; testing and validation of ABS end-effectors; testing of ABS control system features and verification of control system concepts. This document, after describing the environment in which the control system is to operate, specifies architecture and functionality to be implemented by the EDITH motion control system software, thereby taking full reference to the control system specification for TARM, which was decided to be the base for the implementation. (orig.) [de

  8. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  9. Las comunidades locales como estructuras meso.

    Directory of Open Access Journals (Sweden)

    Ferrand, Alexis

    2002-09-01

    Full Text Available Entre el nivel micro y el nivel macro: meso. Si el nivel macro está definido por la regulación nacional, estatal o del mercado y el nivel micro por la regulación interpersonal, una agencia de regulación intermediaria de mayor importancia ha sido definida como “comunidad local” (Wellman, Fischer. Aparte de las dimensiones organizacionales (organizaciones locales, clubes, tiendas... e institucionales (poder local, partidos... locales, es posible definir algunas propiedades estructurales pertinentes de los sistemas de relaciones interpersonales privadas: uno es el grado de “cerrado” (closure local (Barnes: redes locales vs. transversales, o la “dualidad” de estos sistemas. Apoyándose en la idea de que la eficiencia de los “puentes” reside en el tipo de cliques que conectan (Lin, es posible definir tipos variados de micro-estructuras, cuyas distribuciones en diferentes localidades son indicadores sucedáneos o aproximaciones de las diferentes meso estructuras de sistemas relacionales como combinaciones de redes “locales” y “no locales”.

  10. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee

    2016-01-01

    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  11. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Meso Mechanical Analysis of AC Mixture Response

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Vaccari, E.; Poot, M.

    2012-01-01

    Ongoing research into performance modeling of Asphalt Concrete (AC) mixtures using meso mechanics approaches is being undertaken at Delft University of Technology (TUD). The approach has already been successfully employed for evaluating the long term performance of porous asphalt concrete. The work

  13. Motion control for a walking companion robot with a novel human–robot interface

    Directory of Open Access Journals (Sweden)

    Yunqi Lv

    2016-09-01

    Full Text Available A walking companion robot is presented for rehabilitation from dyskinesia of lower limbs in this article. A new human–robot interface (HRI is designed which adopts one-axis force sensor and potentiometer connector to detect the motion of the user. To accompany in displacement and angle between the user and the robot precisely in real time, the common motions are classified into two elemental motion states. With distinction method of motion states, a classification scheme of motion control is adopted. The mathematical model-based control method is first introduced and the corresponding control systems are built. Due to the unavoidable deviation of the mathematical model-based control method, a force control method is proposed and the corresponding control systems are built. The corresponding simulations demonstrate that the efficiency of the two proposed control methods. The experimental data and paths of robot verify the two control methods and indicate that the force control method can better satisfy the user’s requirements.

  14. Multi-scale modeling and analysis of convective boiling: towards the prediction of CHF in rod bundles

    International Nuclear Information System (INIS)

    Niceno, B.; Sato, Y.; Badillo, A.; Andreani, M.

    2010-01-01

    In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso- scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian 2nd order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program

  15. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  16. The 3D Human Motion Control Through Refined Video Gesture Annotation

    Science.gov (United States)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  17. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton

    2011-05-01

    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  18. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  19. Sensing human hand motions for controlling dexterous robots

    Science.gov (United States)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  20. Meso- and small-scale vertical motions in the deep Western Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Haren, Hans van, E-mail: hans.van.haren@nioz.n [Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg (Netherlands)

    2011-01-21

    Acoustic reflections on particles larger than a few mm are compared with optical background data of bioluminescence at the ANTARES neutrino telescope site in the deep North-western Mediterranean Sea. Periodic increases of these data are associated with increases in horizontal and downward vertical currents. The observations provide unique knowledge of some oceanographic processes in the Mediterranean. Several periodicities are distinguished: seasonal, with large increase during spring, 20-day, which is associated with a meandering continental boundary current, 1-17.6 h, evidencing deep internal waves.

  1. Stiffness and Poisson ratio in longitudinal compression of fiber yarns in meso-FE modelling of composite reinforcement forming

    Science.gov (United States)

    Wang, D.; Naouar, N.; Vidal-Salle, E.; Boisse, P.

    2018-05-01

    In meso-scale finite element modeling, the yarns of the reinforcement are considered to be solids made of a continuous material in contact with their neighbors. The present paper consider the mechanical behavior of these yarns that can happen for some loadings of the reinforcement. The yarns present a specific mechanical behavior when under longitudinal compression because they are made up of a large number of fibers, Local buckling of the fibers causes the compressive stiffness of the continuous material representing the yarn to be much weaker than when under tension. In addition, longitudinal compression causes an important transverse expansion. It is shown that the transverse expansion can be depicted by a Poisson ratio that remained roughly constant when the yarn length and the compression strain varied. Buckling of the fibers significantly increases the transverse dimensions of the yarn which leads to a large Poisson ratio (up to 12 for a yarn analyzed in the present study). Meso-scale finite element simulations of reinforcements with binder yarns submitted to longitudinal compression showed that these improvements led to results in good agreement with micro-CT analyses.

  2. Control Strategies for Guided Collective Motion

    Science.gov (United States)

    2015-02-27

    J.K. Parrish , “Oscillator models and collective motion,” IEEE Control Systems Magzine, Vol. 27, 2007, pp. 89-105. [18] S. H. Strogatz , “From Kuramoto...Automatic Control, 54(2), 2009, pp. 353-357. [21] H. Hong and S. H. Strogatz , “Kuramoto Model of Coupled Oscillators with Positive and Negative...2013) provided similar results by utilizing a modified Kuramoto model ( Strogatz (2000)). Paley (2008) proposed a Lyapunov-based design methodology to

  3. A Hybrid Scheme Motion Controller by Sliding Mode and Two-Degree-of-Freedom Controls to Minimize the Chattering

    Directory of Open Access Journals (Sweden)

    Chiu-Keng Lai

    2014-01-01

    Full Text Available Sliding mode control (SMC is rapped for the chattering due to high gain control. However, high gain control causes the system robust. For developing a system with robustness of SMC, a servo motor motion controller combining the two-degree-of-freedom (2DOF system and SMC is proposed. The discussed motion type is point-to-point control with the constraint of trapezoid velocity profile. SMC is designed to guide the motor motion to follow a predefined trail, and the inner 2DOF system is used to compensate the deterioration due to the adoption of load observer. The proposed hybrid system is realized on a PC-based motion controller, and the validness is verified by simulation and experimental results.

  4. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  5. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  6. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    Science.gov (United States)

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  7. Meso-optical Fourier transform microscope with double focusing

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, V.V.

    1992-01-01

    The meso-optical Fourier transform microscope (MFTM) with double focusing for particle tracks of low ionization level in the nuclear emulsion is described. It is shown experimentally that this device enables one to get high concentration of information about the position of the particle track in the nuclear emulsion and thus to increase the signal-to-noise ratio. It is shown that spreading of the meso-optical image of the particle track in the sagittal section of the MFTM can be eliminated completely in the frame of the diffraction limit. The number of the additional degrees of freedom in this new MFTM system along depth coordinate is equal to 20 in comparison to single degree of freedom in the Fourier transform microscope of the direct observation. 10 refs.; 15 figs

  8. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  9. A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Valenzuela, Javier; Orozco-Manriquez, Ernesto [Digital del IPN, CITEDI-IPN, Tijuana, (Mexico)

    2009-12-15

    We introduce a control scheme based on using a trajectory tracking controller and an algorithm for on-line time scaling of the reference trajectories. The reference trajectories are time-scaled according to the measured tracking errors and the detected torque/acceleration saturation. Experiments are presented to illustrate the advantages of the proposed approach

  10. A new approach to motion control of torque-constrained manipulators by using time-scaling of reference trajectories

    International Nuclear Information System (INIS)

    Moreno-Valenzuela, Javier; Orozco-Manriquez, Ernesto

    2009-01-01

    We introduce a control scheme based on using a trajectory tracking controller and an algorithm for on-line time scaling of the reference trajectories. The reference trajectories are time-scaled according to the measured tracking errors and the detected torque/acceleration saturation. Experiments are presented to illustrate the advantages of the proposed approach

  11. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Robust motion control of oscillatory-base manipulators h∞-control and sliding-mode-control-based approaches

    CERN Document Server

    Toda, Masayoshi

    2016-01-01

    This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals, and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection. Researche...

  13. Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy

    Directory of Open Access Journals (Sweden)

    Miguel Velazquez

    2016-06-01

    Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.

  14. AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Eileen T.; Georganopoulos, Markos [University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Sparks, William B. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Anderson, Jay; Marel, Roeland van der; Biretta, John; Chiaberge, Marco; Norman, Colin [Space Telescope Science Institute, Baltimore, MD 21210 (United States); Tony Sohn, Sangmo [Johns Hopkins University, Baltimore, MD 21210 (United States); Perlman, Eric, E-mail: meyer@stsci.edu [Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2016-02-20

    The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of −0.2 ± 0.5c over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Γ < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer and Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.

  15. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  16. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  17. Hummingbirds control hovering flight by stabilizing visual motion.

    Science.gov (United States)

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.

  18. FPGA Implementation of Real-Time Ethernet for Motion Control

    Directory of Open Access Journals (Sweden)

    Chen Youdong

    2013-01-01

    Full Text Available This paper provides an applicable implementation of real-time Ethernet named CASNET, which modifies the Ethernet medium access control (MAC to achieve the real-time requirement for motion control. CASNET is the communication protocol used for motion control system. Verilog hardware description language (VHDL has been used in the MAC logic design. The designed MAC serves as one of the intellectual properties (IPs and is applicable to various industrial controllers. The interface of the physical layer is RJ45. The other layers have been implemented by using C programs. The real-time Ethernet has been implemented by using field programmable gate array (FPGA technology and the proposed solution has been tested through the cycle time, synchronization accuracy, and Wireshark testing.

  19. Development of excavator training simulator using leap motion controller

    Science.gov (United States)

    Fahmi, F.; Nainggolan, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Excavator is a heavy machinery that is used for many industries purposes. Controlling the excavator is not easy. Its operator has to be trained well in many skills to make sure it is safe, effective, and efficient while using the excavator. In this research, we proposed a virtual reality excavator simulator supported by a device called Leap Motion Controller that supports finger and hand motions as an input. This prototype will be developed than in the virtual reality environment to give a more real sensing to the user.

  20. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  1. Leap Motion Device Used to Control a Real Anthropomorphic Gripper

    Directory of Open Access Journals (Sweden)

    Ionel Staretu

    2016-06-01

    Full Text Available This paper presents for the first time the use of the Leap Motion device to control an anthropomorphic gripper with five fingers. First, a description of the Leap Motion device is presented, highlighting its main functional characteristics, followed by testing of its use for capturing the movements of a human hand's fingers in different configurations. Next, the HandCommander soft module and the Interface Controller application are described. The HandCommander is a software module created to facilitate interaction between a human hand and the GraspIT virtual environment, and the Interface Controller application is required to send motion data to the virtual environment and to test the communication protocol. For the test, a prototype of an anthropomorphic gripper with five fingers was made, including a proper hardware system of command and control, which is briefly presented in this paper. Following the creation of the prototype, the command system performance test was conducted under real conditions, evaluating the recognition efficiency of the objects to be gripped and the efficiency of the command and control strategies for the gripping process. The gripping test is exemplified by the gripping of an object, such as a screw spanner. It was found that the command system, both in terms of capturing human hand gestures with the Leap Motion device and effective object gripping, is operational. Suggestive figures are presented as examples.

  2. Revised magnetic polarity time scale for the Paleocene and early Eocene and implications for Pacific plate motion

    International Nuclear Information System (INIS)

    Butler, R.F.; Coney, P.J.

    1981-01-01

    Magnetostratiographic studies of a continental sedimentary sequence in the Clark's Fork Basin, Wyoming and a marine sedimentary sequence at Gubbio, Italy indicate that the Paleocene--Eocene boundary occurs just stratigraphically above normal polarity zones correlative with magnetic anomaly 25 chron. These data indicate that the older boundary of anomaly 24 chron is 52.5 Ma. This age is younger than the late Paleocene age assigned by LaBrecque et al. [1977] and also younger than the basal Eocene age assigned by Ness et al. [1980]. A revised magnetic polarity time scale for the Paleocene and early Eocene is presented in this paper. Several changes in the relative motion system between the Pacific plate and neighboring plates occurred in the interval between anomaly 24 and anomaly 21. A major change in absolute motion of the Pacific plate is indicated by the bend in the Hawaiian--Emperor Seamount chain at approx.43 Ma. The revised magnetic polarity time scale indicates that the absolute motion change lags the relative motion changes by only approx.3--5 m.y. rather than by >10 m.y. as indicated by previous polarity time scales

  3. Auricular Acupressure for Managing Postoperative Pain and Knee Motion in Patients with Total Knee Replacement: A Randomized Sham Control Study

    Directory of Open Access Journals (Sweden)

    Ling-hua Chang

    2012-01-01

    Full Text Available Background. Postoperative pain management remains a significant challenge for all healthcare providers. A randomized controlled trial was conducted to examine the adjuvant effects of auricular acupressure on relieving postoperative pain and improving the passive range of motion in patients with total knee replacement (TKR. Method. Sixty-two patients who had undergone a TKR were randomly assigned to the acupressure group and the sham control group. The intervention was delivered three times a day for 3 days. A visual analog scale (VAS and the Short-Form McGill Pain Questionnaire were used to assess pain intensity. Pain medication consumption was recorded, and the knee motion was measured using a goniometer. Results. The patients experienced a moderately severe level of pain postoperatively (VAS 58.66 ± 20.35 while being on the routine PCA. No differences were found in pain scores between the groups at all points. However, analgesic drug usage in the acupressure group patients was significantly lower than in the sham control group (<0.05, controlling for BMI, age, and pain score. On the 3rd day after surgery, the passive knee motion in the acupressure group patients was significantly better than in the sham control group patients (<0.05, controlling for BMI. Conclusion. The application of auricular acupressure at specific therapeutic points significantly reduces the opioid analgesia requirement and improves the knee motion in patients with TKR.

  4. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    Science.gov (United States)

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  5. Jerk derivative feedforward control for motion systems

    NARCIS (Netherlands)

    Boerlage, M.L.G.; Tousain, R.L.; Steinbuch, M.

    2004-01-01

    This work discusses reference trajectory relevant model based feedforward design. For motion systems which contain at least one rigid body mode and which are subject to reference trajectories with mostly low frequency energy, the proposed feedforward controller improves tracking performance

  6. Synthesis and characterization of new meso-substituted ...

    Indian Academy of Sciences (India)

    WINTEC

    tems. 10. Their ability to carry out the reactions rather unusual in organic chemistry has been the object of intensive investigations aiming to utilize them as a model compounds for biological systems and as catalysts. 11. Therefore, the synthesis of well defined meso-substituted unsymmetrical porphyrin deriva- tives (A3B) is ...

  7. Measurements and simulation of controlled beamfront motion in the Laser Controlled Collective Accelerator

    International Nuclear Information System (INIS)

    Yao, R.L.; Destler, W.W.; Striffler, C.D.; Rodgers, J.; Scgalov, Z.

    1989-01-01

    In the Laser Controlled Collective Accelerator, an intense electron beam is injected at a current above the vacuum space charge limit into an initially evacuated drift tube. A plasma channel, produced by time-sequenced, multiple laser beam ionization of a solid target on the drift tube wall, provides the necessary neutralization to allow for effective beam propagation. By controlling the rate of production of the plasma channel as a function of time down the drift tube, control of the electron beamfront can be achieved. Recent experimental measurements of controlled beamfront motion in this configuration are presented, along with results of ion acceleration experiments conducted using two different accelerating gradients. These results are compared with numerical simulations of the system in which both controlled beamfront motion and ion acceleration is observed consistent with both design expectations and experimental results. 5 refs., 6 figs

  8. Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments

    Directory of Open Access Journals (Sweden)

    Mateusz Szcześniak

    2015-02-01

    Full Text Available Ground-based precipitation data are still the dominant input type for hydrological models. Spatial variability in precipitation can be represented by spatially interpolating gauge data using various techniques. In this study, the effect of daily precipitation interpolation methods on discharge simulations using the semi-distributed SWAT (Soil and Water Assessment Tool model over a 30-year period is examined. The study was carried out in 11 meso-scale (119–3935 km2 sub-catchments lying in the Sulejów reservoir catchment in central Poland. Four methods were tested: the default SWAT method (Def based on the Nearest Neighbour technique, Thiessen Polygons (TP, Inverse Distance Weighted (IDW and Ordinary Kriging (OK. =The evaluation of methods was performed using a semi-automated calibration program SUFI-2 (Sequential Uncertainty Fitting Procedure Version 2 with two objective functions: Nash-Sutcliffe Efficiency (NSE and the adjusted R2 coefficient (bR2. The results show that: (1 the most complex OK method outperformed other methods in terms of NSE; and (2 OK, IDW, and TP outperformed Def in terms of bR2. The median difference in daily/monthly NSE between OK and Def/TP/IDW calculated across all catchments ranged between 0.05 and 0.15, while the median difference between TP/IDW/OK and Def ranged between 0.05 and 0.07. The differences between pairs of interpolation methods were, however, spatially variable and a part of this variability was attributed to catchment properties: catchments characterised by low station density and low coefficient of variation of daily flows experienced more pronounced improvement resulting from using interpolation methods. Methods providing higher precipitation estimates often resulted in a better model performance. The implication from this study is that appropriate consideration of spatial precipitation variability (often neglected by model users that can be achieved using relatively simple interpolation methods can

  9. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    Science.gov (United States)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  10. Innovative synthesis of meso-structured YSZ using V2O5 complex fluids as a template

    International Nuclear Information System (INIS)

    Guiot, Camille; Grandjean, Stephane; Batail, Patrick

    2008-01-01

    Full text of publication follows: Within the framework of generation IV nuclear reactors, the prospect of a closed fuel cycle generate a need for new advanced materials integrating the actinides jointly. Researches are conducted on fuel material precursors synthesized by soft chemistry processes, which allow a fine control of the homogeneity and ordering at a nano-scale[1]. In a view to meso-structure an inorganic matrix, recent studies[2,3] have highlighted the potential of mineral liquid crystals as templates in new soft chemistry synthesis routes. The studies presently exposed relate to an original synthesis of an inorganic-inorganic hybrid material consisting in a main zirconia matrix tem plated by ribbon-like vanadium pentoxide. After eliminating the V 2 O 5 template, the obtained solid is to be a meso-porous material with ordered pores, and becomes a prime choice material, for example to immobilize actinides. The zirconia matrix has been chosen for its ability to host actinides, which are surrogated by neodymium. It is also a preliminary material for the study of the synthesis of uranium oxide based materials, thus preventing from the drawbacks of working with radioactive materials. The vanadium pentoxide is used as a template since it structure itself as ribbon-like mineral liquid crystals that can be aligned in weak magnetic field; consequently, the final material may be structured at a nano-scale over a macroscopic range. Since the shape of vanadium oxide in solution is very sensitive to the ionic strength of the medium and the pH, the real challenge is to establish a synthesis protocol which is compatible with the presence of vanadium pentoxide, remaining in its ribbon-like liquid crystal form. References: [1] Masson, M.; Grandjean, S.; Lacquement, J.; Bourg, S.; Delauzun, J. M.; Lacombe, J.; Nuclear Engineering and Design, 236 (5-6),516 (2006). [2] Camerel, F.; Gabriel, J.-C.P.; Batail, P.; Adv. Funct. Mater., 13 (5), 377 (2003). [3] Gabriel, J

  11. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  12. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  13. Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion

    International Nuclear Information System (INIS)

    Glownia, J. M.; Natan, A.; Cryan, J. P.; Hartsock, R.; Kozina, M.

