WorldWideScience

Sample records for mesh refinement library

  1. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Beckingsale, D. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Gaudin, W. P. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herdman, J. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Jarvis, S. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom)

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  2. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  3. Adaptive mesh refinement for shocks and material interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, William Wenlong [Los Alamos National Laboratory

    2010-01-01

    There are three kinds of adaptive mesh refinement (AMR) in structured meshes. Block-based AMR sometimes over refines meshes. Cell-based AMR treats cells cell by cell and thus loses the advantage of the nature of structured meshes. Patch-based AMR is intended to combine advantages of block- and cell-based AMR, i.e., the nature of structured meshes and sharp regions of refinement. But, patch-based AMR has its own difficulties. For example, patch-based AMR typically cannot preserve symmetries of physics problems. In this paper, we will present an approach for a patch-based AMR for hydrodynamics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, management of patches, and load balance. The special features of this patch-based AMR include symmetry preserving, efficiency of refinement across shock fronts and material interfaces, special implementation of flux correction, and patch management in parallel computing environments. To demonstrate the capability of the AMR framework, we will show both two- and three-dimensional hydrodynamics simulations with many levels of refinement.

  4. Adaptive hybrid mesh refinement for multiphysics applications

    International Nuclear Information System (INIS)

    Khamayseh, Ahmed; Almeida, Valmor de

    2007-01-01

    The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation

  5. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  6. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  7. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    Science.gov (United States)

    Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael

    2007-07-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.

  8. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    International Nuclear Information System (INIS)

    Penner, Joyce E; Andronova, Natalia; Oehmke, Robert C; Brown, Jonathan; Stout, Quentin F; Jablonowski, Christiane; Leer, Bram van; Powell, Kenneth G; Herzog, Michael

    2007-01-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL

  9. Adaptive Mesh Refinement in CTH

    International Nuclear Information System (INIS)

    Crawford, David

    1999-01-01

    This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems

  10. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  11. Multigrid for refined triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Yair

    1997-02-01

    A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

  12. Trajectory Optimization Based on Multi-Interval Mesh Refinement Method

    Directory of Open Access Journals (Sweden)

    Ningbo Li

    2017-01-01

    Full Text Available In order to improve the optimization accuracy and convergence rate for trajectory optimization of the air-to-air missile, a multi-interval mesh refinement Radau pseudospectral method was introduced. This method made the mesh endpoints converge to the practical nonsmooth points and decreased the overall collocation points to improve convergence rate and computational efficiency. The trajectory was divided into four phases according to the working time of engine and handover of midcourse and terminal guidance, and then the optimization model was built. The multi-interval mesh refinement Radau pseudospectral method with different collocation points in each mesh interval was used to solve the trajectory optimization model. Moreover, this method was compared with traditional h method. Simulation results show that this method can decrease the dimensionality of nonlinear programming (NLP problem and therefore improve the efficiency of pseudospectral methods for solving trajectory optimization problems.

  13. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  14. Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation

    Science.gov (United States)

    Nagarajan, Anand; Soghrati, Soheil

    2018-03-01

    A new non-iterative mesh generation algorithm named conforming to interface structured adaptive mesh refinement (CISAMR) is introduced for creating 3D finite element models of problems with complex geometries. CISAMR transforms a structured mesh composed of tetrahedral elements into a conforming mesh with low element aspect ratios. The construction of the mesh begins with the structured adaptive mesh refinement of elements in the vicinity of material interfaces. An r-adaptivity algorithm is then employed to relocate selected nodes of nonconforming elements, followed by face-swapping a small fraction of them to eliminate tetrahedrons with high aspect ratios. The final conforming mesh is constructed by sub-tetrahedralizing remaining nonconforming elements, as well as tetrahedrons with hanging nodes. In addition to studying the convergence and analyzing element-wise errors in meshes generated using CISAMR, several example problems are presented to show the ability of this method for modeling 3D problems with intricate morphologies.

  15. Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    OpenAIRE

    Baiges Aznar, Joan; Bayona Roa, Camilo Andrés

    2017-01-01

    No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...

  16. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    Science.gov (United States)

    2015-06-01

    Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...and Technology Organisation 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 Facsimile: (03) 9626 7999 c© Commonwealth...their behaviour is critically linked to Maubach’s method and the data structures N and T . The top- level mesh refinement algorithm is also presented

  17. Local adaptive mesh refinement for shock hydrodynamics

    International Nuclear Information System (INIS)

    Berger, M.J.; Colella, P.; Lawrence Livermore Laboratory, Livermore, 94550 California)

    1989-01-01

    The aim of this work is the development of an automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in doing this. The first problem is due to the presence of discontinuities in the solution and the effect on them of discontinuities in the mesh. The second problem is how to organize the algorithm to minimize memory and CPU overhead. This is an important consideration and will continue to be important as more sophisticated algorithms that use data structures other than arrays are developed for use on vector and parallel computers. copyright 1989 Academic Press, Inc

  18. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    Science.gov (United States)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable

  19. On mesh refinement and accuracy of numerical solutions

    NARCIS (Netherlands)

    Zhou, Hong; Peters, Maria; van Oosterom, Adriaan

    1993-01-01

    This paper investigates mesh refinement and its relation with the accuracy of the boundary element method (BEM) and the finite element method (FEM). TO this end an isotropic homogeneous spherical volume conductor, for which the analytical solution is available, wag used. The numerical results

  20. Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations

    Science.gov (United States)

    Labadens, M.; Chapon, D.; Pomaréde, D.; Teyssier, R.

    2012-09-01

    Computer simulations are important in current cosmological research. Those simulations run in parallel on thousands of processors, and produce huge amount of data. Adaptive mesh refinement is used to reduce the computing cost while keeping good numerical accuracy in regions of interest. RAMSES is a cosmological code developed by the Commissariat à l'énergie atomique et aux énergies alternatives (English: Atomic Energy and Alternative Energies Commission) which uses Octree adaptive mesh refinement. Compared to grid based AMR, the Octree AMR has the advantage to fit very precisely the adaptive resolution of the grid to the local problem complexity. However, this specific octree data type need some specific software to be visualized, as generic visualization tools works on Cartesian grid data type. This is why the PYMSES software has been also developed by our team. It relies on the python scripting language to ensure a modular and easy access to explore those specific data. In order to take advantage of the High Performance Computer which runs the RAMSES simulation, it also uses MPI and multiprocessing to run some parallel code. We would like to present with more details our PYMSES software with some performance benchmarks. PYMSES has currently two visualization techniques which work directly on the AMR. The first one is a splatting technique, and the second one is a custom ray tracing technique. Both have their own advantages and drawbacks. We have also compared two parallel programming techniques with the python multiprocessing library versus the use of MPI run. The load balancing strategy has to be smartly defined in order to achieve a good speed up in our computation. Results obtained with this software are illustrated in the context of a massive, 9000-processor parallel simulation of a Milky Way-like galaxy.

  1. Improvement of neutronic calculations on a Masurca core using adaptive mesh refinement capabilities

    International Nuclear Information System (INIS)

    Fournier, D.; Archier, P.; Le Tellier, R.; Suteau, C.

    2011-01-01

    The simulation of 3D cores with homogenized assemblies in transport theory remains time and memory consuming for production calculations. With a multigroup discretization for the energy variable and a discrete ordinate method for the angle, a system of about 10"4 coupled hyperbolic transport equations has to be solved. For these equations, we intend to optimize the spatial discretization. In the framework of the SNATCH solver used in this study, the spatial problem is dealt with by using a structured hexahedral mesh and applying a Discontinuous Galerkin Finite Element Method (DGFEM). This paper shows the improvements due to the development of Adaptive Mesh Refinement (AMR) methods. As the SNATCH solver uses a hierarchical polynomial basis, p−refinement is possible but also h−refinement thanks to non conforming capabilities. Besides, as the flux spatial behavior is highly dependent on the energy, we propose to adapt differently the spatial discretization according to the energy group. To avoid dealing with too many meshes, some energy groups are joined and share the same mesh. The different energy-dependent AMR strategies are compared to each other but also with the classical approach of a conforming and highly refined spatial mesh. This comparison is carried out on different quantities such as the multiplication factor, the flux or the current. The gain in time and memory is shown for 2D and 3D benchmarks coming from the ZONA2B experimental core configuration of the MASURCA mock-up at CEA Cadarache. (author)

  2. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows

    International Nuclear Information System (INIS)

    Gao, X.; Groth, C.P.T.

    2005-01-01

    A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the κ-ψ turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including cold- and hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows. (author)

  3. Mesh refinement for uncertainty quantification through model reduction

    International Nuclear Information System (INIS)

    Li, Jing; Stinis, Panos

    2015-01-01

    We present a novel way of deciding when and where to refine a mesh in probability space in order to facilitate uncertainty quantification in the presence of discontinuities in random space. A discontinuity in random space makes the application of generalized polynomial chaos expansion techniques prohibitively expensive. The reason is that for discontinuous problems, the expansion converges very slowly. An alternative to using higher terms in the expansion is to divide the random space in smaller elements where a lower degree polynomial is adequate to describe the randomness. In general, the partition of the random space is a dynamic process since some areas of the random space, particularly around the discontinuity, need more refinement than others as time evolves. In the current work we propose a way to decide when and where to refine the random space mesh based on the use of a reduced model. The idea is that a good reduced model can monitor accurately, within a random space element, the cascade of activity to higher degree terms in the chaos expansion. In turn, this facilitates the efficient allocation of computational sources to the areas of random space where they are more needed. For the Kraichnan–Orszag system, the prototypical system to study discontinuities in random space, we present theoretical results which show why the proposed method is sound and numerical results which corroborate the theory

  4. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  5. Mesh refinement of simulation with the AID riser transmission gamma

    International Nuclear Information System (INIS)

    Lima Filho, Hilario J.B. de; Benachour, Mohand; Dantas, Carlos C.; Brito, Marcio F.P.; Santos, Valdemir A. dos

    2013-01-01

    Type reactors Circulating Fluidized Bed (CFBR) vertical, in which the particulate and gaseous phases have flows upward (riser) have been widely used in gasification processes, combustion and fluid catalytic cracking (FCC). These biphasic reactors (gas-solid) efficiency depends largely on their hydrodynamic characteristics, and shows different behaviors in the axial and radial directions. The solids axial distribution is observed by the higher concentration in the base, getting more diluted toward the top. Radially, the solids concentration is characterized as core-annular, in which the central region is highly diluted, consisting of dispersed particles and fluid. In the present work developed a two-dimensional geometry (2D) techniques through simulations in computational fluid dynamics (CFD) to predict the gas-solid flow in the riser type CFBR through transient modeling, based on the kinetic theory of granular flow . The refinement of computational meshes provide larger amounts of information on the parameters studied, but may increase the processing time of the simulations. A minimum number of cells applied to the mesh construction was obtained by testing five meshes. The validation of the hydrodynamic parameters was performed using a range of 241Am source and detector NaI (Tl). The numerical results were provided consistent with the experimental data, indicating that the refined computational mesh in a controlled manner, improve the approximation of the expected results. (author)

  6. Adaptive mesh refinement and multilevel iteration for multiphase, multicomponent flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R.D. [Duke Univ., Durham, NC (United States)

    1996-12-31

    An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.

  7. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    Science.gov (United States)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  8. Radiation transport code with adaptive Mesh Refinement: acceleration techniques and applications

    International Nuclear Information System (INIS)

    Velarde, Pedro; Garcia-Fernaandez, Carlos; Portillo, David; Barbas, Alfonso

    2011-01-01

    We present a study of acceleration techniques for solving Sn radiation transport equations with Adaptive Mesh Refinement (AMR). Both DSA and TSA are considered, taking into account the influence of the interaction between different levels of the mesh structure and the order of approximation in angle. A Hybrid method is proposed in order to obtain better convergence rate and lower computer times. Some examples are presented relevant to ICF and X ray secondary sources. (author)

  9. Mesh Refinement for Particle-In-Cell Plasma Simulations: Applications to - and benefits for - Heavy-Ion-Fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion. In particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at LBNL between the Applied Numerical Algorithms Group (ANAG) and the HIF group to couple the Adaptive Mesh Refinement (AMR) library (CHOMBO) developed by the ANAG group to the Particle-In-Cell accelerator code WARP developed by the HIF-VNL. They describe their progress and present their initial findings

  10. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    Directory of Open Access Journals (Sweden)

    Juan J. Garcia-Cantero

    2017-06-01

    Full Text Available Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been

  11. Automatic mesh refinement and local multigrid methods for contact problems: application to the Pellet-Cladding mechanical Interaction

    International Nuclear Information System (INIS)

    Liu, Hao

    2016-01-01

    This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr

  12. Object-Oriented Implementation of Adaptive Mesh Refinement Algorithms

    Directory of Open Access Journals (Sweden)

    William Y. Crutchfield

    1993-01-01

    Full Text Available We describe C++ classes that simplify development of adaptive mesh refinement (AMR algorithms. The classes divide into two groups, generic classes that are broadly useful in adaptive algorithms, and application-specific classes that are the basis for our AMR algorithm. We employ two languages, with C++ responsible for the high-level data structures, and Fortran responsible for low-level numerics. The C++ implementation is as fast as the original Fortran implementation. Use of inheritance has allowed us to extend the original AMR algorithm to other problems with greatly reduced development time.

  13. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    Science.gov (United States)

    Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky

    2018-06-01

    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian

  14. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver

    Czech Academy of Sciences Publication Activity Database

    Kůs, Pavel; Šístek, Jakub

    2017-01-01

    Roč. 110, August (2017), s. 34-54 ISSN 0965-9978 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : adaptive mesh refinement * parallel algorithms * domain decomposition Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.000, year: 2016 http://www.sciencedirect.com/science/article/pii/S0965997816305737

  15. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver

    Czech Academy of Sciences Publication Activity Database

    Kůs, Pavel; Šístek, Jakub

    2017-01-01

    Roč. 110, August (2017), s. 34-54 ISSN 0965-9978 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : adaptive mesh refinement * parallel algorithms * domain decomposition Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.000, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0965997816305737

  16. An adaptive mesh refinement approach for average current nodal expansion method in 2-D rectangular geometry

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported

  17. A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution

    International Nuclear Information System (INIS)

    Tronrud, Dale E.; Karplus, P. Andrew

    2011-01-01

    A script was created to allow SHELXL to use the new CDL v.1.2 stereochemical library which defines the target values for main-chain bond lengths and angles as a function of the residue’s ϕ/ψ angles. Test refinements using this script show that the refinement behavior of structures at resolutions even better than 1 Å is substantially enhanced by the use of the new conformation-dependent ideal geometry paradigm. To utilize a new conformation-dependent backbone-geometry library (CDL) in protein refinements at atomic resolution, a script was written that creates a restraint file for the SHELXL refinement program. It was found that the use of this library allows models to be created that have a substantially better fit to main-chain bond angles and lengths without degrading their fit to the X-ray data even at resolutions near 1 Å. For models at much higher resolution (∼0.7 Å), the refined model for parts adopting single well occupied positions is largely independent of the restraints used, but these structures still showed much smaller r.m.s.d. residuals when assessed with the CDL. Examination of the refinement tests across a wide resolution range from 2.4 to 0.65 Å revealed consistent behavior supporting the use of the CDL as a next-generation restraint library to improve refinement. CDL restraints can be generated using the service at http://pgd.science.oregonstate.edu/cdl_shelxl/

  18. Opfront: mesh

    DEFF Research Database (Denmark)

    2015-01-01

    Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric m...... mesh (medit format). img2off Convert isosurface in image to surface mesh (off format). off2mesh Convert surface mesh (off format) to volumetric mesh (medit format). reduce Crop and resize 3D and stacks of images. data Example data to test the library on...

  19. COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO

    International Nuclear Information System (INIS)

    Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai

    2010-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.

  20. CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM

    International Nuclear Information System (INIS)

    Miniati, Francesco; Martin, Daniel F.

    2011-01-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  1. Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application

    Directory of Open Access Journals (Sweden)

    Deiterding Ralf

    2011-12-01

    Full Text Available Structured adaptive mesh refinement (SAMR techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  2. Usability Testing as a Method to Refine a Health Sciences Library Website.

    Science.gov (United States)

    Denton, Andrea H; Moody, David A; Bennett, Jason C

    2016-01-01

    User testing, a method of assessing website usability, can be a cost-effective and easily administered process to collect information about a website's effectiveness. A user experience (UX) team at an academic health sciences library has employed user testing for over three years to help refine the library's home page. Test methodology used in-person testers using the "think aloud" method to complete tasks on the home page. Review of test results revealed problem areas of the design and redesign; further testing was effective in refining the page. User testing has proved to be a valuable method to engage users and provide feedback to continually improve the library's home page.

  3. A new adaptive mesh refinement data structure with an application to detonation

    Science.gov (United States)

    Ji, Hua; Lien, Fue-Sang; Yee, Eugene

    2010-11-01

    A new Cell-based Structured Adaptive Mesh Refinement (CSAMR) data structure is developed. In our CSAMR data structure, Cartesian-like indices are used to identify each cell. With these stored indices, the information on the parent, children and neighbors of a given cell can be accessed simply and efficiently. Owing to the usage of these indices, the computer memory required for storage of the proposed AMR data structure is only {5}/{8} word per cell, in contrast to the conventional oct-tree [P. MacNeice, K.M. Olson, C. Mobary, R. deFainchtein, C. Packer, PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun. 330 (2000) 126] and the fully threaded tree (FTT) [A.M. Khokhlov, Fully threaded tree algorithms for adaptive mesh fluid dynamics simulations, J. Comput. Phys. 143 (1998) 519] data structures which require, respectively, 19 and 2{3}/{8} words per cell for storage of the connectivity information. Because the connectivity information (e.g., parent, children and neighbors) of a cell in our proposed AMR data structure can be accessed using only the cell indices, a tree structure which was required in previous approaches for the organization of the AMR data is no longer needed for this new data structure. Instead, a much simpler hash table structure is used to maintain the AMR data, with the entry keys in the hash table obtained directly from the explicitly stored cell indices. The proposed AMR data structure simplifies the implementation and parallelization of an AMR code. Two three-dimensional test cases are used to illustrate and evaluate the computational performance of the new CSAMR data structure.

  4. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

    2014-01-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  5. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  6. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    Rosenberg, D; Pouquet, A; Mininni, P D

    2007-01-01

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  7. The Availability of MeSH in Vendor-Supplied Cataloguing Records, as Seen Through the Catalogue of a Canadian Academic Health Library

    Directory of Open Access Journals (Sweden)

    Pamela S. Morgan

    2007-09-01

    Full Text Available This study examines the prevalence of medical subject headings in vendor-supplied cataloguing records for publications contained within aggregated databases or publisher collections. In the first phase, the catalogue of one Canadian academic medical library was examined to determine the extent to which medical subject headings (MeSH are available in the vendor-supplied records. In the second phase, these results were compared to the catalogues of other Canadian academic medical libraries in order to reach a generalization regarding the availability of MeSH headings for electronic resources. MeSH was more widespread in records for electronic journals but was noticeably lacking in records for electronic monographs, and for Canadian publications. There is no standard for ensuring MeSH are assigned to monograph records for health titles and there is no library in Canada with responsibility for ensuring that Canadian health publications receive Medical Subject Headings. It is incumbent upon libraries using MeSH to ensure that vendors are aware of this need when purchasing record sets.

  8. Interoperable mesh and geometry tools for advanced petascale simulations

    International Nuclear Information System (INIS)

    Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M S; Tautges, T; Trease, H

    2007-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and data-structure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications

  9. Local multigrid mesh refinement in view of nuclear fuel 3D modelling in pressurised water reactors

    International Nuclear Information System (INIS)

    Barbie, L.

    2013-01-01

    The aim of this study is to improve the performances, in terms of memory space and computational time, of the current modelling of the Pellet-Cladding mechanical Interaction (PCI), complex phenomenon which may occurs during high power rises in pressurised water reactors. Among the mesh refinement methods - methods dedicated to efficiently treat local singularities - a local multi-grid approach was selected because it enables the use of a black-box solver while dealing few degrees of freedom at each level. The Local Defect Correction (LDC) method, well suited to a finite element discretization, was first analysed and checked in linear elasticity, on configurations resulting from the PCI, since its use in solid mechanics is little widespread. Various strategies concerning the implementation of the multilevel algorithm were also compared. Coupling the LDC method with the Zienkiewicz-Zhu a posteriori error estimator in order to automatically detect the zones to be refined, was then tested. Performances obtained on two-dimensional and three-dimensional cases are very satisfactory, since the algorithm proposed is more efficient than h-adaptive refinement methods. Lastly, the LDC algorithm was extended to nonlinear mechanics. Space/time refinement as well as transmission of the initial conditions during the re-meshing step were looked at. The first results obtained are encouraging and show the interest of using the LDC method for PCI modelling. (author) [fr

  10. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.; Jopek, Konrad; Medygrał, Bartłomiej; Moshkov, Mikhail; Nosek, Szymon; Paszyńska, Anna; Paszyński, Maciej; Pingali, Keshav

    2016-01-01

    trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one

  11. Anisotropic mesh adaptation for marine ice-sheet modelling

    Science.gov (United States)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

  12. GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS

    International Nuclear Information System (INIS)

    Schive, H.-Y.; Tsai, Y.-C.; Chiueh Tzihong

    2010-01-01

    We present the newly developed code, GPU-accelerated Adaptive-MEsh-Refinement code (GAMER), which adopts a novel approach in improving the performance of adaptive-mesh-refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing total variation diminishing scheme for the hydrodynamic solver and a multi-level relaxation scheme for the Poisson solver. Both solvers have been implemented in GPU, by which hundreds of patches can be advanced in parallel. The computational overhead associated with the data transfer between the CPU and GPU is carefully reduced by utilizing the capability of asynchronous memory copies in GPU, and the computing time of the ghost-zone values for each patch is diminished by overlapping it with the GPU computations. We demonstrate the accuracy of the code by performing several standard test problems in astrophysics. GAMER is a parallel code that can be run in a multi-GPU cluster system. We measure the performance of the code by performing purely baryonic cosmological simulations in different hardware implementations, in which detailed timing analyses provide comparison between the computations with and without GPU(s) acceleration. Maximum speed-up factors of 12.19 and 10.47 are demonstrated using one GPU with 4096 3 effective resolution and 16 GPUs with 8192 3 effective resolution, respectively.

  13. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  14. Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation

    Directory of Open Access Journals (Sweden)

    Greg L. Bryan

    2002-01-01

    Full Text Available As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR code Enzo designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 1012 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.

  15. 3D Adaptive Mesh Refinement Simulations of Pellet Injection in Tokamaks

    International Nuclear Information System (INIS)

    Samtaney, S.; Jardin, S.C.; Colella, P.; Martin, D.F.

    2003-01-01

    We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet injection process, a proven method of refueling tokamaks. AMR is a computationally efficient way to provide the resolution required to simulate realistic pellet sizes relative to device dimensions. The mathematical model comprises of single-fluid MHD equations with source terms in the continuity equation along with a pellet ablation rate model. The numerical method developed is an explicit unsplit upwinding treatment of the 8-wave formulation, coupled with a MAC projection method to enforce the solenoidal property of the magnetic field. The Chombo framework is used for AMR. The role of the E x B drift in mass redistribution during inside and outside pellet injections is emphasized

  16. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  17. Optimal algebraic multilevel preconditioning for local refinement along a line

    NARCIS (Netherlands)

    Margenov, S.D.; Maubach, J.M.L.

    1995-01-01

    The application of some recently proposed algebraic multilevel methods for the solution of two-dimensional finite element problems on nonuniform meshes is studied. The locally refined meshes are created by the newest vertex mesh refinement method. After the introduction of this refinement technique

  18. Toward An Unstructured Mesh Database

    Science.gov (United States)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

  19. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    Science.gov (United States)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  20. Adaptive mesh refinement and adjoint methods in geophysics simulations

    Science.gov (United States)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  1. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  2. Computational methods and modeling. 3. Adaptive Mesh Refinement for the Nodal Integral Method and Application to the Convection-Diffusion Equation

    International Nuclear Information System (INIS)

    Torej, Allen J.; Rizwan-Uddin

    2001-01-01

    The nodal integral method (NIM) has been developed for several problems, including the Navier-Stokes equations, the convection-diffusion equation, and the multigroup neutron diffusion equations. The coarse-mesh efficiency of the NIM is not fully realized in problems characterized by a wide range of spatial scales. However, the combination of adaptive mesh refinement (AMR) capability with the NIM can recover the coarse mesh efficiency by allowing high degrees of resolution in specific localized areas where it is needed and by using a lower resolution everywhere else. Furthermore, certain features of the NIM can be fruitfully exploited in the application of the AMR process. In this paper, we outline a general approach to couple nodal schemes with AMR and then apply it to the convection-diffusion (energy) equation. The development of the NIM with AMR capability (NIMAMR) is based on the well-known Berger-Oliger method for structured AMR. In general, the main components of all AMR schemes are 1. the solver; 2. the level-grid hierarchy; 3. the selection algorithm; 4. the communication procedures; 5. the governing algorithm. The first component, the solver, consists of the numerical scheme for the governing partial differential equations and the algorithm used to solve the resulting system of discrete algebraic equations. In the case of the NIM-AMR, the solver is the iterative approach to the solution of the set of discrete equations obtained by applying the NIM. Furthermore, in the NIM-AMR, the level-grid hierarchy (the second component) is based on the Hierarchical Adaptive Mesh Refinement (HAMR) system,6 and hence, the details of the hierarchy are omitted here. In the selection algorithm, regions of the domain that require mesh refinement are identified. The criterion to select regions for mesh refinement can be based on the magnitude of the gradient or on the Richardson truncation error estimate. Although an excellent choice for the selection criterion, the Richardson

  3. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    Science.gov (United States)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  4. Direct numerical simulation of bubbles with parallelized adaptive mesh refinement

    International Nuclear Information System (INIS)

    Talpaert, A.

    2015-01-01

    The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)

  5. A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms

    Science.gov (United States)

    Hasbestan, Jaber J.; Senocak, Inanc

    2017-12-01

    Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.

  6. Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm

    Science.gov (United States)

    Küchlin, Stephan; Jenny, Patrick

    2018-06-01

    Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.

  7. Hydrodynamics in full general relativity with conservative adaptive mesh refinement

    Science.gov (United States)

    East, William E.; Pretorius, Frans; Stephens, Branson C.

    2012-06-01

    There is great interest in numerical relativity simulations involving matter due to the likelihood that binary compact objects involving neutron stars will be detected by gravitational wave observatories in the coming years, as well as to the possibility that binary compact object mergers could explain short-duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled to the Einstein field equations targeted toward such applications. This code has recently been used to study eccentric mergers of black hole-neutron star binaries. We evolve the fluid conservatively using high-resolution shock-capturing methods, while the field equations are solved in the generalized-harmonic formulation with finite differences. In order to resolve the various scales that may arise, we use adaptive mesh refinement (AMR) with grid hierarchies based on truncation error estimates. A noteworthy feature of this code is the implementation of the flux correction algorithm of Berger and Colella to ensure that the conservative nature of fluid advection is respected across AMR boundaries. We present various tests to compare the performance of different limiters and flux calculation methods, as well as to demonstrate the utility of AMR flux corrections.

  8. Mesh Adaptation and Shape Optimization on Unstructured Meshes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

  9. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.

    2017-07-13

    We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

  10. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.; Calo, Victor Manuel; Jopek, Konrad; Moshkov, Mikhail; Paszyńka, Anna; Paszyński, Maciej; Skotniczny, Marcin

    2017-01-01

    We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

  11. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    Science.gov (United States)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  12. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Philip, B.; Wang, Z.; Berrill, M.A.; Birke, M.; Pernice, M.

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence

  13. Direct numerical simulation of bubbles with adaptive mesh refinement with distributed algorithms

    International Nuclear Information System (INIS)

    Talpaert, Arthur

    2017-01-01

    This PhD work presents the implementation of the simulation of two-phase flows in conditions of water-cooled nuclear reactors, at the scale of individual bubbles. To achieve that, we study several models for Thermal-Hydraulic flows and we focus on a technique for the capture of the thin interface between liquid and vapour phases. We thus review some possible techniques for adaptive Mesh Refinement (AMR) and provide algorithmic and computational tools adapted to patch-based AMR, which aim is to locally improve the precision in regions of interest. More precisely, we introduce a patch-covering algorithm designed with balanced parallel computing in mind. This approach lets us finely capture changes located at the interface, as we show for advection test cases as well as for models with hyperbolic-elliptic coupling. The computations we present also include the simulation of the incompressible Navier-Stokes system, which models the shape changes of the interface between two non-miscible fluids. (author) [fr

  14. Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations

    Science.gov (United States)

    Becker, Roland; Vexler, Boris

    2005-06-01

    We consider the calibration of parameters in physical models described by partial differential equations. This task is formulated as a constrained optimization problem with a cost functional of least squares type using information obtained from measurements. An important issue in the numerical solution of this type of problem is the control of the errors introduced, first, by discretization of the equations describing the physical model, and second, by measurement errors or other perturbations. Our strategy is as follows: we suppose that the user defines an interest functional I, which might depend on both the state variable and the parameters and which represents the goal of the computation. First, we propose an a posteriori error estimator which measures the error with respect to this functional. This error estimator is used in an adaptive algorithm to construct economic meshes by local mesh refinement. The proposed estimator requires the solution of an auxiliary linear equation. Second, we address the question of sensitivity. Applying similar techniques as before, we derive quantities which describe the influence of small changes in the measurements on the value of the interest functional. These numbers, which we call relative condition numbers, give additional information on the problem under consideration. They can be computed by means of the solution of the auxiliary problem determined before. Finally, we demonstrate our approach at hand of a parameter calibration problem for a model flow problem.

  15. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    Science.gov (United States)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  16. Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J

    2005-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs

  17. Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.

    2006-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)

  18. Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement

    Science.gov (United States)

    Shervani-Tabar, Navid; Vasilyev, Oleg V.

    2016-11-01

    This paper addresses one of the main challenges of the conservative level set method, namely the ill-conditioned behavior of the normal vector away from the interface. An alternative formulation for reconstruction of the interface is proposed. Unlike the commonly used methods which rely on the unit normal vector, Stabilized Conservative Level Set (SCLS) uses a modified renormalization vector with diminishing magnitude away from the interface. With the new formulation, in the vicinity of the interface the reinitialization procedure utilizes compressive flux and diffusive terms only in the normal direction to the interface, thus, preserving the conservative level set properties, while away from the interfaces the directional diffusion mechanism automatically switches to homogeneous diffusion. The proposed formulation is robust and general. It is especially well suited for use with adaptive mesh refinement (AMR) approaches due to need for a finer resolution in the vicinity of the interface in comparison with the rest of the domain. All of the results were obtained using the Adaptive Wavelet Collocation Method, a general AMR-type method, which utilizes wavelet decomposition to adapt on steep gradients in the solution while retaining a predetermined order of accuracy.

  19. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    Science.gov (United States)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  20. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  1. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    Science.gov (United States)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  2. RINGMesh: A programming library for developing mesh-based geomodeling applications

    Science.gov (United States)

    Pellerin, Jeanne; Botella, Arnaud; Bonneau, François; Mazuyer, Antoine; Chauvin, Benjamin; Lévy, Bruno; Caumon, Guillaume

    2017-07-01

    RINGMesh is a C++ open-source programming library for manipulating discretized geological models. It is designed to ease the development of applications and workflows that use discretized 3D models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities to read discretized surface-based or volumetric structural models and to check their validity. The models can be then exported in various file formats. RINGMesh provides data structures to represent geological structural models, either defined by their discretized boundary surfaces, and/or by discretized volumes. A programming interface allows to develop of new geomodeling methods, and to plug in external software. The goal of RINGMesh is to help researchers to focus on the implementation of their specific method rather than on tedious tasks common to many applications. The documented code is open-source and distributed under the modified BSD license. It is available at https://www.ring-team.org/index.php/software/ringmesh.

  3. Study on the Influence of the Refinement of a 3-D Finite Element Mesh in Springback Evaluation of Plane-Strain Channel Sections

    International Nuclear Information System (INIS)

    Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.

    2007-01-01

    Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the 'Numisheet'05 Benchmark no. 3', which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is

  4. Development and verification of unstructured adaptive mesh technique with edge compatibility

    International Nuclear Information System (INIS)

    Ito, Kei; Ohshima, Hiroyuki; Kunugi, Tomoaki

    2010-01-01

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells. (author)

  5. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    Science.gov (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  6. Self-gravitational Hydrodynamics with Three-dimensional Adaptive Mesh Refinement: Methodology and Applications to Molecular Cloud Collapse and Fragmentation

    International Nuclear Information System (INIS)

    Truelove, J.K.; Klein, R.I.; McKee, C.F.; Holliman, J.H. II; Truelove, J.K.; McKee, C.F.; Truelove, J.K.; Holliman, J.H. II; Klein, R.I.; Woods, D.T.; McKee, C.F.; Woods, D.T.; Howell, L.H.; Greenough, J.A.

    1998-01-01

    We describe a new code for numerical solution of three-dimensional self-gravitational hydrodynamics problems. This code utilizes the technique of local adaptive mesh refinement (AMR), employing multiple grids at multiple levels of resolution and automatically and dynamically adding and removing these grids as necessary to maintain adequate resolution. This technology allows solution of problems that would be prohibitively expensive with a code using fixed resolution, and it is more versatile and efficient than competing methods of achieving variable resolution. In particular, we apply this technique to simulate the collapse and fragmentation of a molecular cloud, a key step in star formation. The simulation involves many orders of magnitude of variation in length scale as fragments form at positions that are not a priori discernible from general initial conditions. In this paper, we describe the methodology behind this new code and present several illustrative applications. The criterion that guides the degree of adaptive mesh refinement is critical to the success of the scheme, and, for the isothermal problems considered here, we employ the Jeans condition for this purpose. By maintaining resolution finer than the local Jeans length, we set new benchmarks of accuracy by which to measure other codes on each problem we consider, including the uniform collapse of a finite pressured cloud. We find that the uniformly rotating, spherical clouds treated here first collapse to disks in the equatorial plane and then, in the presence of applied perturbations, form filamentary singularities that do not fragment while isothermal. Our results provide numerical confirmation of recent work by Inutsuka ampersand Miyama on this scenario of isothermal filament formation. copyright copyright 1998. The American Astronomical Society

  7. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Science.gov (United States)

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  8. Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh

    International Nuclear Information System (INIS)

    Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao

    2008-01-01

    A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions

  9. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.