    2016-01-01

    Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.

  14. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    Science.gov (United States)

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  15. Preparation of reduced graphene oxide/meso-TiO_2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    International Nuclear Information System (INIS)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-01-01

    Graphical abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under a hydrothermal condition. The RGO/meso-TiO_2/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO_2/AuNPs were obtained by addition of graphene oxide to meso-TiO_2/AuNPs. • Au NPs in the mesopores of meso-TiO_2 reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO_2 enhance the adsorption of MB. • RGO/meso-TiO_2/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO_2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO_2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO_2 and meso-TiO_2/AuNPs.

  16. Large-scale fluid motion in the earth's outer core estimated from non-dipole magnetic field data

    International Nuclear Information System (INIS)

    Matsushima, Masaki; Honkura, Yoshimori

    1989-01-01

    Fluid motions in the Earth's outer core can be estimated from magnetic field data at the Earth's surface based on some assumptions. The basic standpoint here is that the non-dipole magnetic field is generated by the interaction between a strong toroidal magnetic field, created by differential rotation, and the convective motion in the outer core. Large-scale convective motions are studied to express them in terms of the poloidal velocity field expanded into a series of spherical harmonics. The radial distribution of differential rotation is estimated from the balance between the effective couple due to angular momentum transfer and the electromagnetic couple. Then the radial dependence of the toroidal magnetic field is derived from the interaction between the differential rotation thus estimated and the dipole magnetic field within the outer core. Magnetic field data are applied to a secular variation model which takes into account the fluctuations of the standing and drifting parts of the non-zonal magnetic field. The velocity field in the outer core is estimated for two cases. It is revealed that the pattern of convective motions is generally characterized by large-scale motions in the quasi-steady case. In the non-steady case, the magnitude of the velocity field is much larger, indicating a more dynamic feature. (N.K.)

  17. Research on NC motion controller based on SOPC technology

    Science.gov (United States)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  18. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    International Nuclear Information System (INIS)

    Wang, H H; Yuan, Z H; Wu, J

    2006-01-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  19. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    Science.gov (United States)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  20. POSTURAL CONTROL IN HEALTHY YOUNG ADULTS WITH AND WITHOUT CHRONIC MOTION SENSITIVITY

    Directory of Open Access Journals (Sweden)

    Alyahya D

    2016-02-01

    Full Text Available Background: Postural control requires complex processing of peripheral sensory inputs from the visual, somatosensory and vestibular systems. Motion sensitivity and decreased postural control are influenced by visual-vestibular conflicts.The purpose of this study was to measure the difference between the postural control of healthy adults with and without history of sub-clinical chronic motion sensitivity using a computerized dynamic posturography in a virtual reality environment. Sub-clinical chronic motion sensitivity was operationally defined as a history of avoiding activities causing dizziness, nausea, imbalance, and/or blurred vision without having a related medical diagnosis. Methods: Twenty healthy adults between 22 and 33 years of age participated in the study. Eleven subjects had sub-clinical chronic motion sensitivity and 9 subjects did not. Postural control was measured in both groups using the Bertec Balance Advantage-Dynamic Computerized Dynamic Posturography with Immersion Virtual Reality (CDP-IVR. The CDP-IVR reports an over-all equilibrium score based on subjects’ center of gravity displacement and postural sway while immersed in a virtual reality environment. Subjects were tested on stable (condition 1 and unstable (condition2 platform conditions. Results: There was no significant difference between the two groups in terms of mean age, height, weight, body mass index in kg/m2, postural control scores for conditions 2, and average (p>0.05. However, significant differences were observed in mean postural control for condition 1 between groups (p=0.03. Conclusions: Results of this study suggest that healthy young adults without chronic sub-clinical motion sensitivity have better postural control than those with chronic sub-clinical motion sensitivity. Further investigation is warranted to explore wider age ranges with larger samples sizes as well as intervention strategies to improve postural control.

  1. Analysis of the accuracy and robustness of the leap motion controller.

    Science.gov (United States)

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  2. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study.

    Science.gov (United States)

    Iosa, Marco; Morone, Giovanni; Fusco, Augusto; Castagnoli, Marcello; Fusco, Francesca Romana; Pratesi, Luca; Paolucci, Stefano

    2015-08-01

    The leap motion controller (LMC) is a new optoelectronic system for capturing motion of both hands and controlling a virtual environment. Differently from previous devices, it optoelectronically tracks the fine movements of fingers neither using glows nor markers. This pilot study explored the feasibility of adapting the LMC, developed for videogames, to neurorehabilitation of elderly with subacute stroke. Four elderly patients (71.50 ± 4.51 years old) affected by stroke in subacute phase were enrolled and tested in a cross-over pilot trial in which six sessions of 30 minutes of LMC videogame-based therapy were added on conventional therapy. Measurements involved participation to the sessions, evaluated by means of the Pittsburgh Rehabilitation Participation Scale, hand ability and grasp force evaluated respectively by means of the Abilhand Scale and by means of the dynamometer. Neither adverse effects nor spasticity increments were observed during LMC training. Participation to the sessions was excellent in three patients and very good in one patient during the LMC trial. In this period, patients showed a significantly higher improvement in hand abilities (P = 0.028) and grasp force (P = 0.006). This feasibility pilot study was the first one using leap motion controller for conducting a videogame-based therapy. This study provided a proof of concept that LMC can be a suitable tool even for elderly patients with subacute stroke. LMC training was in fact performed with a high level of active participation, without adverse effects, and contributed to increase the recovery of hand abilities.

  3. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    OpenAIRE

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pe...

  4. Coordinated Resolved Motion Control of Dual-Arm Manipulators with Closed Chain

    Directory of Open Access Journals (Sweden)

    Tianliang Liu

    2016-05-01

    Full Text Available When applied to some tasks, such as payload handling, assembling, repairing and so on, the two arms of a humanoid robot will form a closed kinematic chain. It makes the motion planning and control for dual-arm coordination very complex and difficult. In this paper, we present three types of resolved motion control methods for a humanoid robot during coordinated manipulation. They are, respectively, position-level, velocity-level and acceleration-level resolved motion control methods. The desired pose, velocity and acceleration of each end-effector are then resolved according to the desired motion of the payload and the constraints on the closed-chain system without consideration of the internal force. Corresponding to the three cases above, the joint variables of each arm are then calculated using the inverse kinematic equations, at position-level, velocity-level or acceleration-level. Finally, a dynamic modelling and simulation platform is established based on ADAMS and Matlab software. The proposed methods are verified by typical cases. The simulation results show that the proposed control strategy can realize the dual-arm coordinated operation and the internal force of the closed chain during the operation is controlled in a reasonable range at the same time.

  5. Nonlinear Model Predictive Control of a Cable-Robot-Based Motion Simulator

    DEFF Research Database (Denmark)

    Katliar, Mikhail; Fischer, Joerg; Frison, Gianluca

    2017-01-01

    In this paper we present the implementation of a model-predictive controller (MPC) for real-time control of a cable-robot-based motion simulator. The controller computes control inputs such that a desired acceleration and angular velocity at a defined point in simulator's cabin are tracked while...... satisfying constraints imposed by working space and allowed cable forces of the robot. In order to fully use the simulator capabilities, we propose an approach that includes the motion platform actuation in the MPC model. The tracking performance and computation time of the algorithm are investigated...

  6. Analysis of Offshore Knuckle Boom Crane - Part Two: Motion Control

    Directory of Open Access Journals (Sweden)

    Morten K. Bak

    2013-10-01

    Full Text Available In this paper design of electro-hydraulic motion control systems for offshore knuckle boom cranes is discussed. The influence of the control valve bandwidth along with the ramp time for the control signal are investigated both analytically with simplified system models and numerically with an experimentally verified crane model. The results of both types of investigations are related to general design rules for selection of control valves and ramp times and the relevance of these design rules is discussed. Generally, they are useful but may be too conservative for offshore knuckle boom cranes. However, as demonstrated in the paper, the only proper way to determine this is to evaluate the motion control system design by means of simulation.

  7. Modeling and identification for robot motion control

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.

    2004-01-01

    This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models

  8. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  9. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee

    2010-01-01

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  10. Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3

    International Nuclear Information System (INIS)

    Garg, Gunjal; Spitzer, Dirk; Gibbs, Jesse; Belt, Brian; Powell, Matthew A; Mutch, David G; Goedegebuure, Peter; Collins, Lynne; Piwnica-Worms, David; Hawkins, William G

    2014-01-01

    The targeted delivery of cancer therapeutics represents an ongoing challenge in the field of drug development. TRAIL is a promising cancer drug but its activity profile could benefit from a cancer-selective delivery mechanism, which would reduce potential side effects and increase treatment efficiencies. We recently developed the novel TRAIL-based drug platform TR3, a genetically fused trimer with the capacity for further molecular modifications such as the addition of tumor-directed targeting moieties. MUC16 (CA125) is a well characterized biomarker in several human malignancies including ovarian, pancreatic and breast cancer. Mesothelin is known to interact with MUC16 with high affinity. In order to deliver TR3 selectively to MUC16-expressing cancers, we investigated the possibility of targeted TR3 delivery employing the high affinity mesothelin/MUC16 ligand/receptor interaction. Using genetic engineering, we designed the novel cancer drug Meso-TR3, a fusion protein between native mesothelin and TR3. The recombinant proteins were produced with mammalian HEK293T cells. Meso-TR3 was characterized for binding selectivity and killing efficacy against MUC16-positive cancer cells and controls that lack MUC16 expression. Drug efficacy experiments were performed in vitro and in vivo employing an intraperitoneal xenograft mouse model of ovarian cancer. Similar to soluble mesothelin itself, the strong MUC16 binding property was retained in the Meso-TR3 fusion protein. The high affinity ligand/receptor interaction was associated with a selective accumulation of the cancer drug on MUC16-expressing cancer targets and directly correlated with increased killing activity in vitro and in a xenograft mouse model of ovarian cancer. The relevance of the mesothelin/MUC16 interaction for attaching Meso-TR3 to the cancer cells was verified by competitive blocking experiments using soluble mesothelin. Mechanistic studies using soluble DR5-Fc and caspase blocking assays confirmed

  11. Motion control in double-walled carbon nanotube systems using a Stone-Thrower-Wales defect cluster

    International Nuclear Information System (INIS)

    Liu Ping; Zhang Yongwei

    2010-01-01

    The ability to control the motion of a single molecule will have an important impact in nano-mechanical systems. Multi-walled carbon nanotube systems, which have extremely low intertube friction and strong motion confinement, can form the basis for mechanically based motion control. We devise two molecular motion control units based on double-walled carbon nanotubes embedded with a Stone-Thrower-Wales defect cluster, and perform molecular dynamics simulations to determine the characteristics of these two control units. We show that one of the molecular control units is able to perform a logic operation on one logic input and produce three logic outputs, while the other is able to produce two logic outputs. Potential applications of the motion control units include molecular switches, shuttles and mechanically based logic devices.

  12. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  13. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    Directory of Open Access Journals (Sweden)

    Denis Fisseler

    2013-05-01

    Full Text Available The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2mmhas been obtained for static setups and of 1.2mmfor dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  14. Catchment-Scale Terrain Modelling with Structure-from-Motion Photogrammetry: a replacement for airborne lidar?

    Science.gov (United States)

    Brasington, James; James, Joe; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia

    2016-04-01

    In recent years, 3D terrain reconstructions based on Structure-from-Motion photogrammetry have dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales (0.1-5 Ha), where relaxed logistics permit the use of dense ground control networks and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to established landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of the quality of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial photogrammetric networks based on strips of nadir

  15. Enhancement of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  16. Bridging the Macro and the Micro by Considering the Meso: Reflections on the Fractal Nature of Resilience

    Directory of Open Access Journals (Sweden)

    Johan Bergström

    2014-12-01

    Full Text Available We pursued the following three interconnected points: (1 there are unexplored opportunities for resilience scholars from different disciplines to cross-inspire and inform, (2 a systems perspective may enhance understanding of human resilience in health and social settings, and (3 resilience is often considered to be fractal, i.e., a phenomenon with recognizable or recurring features at a variety of scales. Following a consideration of resilience from a systems perspective, we explain how resilience can, for analytic purposes, be constructed at four scales: micro, meso, macro, and cross-scale. Adding to the cross-scale perspective of the social-ecological field, we have suggested an analytical framework for resilience studies of the health field, which incorporates holism and complexity by embracing an ecological model of cognition, something supported by empirical studies of organizations in crisis situations at various spatial as well as temporal scales.

  17. BWR ATWS mitigation by Fine Motion Control Rod

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.; Mallen, A.; Diamond, D.

    1994-01-01

    Two main methods of ATWS mitigation in a SBWR are: fine Motion control Rods (FMCRD) and Boron injection via the Standby Liquid control System (SLCS). This study has demonstrated that the use of FMCRD along with feedwater runback mitigated the conditions due to reactivity insertion and possible ATWS in a BWR which is similar to SBWR

  18. Thickness-Dependent Bioelectrochemical and Energy Applications of Thickness-Controlled Meso-Macroporous Antimony-Doped Tin Oxide

    Directory of Open Access Journals (Sweden)

    Daniel Mieritz

    2018-04-01

    Full Text Available Coatings of hierarchically meso-macroporous antimony-doped tin oxide (ATO enable interfacing adsorbed species, such as biomacromolecules, with an electronic circuit. The coating thickness is a limiting factor for the surface coverage of adsorbates, that are electrochemically addressable. To overcome this challenge, a carbon black-based templating method was developed by studying the composition of the template system, and finding the right conditions for self-standing templates, preventing the reaction mixture from flowing out of the mask. The thicknesses of as-fabricated coatings were measured using stylus profilometry to establish a relationship between the mask thickness and the coating thickness. Cyclic voltammetry was performed on coatings with adsorbed cytochrome c to check whether the entire coating thickness was electrochemically addressable. Further, bacterial photosynthetic reaction centers were incorporated into the coatings, and photocurrent with respect to coating thickness was studied. The template mixture required enough of both carbon black and polymer, roughly 7% carbon black and 6% poly(ethylene glycol. Coatings were fabricated with thicknesses approaching 30 µm, and thickness was shown to be controllable up to at least 15 µm. Under the experimental conditions, photocurrent was found to increase linearly with the coating thickness, up to around 12 µm, above which were diminished gains.

  19. Analytical one parameter method for PID motion controller settings

    NARCIS (Netherlands)

    van Dijk, Johannes; Aarts, Ronald G.K.M.

    2012-01-01

    In this paper analytical expressions for PID-controllers settings for electromechanical motion systems are presented. It will be shown that by an adequate frequency domain oriented parametrization, the parameters of a PID-controller are analytically dependent on one variable only, the cross-over

  20. Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-08-01

    For electrical impedance tomography (EIT) to be useful in monitoring transverse cracks in composites, it is imperative to establish the relation between conductivity and cracking density. Micro to meso scale homogenization has been developed for classical carbon fiber reinforced polymer (CFRP) laminate which provides such a relationship. However, we have shown in previous studies that the detectability of transverse cracks in such CFRP, which are characterized by very anisotropic electrical properties, is poor. Then, it is better to lower the electrical anisotropy, which can be achieved by various technologies including doping the polymeric resin by conductive nanoparticles. However, the validity of mesoscale homogenization for laminates with such low anisotropy has not been tested before. Here, we show that the mesoscale damage indicator is intrinsic for composites with varying anisotropy.

  1. Preparation of reduced graphene oxide/meso-TiO{sub 2}/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Wang, Hefang, E-mail: whf0618@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Fu, Nian, E-mail: funian3678@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); College of Physics Science and Technology of Hebei University, Baoding 071002 (China)

    2016-04-30

    Graphical abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under a hydrothermal condition. The RGO/meso-TiO{sub 2}/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO{sub 2}/AuNPs were obtained by addition of graphene oxide to meso-TiO{sub 2}/AuNPs. • Au NPs in the mesopores of meso-TiO{sub 2} reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO{sub 2} enhance the adsorption of MB. • RGO/meso-TiO{sub 2}/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO{sub 2}/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO{sub 2}/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO{sub 2} and meso-TiO{sub 2}/AuNPs.

  2. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework

    International Nuclear Information System (INIS)

    Kesner, Adam L; Schleyer, Paul J; Büther, Florian; Walter, Martin A; Schäfers, Klaus P; Koo, Phillip J

    2014-01-01

    Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals. The online version of this article (doi:10.1186/2197-7364-1-8) contains supplementary material, which is available to authorized users.

  3. Design and Simulation of a PID Controller for Motion Control Systems

    Science.gov (United States)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  4. A rate-dependent multi-scale crack model for concrete

    NARCIS (Netherlands)

    Karamnejad, A.; Nguyen, V.P.; Sluys, L.J.

    2013-01-01

    A multi-scale numerical approach for modeling cracking in heterogeneous quasi-brittle materials under dynamic loading is presented. In the model, a discontinuous crack model is used at macro-scale to simulate fracture and a gradient-enhanced damage model has been used at meso-scale to simulate

  5. Evaluation of high intensity precipitation from 16 Regional climate models over a meso-scale catchment in the Midlands Regions of England

    Science.gov (United States)

    Wetterhall, F.; He, Y.; Cloke, H.; Pappenberger, F.; Freer, J.; Wilson, M.; McGregor, G.

    2009-04-01

    Local flooding events are often triggered by high-intensity rain-fall events, and it is important that these can be correctly modelled by Regional Climate Models (RCMs) if the results are to be used in climate impact assessment. In this study, daily precipitation from 16 RCMs was compared with observations over a meso-scale catchment in the Midlands Region of England. The RCM data was provided from the European research project ENSEMBLES and the precipitation data from the UK MetOffice. The RCMs were all driven by reanalysis data from the ERA40 dataset over the time period 1961-2000. The ENSEMBLES data is on the spatial scale of 25 x 25 km and it was disaggregated onto a 5 x 5 km grid over the catchment and compared with interpolated observational data with the same resolution. The mean precipitation was generally underestimated by the ENSEMBLES data, and the maximum and persistence of high intensity rainfall was even more underestimated. The inter-annual variability was not fully captured by the RCMs, and there was a systematic underestimation of precipitation during the autumn months. The spatial pattern in the modelled precipitation data was too smooth in comparison with the observed data, especially in the high altitudes in the western part of the catchment where the high precipitation usually occurs. The RCM outputs cannot reproduce the current high intensity precipitation events that are needed to sufficiently model extreme flood events. The results point out the discrepancy between climate model output and the high intensity precipitation input needs for hydrological impact modelling.

  6. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Danilouchkine, M G; Mastik, F; Steen, A F W van der [Department of Biomedical Engineering, Erasmus Medical Center, Ee2302, PO Box 2040, 3000 CA, Rotterdam (Netherlands)], E-mail: m.danilouchkine@ErasmusMC.nl, E-mail: f.mastik@ErasmusMC.nl, E-mail: a.vandersteen@ErasmusMC.nl

    2009-03-21

    This paper describes a novel method for estimating tissue motion in two-dimensional intravascular ultrasound (IVUS) images of a coronary artery. It is based on the classical Lukas-Kanade (LK) algorithm for optical flow (OF). The OF vector field quantifies the amount of misalignment between two consecutive frames in a sequence of images. From the theoretical standpoint, two fundamental improvements are proposed in this paper. First, using a simplified representation of the vessel wall as a medium with randomly distributed scatterers, it was shown that the OF equation satisfies the integral brightness conservation law. Second, a scale-space embedding for the OF equation was derived under the assumption of spatial consistency in IVUS acquisitions. The spatial coherence is equivalent to a locally affine motion model. The latter effectively captures and appropriately describes a complex deformation pattern of the coronary vessel wall under the varying physiological conditions (i.e. pulsatile blood pressure). The accuracy of OF tracking was estimated on the tissue-mimicking phantoms subjected to the controlled amount of angular deviation. Moreover, the performance of the classical LK and proposed approach was compared using the simulated IVUS images with an atherosclerotic lesion. The experimental results showed robust and reliable performance of up to 5{sup 0} of rotation, which is within the plausible range of circumferential displacement of the coronary arteries. Subsequently, the algorithm was used to analyze vessel wall motion in 18 IVUS pullbacks from 16 patients. The in vivo experiments revealed that the motion of coronary arteries is primarily determined by the cardiac contraction.

  7. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-01-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find

  8. Infrared wireless data transfer for real-time motion control

    NARCIS (Netherlands)

    Gajdusek, M.; Overboom, T.T.; Damen, A.A.H.; Bosch, van den P.P.J.

    2009-01-01

    In this paper several wireless solution are compared for their suitability for real-time control of a fast motion system. From the comparison, Very Fast Infrared (VFIR) communication link has been found to be an attractive solution for presented wirelessly controlled manipulator. Because standard

  9. Reduction of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  10. Replication of Non-Trivial Directional Motion in Multi-Scales Observed by the Runs Test

    Science.gov (United States)

    Yura, Yoshihiro; Ohnishi, Takaaki; Yamada, Kenta; Takayasu, Hideki; Takayasu, Misako

    Non-trivial autocorrelation in up-down statistics in financial market price fluctuation is revealed by a multi-scale runs test(Wald-Wolfowitz test). We apply two models, a stochastic price model and dealer model to understand this property. In both approaches we successfully reproduce the non-stationary directional price motions consistent with the runs test by tuning parameters in the models. We find that two types of dealers exist in the markets, a short-time-scale trend-follower and an extended-time-scale contrarian who are active in different time periods.

  11. Motion control of the Twente humanoid head

    NARCIS (Netherlands)

    Visser, L.C.; Carloni, Raffaella; Stramigioli, Stefano

    2009-01-01

    In this work, we present the design and the realization of the motion control algorithm implemented in the Twente hu- manoid head, a seven degrees of freedom (dof) robotic sys- tem. The aim of the project is to have a humanoid head that can serve as a research platform for human-machine interac-

  12. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  13. Spatio-temporal distributions of meso convective systems in NE China and its vicinity

    Science.gov (United States)

    Yuan, Meiying; Li, Zechun; Zhang, Xiaoling; Li, Xun

    2008-08-01

    Based on the IR cloud imagery from the Chinese FY-2C satellite for June ~ August, 2005 - 2007, statistics is undertaken of meso convective systems (MCS) over NE China and its neighborhood, obtaining the space - time distributions of MCS. MCS include elliptical type( MCC's) , persistent elongated type (PECS's), in shape. Dividing the total MCS into MαMCS, MβMCS and MCC (PECS) . Results show that the number of meso-α MCS (dominantly PECS's) is considerably more than that of meso-β MCS (largely MCCss), which are observed mainly in the NE China plain and Daxing'an Mountains, especially in the entrance to the plain as well as its central ~ northern portion; the MCS occur mainly in June ~ August, particularly in June; the extratropical MCS show two peak phases, one being in 1500-2200 BST the other being 0000-0700 BST as the secondary peaking interval.

  14. Motion control system of MAX IV Laboratory soft x-ray beamlines

    International Nuclear Information System (INIS)

    Sjöblom, Peter; Lindberg, Mirjam; Forsberg, Johan; Persson, Andreas G.; Urpelainen, Samuli; Såthe, Conny

    2016-01-01

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to run the scans.

  15. Motion control system of MAX IV Laboratory soft x-ray beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se; Persson, Andreas G., E-mail: andreas-g.persson@maxlab.lu.se; Urpelainen, Samuli, E-mail: samuli.urpelainen@maxlab.lu.se; Såthe, Conny, E-mail: conny.sathe@maxlab.lu.se [MAX IV Laboratory, Photongatan 2, 225 92 Lund (Sweden)

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to run the scans.

  16. The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)

    Science.gov (United States)

    Oliver, J. L.; Barber, R. T.; Ducklow, H. W.

    2002-12-01

    Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization

  17. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    Science.gov (United States)

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  18. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    Science.gov (United States)

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. The Meso-level Structure of F/OSS Collaboration Network

    DEFF Research Database (Denmark)

    Conald, Guido; Rullani, Francesco

    2010-01-01

    Social networks in Free/Open Source Software (F/OSS) have been usually analyzed at the level of the single project e.g., [6], or at the level of a whole ecology of projects, e.g., [33]. In this paper, we also investigate the social network generated by developers who collaborate to one or multiple...... F/OSS projects, but we focus on the less-studied meso-level structure emerging when applying to this network a community-detection technique. The network of ‘communities’ emerging from this analysis links sub-groups of densely connected developers, sub-groups that are smaller than the components...... of the network but larger than the teams working on single projects. Our results reveal the complexity of this meso-level structure, where several dense sub-groups of developers are connected by sparse collaboration among different sub-groups. We discuss the theoretical implications of our findings...

  20. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2013-01-01

    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  1. An intelligent control scheme for precise tip-motion control in atomic force microscopy.

    Science.gov (United States)

    Wang, Yanyan; Hu, Xiaodong; Xu, Linyan

    2016-01-01

    The paper proposes a new intelligent control method to precisely control the tip motion of the atomic force microscopy (AFM). The tip moves up and down at a high rate along the z direction during scanning, requiring the utilization of a rapid feedback controller. The standard proportional-integral (PI) feedback controller is commonly used in commercial AFMs to enable topography measurements. The controller's response performance is determined by the set of the proportional (P) parameter and the integral (I) parameter. However, the two parameters cannot be automatically altered simultaneously according to the scanning speed and the surface topography during continuors scanning, leading to an inaccurate measurement. Thus a new intelligent controller combining the fuzzy controller and the PI controller is put forward in the paper. The new controller automatically selects the most appropriate PI parameters to achieve a fast response rate on basis of the tracking errors. In the experimental setup, the new controller is realized with a digital signal process (DSP) system, implemented in a conventional AFM system. Experiments are carried out by comparing the new method with the standard PI controller. The results demonstrate that the new method is more robust and effective for the precise tip motion control, corresponding to the achievement of a highly qualified image by shortening the response time of the controller. © Wiley Periodicals, Inc.

  2. On Selective Derivatization of meso-Tetraarylporphyrins (A Microreview)

    International Nuclear Information System (INIS)

    Ostrowski, S.

    2003-01-01

    The studies on selective derivatization in one or two aromatic rings of meso-tetraarylporphyrin systems (and their zinc and copper complexes) using (a) selective nitration, (b) Vicarious Nucleophilic Substitution of Hydrogen(VNS), and (c) alkylation of the above intermediates with alkyl halides, are reported. The stepwise selective nitration of meso-aryl substituted porphyrins with fuming yellow nitric acid (d= 1.53) at the tempreture 0 deg to 20 deg results in the formation of 5-(4-nitroaryl)- 10, 15, 20-triarylporphyrins, 5,10-bis(4-nitroaryl)-15,20-diarylporphrins or trinitro- and tetranitro-derivatives, respectively, in good or reasonable yield. The above intermediates, after simple transformation to their copper or zinc complexes react with carbanions bearing leaving groups at the carbanionic center, according to VNS scheme. This reaction can be also realized at low temperature (-30 deg- 40 deg) without complexation of the parent nitroporphyrins. Alkylation of the products obtained with alkyl halides or alkyl halides bearing multiple bonds in the carbon chain led to useful compounds for further functionalization . (Author) 53 refs., 7sches., 4 figs

  3. Development of an FPGA-Based Motion Control IC for Caving Machine

    Directory of Open Access Journals (Sweden)

    Chiu-Keng Lai

    2014-03-01

    Full Text Available Since the Field Programmable Gate Arrays (FPGAs with high density are available nowadays, systems with complex functions can thus be realized by FPGA in a single chip while they are traditionally implemented by several individual chips. In this research, the control of stepping motor drives as well as motion controller is integrated and implemented on Altera Cyclone III FPGA; the resulting system is evaluated by applying it to a 3-axis caving machine which is driven by stepping motors. Finally, the experimental results of current regulation and motion control integrated in FPGA IC are shown to prove the validness.

  4. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong; Zeng, Lintao; Kang, Namyoung; Huang, Kuo-Wei; Wang, Liang; Zeng, Zebing; Chang, Young-Tae; Wu, Jishan

    2014-01-01

    -6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso

  5. Pengenalan Isyarat Tangan Menggunakan Leap Motion Controller untuk Pertunjukan Boneka Tangan Virtual

    Directory of Open Access Journals (Sweden)

    Iskandar Dzulkarnain

    2017-01-01

    Full Text Available Leap Motion Controller memiliki keterbatasan dalam menangkap gerak isyarat tangan. Keterbatasan tersebut menyebabkan gerakan tangan model boneka virtual tidak seakurat gerakan tangan pelakon. Selain itu, konfigurasi bone model dimensi tiga untuk Leap Motion Controller berbeda dengan konfigurasi bone dimensi tiga pada umumnya. Oleh karena itu, dilakukan pengenalan isyarat tangan menggunakan Leap Motion Controller untuk pertunjukan boneka tangan virtual. Pengenalan isyarat tangan tersebut dilakukan dengan memetakan hasil penjejakan tangan dari Leap Motion Controller ke dalam model prefab tangan Leap SDK. Setelah berhasil dipetakan, konfigurasi bone dari model prefab tangan Leap SDK diadaptasi ke dalam model boneka tangan virtual. Adaptasi tersebut dilakukan dengan mengatur posisi dan orientasi bone pada model dimensi tiga boneka tangan. Setelah posisi dan orientasi bone yang sesuai ditemukan, model dimensi tiga boneka tangan diuji menirukan gerakan boneka tangan asli. Pengujian boneka tangan virtual pada sembarang orang dilakukan untuk mengetahui tingkat kesinkronan gerak mulut atas dan mulut bawah boneka tangan virtual. Dari pengujian sembarang orang, didapatkan hasil 50% setuju dan 5,6% sangat setuju gerak mulut atas sinkron dengan gerak tangan. Sedangkan untuk gerak mulut bawah sinkron dengan gerak tangan didapatkan 16,7% setuju dan 11,1% sangat setuju.

  6. Energy efficient motion control of the electric bus on route

    Science.gov (United States)

    Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.

    2018-02-01

    At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.

  7. Multi-scale Analysis of MEMS Sensors Subject to Drop Impacts

    Directory of Open Access Journals (Sweden)

    Sarah Zerbini

    2007-09-01

    Full Text Available The effect of accidental drops on MEMS sensors are examined within the frame-work of a multi-scale finite element approach. With specific reference to a polysilicon MEMSaccelerometer supported by a naked die, the analysis is decoupled into macro-scale (at dielength-scale and meso-scale (at MEMS length-scale simulations, accounting for the verysmall inertial contribution of the sensor to the overall dynamics of the device. Macro-scaleanalyses are adopted to get insights into the link between shock waves caused by the impactagainst a target surface and propagating inside the die, and the displacement/acceleration his-tories at the MEMS anchor points. Meso-scale analyses are adopted to detect the most stresseddetails of the sensor and to assess whether the impact can lead to possible localized failures.Numerical results show that the acceleration at sensor anchors cannot be considered an ob-jective indicator for drop severity. Instead, accurate analyses at sensor level are necessary toestablish how MEMS can fail because of drops.

  8. Long-term controls on continental-scale bedrock river terrace deposition from integrated clast and heavy mineral assemblage analysis: An example from the lower Orange River, Namibia

    Science.gov (United States)

    Nakashole, Albertina N.; Hodgson, David M.; Chapman, Robert J.; Morgan, Dan J.; Jacob, Roger J.

    2018-02-01

    Establishing relationships between the long-term landscape evolution of drainage basins and the fill of sedimentary basins benefits from analysis of bedrock river terrace deposits. These fragmented detrital archives help to constrain changes in river system character and provenance during sediment transfer from continents (source) to oceans (sink). Thick diamondiferous gravel terrace deposits along the lower Orange River, southern Namibia, provide a rare opportunity to investigate controls on the incision history of a continental-scale bedrock river. Clast assemblage and heavy mineral data from seven localities permit detailed characterisation of the lower Orange River gravel terrace deposits. Two distinct fining-upward gravel terrace deposits are recognised, primarily based on mapped stratigraphic relationships (cross-cutting relationships) and strath and terrace top elevations, and secondarily on the proportion of exotic clasts, referred to as Proto Orange River deposits and Meso Orange River deposits. The older early to middle Miocene Proto Orange River gravels are thick (up to 50 m) and characterised by a dominance of Karoo Supergroup shale and sandstone clasts, whereas the younger Plio-Pleistocene Meso Orange River gravels (6-23 m thick) are characterised by more banded iron formation clasts. Mapping of the downstepping terraces indicates that the Proto gravels were deposited by a higher sinuosity river, and are strongly discordant to the modern Orange River course, whereas the Meso deposits were deposited by a lower sinuosity river. The heavy minerals present in both units comprise magnetite, garnet, amphibole, epidote and ilmenite, with rare titanite and zircon grains. The concentration of amphibole-epidote in the heavy minerals fraction increases from the Proto to the Meso deposits. The decrease in incision depths, recorded by deposit thicknesses above strath terraces, and the differences in clast character (size and roundness) and type between the two

  9. Stable carbon and nitrogen isotope variation in the northern lampfish and Neocalanus, marine survival rates of pink salmon, and meso-scale eddies in the Gulf of Alaska

    Science.gov (United States)

    Kline, Thomas C., Jr.