    2015-04-27

    This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.

  10. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  11. Parallel adaptation of general three-dimensional hybrid meshes

    International Nuclear Information System (INIS)

    Kavouklis, Christos; Kallinderis, Yannis

    2010-01-01

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  12. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  13. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement

    Science.gov (United States)

    Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim

    2018-06-01

    We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.

  14. Reactivity perturbation formulation for a discontinuous Galerkin-based transport solver and its use with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Suteau, C.

    2011-01-01

    Within the framework of a Discontinuous Galerkin spatial approximation of the multigroup discrete ordinates transport equation, we present a generalization of the exact standard perturbation formula that takes into account spatial discretization-induced reactivity changes. It encompasses in two separate contributions the nuclear data-induced reactivity change and the reactivity modification induced by two different spatial discretizations. The two potential uses of such a formulation when considering adaptive mesh refinement are discussed, and numerical results on a simple two-group Cartesian two-dimensional benchmark are provided. In particular, such a formulation is shown to be useful to filter out a more accurate estimate of nuclear data-related reactivity effects from initial and perturbed calculations based on independent adaptation processes. (authors)

  15. Parallel Implementation and Scaling of an Adaptive Mesh Discrete Ordinates Algorithm for Transport

    International Nuclear Information System (INIS)

    Howell, L H

    2004-01-01

    Block-structured adaptive mesh refinement (AMR) uses a mesh structure built up out of locally-uniform rectangular grids. In the BoxLib parallel framework used by the Raptor code, each processor operates on one or more of these grids at each refinement level. The decomposition of the mesh into grids and the distribution of these grids among processors may change every few timesteps as a calculation proceeds. Finer grids use smaller timesteps than coarser grids, requiring additional work to keep the system synchronized and ensure conservation between different refinement levels. In a paper for NECDC 2002 I presented preliminary results on implementation of parallel transport sweeps on the AMR mesh, conjugate gradient acceleration, accuracy of the AMR solution, and scalar speedup of the AMR algorithm compared to a uniform fully-refined mesh. This paper continues with a more in-depth examination of the parallel scaling properties of the scheme, both in single-level and multi-level calculations. Both sweeping and setup costs are considered. The algorithm scales with acceptable performance to several hundred processors. Trends suggest, however, that this is the limit for efficient calculations with traditional transport sweeps, and that modifications to the sweep algorithm will be increasingly needed as job sizes in the thousands of processors become common

  16. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.

    2016-06-02

    In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.

  17. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    Science.gov (United States)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  18. Sending policies in dynamic wireless mesh using network coding

    DEFF Research Database (Denmark)

    Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe

    2015-01-01

    This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...

  19. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  20. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  1. ADAPTIVE MESH REFINEMENT SIMULATIONS OF GALAXY FORMATION: EXPLORING NUMERICAL AND PHYSICAL PARAMETERS

    International Nuclear Information System (INIS)

    Hummels, Cameron B.; Bryan, Greg L.

    2012-01-01

    We carry out adaptive mesh refinement cosmological simulations of Milky Way mass halos in order to investigate the formation of disk-like galaxies in a Λ-dominated cold dark matter model. We evolve a suite of five halos to z = 0 and find a gas disk formation in each; however, in agreement with previous smoothed particle hydrodynamics simulations (that did not include a subgrid feedback model), the rotation curves of all halos are centrally peaked due to a massive spheroidal component. Our standard model includes radiative cooling and star formation, but no feedback. We further investigate this angular momentum problem by systematically modifying various simulation parameters including: (1) spatial resolution, ranging from 1700 to 212 pc; (2) an additional pressure component to ensure that the Jeans length is always resolved; (3) low star formation efficiency, going down to 0.1%; (4) fixed physical resolution as opposed to comoving resolution; (5) a supernova feedback model that injects thermal energy to the local cell; and (6) a subgrid feedback model which suppresses cooling in the immediate vicinity of a star formation event. Of all of these, we find that only the last (cooling suppression) has any impact on the massive spheroidal component. In particular, a simulation with cooling suppression and feedback results in a rotation curve that, while still peaked, is considerably reduced from our standard runs.

  2. RGG: Reactor geometry (and mesh) generator

    International Nuclear Information System (INIS)

    Jain, R.; Tautges, T.

    2012-01-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  3. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  4. GALAXY CLUSTER RADIO RELICS IN ADAPTIVE MESH REFINEMENT COSMOLOGICAL SIMULATIONS: RELIC PROPERTIES AND SCALING RELATIONSHIPS

    International Nuclear Information System (INIS)

    Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.; O'Shea, Brian W.; Turk, Matthew J.

    2011-01-01

    Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration.

  5. 6th International Meshing Roundtable '97

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  6. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    Science.gov (United States)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  7. Using UMLS to map from a library to a clinical classification: Improving the functionality of a digital library.

    Science.gov (United States)

    Robinson, Judas; de Lusignan, Simon; Kostkova, Patty; Madge, Bruce

    2006-01-01

    The Metathesaurus of the Unified Medical Language System (UMLS) offers the possibility of mapping between various medical vocabularies. The Primary Care Electronic Library (PCEL) contains a database of over six thousand Medical Subject Headings (MeSH terms) describing the resources of the electronic library. We were interested to know if it was possible to map from MeSH to the Systemized Nomenclature of Medicine Clinical Terms (SNOMED CT). Such a mapping would aid healthcare professionals to retrieve relevant data from our digital library as it would enable links between clinical systems and indexed material.

  8. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.; Paszyńska, Anna; Dalcin, Lisandro; Calo, Victor M.

    2015-01-01

    on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2

  9. Mesh sensitivity effects on fatigue crack growth by crack-tip blunting and re-sharpening

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    remeshing at several stages of the plastic deformation, with studies of the effect of overloads or compressive underloads. Recent published analyses for the first two cycles have shown folding of the crack surface in compression, leading to something that looks like striations. The influence of mesh...... refinement is used to study the possibility of this type of behaviour within the present method. Even with much refined meshes no indication of crack surface folding is found here....

  10. THREE-DIMENSIONAL ADAPTIVE MESH REFINEMENT SIMULATIONS OF LONG-DURATION GAMMA-RAY BURST JETS INSIDE MASSIVE PROGENITOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Camara, D.; Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706-1582 (United States); Begelman, Mitchell C., E-mail: dlopezc@ncsu.edu [JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440 (United States)

    2013-04-10

    We present the results of special relativistic, adaptive mesh refinement, 3D simulations of gamma-ray burst jets expanding inside a realistic stellar progenitor. Our simulations confirm that relativistic jets can propagate and break out of the progenitor star while remaining relativistic. This result is independent of the resolution, even though the amount of turbulence and variability observed in the simulations is greater at higher resolutions. We find that the propagation of the jet head inside the progenitor star is slightly faster in 3D simulations compared to 2D ones at the same resolution. This behavior seems to be due to the fact that the jet head in 3D simulations can wobble around the jet axis, finding the spot of least resistance to proceed. Most of the average jet properties, such as density, pressure, and Lorentz factor, are only marginally affected by the dimensionality of the simulations and therefore results from 2D simulations can be considered reliable.

  11. Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous porous media

    International Nuclear Information System (INIS)

    Amaziane, Brahim; Bourgeois, Marc; El Fatini, Mohamed

    2014-01-01

    In this paper, we consider adaptive numerical simulation of miscible displacement problems in porous media, which are modeled by single phase flow equations. A vertex-centred finite volume method is employed to discretize the coupled system: the Darcy flow equation and the diffusion-convection concentration equation. The convection term is approximated with a Godunov scheme over the dual finite volume mesh, whereas the diffusion-dispersion term is discretized by piecewise linear conforming finite elements. We introduce two kinds of indicators, both of them of residual type. The first one is related to time discretization and is local with respect to the time discretization: thus, at each time, it provides an appropriate information for the choice of the next time step. The second is related to space discretization and is local with respect to both the time and space variable and the idea is that at each time it is an efficient tool for mesh adaptivity. An error estimation procedure evaluates where additional refinement is needed and grid generation procedures dynamically create or remove fine-grid patches as resolution requirements change. The method was implemented in the software MELODIE, developed by the French Institute for Radiological Protection and Nuclear Safety (IRSN, Institut de Radioprotection et de Surete Nucleaire). The algorithm is then used to simulate the evolution of radionuclide migration from the waste packages through a heterogeneous disposal, demonstrating its capability to capture complex behavior of the resulting flow. (authors)

  12. Adaptive multilevel mesh refinement method for the solution of low Mach number reactive flows; Methode adaptative de raffinement local multi-niveaux pour le calcul d'ecoulements reactifs a faible nombre de Mach

    Energy Technology Data Exchange (ETDEWEB)

    Core, X.

    2002-02-01

    The isobar approximation for the system of the balance equations of mass, momentum, energy and chemical species is a suitable approximation to represent low Mach number reactive flows. In this approximation, which neglects acoustics phenomena, the mixture is hydrodynamically incompressible and the thermodynamic effects lead to an uniform compression of the system. We present a novel numerical scheme for this approximation. An incremental projection method, which uses the original form of mass balance equation, discretizes in time the Navier-Stokes equations. Spatial discretization is achieved through a finite volume approach on MAC-type staggered mesh. A higher order de-centered scheme is used to compute the convective fluxes. We associate to this discretization a local mesh refinement method, based on Flux Interface Correction technique. A first application concerns a forced flow with variable density which mimics a combustion problem. The second application is natural convection with first small temperature variations and then beyond the limit of validity of the Boussinesq approximation. Finally, we treat a third application which is a laminar diffusion flame. For each of these test problems, we demonstrate the robustness of the proposed numerical scheme, notably for the density spatial variations. We analyze the gain in accuracy obtained with the local mesh refinement method. (author)

  13. Patched based methods for adaptive mesh refinement solutions of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Saltzman, J.

    1997-09-02

    This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.

  14. Error sensitivity to refinement: a criterion for optimal grid adaptation

    Science.gov (United States)

    Luchini, Paolo; Giannetti, Flavio; Citro, Vincenzo

    2017-12-01

    Most indicators used for automatic grid refinement are suboptimal, in the sense that they do not really minimize the global solution error. This paper concerns with a new indicator, related to the sensitivity map of global stability problems, suitable for an optimal grid refinement that minimizes the global solution error. The new criterion is derived from the properties of the adjoint operator and provides a map of the sensitivity of the global error (or its estimate) to a local mesh refinement. Examples are presented for both a scalar partial differential equation and for the system of Navier-Stokes equations. In the last case, we also present a grid-adaptation algorithm based on the new estimator and on the FreeFem++ software that improves the accuracy of the solution of almost two order of magnitude by redistributing the nodes of the initial computational mesh.

  15. Predicting mesh density for adaptive modelling of the global atmosphere.

    Science.gov (United States)

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  16. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.

    2015-01-01

    Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  17. Interoperable mesh components for large-scale, distributed-memory simulations

    International Nuclear Information System (INIS)

    Devine, K; Leung, V; Diachin, L; Miller, M

    2009-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. In this paper, we describe a software component - an abstract data model and programming interface - designed to provide support for parallel unstructured mesh operations. We describe key issues that must be addressed to successfully provide high-performance, distributed-memory unstructured mesh services and highlight some recent research accomplishments in developing new load balancing and MPI-based communication libraries appropriate for leadership class computing. Finally, we give examples of the use of parallel adaptive mesh modification in two SciDAC applications.

  18. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  19. HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT

    International Nuclear Information System (INIS)

    Nonaka, A.; Aspden, A. J.; Almgren, A. S.; Bell, J. B.; Zingale, M.; Woosley, S. E.

    2012-01-01

    We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius of 50 km most favored and a likely range of 40-75 km. This is consistent with our previous coarser (8.68 km resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely. With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought (on the order of 16 km s –1 and 200 km, respectively), and we discuss the potential consequences for the first flames.

  20. Mesh refinement for particle-in-cell plasma simulations: Applications to - and benefits for HIF (heavy ion fusion)

    International Nuclear Information System (INIS)

    Vay, J.L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the drive,r is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if they are to reach the goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion, in particular to the simulation of the ion source and the final beam propagation in the chamber

  1. High-order discrete ordinate transport in non-conforming 2D Cartesian meshes

    International Nuclear Information System (INIS)

    Gastaldo, L.; Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    We present in this paper a numerical scheme for solving the time-independent first-order form of the Boltzmann equation in non-conforming 2D Cartesian meshes. The flux solution technique used here is the discrete ordinate method and the spatial discretization is based on discontinuous finite elements. In order to have p-refinement capability, we have chosen a hierarchical polynomial basis based on Legendre polynomials. The h-refinement capability is also available and the element interface treatment has been simplified by the use of special functions decomposed over the mesh entities of an element. The comparison to a classical S N method using the Diamond Differencing scheme as spatial approximation confirms the good behaviour of the method. (authors)

  2. Open preperitoneal groin hernia repair with mesh

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    Background For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. Data sources...... A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

  3. Open preperitoneal groin hernia repair with mesh

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    BACKGROUND: For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. DATA SOURCES......: A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

  4. A posteriori estimator and adaptive mesh refinement for finite volume finite element method for monophasic flow and solute transport in porous media

    International Nuclear Information System (INIS)

    Amor, H.; Bourgeois, M.

    2012-01-01

    using an adaptive mesh refinement strategy was introduced in MELODIE for the simulation of groundwater flow and solute transport in saturated porous media in 2 dimensions. The selected estimator, based on the explicit residual error, is expected to allow local refinements and thus minimization of the discretization error at an optimal computational cost. Test case: a realistic heterogeneous case with fracturing. In addition to theoretical test cases a more complex case was tested. The purpose of this test case was twofold: - to move from pure theoretical work to an illustrative case within a realistic generic context; however parameter values for hydrodynamic characteristics were chosen so as to highlight the investigated phenomena; - to account for large time and space scales, representative for those required for the simulation of radioactive waste repositories. The general shape of the geological media was designed to cover main features representative of sedimentary formations. Three distinct radionuclide source locations were chosen in order to obtain a set of flow and transport configurations. The entire layer sequence was structured into three hydrogeological units intersected by three sub-vertical faults. The vertical 2D cross-section dimensions are 5 km long by 500 m thick. Two source terms are located in a 100 m-thick layer in the right part of the domain and another one is located in a larger layer in the left part. These two 'host rock' layers consist of the same sedimentary unit with a low permeability, though an offset due to the middle fault. Faults are considered as conductive features. Radionuclides are assumed to be instantaneously released from the three source term locations at t = 0. The a posteriori error estimator and the adaptive mesh algorithm were applied to this heterogeneous problem. Preliminary calculations showed that the implemented a posteriori error estimator method is efficient to solve the equations of flow and advective

  5. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations

    KAUST Repository

    Wang, Yaqi

    2009-04-01

    Adaptive mesh refinement (AMR) has been shown to allow solving partial differential equations to significantly higher accuracy at reduced numerical cost. This paper presents a state-of-the-art AMR algorithm applied to the multigroup neutron diffusion equation for reactor applications. In order to follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm for assembling the terms coupling shape functions from different meshes and show how it can be made efficient by deriving all meshes from a common coarse mesh by hierarchic refinement. Our methods are formulated using conforming finite elements of any order, for any number of energy groups. The spatial error distribution is assessed with a generalization of an error estimator originally derived for the Poisson equation. Our implementation of this algorithm is based on the widely used Open Source adaptive finite element library deal.II and is made available as part of this library\\'s extensively documented tutorial. We illustrate our methods with results for 2-D and 3-D reactor simulations using 2 and 7 energy groups, and using conforming finite elements of polynomial degree up to 6. © 2008 Elsevier Ltd. All rights reserved.

  6. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    Science.gov (United States)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  7. Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths

    Science.gov (United States)

    Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.

    2018-04-01

    We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.

  8. Energy mesh optimization for multi-level calculation schemes

    International Nuclear Information System (INIS)

    Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.

    2011-01-01

    The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)

  9. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    Science.gov (United States)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  10. A highly efficient sharp-interface immersed boundary method with adaptive mesh refinement for bio-inspired flow simulations

    Science.gov (United States)

    Deng, Xiaolong; Dong, Haibo

    2017-11-01

    Developing a high-fidelity, high-efficiency numerical method for bio-inspired flow problems with flow-structure interaction is important for understanding related physics and developing many bio-inspired technologies. To simulate a fast-swimming big fish with multiple finlets or fish schooling, we need fine grids and/or a big computational domain, which are big challenges for 3-D simulations. In current work, based on the 3-D finite-difference sharp-interface immersed boundary method for incompressible flows (Mittal et al., JCP 2008), we developed an octree-like Adaptive Mesh Refinement (AMR) technique to enhance the computational ability and increase the computational efficiency. The AMR is coupled with a multigrid acceleration technique and a MPI +OpenMP hybrid parallelization. In this work, different AMR layers are treated separately and the synchronization is performed in the buffer regions and iterations are performed for the convergence of solution. Each big region is calculated by a MPI process which then uses multiple OpenMP threads for further acceleration, so that the communication cost is reduced. With these acceleration techniques, various canonical and bio-inspired flow problems with complex boundaries can be simulated accurately and efficiently. This work is supported by the MURI Grant Number N00014-14-1-0533 and NSF Grant CBET-1605434.