    2010-10-01

    Northern lampfish (NLF), Stenobrachius leucopsarus (Myctophidae), the dominant pelagic fish taxon of the subarctic North Pacific Ocean, were sampled opportunistically in MOCNESS tows made on continental slope waters of the Gulf of Alaska (GOA) as well as in deep areas of Prince William Sound (PWS) during 1997-2006. The overall mean whole-body lipid-corrected stable carbon isotope value of NLF from the GOA was -21.4 (SD = 0.7) whereas that from PWS was -19.5 (SD = 0.9). This pattern is similar to that observed for late feeding stage Neocalanus cristatus copepods thus confirming a mean cross-shelf carbon stable isotope gradient. As well, there was a statistically significant positive correlation between the considerable temporal variation in the monthly mean carbon stable isotope composition of GOA Neocalanus and GOA NLF ( r = 0.69, P food chain length whereas carbon stable isotopes reflect organic carbon production. The carbon stable isotope values of NLF, measured in May, were positively correlated to marine survival rate of PWS hatchery salmon cohorts entering the marine environment the same year ( r = 0.84, P < 0.001). The carbon stable isotope values for Neocalanus in May were also positively correlated to salmon marine survival ( r = 0.82, P < 0.001). Processes thus manifested through the carbon stable isotope value of biota from the continental slope more closely predicted marine survival rate than that of the salmon themselves. The incipient relationships suggested by the correlations are consistent with the hypothesis that exchange between coastal and oceanic waters in the study area is driven by meso-scale eddies. These eddies facilitate the occurrence of slope phytoplankton blooms as well as drive oceanic zooplankton subsidies into coastal waters. The strong as well as more significant correlations of salmon marine survival rate to NLF as well as slope Neocalanus carbon stable isotope values point to processes taking place at the slope (i.e., interactions

  10. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    Science.gov (United States)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  11. Phase-relationships between scales in the perturbed turbulent boundary layer

    Science.gov (United States)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  12. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers for ....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  13. LSP Studies As a Quest For Meso-Level Regularities

    DEFF Research Database (Denmark)

    Engberg, Jan

    2015-01-01

    the suggested type of analysis. I proceed to present Knowledge Communication as theoretical-methodological framework of such analyses, followed by a presentation of the differences between a micro, a macro and a meso level approach to studying specialized communication. In the last part of the paper, I...

  14. Meso-Scale Modelling of Deformation, Damage and Failure in Dual Phase Steels

    Science.gov (United States)

    Sari Sarraf, Iman

    Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as well as high strength-to-weight ratio and improved crash resistance. Dual phase steels belong to a family of high strength grades which consist of martensite, responsible for strengthening, distributed in a ductile ferrite matrix which accommodates the deformation throughout the forming process. It has been shown that the predominant damage mechanism and failure in DP steels depends on the ferrite and martensite grain sizes and their morphology, and can range from a mixture of brittle and ductile rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this study, a hybrid finite element cellular automata model, initially proposed by Anton Shterenlikht (2003), was developed to evaluate the forming behaviour and predict the onset of instability and damage evolution in a dual phase steel. In this model, the finite element constitutive model is used to represent macro-level strain gradients and a damage variable, and two different cell arrays are designed to represent the ductile and brittle fracture modes in meso-scale. In the FE part of the model, a modified Rousselier ductile damage model is developed to account for nucleation, growth and coalescence of voids. Also, several rate-dependent hardening models were developed and evaluated to describe the work hardening flow curve of DP600. Based on statistical analysis and simulation results, a modified Johnson-Cook (JC) model and a multiplicative combination of the Voce-modified JC functions were found to be the most accurate hardening models. The developed models were then implemented in a user-defined material subroutine (VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniaxial tension tests at strain rates ranging from 0.001 1/s to 1000 1/s, Marciniak tests, and electrohydraulic free-forming (EHFF

  15. Wind effect on the motion of medium-scale travelling ionospheric disturbances in the E region of the ionosphere

    International Nuclear Information System (INIS)

    Kikvilashvili, G.B.; Sharadze, Z.S.; Mosashvili, N.V.

    1988-01-01

    Madium-scale travelling ionospheric disturbances (MSTID) in the ionosphere E region in Tbilisi area are investigated by means of spectral analysis of f 0 E s and f b E s variations, synchronously recorded in the three scattered points. The winds at the E s layers formation heights were measured simultaneously by D1 method in one of these points. It is established, that the MSTID motion direction in summer-time E region is controlled by the background thermospheric winds: disturbances mostly more across and against the wind. Tidal winds make the main contribution into the MSTID rate day variations

  16. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    Science.gov (United States)

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    OpenAIRE

    Huo, Xueliang; Ghovanloo, Maysam

    2009-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input fo...

  18. STcontrol and NEWPORT Motion Controller Model ESP 301 Device

    CERN Document Server

    Kapanadze, Giorgi

    2015-01-01

    Pixel detectors are used to detect particle tracks in LHC experiments. This kind of detectors are built with silicon semiconductor diodes. Ionizing particles create charge in the diode and the reverse bias voltage creates electric field in the diode which causes effective charge collection by the drift of electrons [1]. One of the main parameter of tracker detectors is efficiency. The efficiency as a function of position in the pixel matrix can be evaluated by scanning the matrix with red and infrared lasers. It is important to know what is happening between pixels in terms of efficiency. We perform these measurements to test new type of pixel detectors for the LHC future upgrade in 2023. New type of detectors are needed because the radiation level will be much higher [2]. For the measurements we need to control a stage motion controller (NEWPORT Motion Controller Model ESP 301) with the existing software STcontrol, which is used for readout data from pixel detectors and to control other devices like the lase...

  19. Research and development of a control system for multi axis cooperative motion based on PMAC

    Science.gov (United States)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  20. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  1. The Application of Euler-Lagrange Method of Optimization for Electromechanical Motion Control

    Directory of Open Access Journals (Sweden)

    Cristian VASILACHE

    2000-12-01

    Full Text Available Industrial and non-industrial processes such as production plans, robots, pumps, compressors, home applications, transportation of people and goods etc., require some kinds of motion control. The main functions of electromechanical drives are to adjust these processes by controlling the torque, speed or position. The objective of this paper is to perform the control of motion while minimizing power losses, that is ∫Ri2dt, in process conversion of electrical energy to mechanical energy. The optimal control laws for our problem is find using the Euler - Lagrange principle. We consider three types of controlled drives: torque, speed and position. Each of them has different control laws. By implementation of these controls with Borland C++ and Matlab environment, substantial energy savings are obtained.

  2. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    Science.gov (United States)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  3. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    Science.gov (United States)

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  4. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  5. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  6. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    OpenAIRE

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism ...

  7. Manipulation and controlled amplification of Brownian motion of microcantilever sensors

    International Nuclear Information System (INIS)

    Mehta, Adosh; Cherian, Suman; Hedden, David; Thundat, Thomas

    2001-01-01

    Microcantilevers, such as those used in atomic force microscopy, undergo Brownian motion due to mechanical thermal noise. The root mean square amplitude of the Brownian motion of a cantilever typically ranges from 0.01--0.1 nm, which limits its use in practical applications. Here we describe a technique by which the Brownian amplitude and the Q factor in air and water can be amplified by three and two orders of magnitude, respectively. This technique is similar to a positive feedback oscillator, wherein the Brownian motion of the vibrating cantilever controls the frequency output of the oscillator. This technique can be exploited to improve sensitivity of microcantilever-based chemical and biological sensors, especially for sensors in liquid environments

  8. IPMSM Motion-Sensorless Direct Torque and Flux Control

    DEFF Research Database (Denmark)

    Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede

    2005-01-01

    The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...... provides for a smooth current waveform even at 1 rpm. The paper demonstrates through ample experiments a 1750 rpm 1 1 rpm speed range full-loaded with sensorless DTFC-SVM....

  9. Complex motion of a vehicle through a series of signals controlled by power-law phase

    Science.gov (United States)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  10. Autogenic-Feedback Training for the Control of Space Motion Sickness

    Science.gov (United States)

    Cowings, Patricia S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  11. Integrals of Motion for Discrete-Time Optimal Control Problems

    OpenAIRE

    Torres, Delfim F. M.

    2003-01-01

    We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.

  12. Evaluation of the leap motion controller as a new contact-free pointing device.

    Science.gov (United States)

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  13. Strength and reversibility of stereotypes for a rotary control with linear scales.

    Science.gov (United States)

    Chan, Alan H S; Chan, W H

    2008-02-01

    Using real mechanical controls, this experiment studied strength and reversibility of direction-of-motion stereotypes and response times for a rotary control with horizontal and vertical scales. Thirty-eight engineering undergraduates (34 men and 4 women) ages 23 to 47 years (M=29.8, SD=7.7) took part in the experiment voluntarily. The effects of instruction of change of pointer position and control plane on movement compatibility were analyzed with precise quantitative measures of strength and a reversibility index of stereotype. Comparisons of the strength and reversibility values of these two configurations with those of rotary control-circular display, rotary control-digital counter, four-way lever-circular display, and four-way lever-digital counter were made. The results of this study provided significant implications for the industrial design of control panels for improved human performance.

  14. Vision based motion control for a humanoid head

    NARCIS (Netherlands)

    Visser, L.C.; Carloni, Raffaella; Stramigioli, Stefano

    2009-01-01

    This paper describes the design of a motion control algorithm for a humanoid robotic head, which consists of a neck with four degrees of freedom and two eyes (a stereo pair system) that tilt on a common axis and rotate sideways freely. The kinematic and dynamic properties of the head are analyzed

  15. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  16. Multi-physics and multi-scale characterization of shale anisotropy

    Science.gov (United States)

    Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.

    2012-12-01

    Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (example

  17. Information processing in micro and meso-scale neural circuits during normal and disease states

    Science.gov (United States)

    Luongo, Francisco

    Neural computation can occur at multiple spatial and temporal timescales. The sum total of all of these processes is to guide optimal behaviors within the context of the constraints imposed by the physical world. How the circuits of the brain achieves this goal represents a central question in systems neuroscience. Here I explore the many ways in which the circuits of the brain can process information at both the micro and meso scale. Understanding the way information is represented and processed in the brain could shed light on the neuropathology underlying complex neuropsychiatric diseases such as autism and schizophrenia. Chapter 2 establishes an experimental paradigm for assaying patterns of microcircuit activity and examines the role of dopaminergic modulation on prefrontal microcircuits. We find that dopamine type 2 (D2) receptor activation results in an increase in spontaneous activity while dopamine type 1 (D1) activation does not. Chapter 3 of this dissertation presents a study that illustrates how cholingergic activation normally produces what has been suggested as a neural substrate of attention; pairwise decorrelation in microcircuit activity. This study also shows that in two etiologicall distinct mouse models of autism, FMR1 knockout mice and Valproic Acid exposed mice, this ability to decorrelate in the presence of cholinergic activation is lost. This represents a putative microcircuit level biomarker of autism. Chapter 4 examines the structure/function relationship within the prefrontal microcircuit. Spontaneous activity in prefrontal microcircuits is shown to be organized according to a small world architecture. Interestingly, this architecture is important for one concrete function of neuronal microcircuits; the ability to produce temporally stereotyped patterns of activation. In the final chapter, we identify subnetworks in chronic intracranial electrocorticographic (ECoG) recordings using pairwise electrode coherence and dimensionality reduction

  18. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    Science.gov (United States)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  19. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    Science.gov (United States)

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  20. An Approach to Preparation of trans-DHQs via Ring-Opening of meso-N-Sulfonylaziridines

    DEFF Research Database (Denmark)

    Nolsøe, Jens Mortansson Jelstrup; Riegert, David; Müller, Paul

    2011-01-01

    As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13 was obtai......As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13...

  1. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  2. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    Science.gov (United States)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  3. Autogenic Feedback Training Exercise: Controlling Physiological Responses to Mitigate Motion Sickness

    Science.gov (United States)

    Walton, Nia; Spencer, Telissa; Cowings, Patricia; Toscano, William B.

    2018-01-01

    During space travel approximately 50 of the crew experience symptoms of motion sickness that can range from mild forms of nausea or dizziness to severe malaise and vomiting1. Developing an effective treatment for these symptoms has become a priority of the National Aeronautics and Space Administration (NASA). Autogenic-Feedback Training Exercise (AFTE) is a nonpharmacological countermeasure for mitigating motion sickness. It involves training subjects to control physiological responses in high stress environments2. The primary goal of this experiment is to evaluate the effectiveness of AFTE for increasing tolerance to motion sickness in high stress environments.

  4. LHCbDIRAC as Apache Mesos microservices

    Science.gov (United States)

    Haen, Christophe; Couturier, Benjamin

    2017-10-01

    The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called “frameworks” The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an architecture brings a greater flexibility in the deployment of LHCbDirac services, allowing for easier deployment maintenance and scaling of services on demand (e..g LHCbDirac relies on 138 services and 116 agents). Higher reliability is also easier, as clustering is part of the toolset, which allows constraints on the location of the services. This paper describes the investigations carried out to package the LHCbDIRAC and DIRAC components into Docker containers and orchestrate them using the previously described set of tools.

  5. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    Science.gov (United States)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.

  6. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  7. Design of a linear-motion dual-stage actuation system for precision control

    International Nuclear Information System (INIS)

    Dong, W; Tang, J; ElDeeb, Y

    2009-01-01

    Actuators with high linear-motion speed, high positioning resolution and a long motion stroke are needed in many precision machining systems. In some current systems, voice coil motors (VCMs) are implemented for servo control. While the voice coil motors may provide the long motion stroke needed in many applications, the main obstacle that hinders the improvement of the machining accuracy and efficiency is their limited bandwidth. To fundamentally solve this issue, we propose to develop a dual-stage actuation system that consists of a voice coil motor that covers the coarse motion, and a piezoelectric stack actuator that induces the fine motion, thus enhancing the positioning accuracy. The focus of this present research is the mechatronics design and synthesis of the new actuation system. In particular, a flexure hinge based mechanism is developed to provide a motion guide and preload to the piezoelectric stack actuator that is serially connected to the voice coil motor. This mechanism is built upon parallel plane flexure hinges. A series of numerical and experimental studies are carried out to facilitate the system design and the model identification. The effectiveness of the proposed system is demonstrated through open-loop studies and preliminary closed-loop control practice. While the primary goal of this particular design is aimed at enhancing optical lens machining, the concept and approach outlined are generic and can be extended to a variety of applications

  8. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2017-10-01

    Full Text Available Moving towards the more electric aircraft (MEA, a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA into primary flight control. In the hybrid actuation system (HAS, an electro-hydraulic servo actuator (EHSA and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  9. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Science.gov (United States)

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  10. Repetitive motion planning and control of redundant robot manipulators

    CERN Document Server

    Zhang, Yunong

    2013-01-01

    Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...

  11. Optimal control of a programmed motion of a rigid spacecraft using redundant kinematics parameterizations

    International Nuclear Information System (INIS)

    El-Gohary, Awad

    2005-01-01

    This paper considers the problem of optimal controlling of a programmed motion of a rigid spacecraft. Given a cost of the spacecraft as a quadratic function of state and control variables we seek for optimal control laws as functions of the state variables and the angle of programmed rotation that minimize this cost and asymptotically stabilize the required programmed motion. The stabilizing properties of the proposed controllers are proved using the optimal Liapunov techniques. Numerical simulation study is presented

  12. Shoulder Dynamic Control Ratio and Rotation Range of Motion in Female Junior Elite Handball Players and Controls.

    Science.gov (United States)

    van Cingel, Robert; Habets, Bas; Willemsen, Linn; Staal, Bart

    2018-03-01

    To compare glenohumeral range of motion and shoulder rotator muscle strength in healthy female junior elite handball players and controls. Cross-sectional case-control study. Sports medical center. Forty elite female handball players and 30 controls active in nonoverhead sports participated in this study. Passive external rotator (ER), internal rotator (IR), and total range of motion (TROM) of the dominant and nondominant arm were examined with a goniometer. An isokinetic dynamometer was used to evaluate concentric and eccentric rotator muscle strength at 60 and 120 degrees/s with dynamic control ratio (DCR = ERecc:IRcon) as the main outcome parameter. Except for the ER range of motion in the nondominant arm, no significant differences were found between groups for IR, ER of the dominant arm, and the TROM. Within the handball group, the side-to-side difference for IR of the dominant arm was -1.4 degrees. The ER and the TROM of the dominant arm were significantly larger, 6.3 and 4.9 degrees, respectively. For both groups, the DCR values were above 1 and no significant differences were found between the dominant and nondominant arm. The DCR values in the handball group were significantly lower than in the control group. Based on the adopted definitions for muscle imbalance, glenohumeral internal range of motion deficit and TROM deficit our elite female handball players seem not at risk for shoulder injuries. Prospective studies are needed to support the belief that a DCR below 1 places the shoulder at risk for injury.

  13. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  14. Application of diazene-directed fragment assembly to the total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids

    OpenAIRE

    Lathrop, Stephen; Movassaghi, Mohammad

    2013-01-01

    We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (−)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and i...

  15. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  16. Evaluating healthcare priority setting at the meso level: A thematic review of empirical literature

    Science.gov (United States)

    Waithaka, Dennis; Tsofa, Benjamin; Barasa, Edwine

    2018-01-01

    Background: Decentralization of health systems has made sub-national/regional healthcare systems the backbone of healthcare delivery. These regions are tasked with the difficult responsibility of determining healthcare priorities and resource allocation amidst scarce resources. We aimed to review empirical literature that evaluated priority setting practice at the meso (sub-national) level of health systems. Methods: We systematically searched PubMed, ScienceDirect and Google scholar databases and supplemented these with manual searching for relevant studies, based on the reference list of selected papers. We only included empirical studies that described and evaluated, or those that only evaluated priority setting practice at the meso-level. A total of 16 papers were identified from LMICs and HICs. We analyzed data from the selected papers by thematic review. Results: Few studies used systematic priority setting processes, and all but one were from HICs. Both formal and informal criteria are used in priority-setting, however, informal criteria appear to be more perverse in LMICs compared to HICs. The priority setting process at the meso-level is a top-down approach with minimal involvement of the community. Accountability for reasonableness was the most common evaluative framework as it was used in 12 of the 16 studies. Efficiency, reallocation of resources and options for service delivery redesign were the most common outcome measures used to evaluate priority setting. Limitations: Our study was limited by the fact that there are very few empirical studies that have evaluated priority setting at the meso-level and there is likelihood that we did not capture all the studies. Conclusions: Improving priority setting practices at the meso level is crucial to strengthening health systems. This can be achieved through incorporating and adapting systematic priority setting processes and frameworks to the context where used, and making considerations of both process

  17. Control of humanoid robot motions with impacts : numerical experiments with reference spreading control

    NARCIS (Netherlands)

    Rijnen, M.W.L.M.; De Mooij, E.B.C.; Traversaro, S.; Nori, F.; Van De Wouw, N.; Saccon, A.; Nijmeijer, H.

    2017-01-01

    This work explores the stabilization of desired dynamic motion tasks involving hard impacts at non-negligible speed for humanoid robots. To this end, a so-called reference spreading hybrid control law is designed showing promising results in simulation. The simulations are performed employing a

  18. Three axis electronic flight motion simulator real time control system design and implementation.

    Science.gov (United States)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  19. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  20. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    Science.gov (United States)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  1. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    Science.gov (United States)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  2. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis

    Science.gov (United States)

    2014-01-01

    Background D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. Results We developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. Conclusions We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity. PMID:24475980

  3. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  4. A Review of the Appropriateness of Existing Micro- and Meso-level Models of Athlete Development within Equestrian Sport

    NARCIS (Netherlands)

    de Haan, D.M.

    2017-01-01

    The aim of this paper was to use a case study approach to review the appropriateness of existing micro- and meso-level models of athlete development within the sport specific context of equestrianism. At a micro-level the Long Term Athlete Development (LTAD) model was chosen. At a meso-level, the

  5. [Community structure of soil meso- and micro-fauna in different habitats of urbanized region].

    Science.gov (United States)

    Qin, Zhong; Zhang, Jia-en; Li, Qing-fang

    2009-12-01

    Investigations were made in May, June, and November 2007 and January 2008 to study the structural characteristics and their seasonal variations of soil meso- and micro-fauna communities in six habitats of three land use types (forest land, constructed grassland and farmland) in Tianhe District of Guangzhou City. The horizontal spatial distribution of soil fauna differed with habitat. During the investigation periods, the Botanical Garden of South China Agricultural University had the highest individual number (1286) of soil mesa- and micro-fauna, while the farmland, especially in the Fenghuang Street area, had the lowest number of individuals and groups. The seasonal variation of the individual number was in order of autumn (1815) > spring (1623) > winter (1365) > summer (1276). Hierarchical clustering and detrended correspondence analysis also showed that the community composition of soil meso- and micro-fauna in different habitats exhibited distinct seasonal variation. In the same seasons, the community structure and composition of soil meso- and micro-fauna in different habitats were correlated to the degrees of human interferences and the properties of soil environment.

  6. Energy intensities in Mato Grosso state and in meso-regions; Intensidades energeticas nas mesorregioes de Mato Grosso

    Energy Technology Data Exchange (ETDEWEB)

    Canavarros, Otacilio Borges; Melo, Moises Candido de; Dorileo, Ivo Leandro [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico (NIEPE)

    2004-07-01

    This work presents some energetic intensities in Mato Grosso state and in each of its five meso-regions that are in the document produced in 2002 by the NIPE/UFMT (Nucleo Interdisciplinar de Estudos em Planejamento Energetico of the Universidade Federal do Mato Grosso) entitled: 'Energetic Balance of the Mato Grosso and meso-regions: period 1995-2001'. (author)

  7. Advanced motion control for next-generation precision mechatronics: Challenges for control, identification, and learning

    NARCIS (Netherlands)

    Oomen, Tom

    2017-01-01

    Manufacturing equipment and scientific instruments, including wafer scanners, printers, microscopes, and medical imaging scanners, require accurate and fast motions. Increasing requirements necessitate enhanced control performance. The aim of this paper is to identify several challenges for advanced

  8. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  9. Cohesive Motion Control Algorithm for Formation of Multiple Autonomous Agents

    Directory of Open Access Journals (Sweden)

    Debabrata Atta

    2010-01-01

    Full Text Available This paper presents a motion control strategy for a rigid and constraint consistent formation that can be modeled by a directed graph whose each vertex represents individual agent kinematics and each of directed edges represents distance constraints maintained by an agent, called follower, to its neighbouring agent. A rigid and constraint consistent graph is called persistent graph. A persistent graph is minimally persistent if it is persistent, and no edge can be removed without losing its persistence. An acyclic (free of cycles in its sensing pattern minimally persistent graph of Leader-Follower structure has been considered here which can be constructed from an initial Leader-Follower seed (initial graph with two vertices, one is Leader and another one is First Follower and one edge in between them is directed towards Leader by Henneberg sequence (a procedure of growing a graph containing only vertex additions. A set of nonlinear optimization-based decentralized control laws for mobile autonomous point agents in two dimensional plane have been proposed. An infinitesimal deviation in formation shape created continuous motion of Leader is compensated by corresponding continuous motion of other agents fulfilling the shortest path criteria.

  10. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability...

  11. Linear motion device and method for inserting and withdrawing control rods

    International Nuclear Information System (INIS)

    Smith, J. E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism

  12. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  13. Implications of the Mw9.0 Tohoku-Oki earthquake for ground motion scaling with source, path, and site parameters

    Science.gov (United States)

    Stewart, Jonathan P.; Midorikawa, Saburoh; Graves, Robert W.; Khodaverdi, Khatareh; Kishida, Tadahiro; Miura, Hiroyuki; Bozorgnia, Yousef; Campbell, Kenneth W.

    2013-01-01

    The Mw9.0 Tohoku-oki Japan earthquake produced approximately 2,000 ground motion recordings. We consider 1,238 three-component accelerograms corrected with component-specific low-cut filters. The recordings have rupture distances between 44 km and 1,000 km, time-averaged shear wave velocities of VS30 = 90 m/s to 1,900 m/s, and usable response spectral periods of 0.01 sec to >10 sec. The data support the notion that the increase of ground motions with magnitude saturates at large magnitudes. High-frequency ground motions demonstrate faster attenuation with distance in backarc than in forearc regions, which is only captured by one of the four considered ground motion prediction equations for subduction earthquakes. Recordings within 100 km of the fault are used to estimate event terms, which are generally positive (indicating model underprediction) at short periods and zero or negative (overprediction) at long periods. We find site amplification to scale minimally with VS30 at high frequencies, in contrast with other active tectonic regions, but to scale strongly with VS30 at low frequencies.

  14. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai

    1998-12-01

    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  15. Normalization of emotion control scale

    Directory of Open Access Journals (Sweden)

    Hojatoolah Tahmasebian

    2014-09-01

    Full Text Available Background: Emotion control skill teaches the individuals how to identify their emotions and how to express and control them in various situations. The aim of this study was to normalize and measure the internal and external validity and reliability of emotion control test. Methods: This standardization study was carried out on a statistical society, including all pupils, students, teachers, nurses and university professors in Kermanshah in 2012, using Williams’ emotion control scale. The subjects included 1,500 (810 females and 690 males people who were selected by stratified random sampling. Williams (1997 emotion control scale, was used to collect the required data. Emotional Control Scale is a tool for measuring the degree of control people have over their emotions. This scale has four subscales, including anger, depressed mood, anxiety and positive affect. The collected data were analyzed by SPSS software using correlation and Cronbach's alpha tests. Results: The results of internal consistency of the questionnaire reported by Cronbach's alpha indicated an acceptable internal consistency for emotional control scale, and the correlation between the subscales of the test and between the items of the questionnaire was significant at 0.01 confidence level. Conclusion: The validity of emotion control scale among the pupils, students, teachers, nurses and teachers in Iran has an acceptable range, and the test itemswere correlated with each other, thereby making them appropriate for measuring emotion control.

  16. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    Science.gov (United States)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  17. Modeling of the motion of automobile elastic wheel in real-time for creation of wheeled vehicles motion control electronic systems

    Science.gov (United States)

    Balakina, E. V.; Zotov, N. M.; Fedin, A. P.

    2018-02-01

    Modeling of the motion of the elastic wheel of the vehicle in real-time is used in the tasks of constructing different models in the creation of wheeled vehicles motion control electronic systems, in the creation of automobile stand-simulators etc. The accuracy and the reliability of simulation of the parameters of the wheel motion in real-time when rolling with a slip within the given road conditions are determined not only by the choice of the model, but also by the inaccuracy and instability of the numerical calculation. It is established that the inaccuracy and instability of the calculation depend on the size of the step of integration and the numerical method being used. The analysis of these inaccuracy and instability when wheel rolling with a slip was made and recommendations for reducing them were developed. It is established that the total allowable range of steps of integration is 0.001.0.005 s; the strongest instability is manifested in the calculation of the angular and linear accelerations of the wheel; the weakest instability is manifested in the calculation of the translational velocity of the wheel and moving of the center of the wheel; the instability is less at large values of slip angle and on more slippery surfaces. A new method of the average acceleration is suggested, which allows to significantly reduce (up to 100%) the manifesting of instability of the solution in the calculation of all parameters of motion of the elastic wheel for different braking conditions and for the entire range of steps of integration. The results of research can be applied to the selection of control algorithms in vehicles motion control electronic systems and in the testing stand-simulators

  18. The influence of motion control shoes on the running gait of mature and young females.

    Science.gov (United States)

    Lilley, Kim; Stiles, Vicky; Dixon, Sharon

    2013-03-01

    This study compared the running gait of mature and young females, and investigated the effect of a motion control shoe. First, it was hypothesised that in a neutral shoe, mature females would display significantly greater rearfoot eversion, knee internal rotation and external adductor moments when compared to a younger group. Secondly, the motion control shoe would reduce rearfoot eversion and knee internal rotation in both groups. Thirdly it was hypothesised that the motion control shoe would increase knee external adductor moment, through an increase in knee varus and moment arm. 15 mature (40-60 years) and 15 young (18-25 years) females performed 10 running trials at 3.5ms(-1)±5% over a force platform. Two shoes were tested, the Adidas Supernova Glide (neutral), and the Adidas Supernova Sequence (motion control). Ankle and knee joint dynamics were analysed for the right leg, and the mean of ten trials was calculated. Joint moments were calculated using inverse dynamics. In the neutral condition, mature females presented greater peak rearfoot eversion, knee internal rotation, and external adductor moments than young females (p<0.05). A motion control shoe significantly reduced peak rearfoot eversion and knee internal rotation among both groups (p<0.05). No between shoe differences in knee external adductor moment were observed. A motion control shoe is recommended to reduce risk of injury associated with rearfoot eversion and knee internal rotation in mature females. However since the knee external adductor moment is a variable commonly associated with medial knee loading it is suggested that alternative design features are required to influence this moment. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A methodology for controlling motion and constraint forces in holonomically constrained systems

    International Nuclear Information System (INIS)

    Sapio, Vincent De; Srinivasa, Narayan

    2015-01-01

    Holonomic constraints are ubiquitous in multibody systems. We present an approach to effectively address the control of holonomically constrained systems using a novel decomposition of task, constraint, and posture space. In addition to providing a natural approach for motion control in the presence of constraints, this scheme also allows for concurrent specification of desired constraint forces, given sufficient actuation. It does this by exposing both motion coordinates and constraint forces within the control formalism, allowing for substantial flexibility in control synthesis. Implementations are presented based on a partitioning of the constraint forces into controlled and uncontrolled subsets, as well as a specification of implicit conditions on the constraint forces. A number of examples demonstrate the practical efficacy of the approach. Finally, a system-level methodology for constraint management during robot interactions with the environment is presented

  20. A methodology for controlling motion and constraint forces in holonomically constrained systems

    Energy Technology Data Exchange (ETDEWEB)

    Sapio, Vincent De, E-mail: vdesapio@hrl.com; Srinivasa, Narayan, E-mail: nsrinivasa@hrl.com [HRL Laboratories, LLC, Information and Systems Sciences Laboratory (United States)

    2015-02-15

    Holonomic constraints are ubiquitous in multibody systems. We present an approach to effectively address the control of holonomically constrained systems using a novel decomposition of task, constraint, and posture space. In addition to providing a natural approach for motion control in the presence of constraints, this scheme also allows for concurrent specification of desired constraint forces, given sufficient actuation. It does this by exposing both motion coordinates and constraint forces within the control formalism, allowing for substantial flexibility in control synthesis. Implementations are presented based on a partitioning of the constraint forces into controlled and uncontrolled subsets, as well as a specification of implicit conditions on the constraint forces. A number of examples demonstrate the practical efficacy of the approach. Finally, a system-level methodology for constraint management during robot interactions with the environment is presented.

  1. Motion control of rigid bodies in SE(3)

    Science.gov (United States)

    Roza, Ashton

    This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.

  2. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    Science.gov (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  3. Quantitative study on crack of meso-damage and fracture concrete ...

    Indian Academy of Sciences (India)

    1School of Civil Engineering, Chang'an University, Xi'an 710061, China. 2Institute of Geotechnical ... lysis of the meso-fracture process of concrete materials is performed. The results demonstrate that the ... realize the quantitative analysis of micro cracks of concrete material (Ammouche et al 2000). The whole CT images of ...

  4. Evaluation of control rod motion simulator research reactors

    International Nuclear Information System (INIS)

    Sanda

    2010-01-01

    Motion simulator has been carried out testing of the reactor control rod using a servomotor. Reactor control rod motion at any point should be in the right position, one of the motors that can move in a precise and correct the servo motor. To ensure that the servo motor to move in accordance with the desired program, then the servomotor function test for motor work to ensure the performance of the appliance. Tests carried out on meshes stress disorder, the load is stable within a certain period and travel time safety control rod up and down, travel time regulating control rods up and down and travel time compensation control rods up and down. In testing the breakdown voltage Vout nets at 24 V, 6.5 A with 12 Ω load deviation obtained V0 = V1 = 0.1% and 0.65% and for the stability of the load in a certain time deviation V = 0.7125%, next to the breakdown voltage Vout nets at 12V, 4.2 A with a 6 Ω load deviation obtained V0 = V1 = 0.275% and 1.158% for the stability of the load in a certain time deviation V = 1.463% and the net-voltage noise nets on Vout 24 V, 4.5 A with 12 Ω load deviation obtained V0 = V1 = 0.196% and 0.496% and for the stability of the load in a certain time deviation V = 0.3625%. While the travel time of a safety control rod up and down, up and down the regulator and compensation rise and fall showed a steady linear graph. The results show that the performance of the servo motor is very stable with the working area below the tolerance limit, it is 5% - 10%. (author)

  5. Acid-base and coordination properties of Meso-substituted porphyrins in nonaqueous solutions

    Science.gov (United States)

    Pukhovskaya, S. G.; Nam, Dao Tkhe; Fien, Chan Ding; Domanina, E. N.; Ivanova, Yu. B.; Semeikin, A. S.

    2017-09-01

    Acid-base and coordination properties of alkyl and aryl meso-substituted porphyrins are studied spectrophotometrically in nonaqueous solutions. It is found that the nature of the substituent greatly affects the basicity of ligands for porphyrins characterized by a flat structure of macrocycle. The electronic effects of substituents have a much weaker influence on the kinetics of complexing. These effects could be due to the opposite orientation of some factors: an increase in the basicity and stability of the N-H bonds of porphyrin reaction centers. Dissociation constants p K b of the cationic forms of meso-substituted derivatives of porphyrin are measured. The values of p K b are in good agreement with classic concepts of the nature of substituents, particularly those indirectly included in the macrocycle through phenyl buffer rings.

  6. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    International Nuclear Information System (INIS)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A.

    2013-01-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na 2 SiO 3 ) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO 2 molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO 2 molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  7. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    International Nuclear Information System (INIS)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-01-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis. (paper)

  8. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    Science.gov (United States)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-10-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.

  9. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  10. Flight Investigation of the Stability and Control Characteristics of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane During Constant-Altitude Transitions, TED No. NACA DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.; Kibry, Robert H.; Smith, Charles C., Jr.

    1953-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane. This paper presents the results of flight tests to determine the stability and control characteristics of the model during constant-altitude slow transitions from hovering to normal unstalled forward flight. The tests indicated that the airplane can be flown through the transition range fairly easily although some difficulty will probably encountered in controlling the yawing motions at angles of attack between about 60 and 40. An increase in the size of the vertical tail will not materially improve the controllability of the yawing motions in this range of angle of attack but the use of a yaw damper will make the yawing motions easy to control throughout the entire transitional flight range. The tests also indicated that the airplane can probably be flown sideways satisfactorily at speeds up to approximately 33 knots (full scale) with the normal control system and up to approximately 37 knots (full scale) with both elevons and rudders rigged to move differentially for roll control. At sideways speeds above these values, the airplane will have a strong tendency to diverge uncontrollably in roll.

  11. Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Directory of Open Access Journals (Sweden)

    Han Songshan

    2015-02-01

    Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.

  12. Linear motion device and method for inserting and withdrawing control rods

    Science.gov (United States)

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  13. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    Science.gov (United States)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p training.

  14. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    Science.gov (United States)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  15. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    OpenAIRE

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...

  16. Motion control of musculoskeletal systems with redundancy.

    Science.gov (United States)

    Park, Hyunjoo; Durand, Dominique M

    2008-12-01

    Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.

  17. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    Full Text Available Fracture mechanisms of an enamel-like hydroxyapatite-collagen composite model are elaborated by means of molecular and coarse-grained dynamics simulation. Using fully atomistic models, we uncover molecular-scale plastic deformation and fracture processes initiated at the organic-inorganic interface. Furthermore, coarse-grained models are developed to investigate fracture patterns at the μm-scale. At the meso-scale, micro-fractures are shown to reduce local stress and thus prevent material failure after loading beyond the elastic limit. On the basis of our multi-scale simulation approach, we provide a molecular scale rationalization of this phenomenon, which seems key to the resilience of hierarchical biominerals, including teeth and bone.