  11. Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process

    Science.gov (United States)

    Ledalla, Siva Rama Krishna; Tirupathi, Balaji; Sriram, Venkatesh

    2018-06-01

    Layered manufacturing machines use the stereolithography (STL) file to build parts. When a curved surface is converted from a computer aided design (CAD) file to STL, it results in a geometrical distortion and chordal error. Parts manufactured with this file, might not satisfy geometric dimensioning and tolerance requirements due to approximated geometry. Current algorithms built in CAD packages have export options to globally reduce this distortion, which leads to an increase in the file size and pre-processing time. In this work, different mesh subdivision algorithms are applied on STL file of a complex geometric features using MeshLab software. The mesh subdivision algorithms considered in this work are modified butterfly subdivision technique, loops sub division technique and general triangular midpoint sub division technique. A comparative study is made with respect to volume and the build time using the above techniques. It is found that triangular midpoint sub division algorithm is more suitable for the geometry under consideration. Only the wheel cap part is then manufactured on Stratasys MOJO FDM machine. The surface roughness of the part is measured on Talysurf surface roughness tester.

  12. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  13. THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS

    International Nuclear Information System (INIS)

    Mignone, A.; Tzeferacos, P.; Zanni, C.; Bodo, G.; Van Straalen, B.; Colella, P.

    2012-01-01

    We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.

  14. A digital library of radiology images.

    Science.gov (United States)

    Kahn, Charles E

    2006-01-01

    A web-based virtual library of peer-reviewed radiological images was created for use in education and clinical decision support. Images were obtained from open-access content of five online radiology journals and one e-learning web site. Figure captions were indexed by Medical Subject Heading (MeSH) codes, imaging modality, and patient age and sex. This digital library provides a new, valuable online resource.

  15. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.; Suteau, C.; Herbin, R.

    2011-01-01

    The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

  16. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.

    Science.gov (United States)

    Bui, Huu Phuoc; Tomar, Satyendra; Courtecuisse, Hadrien; Audette, Michel; Cotin, Stéphane; Bordas, Stéphane P A

    2018-05-01

    An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Assessment of S(α, β) libraries for criticality safety evaluations of wet storage pools by refined trend analyses

    International Nuclear Information System (INIS)

    Kolbe, E.; Vasiliev, A.; Ferroukhi, H.

    2009-01-01

    In a recent criticality safety evaluation (CSE) of a commercial wet storage pool applying MCNPX-2.5.0 in combination with the ENDF/B-VII.0 and JEFF-3.1 continuous energy cross section libraries, the maximum permissible initial fuel-enrichment limit for water reflected configurations was found to be dependant upon the applied neutron cross section library. More detailed investigations indicated that the difference is mainly caused by different sub-libraries for thermal neutron scattering based on parameterizations of the S(α, β) scattering matrix. Hence an analysis of trends was done with respect to the low energy neutron flux in order to assess the S(α, β) data sets. First, when performing the trend analysis based on the full set of 149 benchmarks that were employed for the validation, significant trends could not be found. But by analyzing a selected subset of benchmarks clear trends with respect to the low energy neutron flux could be detected. The results presented in this paper demonstrate the sensitivity of specific configurations to the parameterizations of the S(α, β) scattering matrix and thus may help to improve CSE of wet storage pools. Finally, in addition to the low energy neutron flux, we also refined the trend analyses with respect to other key (spectrum-related) parameters by performing them with various selected subsets of the full suite of 149 benchmarks. The corresponding outcome using MCNPX 2.5.0 in combination with the ENDF/B-VII.0, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, and JENDL-3.3 neutron cross section libraries are presented and discussed. (authors)

  18. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    Science.gov (United States)

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  19. The quasidiffusion method for transport problems on unstructured meshes

    Science.gov (United States)

    Wieselquist, William A.

    2009-06-01

    In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.

  20. Discontinuous Galerkin discretization and hp-refinement for the resolution of the neutron transport equation

    International Nuclear Information System (INIS)

    Fournier, Damien; Le-Tellier, Romain; Herbin, Raphaele

    2013-01-01

    This paper presents an hp-refinement method for a first order scalar transport reaction equation discretized by a discontinuous Galerkin method. First, the theoretical rates of convergence of h- and p-refinement are recalled and numerically tested. Then, in order to design some meshes, we propose two different estimators of the local error on the spatial domain. These quantities are analyzed and compared depending on the regularity of the solution so as to find the best way to lead the refinement process and the best strategy to choose between h- and p-refinement. Finally, the different possible refinement strategies are compared first on analytical examples and then on realistic applications for neutron transport in a nuclear reactor core. (authors)

  1. A learning heuristic for space mapping and searching self-organizing systems using adaptive mesh refinement

    Science.gov (United States)

    Phillips, Carolyn L.

    2014-09-01

    In a complex self-organizing system, small changes in the interactions between the system's components can result in different emergent macrostructures or macrobehavior. In chemical engineering and material science, such spontaneously self-assembling systems, using polymers, nanoscale or colloidal-scale particles, DNA, or other precursors, are an attractive way to create materials that are precisely engineered at a fine scale. Changes to the interactions can often be described by a set of parameters. Different contiguous regions in this parameter space correspond to different ordered states. Since these ordered states are emergent, often experiment, not analysis, is necessary to create a diagram of ordered states over the parameter space. By issuing queries to points in the parameter space (e.g., performing a computational or physical experiment), ordered states can be discovered and mapped. Queries can be costly in terms of resources or time, however. In general, one would like to learn the most information using the fewest queries. Here we introduce a learning heuristic for issuing queries to map and search a two-dimensional parameter space. Using a method inspired by adaptive mesh refinement, the heuristic iteratively issues batches of queries to be executed in parallel based on past information. By adjusting the search criteria, different types of searches (for example, a uniform search, exploring boundaries, sampling all regions equally) can be flexibly implemented. We show that this method will densely search the space, while preferentially targeting certain features. Using numerical examples, including a study simulating the self-assembly of complex crystals, we show how this heuristic can discover new regions and map boundaries more accurately than a uniformly distributed set of queries.

  2. INGEN: a general-purpose mesh generator for finite element codes

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-05-01

    INGEN is a general-purpose mesh generator for two- and three-dimensional finite element codes. The basic parts of the code are surface and three-dimensional region generators that use linear-blending interpolation formulas. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, and develop displacement and traction boundary conditions. This code can generate truss elements (2 modal points); plane stress, plane strain, and axisymmetry two-dimensional continuum elements (4 to 8 nodal points); plate elements (4 to 8 nodal points); and three-dimensional continuum elements (8 to 21 nodal points). The traction loads generated are consistent with the element generated. The expansion--contraction option is of special interest. This option makes it possible to change an existing mesh such that some regions are refined and others are made coarser than the original mesh. 9 figures

  3. MESHREF, Finite Elements Mesh Combination with Renumbering

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: The program can assemble different meshes stored on tape or cards. Renumbering is performed in order to keep band width low. Voids and/ or local refinement are possible. 2 - Method of solution: Topology and geometry are read according to input specifications. Abundant nodes and elements are eliminated. The new topology and geometry are stored on tape. 3 - Restrictions on the complexity of the problem: Maximum number of nodes = 2000. Maximum number of elements = 1500

  4. Progress in the study of mesh refinement for particle-in-cell plasma simulations and its application to heavy ion fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and, despite rapid progress in computer power, one must consider the use of the most advanced numerical techniques. One of the difficulties of these simulations resides in the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the Adaptive-Mesh-Refinement (AMR) technique. We follow in this article the progress accomplished in the last few months in the merging of the AMR technique with Particle-In-Cell (PIC) method. This includes a detailed modeling of the Lampel-Tiefenback solution for the one-dimensional diode using novel techniques to suppress undesirable numerical oscillations and an AMR patch to follow the head of the particle distribution. We also report new results concerning the modeling of ion sources using the axisymmetric WARPRZ-AMR prototype showing the utility of an AMR patch resolving the emitter vicinity and the beam edge

  5. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  6. Search features of digital libraries

    Directory of Open Access Journals (Sweden)

    Alastair G. Smith

    2000-01-01

    Full Text Available Traditional on-line search services such as Dialog, DataStar and Lexis provide a wide range of search features (boolean and proximity operators, truncation, etc. This paper discusses the use of these features for effective searching, and argues that these features are required, regardless of advances in search engine technology. The literature on on-line searching is reviewed, identifying features that searchers find desirable for effective searching. A selective survey of current digital libraries available on the Web was undertaken, identifying which search features are present. The survey indicates that current digital libraries do not implement a wide range of search features. For instance: under half of the examples included controlled vocabulary, under half had proximity searching, only one enabled browsing of term indexes, and none of the digital libraries enable searchers to refine an initial search. Suggestions are made for enhancing the search effectiveness of digital libraries, for instance by: providing a full range of search operators, enabling browsing of search terms, enhancement of records with controlled vocabulary, enabling the refining of initial searches, etc.

  7. Mesh Excision: Is Total Mesh Excision Necessary?

    Science.gov (United States)

    Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M

    2016-04-01

    Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement.

  8. Stable grid refinement and singular source discretization for seismic wave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N A; Sjogreen, B

    2009-10-30

    An energy conserving discretization of the elastic wave equation in second order formulation is developed for a composite grid, consisting of a set of structured rectangular component grids with hanging nodes on the grid refinement interface. Previously developed summation-by-parts properties are generalized to devise a stable second order accurate coupling of the solution across mesh refinement interfaces. The discretization of singular source terms of point force and point moment tensor type are also studied. Based on enforcing discrete moment conditions that mimic properties of the Dirac distribution and its gradient, previous single grid formulas are generalized to work in the vicinity of grid refinement interfaces. These source discretization formulas are shown to give second order accuracy in the solution, with the error being essentially independent of the distance between the source and the grid refinement boundary. Several numerical examples are given to illustrate the properties of the proposed method.

  9. Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Matthew L.; Owen, Steven James

    2010-09-01

    Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.

  10. Discontinuous finite element solution of the radiation diffusion equation on arbitrary polygonal meshes and locally adapted quadrilateral grids

    International Nuclear Information System (INIS)

    Ragusa, Jean C.

    2015-01-01

    In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement

  11. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    Science.gov (United States)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  12. Notes on the Mesh Handler and Mesh Data Conversion

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok

    2009-01-01

    At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS

  13. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  14. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; López-Cámara, Diego

    2012-01-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρ∝r –k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  15. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  16. Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.

    2013-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

  17. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer

  18. Textile properties of synthetic prolapse mesh in response to uniaxial loading

    Science.gov (United States)

    Barone, William R.; Moalli, Pamela A.; Abramowitch, Steven D.

    2016-01-01

    , with values decreasing by as much as 87% (P mesh products that were tested were found to have porosities that approached 0% and 0 pores with diameters >1 mm. CONCLUSION In this study, it was shown that the pore size of current prolapse meshes dramatically decreases in response to mechanical loading. These findings suggest that prolapse meshes, which are more likely to experience tensile forces in vivo relative to hernia repair meshes, have pores that are unfavorable for tissue integration after surgical tensioning and/or loading in urogynecologic surgeries. Such decreases in pore geometry support the hypothesis that regional increases in the concentration of mesh leads to an enhanced local foreign body response. Although pore deformation in transvaginal meshes requires further characterization, the findings presented here provide a mechanical understanding that can be used to recognize potential areas of concern for complex mesh geometries. Understanding mesh mechanics in response to surgical and in vivo loading conditions may provide improved design criteria for mesh and a refinement of surgical techniques, ultimately leading to better patient outcomes. PMID:27001219

  19. Building and evaluating an informatics tool to facilitate analysis of a biomedical literature search service in an academic medical center library.

    Science.gov (United States)

    Hinton, Elizabeth G; Oelschlegel, Sandra; Vaughn, Cynthia J; Lindsay, J Michael; Hurst, Sachiko M; Earl, Martha

    2013-01-01

    This study utilizes an informatics tool to analyze a robust literature search service in an academic medical center library. Structured interviews with librarians were conducted focusing on the benefits of such a tool, expectations for performance, and visual layout preferences. The resulting application utilizes Microsoft SQL Server and .Net Framework 3.5 technologies, allowing for the use of a web interface. Customer tables and MeSH terms are included. The National Library of Medicine MeSH database and entry terms for each heading are incorporated, resulting in functionality similar to searching the MeSH database through PubMed. Data reports will facilitate analysis of the search service.

  20. A node-centered local refinement algorithm for poisson's equation in complex geometries

    International Nuclear Information System (INIS)

    McCorquodale, Peter; Colella, Phillip; Grote, David P.; Vay, Jean-Luc

    2004-01-01

    This paper presents a method for solving Poisson's equation with Dirichlet boundary conditions on an irregular bounded three-dimensional region. The method uses a nodal-point discretization and adaptive mesh refinement (AMR) on Cartesian grids, and the AMR multigrid solver of Almgren. The discrete Laplacian operator at internal boundaries comes from either linear or quadratic (Shortley-Weller) extrapolation, and the two methods are compared. It is shown that either way, solution error is second order in the mesh spacing. Error in the gradient of the solution is first order with linear extrapolation, but second order with Shortley-Weller. Examples are given with comparison with the exact solution. The method is also applied to a heavy-ion fusion accelerator problem, showing the advantage of adaptivity

  1. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.

    2014-01-01

    Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer

  2. Coupled Physics Environment (CouPE) library - Design, Implementation, and Release

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Vijay S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-30

    Over several years, high fidelity, validated mono-­physics solvers with proven scalability on peta-­scale architectures have been developed independently. Based on a unified component-­based architecture, these existing codes can be coupled with a unified mesh-­data backplane and a flexible coupling-­strategy-­based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-­based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-­Based Applications) toolkit. The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-­source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-­physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-­hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging

  3. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

    Science.gov (United States)

    Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.

    2018-02-01

    By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

  4. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  5. Research on Multiple-Split Load Sharing Characteristics of 2-Stage External Meshing Star Gear System in Consideration of Displacement Compatibility

    Directory of Open Access Journals (Sweden)

    Shuai Mo

    2017-01-01

    Full Text Available This paper studies the multiple-split load sharing mechanism of gears in two-stage external meshing planetary transmission system of aeroengine. According to the eccentric error, gear tooth thickness error, pitch error, installation error, and bearing manufacturing error, we performed the meshing error analysis of equivalent angles, respectively, and we also considered the floating meshing error caused by the variation of the meshing backlash, which is from the floating of all gears at the same time. Finally, we obtained the comprehensive angle meshing error of the two-stage meshing line, established a refined mathematical computational model of 2-stage external 3-split loading sharing coefficient in consideration of displacement compatibility, got the regular curves of the load sharing coefficient and load sharing characteristic curve of full floating multiple-split and multiple-stage system, and took the variation law of the floating track and the floating quantity of the center wheel. These provide a scientific theory to determine the load sharing coefficient, reasonable load distribution, and control tolerances in aviation design and manufacturing.

  6. BOT3P5.2, 3D Mesh Generator and Graphical Display of Geometry for Radiation Transport Codes, Display of Results

    International Nuclear Information System (INIS)

    Orsi, Roberto; Bidaud, Adrien

    2007-01-01

    1 - Description of program or function: BOT3P was originally conceived as a set of standard FORTRAN 77 language programs in order to give the users of the DORT and TORT deterministic transport codes some useful diagnostic tools to prepare and check their input data files. Later versions extended the possibility to produce the geometrical, material distribution and fixed neutron source data to other deterministic transport codes such as TWODANT/THREEDANT of the DANTSYS system, PARTISN and, potentially, to any transport code through BOT3P binary output files that can be easily interfaced (see, for example, the Russian two-dimensional (2D) and three-dimensional (3D) discrete ordinates neutron, photon and charged particle transport codes KASKAD-S-2.5 and KATRIN-2.0). As from Version 5.1 BOT3P contained important additions specifically addressed to radiation transport analysis for medical applications. BOT3P-5.2 contains new graphics capabilities. Some of them enable users to select space sub-domains of the total mesh grid in order to improve the zoom simulation of the geometry, both in 2D cuts and in 3D. Moreover the new BOT3P module (PDTM) may improve the interface of BOT3P geometrical models to transport analysis codes. The following programs are included in the BOT3P software package: GGDM, DDM, GGTM, DTM2, DTM3, RVARSCL, COMPARE, MKSRC, CATSM, DTET, and PDTM. The main features of these different programs are described. 2 - Methods: GGDM and GGTM work similarly from the logical point of view. Since the 3D case is more general, the following description refers to GGTM. All the co-ordinate values that characterise the geometrical scheme at the basis of the 3D transport code geometrical and material model are read, sorted and all stored if different from the neighbouring ones more than an input tolerance established by the user. These co-ordinates are always present in the fine-mesh boundary arrays independently of the mesh grid refinement options, because they

  7. Seeking new surgical predictors of mesh exposure after transvaginal mesh repair.

    Science.gov (United States)

    Wu, Pei-Ying; Chang, Chih-Hung; Shen, Meng-Ru; Chou, Cheng-Yang; Yang, Yi-Ching; Huang, Yu-Fang

    2016-10-01

    The purpose of this study was to explore new preventable risk factors for mesh exposure. A retrospective review of 92 consecutive patients treated with transvaginal mesh (TVM) in the urogynecological unit of our university hospital. An analysis of perioperative predictors was conducted in patients after vaginal repairs using a type 1 mesh. Mesh complications were recorded according to International Urogynecological Association (IUGA) definitions. Mesh-exposure-free durations were calculated by using the Kaplan-Meier method and compared between different closure techniques using log-rank test. Hazard ratios (HR) of predictors for mesh exposure were estimated by univariate and multivariate analyses using Cox proportional hazards regression models. The median surveillance interval was 24.1 months. Two late occurrences were found beyond 1 year post operation. No statistically significant correlation was observed between mesh exposure and concomitant hysterectomy. Exposure risks were significantly higher in patients with interrupted whole-layer closure in univariate analysis. In the multivariate analysis, hematoma [HR 5.42, 95 % confidence interval (CI) 1.26-23.35, P = 0.024), Prolift mesh (HR 5.52, 95 % CI 1.15-26.53, P = 0.033), and interrupted whole-layer closure (HR 7.02, 95 % CI 1.62-30.53, P = 0.009) were the strongest predictors of mesh exposure. Findings indicate the risks of mesh exposure and reoperation may be prevented by avoiding hematoma, large amount of mesh, or interrupted whole-layer closure in TVM surgeries. If these risk factors are prevented, hysterectomy may not be a relative contraindication for TVM use. We also provide evidence regarding mesh exposure and the necessity for more than 1 year of follow-up and preoperative counselling.

  8. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    Science.gov (United States)

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

    Science.gov (United States)

    Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

    2016-01-01

    Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh

  10. Adaptive temporal refinement in injection molding

    Science.gov (United States)

    Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek

    2018-05-01

    Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.

  11. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Science.gov (United States)

    Lu, Yin; Figler, Bryan; Huang, Hong; Tu, Yi-Cheng; Wang, Ju; Cheng, Feng

    2017-01-01

    Identifying drug-drug interaction (DDI) is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings) terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  12. How to Use the Marine Realms Information Bank (MRIB) Digital Libraries

    Science.gov (United States)

    Lightsom, Frances L.; Allwardt, Alan O.

    2009-01-01

    Marine Realms Information Bank (MRIB) digital libraries provide access to free online scientific resources about oceans, coasts, and coastal watersheds. MRIB allows category, geographic, and keyword searching, alone or in combination. Instructions for searching the three MRIB libraries and for refining the searches are explained in detail.

  13. Urogynecologic Surgical Mesh Implants

    Science.gov (United States)

    ... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...

  14. Intravesical midurethral sling mesh erosion secondary to transvaginal mesh reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Sukanda Bin Jaili

    2015-05-01

    Conclusion: Repeated vaginal reconstructive surgery may jeopardize a primary mesh or sling, and pose a high risk of mesh erosion, which may be delayed for several years. Removal of the mesh erosion and bladder repair are feasible pervaginally with good outcome.

  15. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  16. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    International Nuclear Information System (INIS)

    Saitoh, Takayuki R.

    2017-01-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  17. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Takayuki R., E-mail: saitoh@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2017-02-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  18. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Mesh removal following transvaginal mesh placement: a case series of 104 operations.

    Science.gov (United States)

    Marcus-Braun, Naama; von Theobald, Peter

    2010-04-01

    The objective of the study was to reveal the way we treat vaginal mesh complications in a trained referral center. This is a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 5-year period. Eighty-three patients underwent 104 operations including 61 complete mesh removal, 14 partial excision, 15 section of sub-urethral sling, and five laparoscopies. Main indications were erosion, infection, granuloma, incomplete voiding, and pain. Fifty-eight removals occurred more than 2 years after the primary mesh placement. Mean operation time was 21 min, and there were two intraoperative and ten minor postoperative complications. Stress urinary incontinence (SUI) recurred in 38% and cystocele in 19% of patients. In a trained center, mesh removal was found to be a quick and safe procedure. Mesh-related complications may frequently occur more than 2 years after the primary operation. Recurrence was mostly associated with SUI and less with genital prolapse.

  1. Improving MeSH classification of biomedical articles using citation contexts.

    Science.gov (United States)

    Aljaber, Bader; Martinez, David; Stokes, Nicola; Bailey, James

    2011-10-01

    Medical Subject Headings (MeSH) are used to index the majority of databases generated by the National Library of Medicine. Essentially, MeSH terms are designed to make information, such as scientific articles, more retrievable and assessable to users of systems such as PubMed. This paper proposes a novel method for automating the assignment of biomedical publications with MeSH terms that takes advantage of citation references to these publications. Our findings show that analysing the citation references that point to a document can provide a useful source of terms that are not present in the document. The use of these citation contexts, as they are known, can thus help to provide a richer document feature representation, which in turn can help improve text mining and information retrieval applications, in our case MeSH term classification. In this paper, we also explore new methods of selecting and utilising citation contexts. In particular, we assess the effect of weighting the importance of citation terms (found in the citation contexts) according to two aspects: (i) the section of the paper they appear in and (ii) their distance to the citation marker. We conduct intrinsic and extrinsic evaluations of citation term quality. For the intrinsic evaluation, we rely on the UMLS Metathesaurus conceptual database to explore the semantic characteristics of the mined citation terms. We also analyse the "informativeness" of these terms using a class-entropy measure. For the extrinsic evaluation, we run a series of automatic document classification experiments over MeSH terms. Our experimental evaluation shows that citation contexts contain terms that are related to the original document, and that the integration of this knowledge results in better classification performance compared to two state-of-the-art MeSH classification systems: MeSHUP and MTI. Our experiments also demonstrate that the consideration of Section and Distance factors can lead to statistically

  2. Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2015-01-01

    Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future

  3. Implementation of refined core thermal-hydraulic calculation feature in the MARS/MASTER code

    International Nuclear Information System (INIS)

    Joo, H. K.; Jung, J. J.; Cho, B. O.; Ji, S. K.; Lee, W. J.; Jang, M. H.

    2000-01-01

    As an effort to enhance the fidelity of the core thermal/hydraulic calculation in the MARS/MASTER code, a best-estimate system/core coupled code, the COBRA-III module of MASTER is activated that enables refined core T/H calculations. Since the COBRA-III module is capable of using fuel-assembly sized nodes, the resolution of the T/H solution is high so that accurate incorporation of local T/H feedback effects becomes possible. The COBRA-III module is utilized such that the refined core T/H calculation is performed using the coarse-mesh flow boundary conditions specified by MARS at both ends of the core. The results of application to the OECD MSLB benchmark analysis indicate that the local peaking factor can be reduced by upto 15% with the refined calculation through the accurate representation of the local Doppler effect evaluation, although the prediction of the global transient behaviors such as the total core power change remain essentially unaffected

  4. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  5. The Cambridge crystallography subroutine library

    International Nuclear Information System (INIS)

    Brown, P.J.; Matthewman, J.C.

    1981-06-01

    This manual is an amalgamation of the original Cambridge Crystallography Subroutine Library Mark II manual and its supplement No I. The original Mark II system, a set of FORTRAN Subroutines which can be used for standard crystallographic calculations, has been extended to include facilities for conventional least squares refinement. Several new routines have also been added. (U.K.)

  6. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms.

    Directory of Open Access Journals (Sweden)

    Yin Lu

    Full Text Available Identifying drug-drug interaction (DDI is an important topic for the development of safe pharmaceutical drugs and for the optimization of multidrug regimens for complex diseases such as cancer and HIV. There have been about 150,000 publications on DDIs in PubMed, which is a great resource for DDI studies. In this paper, we introduced an automatic computational method for the systematic analysis of the mechanism of DDIs using MeSH (Medical Subject Headings terms from PubMed literature. MeSH term is a controlled vocabulary thesaurus developed by the National Library of Medicine for indexing and annotating articles. Our method can effectively identify DDI-relevant MeSH terms such as drugs, proteins and phenomena with high accuracy. The connections among these MeSH terms were investigated by using co-occurrence heatmaps and social network analysis. Our approach can be used to visualize relationships of DDI terms, which has the potential to help users better understand DDIs. As the volume of PubMed records increases, our method for automatic analysis of DDIs from the PubMed database will become more accurate.

  7. Production of application libraries for WIMS

    International Nuclear Information System (INIS)

    Dean, C.J.

    1996-01-01

    The WIMS codes have been developed over a period of 30 years to include sophisticated modelling of many thermal reactor lattices. WIMS6 is currently being developed to include the flexibility of WIMSE together with the case of use seen in LWRWIMS. A new cross-section library is to be released with WIMS6. For the first time since the original WIMSD was written, the library is being generated from completely new differential data based mainly on JEF2.2. Quality Assurance into the XMAS library is achieved in three levels; through general procedures during assembly, by validation studies and by verification. The main general procedure involves forming overall physics quantities (Thermal average cross section, resonance integrals and fission spectrum average values) from the point evaluations and comparing them with similar quantities from the XMAS library. Examples of validation are studies optimizing the background cross-sections at which resonance integrals are tabulated and comparing reaction rates from homogeneous calculations with those formed in Monte Carlo and deterministic codes which represent energy variation of cross-section on a hyperfine energy mesh. Verification involves performing benchmark calculations and comparing results with experiment and calculations with the Apollo code. The current XMAS library contains 140 nuclides based on JEF2.2 evaluations. (author)

  8. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    Science.gov (United States)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  9. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-24

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  10. Efficacy of Prophylactic Mesh in End-Colostomy Construction: A Systematic Review and Meta-analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Wang, Shuanhu; Wang, Wenbin; Zhu, Bing; Song, Guolei; Jiang, Congqiao

    2016-10-01

    Parastomal hernia is a very common complication after colostomy, especially end-colostomy. It is unclear whether prophylactic placement of mesh at the time of stoma formation could prevent parastomal hernia formation after surgery for rectal cancer. A systematic review and meta-analysis were conducted to evaluate the efficacy of prophylactic mesh in end-colostomy construction. PubMed, Embase, and the Cochrane Library were searched, covering records entered from their inception to September 2015. Randomized controlled trials (RCTs) comparing stoma with mesh to stoma without mesh after surgery for rectal cancer were included. The primary outcome was the incidence of parastomal hernia. Pooled risk ratios (RR) with 95 % confidence intervals (CI) were obtained using random effects models. Six RCTs containing 309 patients were included. Parastomal hernia occurred in 24.4 % (38 of 156) of patients with mesh and 50.3 % (77 of 153) of patients without mesh. Meta-analysis showed a lower incidence of parastomal hernia (RR, 0.42; 95 % CI 0.22-0.82) and reoperation related to parastomal hernia (RR, 0.23; 95 % CI 0.06-0.89) in patients with mesh. Stoma-related morbidity was similar between mesh group and non-mesh group (RR, 0.65; 95 % CI 0.33-1.30). Prophylactic placement of a mesh at the time of a stoma formation seems to be associated with a significant reduction in the incidence of parastomal hernia and reoperation related to parastomal hernia after surgery for rectal cancer, but not the rate of stoma-related morbidity. However, the results should be interpreted with caution because of the heterogeneity among the studies.

  11. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

    Science.gov (United States)

    Mao, Yuqing; Lu, Zhiyong

    2017-04-17

    MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

  12. Testing Library Specifications by Verifying Conformance Tests

    DEFF Research Database (Denmark)

    Kiniry, Joseph Roland; Zimmerman, Daniel; Hyland, Ralph

    2012-01-01

    of client programs. Specication and verification researchers regularly face the question of whether the library specications we use are correct and useful, and we have collectively provided no good answers. Over the past few years we have created and refined a software engineering process, which we call...

  13. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    Science.gov (United States)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  14. Laparoscopic appendicectomy for suspected mesh-induced appendicitis after laparoscopic transabdominal preperitoneal polypropylene mesh inguinal herniorraphy

    Directory of Open Access Journals (Sweden)

    Jennings Jason

    2010-01-01

    Full Text Available Laparoscopic inguinal herniorraphy via a transabdominal preperitoneal (TAPP approach using Polypropylene Mesh (Mesh and staples is an accepted technique. Mesh induces a localised inflammatory response that may extend to, and involve, adjacent abdominal and pelvic viscera such as the appendix. We present an interesting case of suspected Mesh-induced appendicitis treated successfully with laparoscopic appendicectomy, without Mesh removal, in an elderly gentleman who presented with symptoms and signs of acute appendicitis 18 months after laparoscopic inguinal hernia repair. Possible mechanisms for Mesh-induced appendicitis are briefly discussed.

  15. WWER440 few group data library preparation and its application in MOBY-DICK modular system

    International Nuclear Information System (INIS)

    Krysl, V.; Mikolas, P.; Svarny, J.

    2002-01-01

    Paper provides summary of methodology of few-group library preparation with emphasis on new features of assemblies, like fuel assemblies with Gd burnable poison or Control Fuel Assembly with Hf plates. Special attention is devoted to the transient part (coupler) of Control Fuel Assembly from the point of view of boundary conditions preparation. Based of this methodology prepared library is implemented into macro code for different number of axial meshes for both coarse and fine mesh diffusion calculations. Problems with local power peaking calculations in WWER-440 cores are closely connected with the correct modeling of the power perturbations in the neighbourhood of Control Fuel Assembly coupler. The new version of MOBY-DICK provided with the new few group data library can assess most of effects induced by insertion of Control Fuel Assembly in the core including effects of newly designed Hf plates in the coupler of Control Fuel Assembly. Compatibility of transport and diffusion calculation was taken into account in the analysis of Control Fuel Assembly movement without/with Hf plates (Authors)

  16. Persistent pelvic pain following transvaginal mesh surgery: a cause for mesh removal.

    Science.gov (United States)

    Marcus-Braun, Naama; Bourret, Antoine; von Theobald, Peter

    2012-06-01

    Persistent pelvic pain after vaginal mesh surgery is an uncommon but serious complication that greatly affects women's quality of life. Our aim was to evaluate various procedures for mesh removal performed at a tertiary referral center in cases of persistent pelvic pain, and to evaluate the ensuing complications and outcomes. A retrospective study was conducted at the University Hospital of Caen, France, including all patients treated for removal or section of vaginal mesh due to pelvic pain as a primary cause, between January 2004 and September 2009. Ten patients met the inclusion criteria. Patients were diagnosed between 10 months and 3 years after their primary operation. Eight cases followed suburethral sling procedures and two followed mesh surgery for pelvic organ prolapse. Patients presented with obturator neuralgia (6), pudendal neuralgia (2), dyspareunia (1), and non-specific pain (1). The surgical treatment to release the mesh included: three cases of extra-peritoneal laparoscopy, four cases of complete vaginal mesh removal, one case of partial mesh removal and two cases of section of the suburethral sling. In all patients with obturator neuralgia, symptoms were resolved or improved, whereas in both cases of pudendal neuralgia the symptoms continued. There were no intra-operative complications. Post-operative Retzius hematoma was observed in one patient after laparoscopy. Mesh removal in a tertiary center is a safe procedure, necessary in some cases of persistent pelvic pain. Obturator neuralgia seems to be easier to treat than pudendal neuralgia. Early diagnosis is the key to success in prevention of chronic disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays

    Directory of Open Access Journals (Sweden)

    Essadki Mohamed

    2016-09-01

    Full Text Available Predictive simulation of liquid fuel injection in automotive engines has become a major challenge for science and applications. The key issue in order to properly predict various combustion regimes and pollutant formation is to accurately describe the interaction between the carrier gaseous phase and the polydisperse evaporating spray produced through atomization. For this purpose, we rely on the EMSM (Eulerian Multi-Size Moment Eulerian polydisperse model. It is based on a high order moment method in size, with a maximization of entropy technique in order to provide a smooth reconstruction of the distribution, derived from a Williams-Boltzmann mesoscopic model under the monokinetic assumption [O. Emre (2014 PhD Thesis, École Centrale Paris; O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014 Flow, Turbulence and Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe, S. de Chaisemartin, F. Laurent, M. Massot (2015 Atomization Sprays 25, 189-254; D. Kah, F. Laurent, M. Massot, S. Jay (2012 J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran, S. de Chaisemartin, S. Jay, F. Laurent, M. Massot (2015 Int. J. Multiphase Flows 71, 38-65; A. Vié, F. Laurent, M. Massot (2013 J. Comp. Phys. 237, 277-310]. The present contribution relies on a major extension of this model [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot (2016 Submitted to SIAM J. Appl. Math.], with the aim of building a unified approach and coupling with a separated phases model describing the dynamics and atomization of the interface near the injector. The novelty is to be found in terms of modeling, numerical schemes and implementation. A new high order moment approach is introduced using fractional moments in surface, which can be related to geometrical quantities of the gas-liquid interface. We also provide a novel algorithm for an accurate resolution of the evaporation. Adaptive mesh refinement properly scaling on massively

  18. Early experience with mesh excision for adverse outcomes after transvaginal mesh placement using prolapse kits.

    Science.gov (United States)

    Ridgeway, Beri; Walters, Mark D; Paraiso, Marie Fidela R; Barber, Matthew D; McAchran, Sarah E; Goldman, Howard B; Jelovsek, J Eric

    2008-12-01

    The purpose of this study was to determine the complications, treatments, and outcomes in patients choosing to undergo removal of mesh previously placed with a mesh procedural kit. This was a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 3-year period at Cleveland Clinic. At last follow-up, patients reported degree of pain, level of improvement, sexual activity, and continued symptoms. Nineteen patients underwent removal of mesh during the study period. Indications for removal included chronic pain (6/19), dyspareunia (6/19), recurrent pelvic organ prolapse (8/19), mesh erosion (12/19), and vesicovaginal fistula (3/19), with most patients (16/19) citing more than 1 reason. There were few complications related to the mesh removal. Most patients reported significant relief of symptoms. Mesh removal can be technically difficult but appears to be safe with few complications and high relief of symptoms, although some symptoms can persist.