  18. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    Directory of Open Access Journals (Sweden)

    Daniel Bachmann

    2014-12-01

    Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  19. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A., E-mail: ivan_melendez380@hotmail.com [Centro de Investigacion en Quimica Aplicada, Bldv. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila (Mexico)

    2013-08-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na{sub 2}SiO{sub 3}) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO{sub 2} molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO{sub 2} molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  20. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  1. CO2 capture on micro/meso-porous composites of (zeolite A)/(MCM-41) with Ca2+ located: Computer simulation and experimental studies

    International Nuclear Information System (INIS)

    Jianhai Zhou; Huiling Zhao; Jinxia Li; Yujun Zhu; Jun Hu; Honglai Liu; Ying Hu

    2013-01-01

    Composing of both zeolite and meso-porous structures, micro/meso-porous composites exhibit promising CO 2 capture capabilities. In this work, a full-atomic mimetic 5A-MCM-41 structure with bimodal pores has been constructed, in which the microporous structure of 5A zeolite is constructed and optimized based on zeolite A with Ca and Na cations introduced; whereas the meso-porous MCM-41 structure is produced by caving the cylindrical pores in the obtained 5A zeolite matrix. CO 2 adsorption on 5A-MCM- 41 has been simulated by the grand canonical Monte Carlo (GCMC). The simulation results demonstrated that CO 2 is preferentially adsorbed in micropores, and the CO 2 adsorption capacity and its isosteric heat on 5A-MCM-41 are much larger than those of N 2 . The CO 2 selectivity of 5A-MCM-41 results from the electrostatic interaction of the quadrupole CO 2 molecule with Ca 2+ cations of the zeolite. Furthermore, the hierarchical micro/meso-porous composites are synthesized to verify the simulated predictions. By the hydrothermal reaction using 5A zeolite 'seeds' as the silicon source and hexadecyl trimethylammonium bromide (CTAB) as the meso-porous template, 5A-MCM-41 composites are obtained, the characteristic results show that typical 5A microporous structure is remained and disordered meso-porous networks are produced in the composites.Moreover, the CO 2 adsorption capacity of the 5A-MCM- 41 composites can reach as high as 4.08 mmol/g at 100 kPa and 298 K. These observations have been strongly supported that micro/meso-porous composites with metal ions located would be promising adsorbents for CO 2 separation. (authors)

  2. Meso-optical Fourier transform microscope - a new device for high energy physics

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Bencze, G.L.; Farago, I.; Kisvaradi, A.; Molnar, L.; Soroko, L.M.; Vegh, J.

    1989-01-01

    A new device for high energy physics, the Meso-optical Fourier Transform Microscope (MFTM), designed for observation fo straight line particle tracks in nuclear research emulsion is described. The MFTM works without any mechanical or electronical depth scanning and can be considered as a selectivity viewing 'eye'. The computer controlled system containing MFTM as its main unit is given. This system can be used for a fast search for particle tracks and events produced by high energy neutrinos from particle accelerators. The results of the first experimental test of the computer controlled MFTM are presented. The performance of this system is described and discussed. It is shown that the angular resolution of the MFTM is 1 angular minute and the measurement time is equal to 30 ms per image. As all operations in the MFTM proceed without any depth scanning, this new evaluation system works at least two orders of magnitude faster than any known system with a traditional optical microscope. (orig.)

  3. Content and structure of knowledge base used for virtual control of android arm motion in specified environment

    Science.gov (United States)

    Pritykin, F. N.; Nebritov, V. I.

    2018-01-01

    The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.

  4. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  5. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  6. Models of Postural Control: Shared Variance in Joint and COM Motions.

    Directory of Open Access Journals (Sweden)

    Melissa C Kilby

    Full Text Available This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM motions was analyzed using multivariate canonical correlation analysis (CCA. The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF, namely, an inverted pendulum ankle model (2DOF, ankle-hip model (4DOF, ankle-knee-hip model (5DOF, and ankle-knee-hip-neck model (7DOF. Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  7. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    Science.gov (United States)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  8. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  9. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  10. Hybrid task priority-based motion control of a redundant free-floating space robot

    Directory of Open Access Journals (Sweden)

    Cheng ZHOU

    2017-12-01

    Full Text Available This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the least-squares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task. Furthermore, a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning, and this novel combination is termed hybrid task priority control. Thus, the secondary task is implemented in the primary task’s null-space. Besides, the transition of the state of multiple constraints between activeness and inactiveness will only influence the end-effector task without any effect on the primary task. A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology. Keywords: Base attitude control, Hybrid task-priority, Motion planning, Multiple constraints, Redundant space robot

  11. Vision Servo Motion Control and Error Analysis of a Coplanar XXY Stage for Image Alignment Motion

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2013-01-01

    Full Text Available In recent years, as there is demand for smart mobile phones with touch panels, the alignment/compensation system of alignment stage with vision servo control has also increased. Due to the fact that the traditional stacked-type XYθ stage has cumulative errors of assembly and it is heavy, it has been gradually replaced by the coplanar stage characterized by three actuators on the same plane with three degrees of freedom. The simplest image alignment mode uses two cameras as the equipments for feedback control, and the work piece is placed on the working stage. The work piece is usually engraved/marked. After the cameras capture images and when the position of the mark in the camera is obtained by image processing, the mark can be moved to the designated position in the camera by moving the stage and using alignment algorithm. This study used a coplanar XXY stage with 1 μm positioning resolution. Due to the fact that the resolution of the camera is about 3.75 μm per pixel, thus a subpixel technology is used, and the linear and angular alignment repeatability of the alignment system can achieve 1 μm and 5 arcsec, respectively. The visual servo motion control for alignment motion is completed within 1 second using the coplanar XXY stage.

  12. Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bucksbaum, Philip H

    2011-04-13

    The term "molecular movie" has come to describe efforts to track and record Angstrom-scale coherent atomic and electronic motion in a molecule. The relevant time scales for this range cover several orders of magnitude, from sub-femtosecond motion associated with electron-electron correlations, to 100-fs internal vibrations, to multi-picosecond motion associated with the dispersion and quantum revivals of molecular reorientation. Conventional methods of cinematography do not work well in this ultrafast and ultrasmall regime, but stroboscopic "pump and probe" techniques can reveal this motion with high fidelity. This talk will describe some of the methods and recent progress in exciting and controlling this motion, using both laboratory lasers and the SLAC Linac Coherent Light Source x-ray free electron laser, and will further try to relate the date to the goal of molecular movies.

  13. Research on Coordinated Robotic Motion Control Based on Fuzzy Decoupling Method in Fluidic Environments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.

  14. Asymmetric Horner-Wadsworth-Emmons Reactions with meso-Dialdehydes: Scope, Mechanism, and Synthetic Applications

    DEFF Research Database (Denmark)

    Rein, Tobias; Vares, Lauri; Kawasaki, Ikuo

    1999-01-01

    Asymmetric Homer-Wadsworth-Emmons reactions between chiral phosphonate reagents and various meso-dialdehydes have been investigated. A mechanistic model useful for rationalizing the experimentally observed stereoselectivities is presented. Furthermore; strategies for applying these reactions...

  15. Inhibitory Control of Feature Selectivity in an Object Motion Sensitive Circuit of the Retina

    Directory of Open Access Journals (Sweden)

    Tahnbee Kim

    2017-05-01

    Full Text Available Object motion sensitive (OMS W3-retinal ganglion cells (W3-RGCs in mice respond to local movements in a visual scene but remain silent during self-generated global image motion. The excitatory inputs that drive responses of W3-RGCs to local motion were recently characterized, but which inhibitory neurons suppress W3-RGCs’ responses to global motion, how these neurons encode motion information, and how their connections are organized along the excitatory circuit axis remains unknown. Here, we find that a genetically identified amacrine cell (AC type, TH2-AC, exhibits fast responses to global motion and slow responses to local motion. Optogenetic stimulation shows that TH2-ACs provide strong GABAA receptor-mediated input to W3-RGCs but only weak input to upstream excitatory neurons. Cell-type-specific silencing reveals that temporally coded inhibition from TH2-ACs cancels W3-RGC spike responses to global but not local motion stimuli and, thus, controls the feature selectivity of OMS signals sent to the brain.

  16. Geometric Control Over the Motion of Magnetic Domain Walls

    International Nuclear Information System (INIS)

    N.A. Sinitsyn; V.V. Dobrovitski; S. urazhdin; Avadh Saxena

    2008-01-01

    We propose a method that enables a precise control of magnetic patterns and relies only on the fundamental properties of the wire as well as on the choice of the path in the controlled parameter space but not on the rate of motion along this path. Possible experimental realizations of this mechanism are discussed. In particular, we show that the domain walls in magnetic nanowires can be translated by rotation of the magnetic easy axis or by applying pulses of magnetic field directed transverse to the magnetic easy axis

  17. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  18. Temperature oscillation and the sloshing motion of the large-scale circulation in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing

    2017-11-01

    We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).

  19. The Role of Jet Adjustment Processes in Subtropical Dust Storms

    Science.gov (United States)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-11-01

    Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the mesoscale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced mesoscale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to mesoscale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.

  20. Prediction of strong ground motion based on scaling law of earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  1. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    Science.gov (United States)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  2. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....

  3. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    Science.gov (United States)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  4. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease.

    Science.gov (United States)

    Bernstein, Paul S; Li, Binxing; Vachali, Preejith P; Gorusupudi, Aruna; Shyam, Rajalekshmy; Henriksen, Bradley S; Nolan, John M

    2016-01-01

    The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Relative dynamics and motion control of nanosatellite formation flying

    Science.gov (United States)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  6. Researching the Components of Formation of the Export Potential of Industry on the Micro-and Meso-Levels

    Directory of Open Access Journals (Sweden)

    Pavlenchyk Nataliya F.

    2017-11-01

    Full Text Available The article analyses approaches to formation of the export potential of industry on the micro- and meso-levels. A number of factors influencing the formation of the export potential of industry on the micro- and meso-levels has been considered. It was found that the components of the export potential of industry on the micro- and meso-levels are factors, capabilities (potential, and resources. It has been suggested to perceive the defining resources of formation of the export potential of industrial enterprises as: personnel, production, financial-investment, innovation, marketing, information, organizational, and managerial. It has been found that the main resources of export potential of the industry of region include: production, raw material, natural, financial, investment, social, and innovation. There is a number of opportunities that contribute to the formation of the export potential of the region’s industry, in particular: labor, industrial, financial, raw material, natural, investment, innovation, social, information, and organizational-managerial.

  7. A functional interaction approach to the definition of meso regions: The case of the Czech Republic

    Directory of Open Access Journals (Sweden)

    Erlebach Martin

    2016-06-01

    Full Text Available The definition of functional meso regions for the territory of the Czech Republic is articulated in this article. Functional regions reflect horizontal interactions in space and are presented as a useful tool for various types of geographical analyses, and also for spatial planning, economic policy designs, etc. This paper attempts to add to the discussion on the need to delineate areal units at different hierarchical levels, and to understand the functional flows and spatial behaviours of the population in a given space. Three agglomerative methods are applied in the paper (the CURDS regionalisation algorithm, Intramax, and cluster analysis, and they have not been used previously in Czech geography for the delineation of functional meso regions. Existing functional regions at the micro-level, based on daily travel-to-work flows from the 2001 census, have served as the building blocks. The analyses have produced five regional systems at the meso level, based on daily labour commuting movements of the population. Basic statistics and a characterisation of these systems are provided in this paper.

  8. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  9. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    Science.gov (United States)

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.

  10. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  11. Study on high density multi-scale calculation technique

    International Nuclear Information System (INIS)

    Sekiguchi, S.; Tanaka, Y.; Nakada, H.; Nishikawa, T.; Yamamoto, N.; Yokokawa, M.

    2004-01-01

    To understand degradation of nuclear materials under irradiation, it is essential to know as much about each phenomenon observed from multi-scale points of view; they are micro-scale in atomic-level, macro-level in structural scale and intermediate level. In this study for application to meso-scale materials (100A ∼ 2μm), computer technology approaching from micro- and macro-scales was developed including modeling and computer application using computational science and technology method. And environmental condition of grid technology for multi-scale calculation was prepared. The software and MD (molecular dynamics) stencil for verifying the multi-scale calculation were improved and their movement was confirmed. (A. Hishinuma)

  12. Tuple image multi-scale optical flow for detailed cardiac motion extraction: Application to left ventricle rotation analysis

    NARCIS (Netherlands)

    Assen, van H.C.; Florack, L.M.J.; Westenberg, J.J.M.; Haar Romenij, ter B.M.; Hamarneh, G.; Abugharbieh, R.

    2008-01-01

    We present a new method for detailed tracking of cardiac motion based on MR-tagging imaging, multi-scale optical flow, and HARP-like image filtering.In earlier work, we showed that the results obtained with our method correlate very well with Phase Contrast MRI. In this paper we combine the

  13. Design of Fuzzy Enhanced Hierarchical Motion Stabilizing Controller of Unmanned Ground Vehicle in Three DimensionalSpace

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2011-12-01

    Full Text Available In this paper, stabilizing control of tracked unmanned ground vehicle in 3-D space was presented. Firstly, models of major modules of tracked UGV were established. Next, to reveal the mechanism of disturbances applied on the UGV, two kinds of representative disturbances (slope and general disturbances in yaw motion were discussed in depth. Consequently, an attempting PID method was employed to compensate the impacts of disturbances andsimulation results proved the validity for disturbance incited by slope force, but revealed the lack for general disturbance on yaw motion. Finally, a hierarchical fuzzy controller combined with PID controller was proposed. In lower level, there were two PID controllers to compensate the disturbance of slope force, and on top level, the fuzzy logic controller was employed to correct the yaw motion error based on the differences between the model and the real UGV, which was able to guide the UGV maintain on the stable state. Simulation results demonstrated the excellent effectiveness of the newly designed controller.

  14. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.

    Science.gov (United States)

    Scheme, Erik; Lock, Blair; Hargrove, Levi; Hill, Wendy; Kuruganti, Usha; Englehart, Kevin

    2014-01-01

    This paper describes two novel proportional control algorithms for use with pattern recognition-based myoelectric control. The systems were designed to provide automatic configuration of motion-specific gains and to normalize the control space to the user's usable dynamic range. Class-specific normalization parameters were calculated using data collected during classifier training and require no additional user action or configuration. The new control schemes were compared to the standard method of deriving proportional control using a one degree of freedom Fitts' law test for each of the wrist flexion/extension, wrist pronation/supination and hand close/open degrees of freedom. Performance was evaluated using the Fitts' law throughput value as well as more descriptive metrics including path efficiency, overshoot, stopping distance and completion rate. The proposed normalization methods significantly outperformed the incumbent method in every performance category for able bodied subjects (p < 0.001) and nearly every category for amputee subjects. Furthermore, one proposed method significantly outperformed both other methods in throughput (p < 0.0001), yielding 21% and 40% improvement over the incumbent method for amputee and able bodied subjects, respectively. The proposed control schemes represent a computationally simple method of fundamentally improving myoelectric control users' ability to elicit robust, and controlled, proportional velocity commands.

  15. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  16. Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA) isomers by strategy I and II plants.

    Science.gov (United States)

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2006-02-22

    One of the most efficient fertilizers to correct Fe deficiency in calcareous soils and waters with high bicarbonate content is based on ferric ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid [Fe(o,o-EDDHA)]. Fe(o,o-EDDHA) forms two groups of geometric isomers known as meso and D,L-racemic. To determine the Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA), four iron-efficient plants, two plants representative of strategy I (tomato and pepper) and two plants representative of strategy II (wheat and oats), were grown in hydroponic culture. Results indicated that strategy II plants took up iron from both Fe(o,o-EDDHA) isomers equally. However, strategy I plants took mainly the iron associated with the meso form (the lowest stability isomer).

  17. Simulation of atmospheric temperature inversions over greater cairo using the MM5 Meso-Scale atmospheric model

    International Nuclear Information System (INIS)

    Kandil, H.A.; Elhadidi, B.M.; Kader, A. A.; Moaty, A.A.; Sherif, A.O.

    2006-01-01

    Air pollution episodes have been recorded in Cairo, during the fall season, since 1999, as a result of specific meteorological conditions combined with large quantity of pollutants created by several ground-based sources. The main reason for the smog-like episodes (black clouds) is adverse weather conditions with low and variable winds, high humidity and strong temperature inversions in the few-hundred meters above the ground. The two important types of temperature inversion affecting the air pollution are surface or ground (radiation) inversion and subsidence (elevated) inversion. The surface temperature inversion is associated with a rapid decrease in the ground surface temperature with the simultaneous existence of warm air in the lower troposphere. The inversion develops at dusk and continues until the surface warms again the following day. Pollutants emitted during the night are caught under this i nversion lid. S ubsidence inversion forms when warm air masses move over colder air masses. The inversion develops with a stagnating high-pressure system (generally associated with fair weather). Under these conditions, the pressure gradient becomes progressively weaker so that winds become light. These light winds greatly reduce the horizontal transport and dispersion of pollutants. At the same time, the subsidence inversion acts as a barrier to the vertical dispersion of the pollutants. In this study, the Penn State/NCAR meso -scale model (MM5) is used to simulate the temperature inversion phenomenon over Greater Cairo region during the fall season of 2004. Accurate computations of the heat transfer at the surface are needed to capture this phenomenon. This can only be achieved by high-resolution simulations in both horizontal and vertical directions. Hence, for accurate simulation of the temperature inversion over Greater Cairo, four nested domains of resolutions of 27 km, 9 km, 3 km and 1 km, respectively, were used in the horizontal planes. Furthermore, 42

  18. Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    Science.gov (United States)

    Tavakoli, M. M.; Assadian, N.

    2018-03-01

    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.

  19. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  20. A condição das coxas anteriores, do meso-catepímero e do meso-catepisterno dos Tabanidae (Diptera e sua possível importância na classificação

    Directory of Open Access Journals (Sweden)

    Nelson Bernardi

    1990-01-01

    Full Text Available The condition of certain neglected structures and their possible importance to the classification of the family Tabanidae are studied. The front coxae are considered as belonging to two types: 1 short and robust; 2 long and slender. The posterior edge of the meso-katepimeron presents two conditions: 1 without projection, 2 with backward projection. Similar conditions are found in the meso-Katepisternum, but with intermediate conditions. These characters are discussed in relation to the system proposed for the family by Mackerras. Conditions 1 and 2 of the former two structures separate, respectively, the Pangoniinae and Scepsidinae from the Chrysopsinae and Tabaninae. Condition 2 of the third structure seems to be developing independently in different groups of Tabaninae, with varying degrees of development.

  1. The motion and control of a complex three-body space tethered system

    Science.gov (United States)

    Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei

    2017-11-01

    This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.

  2. A programmable motion phantom for quality assurance of motion management in radiotherapy

    International Nuclear Information System (INIS)

    Dunn, L.; Franich, R.D.; Kron, T.; Taylor, M.L.; Johnston, P.N.; McDermott, L.N.; Callahan, J.

    2012-01-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior–posterior and superior–inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies.

  3. Grid for Meso american Archaeology

    International Nuclear Information System (INIS)

    Lucet, G.

    2007-01-01

    Meso american archaeology works with large amounts of disperse and diverse information, thus the importance of including new methods that optimise the acquisition, conservation, retrieval, and analysis of data to generate knowledge more efficiently and create a better understanding of history. Further, this information --which includes texts, coordinates, raster graphs, and vector graphs-- comes from a considerable geographical area --parts of Mexico, Nicaragua, Honduras and Costa Rica as well as Guatemala, El Salvador and Belize-- is constantly expanding. This information includes elements like shards, buildings, mural paintings, high and low reliefs, topography, maps, and information about the fauna and soil. Grid computing offers a solution to handle all this information: it respects researchers' need for independence while supplying a platform to share, process and compare the data obtained. Additionally, the Grid can enhance space-time analyses with remote visualisation techniques that can, in turn, incorporate geographical information systems and virtual reality. (Author)

  4. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    Science.gov (United States)

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (PMetasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  5. Multi-Objective Motion Control Optimization for the Bridge Crane System

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-03-01

    Full Text Available A novel control algorithm combining the linear quadratic regulator (LQR control and trajectory planning (TP is proposed for the control of an underactuated crane system, targeting position adjustment and swing suppression. The TP is employed to control the swing angle within certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve the accuracy of the position control, a differential-integral control loop is applied. The weighted LQR matrices representing priorities of the state variables for the bridge crane motion are searched by the multi-objective genetic algorithm (MOGA. The stability proof is provided in order to validate the effectiveness of the proposed algorithm. Numerous simulation and experimental validations justify the feasibility of the proposed method.

  6. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  7. Motion control of a gantry crane with a container

    Science.gov (United States)

    Shugailo, T. S.; Yushkov, M. P.

    2018-05-01

    The transportation of a container by a gantry crane in a given time from one point of space to another is considered. The system is at rest at the end of the motion. A maximum admissible speed is taken into account. The control force is found using either the Pontryagin maximum principle or the generalized Gauss principle. The advantages of the second method over the first one is demonstrated.

  8. Algorithm for motion control of an exoskeleton during verticalization

    Directory of Open Access Journals (Sweden)

    Jatsun Sergey

    2016-01-01

    Full Text Available This paper considers lower limb exoskeleton that performs sit-to-stand motion. The work is focused on the control system design. An application of a null space projection methods for solving inverse kinematics problem is discussed. An adaptive multi-input multi-output regulator for the system is presented with the motivation for that choice. Results of the simulation for different versions of the regulator are shown.

  9. Combined influence of meso-scale circulation and bathymetry on the foraging behaviour of a diving predator, the king penguin (Aptenodytes patagonicus)

    Science.gov (United States)

    Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André

    2016-02-01

    Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.

  10. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    Science.gov (United States)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  11. Control of nonholonomic systems from sub-Riemannian geometry to motion planning

    CERN Document Server

    Jean, Frédéric

    2014-01-01

    Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.

  12. A Cable-Passive Damper System for Sway and Skew Motion Control of a Crane Spreader

    Directory of Open Access Journals (Sweden)

    La Duc Viet

    2015-01-01

    Full Text Available While the crane control problem is often approached by applying a certain active control command to some parts of the crane, this paper proposes a cable-passive damper system to reduce the vibration of a four-cable suspended crane spreader. The residual sway and skew motions of a crane spreader always produce the angle deflections between the crane cables and the crane spreader. The idea in this paper is to convert those deflections into energy dissipated by the viscous dampers, which connect the cables and the spreader. The proposed damper system is effective in reducing spreader sway and skew motions. Moreover, the optimal damping coefficient can be found analytically by minimizing the time integral of system energy. The numerical simulations show that the proposed passive system can assist the input shaping control of the trolley motion in reducing both sway and skew responses.

  13. Wastewater use in agriculture and potential effects on meso and macrofauna soil

    Directory of Open Access Journals (Sweden)

    Dinéia Tessaro

    2016-06-01

    Full Text Available ABSTRACT: The use of wastewater in agriculture has been practiced on an increasing scale over the past decades because of its fertilizing potential and the reduction in demand for surface water and groundwater. However, this practice may bring harm when performed without planning, not respecting the capacity of the soil to recycle organic waste. The most common problems are contamination of surface and groundwater via leaching and runoff, as well as accumulation of nutrients and potentially polluting elements that compromise chemical, physical and biological characteristics of the soil. The biological compartment, represented by the micro, meso and macrofauna, plays an important role in nutrient cycling, decomposition of organic matter, particle movement and transport of materials at different depths, helping to maintain soil physical and chemical characteristics. In this sense, this paper aims to discuss the effect of using different kinds of wastewater in agriculture on soil biology, highlighting strengths and weaknesses, as well as emphasizing the need to conduct investigations that enhance the positive aspects of wastewater use associated with edaphic processes.

  14. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Directory of Open Access Journals (Sweden)

    J. Pfingstner

    2014-12-01

    Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  15. Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study

    International Nuclear Information System (INIS)

    Guenneugues, Marc; Gilquin, Bernard; Wolff, Nicolas; Menez, Andre; Zinn-Justin, Sophie

    1999-01-01

    Motions of the backbone CαHα and threonine CβHβ bonds of toxin α were investigated using natural abundance 13C NMR and molecular dynamics. Measurement of the 13C longitudinal and transverse relaxation rates employed ACCORDION techniques together with coherence selection by pulsed field gradients and sensitivity enhancement through the use of preservation of equivalent pathway, thus allowing a considerable reduction of the required spectrometer time. 13C R1, R2, 1H → 13C NOE were obtained, as well as the variations of R1ρ(90 deg.) as a function of the rf field strength. These data were compared to those recorded by 1H and 15N NMR on a labelled sample of the toxin [Guenneugues et al. (1997) Biochemistry, 36, 16097-16108]. Both sets of data showed that picosecond to nanosecond time scale motions are well correlated to the secondary structure of the protein. This was further reinforced by the analysis of a 1 ns molecular dynamics simulation in water. Several CαHα and threonine CβHβ experimentally exhibit fast motions with a correlation time longer than 500 ps, that cannot be sampled along the simulation. In addition, the backbone exhibits motions on the microsecond to millisecond time scale on more than half of its length. Thus, toxin α, a highly stable protein (Tm=75 deg. C at acidic pH) containing 61 amino acids and 4 disulfides, shows important internal motions on time scales ranging from 0.1-0.5 ps, to 10-100 ps, 1 ns, and about 30 μs to 10 ms

  16. Oswestry Disability Index is a better indicator of lumbar motion than the Visual Analogue Scale.

    Science.gov (United States)

    Ruiz, Ferrin K; Bohl, Daniel D; Webb, Matthew L; Russo, Glenn S; Grauer, Jonathan N

    2014-09-01

    Lumbar pathology is often associated with axial pain or neurologic complaints. It is often presumed that such pain is associated with decreased lumbar motion; however, this correlation is not well established. The utility of various outcome measures that are used in both research and clinical practice have been studied, but the connection with range of motion (ROM) has not been well documented. The current study was performed to assess objectively the postulated correlation of lumbar complaints (based on standardized outcome measures) with extremes of lumbar ROM and functional ROM (fROM) with activities of daily living (ADLs) as assessed with an electrogoniometer. This study was a clinical cohort study. Subjects slated to undergo a lumbar intervention (injection, decompression, and/or fusion) were enrolled voluntarily in the study. The two outcome measures used in the study were the Visual Analogue Scale (VAS) for axial extremity, lower extremity, and combined axial and lower extremity, as well as the Oswestry Disability Index (ODI). Pain and disability scores were assessed with the VAS score and ODI. A previously validated electrogoniometer was used to measure ROM (extremes of motion in three planes) and fROM (functional motion during 15 simulated activities of daily living). Pain and disability scores were analyzed for statistically significant association with the motion assessments using linear regression analyses. Twenty-eight men and 39 women were enrolled, with an average age of 55.6 years (range, 18-79 years). The ODI and VAS were associated positively (p<.001). Combined axial and lower extremity VAS scores were associated with lateral and rotational ROM (p<.05), but not with flexion/extension or any fROM. Similar findings were noted for separately analyzed axial and lower extremity VAS scores. On the other hand, the ODI correlated inversely with ROM in all planes, and fROM in at least one plane for 10 of 15 ADLs (p<.05). Extremes of lumbar motion and

  17. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    Science.gov (United States)

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  18. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    International Nuclear Information System (INIS)

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-01-01

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β 2 -adrenoreceptor–G s protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular

  19. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.

    Science.gov (United States)

    Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania

    2017-12-01

    The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and development of advanced training scenarios on current Leap Motion controller.

  20. Interactions Controlling the Slow Dynamic Conformational Motions of Ubiquitin

    Directory of Open Access Journals (Sweden)

    Soichiro Kitazawa

    2017-08-01

    Full Text Available Rational mutation of proteins based on their structural and dynamic characteristics is a useful strategy for amplifying specific fluctuations in proteins. Here, we show the effects of mutation on the conformational fluctuations and thermodynamic stability of ubiquitin. In particular, we focus on the salt bridge between K11 and E34 and the hydrogen bond between I36 and Q41, which are predicted to control the fluctuation between the basic folded state, N1, and the alternatively folded state, N2, of the protein, using high-pressure NMR spectroscopy. The E34A mutation, which disrupts the salt bridge, did not alter picosecond–to–nanosecond, microsecond–to–millisecond dynamic motions, and stability of the protein, while the Q41N mutation, which destabilizes the hydrogen bond, specifically amplified the N1–N2 conformational fluctuation and decreased stability. Based on the observed thermodynamic stabilities of the various conformational states, we showed that in the Q41N mutant, the N1 state is more significantly destabilized than the N2 state, resulting in an increase in the relative population of N2. Identifying the interactions controlling specific motions of a protein will facilitate molecular design to achieve functional dynamics beyond native state dynamics.

  1. Optimal Control of Holding Motion by Nonprehensile Two-Cooperative-Arm Robot

    Directory of Open Access Journals (Sweden)

    Changan Jiang

    2016-01-01

    Full Text Available Recently, more researchers have focused on nursing-care assistant robot and placed their hope on it to solve the shortage problem of the caregivers in hospital or nursing home. In this paper, a nonprehensile two-cooperative-arm robot is considered to realize holding motion to keep a two-rigid-link object (regarded as a care-receiver stable on the robot arms. By applying Newton-Euler equations of motion, dynamic model of the object is obtained. In this model, for describing interaction behavior between object and robot arms in the normal direction, a viscoelastic model is employed to represent the normal forces. Considering existence of friction between object and robot arms, LuGre dynamic model is applied to describe the friction. Based on the obtained model, an optimal regulator is designed to control the holding motion of two-cooperative-arm robot. In order to verify the effectiveness of the proposed method, simulation results are shown.

  2. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion...

  3. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    Science.gov (United States)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  4. Speculation about near-wall turbulence scales

    International Nuclear Information System (INIS)

    Yurchenko, N F

    2008-01-01

    A strategy to control near-wall turbulence modifying scales of fluid motion is developed. The boundary-layer flow is shown to respond selectively to the scale of streamwise vortices initiated, e.g. with the spanwise regular temperature distribution over a model surface. It is used to generate sustainable streamwise vortices and thus to optimize integral flow characteristics.

  5. Effects of confinement in meso-porous silica and carbon nano-structures

    International Nuclear Information System (INIS)

    Leon, V.

    2006-07-01

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  6. Adaptive Robust Motion Control of Direct-Drive DC Motors with Continuous Friction Compensation

    Directory of Open Access Journals (Sweden)

    Jianyong Yao

    2013-01-01

    Full Text Available Uncertainties including the structured and unstructured, especially the nonlinear frictions, always exist in physical servo systems and degrade their tracking accuracy. In this paper, a practical method named adaptive robust controller (ARC is synthesized with a continuous differentiable friction model for high accuracy motion control of a direct-drive dc motor, which results in a continuous control input and thus is more suitable for application. To further reduce the noise sensitivity and improve the tracking accuracy, a desired compensation version of the proposed adaptive robust controller is also developed and its stability is guaranteed by a proper robust law. The proposed controllers not only account for the structured uncertainties (e.g., parametric uncertainties but also for the unstructured uncertainties (e.g., unconsidered nonlinear frictions. Furthermore, the controllers theoretically guarantee a prescribed output tracking transient performance and final tracking accuracy in both structured and unstructured uncertainties while achieving asymptotic output tracking in the absence of unstructured uncertainties, which is very important for high accuracy control of motion systems. Extensive comparative experimental results are obtained to verify the high-performance nature of the proposed control strategies.

  7. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  8. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria.

    OpenAIRE

    Cirillo, J. D.; Weisbrod, T. R.; Banerjee, A.; Bloom, B. R.; Jacobs, W. R.

    1994-01-01

    The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the constru...

  9. Finding malaria hot-spots in northern Angola: the role of individual, household and environmental factors within a meso-endemic area

    Directory of Open Access Journals (Sweden)

    Magalhães Ricardo J

    2012-11-01

    Full Text Available Abstract Background Identifying and targeting hyper-endemic communities within meso-endemic areas constitutes an important challenge in malaria control in endemic countries such like Angola. Recent national and global predictive maps of malaria allow the identification and quantification of the population at risk of malaria infection in Angola, but their small-scale accuracy is surrounded by large uncertainties. To observe the need to develop higher resolution malaria endemicity maps a predictive risk map of malaria infection for the municipality of Dande (a malaria endemic area in Northern Angola was developed and compared to existing national and global maps, the role of individual, household and environmental risk factors for malaria endemicity was quantified and the spatial variation in the number of children at-risk of malaria was estimated. Methods Bayesian geostatistical models were developed to predict small-scale spatial variation using data collected during a parasitological survey conducted from May to August 2010. Maps of the posterior distributions of predicted prevalence were constructed in a geographical information system. Results Malaria infection was significantly associated with maternal malaria awareness, households with canvas roofing, distance to health care centre and distance to rivers. The predictive map showed remarkable spatial heterogeneity in malaria risk across the Dande municipality in contrast to previous national and global spatial risk models; large high-risk areas of malaria infection (prevalence >50% were found in the northern and most eastern areas of the municipality, in line with the observed prevalence. Conclusions There is remarkable spatial heterogeneity of malaria burden which previous national and global spatial modelling studies failed to identify suggesting that the identification of malaria hot-spots within seemingly mesoendemic areas may require the generation of high resolution malaria maps

  10. Finding malaria hot-spots in northern Angola: the role of individual, household and environmental factors within a meso-endemic area.

    Science.gov (United States)

    Magalhães, Ricardo J Soares; Langa, Antonio; Sousa-Figueiredo, José Carlos; Clements, Archie C A; Nery, Susana Vaz

    2012-11-22

    Identifying and targeting hyper-endemic communities within meso-endemic areas constitutes an important challenge in malaria control in endemic countries such like Angola. Recent national and global predictive maps of malaria allow the identification and quantification of the population at risk of malaria infection in Angola, but their small-scale accuracy is surrounded by large uncertainties. To observe the need to develop higher resolution malaria endemicity maps a predictive risk map of malaria infection for the municipality of Dande (a malaria endemic area in Northern Angola) was developed and compared to existing national and global maps, the role of individual, household and environmental risk factors for malaria endemicity was quantified and the spatial variation in the number of children at-risk of malaria was estimated. Bayesian geostatistical models were developed to predict small-scale spatial variation using data collected during a parasitological survey conducted from May to August 2010. Maps of the posterior distributions of predicted prevalence were constructed in a geographical information system. Malaria infection was significantly associated with maternal malaria awareness, households with canvas roofing, distance to health care centre and distance to rivers. The predictive map showed remarkable spatial heterogeneity in malaria risk across the Dande municipality in contrast to previous national and global spatial risk models; large high-risk areas of malaria infection (prevalence >50%) were found in the northern and most eastern areas of the municipality, in line with the observed prevalence. There is remarkable spatial heterogeneity of malaria burden which previous national and global spatial modelling studies failed to identify suggesting that the identification of malaria hot-spots within seemingly mesoendemic areas may require the generation of high resolution malaria maps. Individual, household and hydrological factors play an important role

  11. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    Science.gov (United States)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  12. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  13. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    Science.gov (United States)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  14. Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles

    Science.gov (United States)

    Almubarak, Yara; Tadesse, Yonas

    2017-04-01

    The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

  15. Pitching motion control of a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  16. The eigenmode analysis of human motion

    International Nuclear Information System (INIS)

    Park, Juyong; Lee, Deok-Sun; González, Marta C

    2010-01-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion

  17. The challenge of emergency response dispersion models on the meso-gamma urban scale: A case study of the July 26, 1993 oleum tank car spill in Richmond, California

    International Nuclear Information System (INIS)

    Baskett, R.L.; Vogt, P.J.; Schalk, W.W. III; Pobanz, B.M.; Foster, C.S.; Ellis, J.S.