  19. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  20. Parallel-In-Time For Moving Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Southworth, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-04

    With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is applied to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.

  1. Surgical management of lower urinary mesh perforation after mid-urethral polypropylene mesh sling: mesh excision, urinary tract reconstruction and concomitant pubovaginal sling with autologous rectus fascia.

    Science.gov (United States)

    Shah, Ketul; Nikolavsky, Dmitriy; Gilsdorf, Daniel; Flynn, Brian J

    2013-12-01

    We present our management of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling using a novel combination of surgical techniques including total or near total mesh excision, urinary tract reconstruction, and concomitant pubovaginal sling with autologous rectus fascia in a single operation. We retrospectively reviewed the medical records of 189 patients undergoing transvaginal removal of polypropylene mesh from the lower urinary tract or vagina. The focus of this study is 21 patients with LUT mesh perforation after mid-urethral polypropylene mesh sling. We excluded patients with LUT mesh perforation from prolapse kits (n = 4) or sutures (n = 11), or mesh that was removed because of isolated vaginal wall exposure without concomitant LUT perforation (n = 164). Twenty-one patients underwent surgical removal of mesh through a transvaginal approach or combined transvaginal/abdominal approaches. The location of the perforation was the urethra in 14 and the bladder in 7. The mean follow-up was 22 months. There were no major intraoperative complications. All patients had complete resolution of the mesh complication and the primary symptom. Of the patients with urethral perforation, continence was achieved in 10 out of 14 (71.5 %). Of the patients with bladder perforation, continence was achieved in all 7. Total or near total removal of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling can completely resolve LUT mesh perforation in a single operation. A concomitant pubovaginal sling can be safely performed in efforts to treat existing SUI or avoid future surgery for SUI.

  2. 3D visualization and finite element mesh formation from wood anatomy samples, Part I – Theoretical approach

    Directory of Open Access Journals (Sweden)

    Petr Koňas

    2009-01-01

    Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero co­lour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh

  3. Numerical methods and analysis of the nonlinear Vlasov equation on unstructured meshes of phase space

    International Nuclear Information System (INIS)

    Besse, Nicolas

    2003-01-01

    This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr

  4. [Modern referral-information service in the Central Medical Library of the University of Zagreb Medical School].

    Science.gov (United States)

    Hadjina, G; Granić, D; Bekavac, A

    1990-01-01

    New technologies in information and retrieval services of the Central Medical Library are presented, as well as comparison between traditional search of biomedical literature and search of biomedical bases available on CD-ROM and on-line. MeSH thesaurus represents the basis for all modes of searches, either through published indexes (Index Medicus, Biomedicina Iugoslavica), searches through on-line, or via CD-ROM technology. Experience in indexing according to MeSH structure helps us to search and retrieve biomedical literature on new media too. Great interest in new media for search and retrieval of biomedical literature among our users (100%) justifies their introduction into the Library. In the period of four months, 75% of our users chose CD-ROM technology in their search, 25% chose on-line search, and both technologies were combined by 33% of the users. Having these new media in our library we have reached the point from which we join the world biomedical information network and successfully meet the growing need for information in the field of biomedicine.

  5. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

    Science.gov (United States)

    Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

    2013-04-01

    Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

  6. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  7. Streaming simplification of tetrahedral meshes.

    Science.gov (United States)

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  8. Towards automated crystallographic structure refinement with phenix.refine

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); Mustyakimov, Marat; Terwilliger, Thomas C. [Los Alamos National Laboratory, M888, Los Alamos, NM 87545 (United States); Urzhumtsev, Alexandre [CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy (France); Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720 (United States); University of California Berkeley, Berkeley, CA 94720 (United States)

    2012-04-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods. phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.

  9. Laparoscopic mesh explantation and drainage of sacral abscess remote from transvaginal excision of exposed sacral colpopexy mesh.

    Science.gov (United States)

    Roth, Ted M; Reight, Ian

    2012-07-01

    Sacral colpopexy may be complicated by mesh exposure, and the surgical treatment of mesh exposure typically results in minor postoperative morbidity and few delayed complications. A 75-year-old woman presented 7 years after a laparoscopic sacral colpopexy, with Mersilene mesh, with an apical mesh exposure. She underwent an uncomplicated transvaginal excision and was asymptomatic until 8 months later when she presented with vaginal drainage and a sacral abscess. This was successfully treated with laparoscopic enterolysis, drainage of the abscess, and explantation of the remaining mesh. Incomplete excision of exposed colpopexy mesh can lead to ascending infection and sacral abscess. Laparoscopic drainage and mesh removal may be considered in these patients.

  10. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    Science.gov (United States)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh

  11. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

  12. SUPERIMPOSED MESH PLOTTING IN MCNP

    Energy Technology Data Exchange (ETDEWEB)

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  13. Cache-Oblivious Mesh Layouts

    International Nuclear Information System (INIS)

    Yoon, S; Lindstrom, P; Pascucci, V; Manocha, D

    2005-01-01

    We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications

  14. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  15. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  16. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Dällenbach P

    2015-04-01

    Full Text Available Patrick Dällenbach Department of Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland Abstract: Pelvic organ prolapse (POP is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to

  17. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-19

    PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial

  18. Management of complications of mesh surgery.

    Science.gov (United States)

    Lee, Dominic; Zimmern, Philippe E

    2015-07-01

    Transvaginal placements of synthetic mid-urethral slings and vaginal meshes have largely superseded traditional tissue repairs in the current era because of presumed efficacy and ease of implant with device 'kits'. The use of synthetic material has generated novel complications including mesh extrusion, pelvic and vaginal pain and mesh contraction. In this review, our aim is to discuss the management, surgical techniques and outcomes associated with mesh removal. Recent publications have seen an increase in presentation of these mesh-related complications, and reports from multiple tertiary centers have suggested that not all patients benefit from surgical intervention. Although the true incidence of mesh complications is unknown, recent publications can serve to guide physicians and inform patients of the surgical outcomes from mesh-related complications. In addition, the literature highlights the growing need for a registry to account for a more accurate reporting of these events and to counsel patients on the risk and benefits before proceeding with mesh surgeries.

  19. User Manual for the PROTEUS Mesh Tools

    International Nuclear Information System (INIS)

    Smith, Micheal A.; Shemon, Emily R.

    2015-01-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT M eshToMesh.x and the MT R adialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as ''mesh'' input for any of the mesh tools discussed in this manual.

  20. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Science.gov (United States)

    Dällenbach, Patrick

    2015-01-01

    Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324

  1. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  2. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

    Science.gov (United States)

    Liu, Zheng; Xue, Kaiping; Hong, Peilin

    The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

  4. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali

    2017-02-25

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  5. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi

    2017-01-01

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  6. Transrectal Mesh Erosion Requiring Bowel Resection.

    Science.gov (United States)

    Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence

  7. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    Science.gov (United States)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  8. Coarse mesh code development

    Energy Technology Data Exchange (ETDEWEB)

    Lieberoth, J.

    1975-06-15

    The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.

  9. Towards automated crystallographic structure refinement with phenix.refine

    OpenAIRE

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W.; Mustyakimov, Marat; Terwilliger, Thomas C.; Urzhumtsev, Alexandre; Zwart, Peter H.; Adams, Paul D.

    2012-01-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An i...

  10. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  11. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  12. Meshes optimized for discrete exterior calculus (DEC).

    Energy Technology Data Exchange (ETDEWEB)

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  13. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  14. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

    2011-01-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  15. Leveraging the power of mesh

    Energy Technology Data Exchange (ETDEWEB)

    Glass, H. [Cellnet, Alpharetta, GA (United States)

    2006-07-01

    Mesh network applications are used by utilities for metering, demand response, and mobile workforce management. This presentation provided an overview of a multi-dimensional mesh application designed to offer improved scalability and higher throughput in advanced metering infrastructure (AMI) systems. Mesh applications can be used in AMI for load balancing and forecasting, as well as for distribution and transmission planning. New revenue opportunities can be realized through the application's ability to improve notification and monitoring services, and customer service communications. Mesh network security features include data encryption, data fragmentation and the automatic re-routing of data. In order to use mesh network applications, networks must have sufficient bandwidth and provide flexibility at the endpoint layer to support multiple devices from multiple vendors, as well as support multiple protocols. It was concluded that smart meters will not enable energy response solutions without an underlying AMI that is reliable, scalable and self-healing. .refs., tabs., figs.

  16. Conception and development of an adaptive energy mesher for multigroup library generation of the transport codes

    International Nuclear Information System (INIS)

    Mosca, P.

    2009-12-01

    The deterministic transport codes solve the stationary Boltzmann equation in a discretized energy formalism called multigroup. The transformation of continuous data in a multigroup form is obtained by averaging the highly variable cross sections of the resonant isotopes with the solution of the self-shielding models and the remaining ones with the coarse energy spectrum of the reactor type. So far the error of such an approach could only be evaluated retrospectively. To remedy this, we studied in this thesis a set of methods to control a priori the accuracy and the cost of the multigroup transport computation. The energy mesh optimisation is achieved using a two step process: the creation of a reference mesh and its optimized condensation. In the first stage, by refining locally and globally the energy mesh, we seek, on a fine energy mesh with subgroup self-shielding, a solution equivalent to a reference solver (Monte Carlo or pointwise deterministic solver). In the second step, once fixed the number of groups, depending on the acceptable computational cost, and chosen the most appropriate self-shielding models to the reactor type, we look for the best bounds of the reference mesh minimizing reaction rate errors by the particle swarm optimization algorithm. This new approach allows us to define new meshes for fast reactors as accurate as the currently used ones, but with fewer groups. (author)

  17. Hernia Surgical Mesh Implants

    Science.gov (United States)

    ... knitted mesh or non-knitted sheet forms. The synthetic materials used can be absorbable, non-absorbable or a combination of absorbable and non-absorbable materials. Animal-derived mesh are made of animal tissue, such as intestine or skin, that has been processed and disinfected to be ...

  18. A THREE-YEAR EXPERIENCE WITH ANTERIOR TRANSOBTURATOR MESH (ATOM AND POSTERIOR ISCHIORECTAL MESH (PIRM

    Directory of Open Access Journals (Sweden)

    Marijan Lužnik

    2018-02-01

    Full Text Available Background. Use of alloplastic mesh implantates allow a new urogynecologycal surgical techniques achieve a marked improvement in pelvic organ static and pelvic floor function with minimally invasive needle transvaginal intervention like an anterior transobturator mesh (ATOM and a posterior ischiorectal mesh (PIRM procedures. Methods. In three years, between April 2006 and May 2009, we performed one hundred and eightyfour operative corrections of female pelvic organ prolapse (POP and pelvic floor dysfunction (PFD with mesh implantates. The eighty-three patients with surgical procedure TVT-O or Monarc as solo intervention indicated by stress urinary incontinence without POP, are not included in this number. In 97 % of mesh operations, Gynemesh 10 × 15 cm was used. For correction of anterior vaginal prolapse with ATOM procedure, Gynemesh was individually trimmed in mesh with 6 free arms for tension-free transobturator application and tension-free apical collar. IVS (Intravaginal sling 04 Tunneller (Tyco needle system was used for transobturator application of 6 arms through 4 dermal incisions (2 on right and 2 on left. Minimal anterior median colpotomy was made in two separate parts. For correction of posterior vaginal prolapse with PIRM procedure Gynemesh was trimmed in mesh with 4 free arms and tension-free collar. Two ischiorectal long arms for tension-free application through fossa ischiorectale – right and left, and two short arms for perineal body also on both sides. IVS 02 Tunneller (Tyco needle system was used for tension-free application of 4 arms through 4 dermal incisions (2 on right and 2 on left in PIRM. Results. All 184 procedures were performed relatively safely. In 9 cases of ATOM we had perforation of bladder, in 5 by application of anterior needle, in 3 by application of posterior needle and in one case with pincette when collar was inserted in lateral vesico – vaginal space. In 2 cases of PIRM we had perforation of rectum

  19. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  20. Metab2MeSH: annotating compounds with medical subject headings.

    Science.gov (United States)

    Sartor, Maureen A; Ade, Alex; Wright, Zach; States, David; Omenn, Gilbert S; Athey, Brian; Karnovsky, Alla

    2012-05-15

    Progress in high-throughput genomic technologies has led to the development of a variety of resources that link genes to functional information contained in the biomedical literature. However, tools attempting to link small molecules to normal and diseased physiology and published data relevant to biologists and clinical investigators, are still lacking. With metabolomics rapidly emerging as a new omics field, the task of annotating small molecule metabolites becomes highly relevant. Our tool Metab2MeSH uses a statistical approach to reliably and automatically annotate compounds with concepts defined in Medical Subject Headings, and the National Library of Medicine's controlled vocabulary for biomedical concepts. These annotations provide links from compounds to biomedical literature and complement existing resources such as PubChem and the Human Metabolome Database.

  1. Prevention of parastomal herniation with biologic/composite prosthetic mesh: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Wijeyekoon, Sanjaya Prabhath; Gurusamy, Kurinchi; El-Gendy, Khalid; Chan, Christopher L

    2010-11-01

    Parastomal herniation is a frequent complication of stoma formation and can be difficult to repair satisfactorily, making it a recognized cause of significant morbidity. A systematic review with meta-analysis of randomized clinical trials was performed to determine the benefits and risks of mesh reinforcement versus conventional stoma formation in preventing parastomal herniation. Trials were identified from The Cochrane Library trials register, Medline, Embase, Science Citation Index Expanded, and reference lists. The primary outcome was the incidence of parastomal herniation. The secondary outcomes were the incidence of parastomal herniation requiring surgical repair, postoperative morbidity, and mortality. Meta-analysis was performed using a random-effects model. The risk ratio (RR) was estimated with 95% confidence intervals (CI) based on an intention-to-treat analysis. Three trials with 129 patients were included. Composite or biologic mesh was used in either the preperitoneal or sublay position. Mesh reinforcement was associated with a reduction in parastomal herniation versus conventional stoma formation (RR 0.23, 95%CI 0.06 to 0.81; p = 0.02), and a reduction in the percentage of parastomal hernias requiring surgical treatment (RR 0.13, 95%CI 0.02 to 1.02; p = 0.05). There was no difference between groups in stoma-related morbidity (2 of 58, 3.4% in the mesh group versus 2 of 57, 3.5% in the conventional group; p = 0.97), nor was there any mortality related to the placement of mesh. Composite or biologic mesh reinforcement of stomas in the preperitoneal/sublay position is associated with a reduced incidence of parastomal herniation with no excess morbidity. Mesh reinforcement also demonstrates a trend toward a decreased incidence of parastomal herniation requiring surgical repair. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)--Biocompatibility in a standardized endoscopic extraperitoneal hernia model.

    Science.gov (United States)

    Jacob, Dietmar A; Schug-Pass, Christine; Sommerer, Florian; Tannapfel, Andrea; Lippert, Hans; Köckerling, Ferdinand

    2012-02-01

    The use of a mesh with good biocompatibility properties is of decisive importance for the avoidance of recurrences and chronic pain in endoscopic hernia repair surgery. As we know from numerous experiments and clinical experience, large-pore, lightweight polypropylene meshes possess the best biocompatibility. However, large-pore meshes of different polymers may be used as well and might be an alternative solution. Utilizing a totally extraperitoneal technique in an established animal model, 20 domestic pigs were implanted with either a lightweight large-pore polypropylene (PP) mesh (Optilene® LP) or a medium-weight large-pore knitted polytetrafluorethylene (PTFE) mesh (GORE® INFINIT® mesh). After 94 days, the pigs were sacrificed and postmortem diagnostic laparoscopy was performed, followed by explantation of the specimens for macroscopic, histological and immunohistochemical evaluation. The mean mesh shrinkage rate was 14.2% for Optilene® LP vs. 24.7% for INFINIT® mesh (p = 0.017). The partial volume of the inflammatory cells was 11.2% for Optilene® LP vs. 13.9% for INFINIT (n.s.). CD68 was significantly higher for INFINIT (11.8% vs. 5.6%, p = 0.007). The markers of cell turnover, namely Ki67 and the apoptotic index, were comparable at 6.4% vs. 12.4% (n.s.) and 1.6% vs. 2.0% (n.s.). In the extracellular matrix, TGF-β was 35.4% for Optilene® LP and 31.0% for INFINIT® (n.s.). Collagen I (pos/300 μm) deposits were 117.8 and 114.9, respectively. In our experimental examinations, Optilene® LP and INFINIT® showed a comparable biocompatibility in terms of chronic inflammatory reaction; however, the shrinkage rate was significantly higher for INFINIT® after 3 months. The higher shrinkage rate of INFINIT® should be taken into account when choosing the mesh size for an adequate hernia overlap.