    1995-01-01

    Atmospheric modeling of accidental toxic chemical releases requires accurate simulation of wind flows on the 1 to 25 km (meso-γ) scale. Complex meteorological fields have been a challenge to real-time emergency response models for decades especially when,wind observations are sparse. 'ne Gaussian model is a reasonable tool for the first few kilometers if the terrain is relatively flat, the wind flow is simple (no vertical structure), and meteorological data are available at the source. Most other situations demand three-dimensional models. Three-dimensional diagnostic wind field models depend on available meteorological observations which are subsequently adjusted by mass conservation to create a wind field over the terrain. Even in urban areas with multiple meteorological stations, 3-D diagnostic models may suffer from a lack of sufficient real-time observations. Deterministic models are stressed even more during variable low wind speed or stable atmospheric conditions, especially if the release is denser-than-air. Furthermore, typical wind direction measurement errors of 5 to 10 degrees extrapolated 10 or 20 km cause significant dislocations of downwind concentrations. This paper presents a recent case study that illustrates the difficulty of modeling accidental toxic releases in urban areas

  18. Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation

    International Nuclear Information System (INIS)

    Sen, Oishik; Davis, Sean; Jacobs, Gustaaf; Udaykumar, H.S.

    2015-01-01

    The effectiveness of several metamodeling techniques, viz. the Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. This is done with the express purpose of using metamodels to bridge scales between micro- and macro-scale models in a multi-scale multimaterial simulation. The rate of convergence of the error when used to reconstruct hypersurfaces of known functions is studied. For sufficiently large number of training points, Stochastic Collocation methods generally converge faster than the other metamodeling techniques, while the DKG method converges faster when the number of input points is less than 100 in a two-dimensional parameter space. Because the input points correspond to computationally expensive micro/meso-scale computations, the DKG is favored for bridging scales in a multi-scale solver

  19. Investigation of porous concrete through macro and meso-scale testing

    NARCIS (Netherlands)

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, H.E.J.G.

    2010-01-01

    In designing a porous concrete, containing a high volume of air pores, the effects of its mesoscale phases on its macro level properties have to be known. For this purpose, porous concretes having different aggregate gradings and cement paste compositions were investigated through macro-scale

  20. Fractional order differentiation and robust control design crone, h-infinity and motion control

    CERN Document Server

    Sabatier, Jocelyn; Melchior, Pierre; Oustaloup, Alain

    2015-01-01

    This monograph collates the past decade’s work on fractional models and fractional systems in the fields of analysis, robust control and path tracking. Themes such as PID control, robust path tracking design and motion control methodologies involving fractional differentiation are amongst those explored. It juxtaposes recent theoretical results at the forefront in the field, and applications that can be used as exercises that will help the reader to assimilate the proposed methodologies. The first part of the book deals with fractional derivative and fractional model definitions, as well as recent results for stability analysis, fractional model physical interpretation, controllability, and H-infinity norm computation. It also presents a critical point of view on model pseudo-state and “real state”, tackling the problem of fractional model initialization. Readers will find coverage of PID, Fractional PID and robust control in the second part of the book, which rounds off with an extension of H-infinity ...

  1. Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers.

    Science.gov (United States)

    Araripe, Juliana; do Rêgo, Péricles Sena; Queiroz, Helder; Sampaio, Iracilda; Schneider, Horacio

    2013-01-01

    Despite the ecological and economic importance of the Arapaima gigas (Cuvier 1817), few data about its dispersal capacity are available. The present study was based on the analysis of microsatellite markers in order to estimate the dispersal capacity of the species on fine, meso, and large geographic scales. For this, 561 specimens obtained from stocks separated by distances of up to 25 km (fine scale), 100 km (meso scale), and 1300-2300 km (large scale) were analyzed. The fine scale analysis indicated a marked genetic similarity between lakes, with low genetic differentiation, and significant differences between only a few pairs of sites. Low to moderate genetic differentiation was observed between pairs of sites on a meso scale (100 km), which could be explained by the distances between sites. By contrast, major genetic differentiation was recorded in the large scale analysis, that is, between stocks separated by distances of over 1300 km, with the analysis indicating that differentiation was not related solely to distance. The genetic structuring analysis indicated the presence of two stocks, one represented by the arapaimas of the Mamirauá Reserve, and the other by those of Santarém and Tucuruí. The dispersal of arapaimas over short distances indicates a process of lateral migration within the várzea floodplains, which may be the principal factor determining the considerable homogeneity observed among the várzea lakes. The populations separated by distances of approximately 100 km were characterized by reduced genetic differentiation, which was associated with the geographic distances between sites. Populations separated by distances of over 1300 km were characterized by a high degree of genetic differentiation, which may be related primarily to historical bottlenecks in population size and the sedentary behavior of the species. Evidence was found of asymmetric gene flow, resulting in increasing genetic variability in the population of the Mamirau

  2. Finger-tapping motion analysis in cervical myelopathy by magnetic-sensor tapping device.

    Science.gov (United States)

    Miwa, Toshitada; Hosono, Noboru; Mukai, Yoshihiro; Makino, Takahiro; Kandori, Akihiko; Fuji, Takeshi

    2013-08-01

    Case-control study. The purpose of this study is to determine finger motion of patients with cervical myelopathy during finger-tapping cycles. A major symptom of patients with compressive cervical myelopathy is finger clumsiness. Therefore, understanding finger motion is prerequisite in assessing the severity of myelopathy. The popular grip-and-release test evaluates only the number of motion cycles, which is insufficient to fully describe complex finger motion. Forty-three patients with cervical myelopathy and 41 healthy controls tapped their index fingers against their thumbs as rapidly as possible for 30 seconds and the motion was recorded by a magnetic-sensor coil attached to the nail surface. Output signals were stored in a computer, which automatically calculated tapping frequency, distance moved, ratio of opening/closing velocity and the SD of the tapping interval. The SD of the tapping interval was significantly greater and all other measures were significantly smaller in patients with cervical myelopathy, than in healthy controls. All indices significantly improved after surgical decompression of the cervical spine. Distance moved (Pearson correlation coefficient: r=0.590, Ptapping interval (r=-0.451; P=0.002) were significantly correlated with the Japanese Orthopedic Association score (neurological scale). The quantitative evaluation of finger paralysis was performed by this tapping device. Speed and regularity in repetitive motion of fingers were correlated with the severity of cervical myelopathy.

  3. Continuous passive motion and physical therapy (CPM) versus physical therapy (PT) versus delayed physical therapy (DPT) after surgical release for elbow contractures; a study protocol for a prospective randomized controlled trial.

    Science.gov (United States)

    Viveen, Jetske; Doornberg, Job N; Kodde, Izaak F; Goossens, Pjotr; Koenraadt, Koen L M; The, Bertram; Eygendaal, Denise

    2017-11-22

    The elbow is prone to stiffness after trauma. To regain functional elbow motion several conservative- and surgical treatment options are available. Conservative treatment includes physical therapy, intra-articular injections with corticosteroids and a static progressive or dynamic splinting program. If conservative treatment fails, an operative release of the posttraumatic stiff elbow is often performed. The best Evidence-Based rehabilitation protocol for patients after an operative release is unknown to date and differs per surgeon, hospital and country. Options include early- or delayed motion supervised by a physical therapist, immediate continuous passive motion (CPM), (night) splinting and a static progressive or dynamic splinting program. The SET-Study (Stiff Elbow Trial) is a single-centre, prospective, randomized controlled trial. The primary objective of this study is to compare the active Range of Motion (ROM) (flexion arc and rotational arc) twelve months after surgery between three groups. The first group will receive in-hospital CPM in combination with early motion Physical Therapy (PT) supervised by a physical therapist, the second group will receive only in-hospital early motion PT supervised by a physical therapist and the third group will receive outpatient supervised PT from postoperative day seven till ten. Secondary outcome measures will be Patient Reported Outcome Measures (PROMs) including the Mayo Elbow Performance Score (MEPS), the Oxford Elbow Score (OES), the quick Disabilities of Arm, Shoulder and Hand (qDASH) score, Visual Analogue pain Scale in rest and activity (VAS), Pain Catastrophizing Scale (PCS), the Short Form (SF)-36, the Centre for Epidemiological Studies Depression Scale Revised (CESD-R) and the Work Rehabilitation Questionnaire (WORQ) for the upper limb. A successful completion of this trial will provide evidence on the best rehabilitation protocol in order to (re)gain optimal motion after surgical release of the stiff elbow

  4. Optochemical sensing of hydrogen chloride gas using meso-tetramesitylporphyrin deposited glass plate

    International Nuclear Information System (INIS)

    Kalimuthu, Palanisamy; Abraham John, S.

    2008-01-01

    Meso-tetramesitylporphyrin (MTMP) deposited glass plate (solid state sensor) was used to sense hydrogen chloride (HCl) gas based on optochemical method. Exposure of the solid state sensor to HCl vapor results in the formation of protonated meso-tetramesitylporphyrin (PMTMP). UV-vis and fluorescence spectral techniques were used to study the protonation of MTMP in dichloromethane-methanol mixture. The optical spectra of MTMP show an intense Soret band at 418 nm with a 14 nm red shift upon protonation by HCl. Ab-initio calculations were carried out to visualize the effect of protonation on planarity and stability of the porphyrin ring. The solid state sensor was characterized by UV-vis spectral technique. The sensor exhibits characteristic Soret and Q bands for the deposited MTMP with slight red shift when compared to MTMP in dichloromethane. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band of PMTMP at 452 nm. The detection limit of the solid state sensor towards gaseous HCl was found to be 0.03 ppm. The present solid state sensor was highly stable for several months

  5. The role of roughness-induced damping in the oscillatory motion of bilayer graphene

    International Nuclear Information System (INIS)

    Ye, Zhijiang; Martini, Ashlie; Otero-de-la-Roza, Alberto; Johnson, Erin R

    2014-01-01

    A multi-scale theoretical model is presented that is the first to offer quantitative agreement with experimental measurements of self-retraction and oscillation of bilayer graphene. The model integrates density-functional theory calculations of the energetics driving flake retraction and molecular-dynamics simulations capturing the dynamic response of laterally-offset rough surfaces. We demonstrate that nanoscale roughness explains self-retraction motion and propose a recipe for tuning that motion by controlling friction. (paper)

  6. Robust Control and Motion Planning for Nonlinear Underactuated Systems Using H infinity Techniques

    National Research Council Canada - National Science Library

    Toussaint, Gregory

    2000-01-01

    This thesis presents new techniques for planning and robustly controlling the motion of nonlinear underactuated vehicles when disturbances are present and only imperfect state measurements are available for feedback...

  7. Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

    DEFF Research Database (Denmark)

    Fatu, Marius; Lascu, Cristian; Andreescu, Gheorghe-Daniel

    2007-01-01

    This paper describes a variable-speed motion-sensorless permanent magnet synchronous generator (PMSG) control system for wind energy generation. The proposed system contains a PMSG connected to the grid by a back-to-back PWM inverter with bidirectional power flow, a line filter, and a transformer....... The control system employs PI current controllers with crosscoupling decoupling for both inverters, an active power controller, and a DC link voltage controller. The PMSG rotor speed without using emf integration, and the line voltage frequency are estimated by two PLL based observers. A Dmodule filter...

  8. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  9. Simulating control rod and fuel assembly motion using moving meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, D. [Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)], E-mail: gilbertdw1@gmail.com; Roman, J.E. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garland, Wm. J. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada); Poehlman, W.F.S. [Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)

    2008-02-15

    A prerequisite for designing a transient simulation experiment which includes the motion of control and fuel assemblies is the careful verification of a steady state model which computes k{sub eff} versus assembly insertion distance. Previous studies in nuclear engineering have usually approached the problem of the motion of control rods with the use of nonlinear nodal models. Nodal methods employ special approximations for the leading and trailing cells of the moving assemblies to avoid the rod cusping problem which results from the naive volume weighted cell cross-section approximation. A prototype framework called the MOOSE has been developed for modeling moving components in the presence of diffusion phenomena. A linear finite difference model is constructed, solutions for which are computed by SLEPc, a high performance parallel eigenvalue solver. Design techniques for the implementation of a patched non-conformal mesh which links groups of sub-meshes that can move relative to one another are presented. The generation of matrices which represent moving meshes which conserve neutron current at their boundaries, and the performance of the framework when applied to model reactivity insertion experiments is also discussed.

  10. Motion Intention Analysis-Based Coordinated Control for Amputee-Prosthesis Interaction

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2010-01-01

    Full Text Available To study amputee-prosthesis (AP interaction, a novel reconfigurable biped robot was designed and fabricated. In homogeneous configuration, two identical artificial legs (ALs were used to simulate the symmetrical lower limbs of a healthy person. Linear inverted pendulum model combining with ZMP stability criterion was used to generate the gait trajectories of ALs. To acquire interjoint coordination for healthy gait, rate gyroscopes were mounted on CoGs of thigh and shank of both legs. By employing principal component analysis, the measured angular velocities were processed and the motion synergy was obtained in the final. Then, one of two ALs was replaced by a bionic leg (BL, and the biped robot was changed into heterogeneous configuration to simulate the AP coupling system. To realize symmetrical stable walking, master/slave coordinated control strategy is proposed. According to information acquired by gyroscopes, BL recognized the motion intention of AL and reconstructed its kinematic variables based on interjoint coordination. By employing iterative learning control, gait tracking of BL to AL was archived. Real environment robot walking experiments validated the correctness and effectiveness of the proposed scheme.

  11. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    Science.gov (United States)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  12. Quality control of structural MRI images applied using FreeSurfer - a hands-on workflow to rate motion artifacts

    Directory of Open Access Journals (Sweden)

    Lea Luise Backhausen

    2016-12-01

    Full Text Available In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g. FreeSurfer. This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e. determine participants with most severe artifacts. However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies.

  13. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  14. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  15. ANALYSIS OF PERTURBED MOTION STABILITY OF WHEELER VEHICLES BRAKES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Verbytskiyi

    2011-01-01

    Full Text Available The analysis of the perturbed motion stability of the brake automatic control system on the basis of Lyapunov’s second method is carried out. Using transformations of Lurie there has been ob-tained the canonical form of the system of equations of automatic control. It allowed determining the necessary and sufficient conditions of the asymptotic stability of the system irrespective of its initial condition and a definite choice of the admissible characteristic of the regulator.

  16. New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5.

    Science.gov (United States)

    Xie, Zhuoying; Bai, Ling; Huang, Suwen; Zhu, Cun; Zhao, Yuanjin; Gu, Zhong-Ze

    2014-01-29

    Organic functionalization of periodic mesoporous silicas (PMSs) offers a way to improve their excellent properties and wide applications owing to their structural superiority. In this study, a new strategy for organic functionalization of PMSs is demonstrated by hydrosilylation of the recently discovered "impossible" periodic mesoporous hydridosilica, meso-HSiO1.5. This method overcomes the disadvantages of present pathways for organic functionalization of PMSs with organosilica. Moreover, compared to the traditional functionalization on the surface of porous silicon by hydrosilylation, the template-synthesized meso-HSiO1.5 is more flexible to access functional-groups-loaded PMSs with adjustable microstructures. The new method and materials will have wider applications based on both the structure and surface superiorities.

  17. Nanoparticles of Pt and Ag supported in meso porous SiO2: characterization and catalytic applications

    International Nuclear Information System (INIS)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G.; Arenas A, J.

    2004-01-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO 2 hey have been studied through reduction reactions of N 2 O with H 2 which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO 2 of great surface area (1100 m 2 /gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N 2 O depending on the size and dispersion of the metallic phases. (Author)

  18. An evaluation of control rod motion simulator of research reactor

    International Nuclear Information System (INIS)

    Sanda

    2010-01-01

    Motion simulator for rod control research reactor has been carried out using a servo motor. Reactor rod motion control at any point should be in the right position, one of the motors that can move in a precise and correct is the servo motor. To ensure that the servo motor to move in accordance with the desired program, then the servo motor function test should be carried out to ensure having good performance. Tests carried out on meshes stress disorder, the load is stable within a certain period and travel time safety control rod up and down, travel time regulating control rods up and down and travel time compensation control rods up and down. In testing the breakdown voltage V out nets at 24 V, 6.5 A with 12 Q load deviation obtained V0= V1 = 0.1% and 0.65% and for the stability of the load in a certain time deviation V = 0.7125% , next to the breakdown voltage V out nets at 12 V, 4.2 A with a 6 Q load deviation obtained V0= V1 = 0.275% and 1.158% for the stability of the load in a certain time deviation V = 1.463% and the net-voltage noise nets on V out 24 V, 4.5 A with 12 Q load deviation obtained V0 = V1 = 0.196% and 0.496% and for the stability of the load in a certain time deviation V = 0.3625%. While the travel time of a safety control rod up and down, up and down the regulator and compensation rise and fall showed a steady linear graph. The results show that the performance of the servo motor is very stable with the working area below the tolerance limit, it is 5% - 10%.(author)

  19. Effectiveness of Iron Ethylenediamine-N,N'-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers.

    Science.gov (United States)

    Alcañiz, Sara; Jordá, Juana D; Cerdán, Mar

    2017-01-18

    Two o,o-EDDHA/Fe 3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe 3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe 3+ formulations was different depending on the iron nutritional status of plants. The three o,o-EDDHA/Fe 3+ formulations tested were effective in preventing iron chlorosis in healthy plants. However, the higher the meso concentration in the formulations, the higher the effectiveness in the recovery of iron chlorotic plants from iron deficiency. Accordingly, o,o-EDDHA/Fe 3+ formulations rich in meso isomer are recommended in hydroponic systems.

  20. The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile

    International Nuclear Information System (INIS)

    Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes

    2014-01-01

    A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it