  3. Mesh fixation in laparoscopic incisional hernia repair: glue fixation provides attachment strength similar to absorbable tacks but differs substantially in different meshes.

    Science.gov (United States)

    Rieder, Erwin; Stoiber, Martin; Scheikl, Verena; Poglitsch, Marcus; Dal Borgo, Andrea; Prager, Gerhard; Schima, Heinrich

    2011-01-01

    Laparoscopic ventral hernia repair has gained popularity among minimally invasive surgeons. However, mesh fixation remains a matter of discussion. This study was designed to compare noninvasive fibrin-glue attachment with tack fixation of meshes developed primarily for intra-abdominal use. It was hypothesized that particular mesh structures would substantially influence detachment force. For initial evaluation, specimens of laminated polypropylene/polydioxanone meshes were anchored to porcine abdominal walls by either helical titanium tacks or absorbable tacks in vitro. A universal tensile-testing machine was used to measure tangential detachment forces (TF). For subsequent experiments of glue fixation, polypropylene/polydioxanone mesh and 4 additional meshes with diverse particular mesh structure, ie, polyvinylidene fluoride/polypropylene mesh, a titanium-coated polypropylene mesh, a polyester mesh bonded with a resorbable collagen, and a macroporous condensed PTFE mesh were evaluated. TF tests revealed that fibrin-glue attachment was not substantially different from that achieved with absorbable tacks (median TF 7.8 Newton [N], range 1.3 to 15.8 N), but only when certain open porous meshes (polyvinylidene fluoride/polypropylene mesh: median 6.2 N, range 3.4 to 10.3 N; titanium-coated polypropylene mesh: median 5.2 N, range 2.1 to 11.7 N) were used. Meshes coated by an anti-adhesive barrier (polypropylene/polydioxanone mesh: median 3.1 N, range 1.7 to 5.8 N; polyester mesh bonded with a resorbable collagen: median 1.3 N, range 0.5 to 1.9 N), or the condensed PTFE mesh (median 3.1 N, range 2.1 to 7.0 N) provided a significantly lower TF (p < 0.01). Fibrin glue appears to be an appealing noninvasive option for mesh fixation in laparoscopic ventral hernia repair, but only if appropriate meshes are used. Glue can also serve as an adjunct to mechanical fixation to reduce the number of invasive tacks. Copyright © 2010 American College of Surgeons. Published by Elsevier

  4. Parallel adaptive simulations on unstructured meshes

    International Nuclear Information System (INIS)

    Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A

    2007-01-01

    This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers

  5. Prolapse Recurrence after Transvaginal Mesh Removal.

    Science.gov (United States)

    Rawlings, Tanner; Lavelle, Rebecca S; Coskun, Burhan; Alhalabi, Feras; Zimmern, Philippe E

    2015-11-01

    We determined the rate of pelvic organ prolapse recurrence after transvaginal mesh removal. Following institutional review board approval a longitudinally collected database of women undergoing transvaginal mesh removal for complications after transvaginal mesh placement with at least 1 year minimum followup was queried for pelvic organ prolapse recurrence. Recurrent prolapse was defined as greater than stage 1 on examination or the need for reoperation at the site of transvaginal mesh removal. Outcome measures were based on POP-Q (Pelvic Organ Prolapse Quantification System) at the last visit. Patients were grouped into 3 groups, including group 1--recurrent prolapse in the same compartment as transvaginal mesh removal, 2--persistent prolapse and 3--prolapse in a compartment different than transvaginal mesh removal. Of 73 women 52 met study inclusion criteria from 2007 to 2013, including 73% who presented with multiple indications for transvaginal mesh removal. The mean interval between insertion and removal was 45 months (range 10 to 165). Overall mean followup after transvaginal mesh removal was 30 months (range 12 to 84). In group 1 (recurrent prolapse) the rate was 15% (6 of 40 patients). Four women underwent surgery for recurrent prolapse at a mean 7 of months (range 5 to 10). Two patients elected observation. The rate of persistent prolapse (group 2) was 23% (12 of 52 patients). Three women underwent prolapse reoperation at a mean of 10 months (range 8 to 12). In group 3 (de novo/different compartment prolapse) the rate was 6% (3 of 52 patients). One woman underwent surgical repair at 52 months. At a mean 2.5-year followup 62% of patients (32 of 52) did not have recurrent or persistent prolapse after transvaginal mesh removal and 85% (44 of 52) did not undergo any further procedure for prolapse. Specifically for pelvic organ prolapse in the same compartment as transvaginal mesh removal 12% of patients had recurrence, of whom 8% underwent prolapse repair

  6. Automatic mesh generation with QMESH program

    International Nuclear Information System (INIS)

    Ise, Takeharu; Tsutsui, Tsuneo

    1977-05-01

    Usage of the two-dimensional self-organizing mesh generation program, QMESH, is presented together with the descriptions and the experience, as it has recently been converted and reconstructed from the NEACPL version to the FACOM. The program package consists of the QMESH code to generate quadrilaterial meshes with smoothing techniques, the QPLOT code to plot the data obtained from the QMESH on the graphic COM, and the RENUM code to renumber the meshes by using a bandwidth minimization procedure. The technique of mesh reconstructuring coupled with smoothing techniques is especially useful when one generates the meshes for computer codes based on the finite element method. Several typical examples are given for easy access to the QMESH program, which is registered in the R.B-disks of JAERI for users. (auth.)

  7. In-vitro examination of the biocompatibility of fibroblast cell lines on alloplastic meshes and sterilized polyester mosquito mesh.

    Science.gov (United States)

    Wiessner, R; Kleber, T; Ekwelle, N; Ludwig, K; Richter, D-U

    2017-06-01

    The use of alloplastic implants for tissue strengthening when treating hernias is an established therapy worldwide. Despite the high incidence of hernias in Africa and Asia, the implantation of costly mesh netting is not financially feasible. Because of that various investigative groups have examined the use of sterilized mosquito netting. The animal experiments as well as the clinical trials have both shown equivalent short- and long-term results. The goal of this paper is the comparison of biocompatibility of human fibroblasts on the established commercially available nets and on sterilized polyester mosquito mesh over a period of 12 weeks. Three commercially available plastic mesh types and a gas-sterilized mosquito polyethylenterephtalate (polyester) mesh were examined. Human fibroblasts from subcutaneous healthy tissue were used. Various tests for evaluating the growth behavior and the cell morphology of human fibroblasts were conducted. The semi-quantitative (light microscopy) and qualitative (scanning electron microscopy) analyses were performed after 1 week and then again after 12 weeks. The cell proliferation and cytotoxicity of the implants were investigated with the help of the 5'-bromo-2'-deoxyuridine (BrdU)-cell proliferation test and the LDH-cytotoxicity test. The number of live cells per ml was determined with the Bürker counting chamber. In addition, analyses were made of the cell metabolism (oxidative stress) by measuring the pH value, hydrogen peroxide, and glycolysis. After 12 weeks, a proliferation of fibroblasts on all mesh is documented. No mesh showed a complete apoptosis of the cells. This qualitative observation could be confirmed quantitatively in a biochemical assay by marking the proliferating cells with BrdU. The biochemical analysis brought the proof that the materials used, including the polyester of the mosquito mesh, are not cytotoxic for the fibroblasts. The vitality of the cells was between 94 and 98%. The glucose metabolism

  8. Outcomes of Autologous Fascia Pubovaginal Sling for Patients with Transvaginal Mesh Related Complications Requiring Mesh Removal.

    Science.gov (United States)

    McCoy, Olugbemisola; Vaughan, Taylor; Nickles, S Walker; Ashley, Matt; MacLachlan, Lara S; Ginsberg, David; Rovner, Eric

    2016-08-01

    We reviewed the outcomes of the autologous fascial pubovaginal sling as a salvage procedure for recurrent stress incontinence after intervention for polypropylene mesh erosion/exposure and/or bladder outlet obstruction in patients treated with prior transvaginal synthetic mesh for stress urinary incontinence. In a review of surgical databases at 2 institutions between January 2007 and June 2013 we identified 46 patients who underwent autologous fascial pubovaginal sling following removal of transvaginal synthetic mesh in simultaneous or staged fashion. This cohort of patients was evaluated for outcomes, including subjective and objective success, change in quality of life and complications between those who underwent staged vs concomitant synthetic mesh removal with autologous fascial pubovaginal sling placement. All 46 patients had received at least 1 prior mesh sling for incontinence and 8 (17%) had received prior transvaginal polypropylene mesh for pelvic organ prolapse repair. A total of 30 patients underwent concomitant mesh incision with or without partial excision and autologous sling placement while 16 underwent staged autologous sling placement. Mean followup was 16 months. Of the patients 22% required a mean of 1.8 subsequent interventions an average of 6.5 months after autologous sling placement with no difference in median quality of life at final followup. At last followup 42 of 46 patients (91%) and 35 of 46 (76%) had achieved objective and subjective success, respectively. There was no difference in subjective success between patients treated with a staged vs a concomitant approach (69% vs 80%, p = 0.48). Autologous fascial pubovaginal sling placement after synthetic mesh removal can be performed successfully in patients with stress urinary incontinence as a single or staged procedure. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Multi-cell vortices observed in fine-mesh solutions to the incompressible Euler equations

    International Nuclear Information System (INIS)

    Rizzi, A.

    1986-01-01

    Results are presented for a three dimensional flow, containing a vortex sheet shed from a delta wing. The numerical solution indicates that the shearing caused by the trailing edge of the wing set up a torsional wave on the vortex core and produces a structure with multiple cells of vorticity. Although observed in coarse grid solutions too, this effect becomes better resolved with mesh refinement to 614 000 grid volumes. In comparison with a potential solution in which the vortex sheet is fitted as a discontinuity, the results are analyzed for the position of the vortex features captured in the Euler flow field, the accuracy of the pressure field, and for the diffusion of the vortex sheets

  10. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  11. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  12. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  13. The mesh controversy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joshua A. Cohn

    2016-09-01

    Full Text Available Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as reclassification of transvaginal mesh for prolapse to class III in early 2016, were a response to debilitating complications associated with transvaginal mesh placement in many women. The midurethral sling has not been subject to the same reclassification and continues to be endorsed as the “gold standard” for surgical management of stress urinary incontinence by subspecialty societies. However, litigators have not differentiated between mesh for prolapse and mesh for incontinence. As such, all mesh, including that placed for stress urinary incontinence, faces continued controversy amidst an uncertain future. In this article, we review the background of the mesh controversy, recent developments, and the anticipated role of mesh in surgery for prolapse and stress urinary incontinence going forward.

  14. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality

    OpenAIRE

    Wang, Jun; Yu, Zeyun

    2012-01-01

    Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...

  15. Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2014-11-01

    Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.

  16. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    KAUST Repository

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  17. Performance of the hybrid wireless mesh protocol for wireless mesh networks

    DEFF Research Database (Denmark)

    Boye, Magnus; Staalhagen, Lars

    2010-01-01

    Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....

  18. Data-Parallel Mesh Connected Components Labeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cyrus; Childs, Hank; Gaither, Kelly

    2011-04-10

    We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.

  19. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  20. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  1. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  2. Efficient computation of the elastography inverse problem by combining variational mesh adaption and a clustering technique

    International Nuclear Information System (INIS)

    Arnold, Alexander; Bruhns, Otto T; Reichling, Stefan; Mosler, Joern

    2010-01-01

    This paper is concerned with an efficient implementation suitable for the elastography inverse problem. More precisely, the novel algorithm allows us to compute the unknown stiffness distribution in soft tissue by means of the measured displacement field by considerably reducing the numerical cost compared to previous approaches. This is realized by combining and further elaborating variational mesh adaption with a clustering technique similar to those known from digital image compression. Within the variational mesh adaption, the underlying finite element discretization is only locally refined if this leads to a considerable improvement of the numerical solution. Additionally, the numerical complexity is reduced by the aforementioned clustering technique, in which the parameters describing the stiffness of the respective soft tissue are sorted according to a predefined number of intervals. By doing so, the number of unknowns associated with the elastography inverse problem can be chosen explicitly. A positive side effect of this method is the reduction of artificial noise in the data (smoothing of the solution). The performance and the rate of convergence of the resulting numerical formulation are critically analyzed by numerical examples.

  3. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  4. Refining revolution

    Energy Technology Data Exchange (ETDEWEB)

    Fesharaki, F.; Isaak, D.

    1984-01-01

    A review of changes in the oil refining industry since 1973 examines the drop in capacity use and its effect on profits of the Organization of Economic Cooperation and Development (OECD) countries compared to world refining. OPEC countries used their new oil revenues to expand Gulf refineries, which put additional pressure on OECD refiners. OPEC involvement in global marketing, however, could help to secure supplies. Scrapping some older OECD refineries could improve the percentage of capacity in use if new construction is kept to a minimum. Other issues facing refiners are the changes in oil demand patterns and government responses to the market. 2 tables.

  5. Reference calculations on critical assemblies with Apollo2 code working with a fine multigroup mesh

    International Nuclear Information System (INIS)

    Aggery, A.

    1999-12-01

    The objective of this thesis is to add to the multigroup transport code APOLLO2 the capability to perform deterministic reference calculations, for any type of reactor, using a very fine energy mesh of several thousand groups. This new reference tool allows us to validate the self-shielding model used in industrial applications, to perform depletion calculations, differential effects calculations, critical buckling calculations or to evaluate precisely data required by the self shielding model. At its origin, APOLLO2 was designed to perform routine calculations with energy meshes around one hundred groups. That is why, in the current format of cross sections libraries, almost each value of the multigroup energy transfer matrix is stored. As this format is not convenient for a high number of groups (concerning memory size), we had to search out a new format for removal matrices and consequently to modify the code. In the new format we found, only some values of removal matrices are kept (these values depend on a reconstruction precision choice), the other ones being reconstructed by a linear interpolation, what reduces the size of these matrices. Then we had to show that APOLLO2 working with a fine multigroup mesh had the capability to perform reference calculations on any assembly geometry. For that, we successfully carried out the validation with several calculations for which we compared APOLLO2 results (obtained with the universal mesh of 11276 groups) to results obtained with Monte Carlo codes (MCNP, TRIPOLI4). Physical analysis led with this new tool have been very fruitful and show a great potential for such an R and D tool. (author)

  6. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  7. Analysis and development of spatial hp-refinement methods for solving the neutron transport equation

    International Nuclear Information System (INIS)

    Fournier, D.

    2011-01-01

    The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the

  8. [CLINICAL EVALUATION OF THE NEW ANTISEPTIC MESHES].

    Science.gov (United States)

    Gogoladze, M; Kiladze, M; Chkhikvadze, T; Jiqia, D

    2016-12-01

    Improving the results of hernia treatment and prevention of complications became a goal of our research which included two parts - experimental and clinical. Histomorphological and bacteriological researches showed that the best result out of the 3 control groups was received in case of covering implant "Coladerm"+ with chlorhexidine. Based on the experiment results working process continued in clinics in order to test and introduce new "coladerm"+ chlorhexidine covered poliprophilene meshes into practice. For clinical illustration there were 60 patients introduced to the research who had hernioplasty procedures by different nets: I group - standard meshes+"coladerm"+chlorhexidine, 35 patients; II group - standard meshes +"coladerm", 15 patients; III group - standard meshes, 10 patients. Assessment of the wound and echo-control was done post-surgery on the 8th, 30th and 90th days. This clinical research based on the experimental results once again showed the best anti-microbe features of new antiseptic polymeric biocomposite meshes (standard meshes+"coladerm"+chlorhexidine); timely termination of regeneration and reparation processes without any post-surgery suppurative complications. We hope that new antiseptic polymeric biocomposite meshes presented by us will be successfully used in surgical practice of hernia treatment based on and supported by expermental-clinical research.

  9. Multi-phase Volume Segmentation with Tetrahedral Mesh

    DEFF Research Database (Denmark)

    Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas

    Volume segmentation is efficient for reconstructing material structure, which is important for several analyses, e.g. simulation with finite element method, measurement of quantitative information like surface area, surface curvature, volume, etc. We are concerned about the representations of the 3......D volumes, which can be categorized into two groups: fixed voxel grids [1] and unstructured meshes [2]. Among these two representations, the voxel grids are more popular since manipulating a fixed grid is easier than an unstructured mesh, but they are less efficient for quantitative measurements....... In many cases, the voxel grids are converted to explicit meshes, however the conversion may reduce the accuracy of the segmentations, and the effort for meshing is also not trivial. On the other side, methods using unstructured meshes have difficulty in handling topology changes. To reduce the complexity...

  10. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.

    1996-01-01

    We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

  11. CFD Analysis of 2D Unsteady Flow Past a Square Cylinder at Low Reynolds Numbers

    Directory of Open Access Journals (Sweden)

    Li Zhenquan

    2018-01-01

    Full Text Available A study of the behaviour of flow past a square cylinder for Reynolds numbers 10 and 20 is presented. Open source software Navier2d in Matlab is used in this study. The investigation starts from a uniform initial mesh and then refine the initial mesh using a mesh refinement method which was proposed based on both qualitative theory of differential equations and the finite volume method implemented in Navier2d. The horizontal and vertical velocity component profiles and pressures are shown on the once refined meshes. The comparisons between the profiles and pressures are conducted to show the variations from Reynolds number 10 to 20. The twice refined meshes are also presented and these refined meshes provide the information where the behaviour of flow is complex.

  12. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  13. Development and verification of a 281-group WIMS-D library based on ENDF/B-VII.1

    International Nuclear Information System (INIS)

    Dong, Zhengyun; Wu, Jun; Ma, Xubo; Yu, Hui; Chen, Yixue

    2016-01-01

    Highlights: • A new WIMS-D library based on SHEM 281 energy structures is developed. • The method for calculating the lambda factor is illustrated and parameters are discussed. • The results show the improvements of this library compared with other libraries. - Abstract: The WIMS-D library based on WIMS 69 or XMAS 172 energy group structures is widely used in thermal reactor research. Otherwise, the resonance overlap effect is not taken into account in the two energy group structure, which limits the accuracy of resonance treatment. The SHEM 281 group structure is designed by the French to avoid the resonance overlap effect. In this study, a new WIMS-D library with SHEM 281 mesh is developed by using the NJOY nuclear data processing system based on the latest Evaluated Nuclear Data Library ENDF/B-VII.1. The parameters such as the thermal cut-off energy and lambda factor that depend on group structure are discussed. The lambda factor is calculated by Neutron Resonance Spectrum Calculation System and the effect of this factor is analyzed. The new library is verified through the analysis of various criticality benchmarks by using DRAGON code. The values of multiplication factor are consistent with the experiment data and the results also are improved in comparison with other WIMS libraries.

  14. Postoperative pain outcomes after transvaginal mesh revision.

    Science.gov (United States)

    Danford, Jill M; Osborn, David J; Reynolds, W Stuart; Biller, Daniel H; Dmochowski, Roger R

    2015-01-01

    Although the current literature discusses mesh complications including pain, as well as suggesting different techniques for removing mesh, there is little literature regarding pain outcomes after surgical removal or revision. The purpose of this study is to determine if surgical removal or revision of vaginal mesh improves patient's subjective complaints of pelvic pain associated with original placement of mesh. After obtaining approval from the Vanderbilt University Medical Center Institutional Review Board, a retrospective review of female patients with pain secondary to previous mesh placement who underwent excision or revision of vaginal mesh from January 2000 to August 2012 was performed. Patient age, relevant medical history including menopause status, previous hysterectomy, smoking status, and presence of diabetes, fibromyalgia, interstitial cystitis, and chronic pelvic pain, was obtained. Patients' postoperative pain complaints were assessed. Of the 481 patients who underwent surgery for mesh revision, removal or urethrolysis, 233 patients met our inclusion criteria. One hundred and sixty-nine patients (73 %) reported that their pain improved, 19 (8 %) reported that their pain worsened, and 45 (19 %) reported that their pain remained unchanged after surgery. Prior history of chronic pelvic pain was associated with increased risk of failure of the procedure to relieve pain (OR 0.28, 95 % CI 0.12-0.64, p = 0.003). Excision or revision of vaginal mesh appears to be effective in improving patients' pain symptoms most of the time. Patients with a history of chronic pelvic pain are at an increased risk of no improvement or of worsening pain.

  15. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  16. Field-aligned mesh joinery

    OpenAIRE

    Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi

    2014-01-01

    Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth ...

  17. MeSH key terms for validation and annotation of gene expression clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rechtsteiner, A. (Andreas); Rocha, L. M. (Luis Mateus)

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  18. Pure transvaginal excision of mesh erosion involving the bladder.

    Science.gov (United States)

    Firoozi, Farzeen; Goldman, Howard B

    2013-06-01

    We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.

  19. Two level calculation of assembly neutronic data libraries; Schema de calcul de bibliotheques a deux niveaux

    Energy Technology Data Exchange (ETDEWEB)

    Benomar, M

    1998-09-01

    The neutronic modeling of a nuclear reactor core requires 2 steps. The first step that is called transport calculation, is an accurate modeling of each type of assemblies put in a simple configuration. APOLLO2, a French neutronic code is used. This step allows the constitution of assembly data libraries. The second step represents the computing of the whole core by the diffusion theory and by using the data libraries defined in the first step. This work is dedicated to the improvement of the first step by allowing both a 172 group energy meshing and a two-dimension spatial processing. (A.C.) 7 refs.

  20. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    Science.gov (United States)

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  1. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  2. Challenges in Second-Generation Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pescapé Antonio

    2008-01-01

    Full Text Available Wireless mesh networks have the potential to provide ubiquitous high-speed Internet access at low costs. The good news is that initial deployments of WiFi meshes show the feasibility of providing ubiquitous Internet connectivity. However, their performance is far below the necessary and achievable limit. Moreover, users' subscription in the existing meshes is dismal even though the technical challenges to get connectivity are low. This paper provides an overview of the current status of mesh networks' deployment, and highlights the technical, economical, and social challenges that need to be addressed in the next years. As a proof-of-principle study, we discuss the above-mentioned challenges with reference to three real networks: (i MagNets, an operator-driven planned two-tier mesh network; (ii Berlin Freifunk network as a pure community-driven single-tier network; (iii Weimar Freifunk network, also a community-driven but two-tier network.

  3. SALOME PLATFORM and TetGen for Polyhedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan [KEPCO E and C Company, Inc., Daejeon (Korea, Republic of)

    2014-05-15

    SPACE and CUPID use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be evaluated for the efforts in conjunction with TetGen. In section 2, review will be made on the CAD and mesh generation capability of SALOME. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Edge removal on the flat surface and vertex reattachment to the solid are two challenging tasks. It is worthwhile to point out that the Python script capability of the SALOME should be fully utilized for the future investigation.

  4. Mesh requirements for neutron transport calculations

    International Nuclear Information System (INIS)

    Askew, J.R.

    1967-07-01

    Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

  5. Improved mesh generator for the POISSON Group Codes

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1987-01-01

    This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

  6. Transvaginal mesh procedures for pelvic organ prolapse.

    Science.gov (United States)

    Walter, Jens-Erik

    2011-02-01

    To provide an update on transvaginal mesh procedures, newly available minimally invasive surgical techniques for pelvic floor repair. The discussion is limited to minimally invasive transvaginal mesh procedures. PubMed and Medline were searched for articles published in English, using the key words "pelvic organ prolapse," transvaginal mesh," and "minimally invasive surgery." Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis, and articles were incorporated in the guideline to May 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on the Preventive Health Care. Recommendations for practice were ranked according to the method described in that report (Table 1). Counselling for the surgical treatment of pelvic organ prolapse should consider all benefits, harms, and costs of the surgical procedure, with particular emphasis on the use of mesh. 1. Patients should be counselled that transvaginal mesh procedures are considered novel techniques for pelvic floor repair that demonstrate high rates of anatomical cure in uncontrolled short-term case series. (II-2B) 2. Patients should be informed of the range of success rates until stronger evidence of superiority is published. (II-2B) 3. Training specific to transvaginal mesh procedures should be undertaken before procedures are performed. (III-C) 4. Patients should undergo thorough preoperative counselling regarding (a) the potential serious adverse sequelae of transvaginal mesh repairs, including mesh exposure, pain, and dyspareunia; and (b) the limited data available

  7. WHITE DWARF MERGERS ON ADAPTIVE MESHES. I. METHODOLOGY AND CODE VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Max P.; Zingale, Michael; Calder, Alan C.; Swesty, F. Douglas [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800 (United States); Almgren, Ann S.; Zhang, Weiqun [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-10

    The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.

  8. Mesh networks: an optimum solution for AMR

    Energy Technology Data Exchange (ETDEWEB)

    Mimno, G.

    2003-12-01

    Characteristics of mesh networks and the advantage of using them in automatic meter reading equipment (AMR) are discussed. Mesh networks are defined as being similar to a fishing net made of knots and links. In mesh networks the knots represent meter sites and the links are the radio paths between the meter sites and the neighbourhood concentrator. In mesh networks any knot in the communications chain can link to any other and the optimum path is calculated by the network by hopping from meter to meter until the radio message reaches a concentrator. This mesh communications architecture is said to be vastly superior to many older types of radio-based meter reading technologies; its main advantage is that it not only significantly improves the economics of fixed network deployment, but also supports time-of-use metering, remote disconnect services and advanced features, such as real-time pricing, demand response, and other efficiency measures, providing a better return on investment and reliability.

  9. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  10. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  11. Adaptive local refinement and multi-level methods for simulating multiphasic flows

    International Nuclear Information System (INIS)

    Minjeaud, Sebastian

    2010-01-01

    This thesis describes some numerical and mathematical aspects of incompressible multiphase flows simulations with a diffuse interface Cahn-Hilliard / Navier-Stokes model (interfaces have a small but a positive thickness). The space discretization is performed thanks to a Galerkin formulation and the finite elements method. The presence of different scales in the system (interfaces have a very small thickness compared to the characteristic lengths of the domain) suggests the use of a local adaptive refinement method. The algorithm that is introduced allows to implicitly handle the non-conformities of the generated meshes to produce conformal finite elements approximation spaces. It consists in refining basis functions instead of cells. The refinement of a basis function is made possible by the conceptual existence of a nested sequence of uniformly refined grids from which 'parent-child' relationships are deduced, linking the basis functions of two consecutive refinement levels. Moreover, it is shown how this method can be exploited to build multigrid pre-conditioners. From a composite finite elements approximation space, it is indeed possible to rebuild, by 'coarsening', a sequence of auxiliary nested spaces which allows to enter in the abstract multigrid framework. Concerning the time discretization, it begins with the study of the Cahn-Hilliard system. A semi-implicit scheme is proposed to remedy to convergence failures of the Newton method used to solve this (non linear) system. It guarantees the decrease of the discrete free energy ensuring the stability of the scheme. The existence and convergence of discrete solutions towards the weak solution of the system are shown. The study continues with providing an unconditionally stable time discretization of the complete Cahn-Hilliard / Navier-Stokes model. An important point is that this discretization does not strongly couple the Cahn-Hilliard and Navier-Stokes systems allowing to independently solve the two systems

  12. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  13. An angularly refineable phase space finite element method with approximate sweeping procedure

    International Nuclear Information System (INIS)

    Kophazi, J.; Lathouwers, D.

    2013-01-01

    An angularly refineable phase space finite element method is proposed to solve the neutron transport equation. The method combines the advantages of two recently published schemes. The angular domain is discretized into small patches and patch-wise discontinuous angular basis functions are restricted to these patches, i.e. there is no overlap between basis functions corresponding to different patches. This approach yields block diagonal Jacobians with small block size and retains the possibility for S n -like approximate sweeping of the spatially discontinuous elements in order to provide efficient preconditioners for the solution procedure. On the other hand, the preservation of the full FEM framework (as opposed to collocation into a high-order S n scheme) retains the possibility of the Galerkin interpolated connection between phase space elements at arbitrary levels of discretization. Since the basis vectors are not orthonormal, a generalization of the Riemann procedure is introduced to separate the incoming and outgoing contributions in case of unstructured meshes. However, due to the properties of the angular discretization, the Riemann procedure can be avoided at a large fraction of the faces and this fraction rapidly increases as the level of refinement increases, contributing to the computational efficiency. In this paper the properties of the discretization scheme are studied with uniform refinement using an iterative solver based on the S 2 sweep order of the spatial elements. The fourth order convergence of the scalar flux is shown as anticipated from earlier schemes and the rapidly decreasing fraction of required Riemann faces is illustrated. (authors)

  14. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  15. Surgeon Experience and Complications of Transvaginal Prolapse Mesh.

    Science.gov (United States)

    Kelly, Erin C; Winick-Ng, Jennifer; Welk, Blayne

    2016-07-01

    To measure the proportion of women with transvaginal prolapse mesh complications and their association with surgeon volume. We conducted a retrospective, population-based cohort study of all women who underwent a mesh-based prolapse procedure using administrative data (hospital procedure and physician billing records) between 2002 and 2013 in Ontario, Canada. The primary outcome was surgical revision of the mesh. Primary exposure was surgeon volume: high (greater than the 75th percentile, requiring a median of five [interquartile range 5-6] procedures per year) and very high (greater than the 90th percentile, requiring a median of 13 [interquartile range 11-14] procedures per year) volume mesh implanters were identified each year. Primary analysis was an adjusted Cox proportional hazards model. A total of 5,488 women underwent mesh implantation by 1 of 368 unique surgeons. Median follow-up time was 5.4 (interquartile range 3.0-8.0) years. We found that 218 women (4.0%) underwent mesh reoperation a median of 1.17 (interquartile range 0.58-2.90) years after implantation. The hazard of reoperation for complications was only lower for patients of very high-volume surgeons (3.0% [145/3,001] compared with 4.8% [73/2,447], adjusted hazards ratio 0.59, 95% confidence interval 0.40-0.86). In multivariable modeling, younger age, concomitant hysterectomy, blood transfusion, and increased medical comorbidity were all associated with vaginal mesh reoperation. Approximately 5% of women who underwent mesh-based prolapse surgery required reoperation for a mesh complication within 10 years. The risk of reoperation was lowest for surgeons performing 14 or more procedures per year.

  16. Coupling of a 3-D vortex particle-mesh method with a finite volume near-wall solver

    Science.gov (United States)

    Marichal, Y.; Lonfils, T.; Duponcheel, M.; Chatelain, P.; Winckelmans, G.

    2011-11-01

    This coupling aims at improving the computational efficiency of high Reynolds number bluff body flow simulations by using two complementary methods and exploiting their respective advantages in distinct parts of the domain. Vortex particle methods are particularly well suited for free vortical flows such as wakes or jets (the computational domain -with non zero vorticity- is then compact and dispersion errors are negligible). Finite volume methods, however, can handle boundary layers much more easily due to anisotropic mesh refinement. In the present approach, the vortex method is used in the whole domain (overlapping domain technique) but its solution is highly underresolved in the vicinity of the wall. It thus has to be corrected by the near-wall finite volume solution at each time step. Conversely, the vortex method provides the outer boundary conditions for the near-wall solver. A parallel multi-resolution vortex particle-mesh approach is used here along with an Immersed Boundary method in order to take the walls into account. The near-wall flow is solved by OpenFOAM® using the PISO algorithm. We validate the methodology on the flow past a sphere at a moderate Reynolds number. F.R.S. - FNRS Research Fellow.

  17. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  18. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  19. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  20. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries.

    Science.gov (United States)

    Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W

    1998-10-15

    Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.

  1. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  2. A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ben-Yi Wang

    2018-05-01

    Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.

  3. Coarse-mesh rebalancing acceleration for eigenvalue problems

    International Nuclear Information System (INIS)

    Asaoka, T.; Nakahara, Y.; Miyasaka, S.

    1974-01-01

    The coarse-mesh rebalance method is adopted for Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone into which the total system is divided. This rebalance factor is multiplied to the weight of each fission source neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the coarse-mesh rebalance Monte Carlo calculation gives a good estimate of the eigenvalue already after several batches with a negligible extra computer time compared to the standard Monte Carlo. 5 references. (U.S.)

  4. LR: Compact connectivity representation for triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

  5. Mesh-graft urethroplasty: a case report

    OpenAIRE

    田中, 敏博; 滝川, 浩; 香川, 征; 長江, 浩朗

    1987-01-01

    We used a meshed free-foreskin transplant in a two-stage procedure for reconstruction of the extended stricture of urethra after direct vision urethrotomy. The results were excellent. Mesh-graft urethroplasty is a useful method for patients with extended strictures of the urethra or recurrent strictures after several operations.

  6. Automatic mesh generation for finite element calculations in the case of thermal loads

    International Nuclear Information System (INIS)

    Cords, H.; Zimmermann, R.

    1975-01-01

    The presentation describes a method to generate finite element nodal point networks on the basis of isothermals and flux lines. Such a mesh provides a relatively fine partitioning at regions where pronounced temperature variations exist. In case of entirely thermal loads a net of this kind is advantageous since the refinement is provided at exactly those locations where high stress levels are expected. In the present contribution the method was employed to analyze the structural behavior of a nuclear fuel element under operating conditions. The graphite block fuel elements for high temperature reactors are of prismatic shape with a large number of parallel bores in the axial direction. Some of these bores are open at both ends and cooling is effected by helium flowing through. Blind holes contain the fuel as compacts or cartridges. The basic temperature distribution in a horizontal section of the block was obtained by the boundary point least squares method which yields analytical expressions for both temperature and thermal flux. The corresponding computer code was presented at an earlier SMiRT conference. The method is particularly useful for regular arrays of heat sources and sinks as encountered in heat exchanger problems. The generated mesh matches the requirements of a subsequent structural analysis with finite elements provided there are no other than thermal loads

  7. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  8. Selectivity of commercial, larger mesh and square mesh trawl codends for deep water rose shrimp Parapenaeus longirostris (Lucas, 1846 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    Hakan Kaykaç

    2009-09-01

    Full Text Available We investigated the differences between size selectivity of a commercial codend (40 mm diamond mesh – 40D, a larger mesh codend (48 mm diamond mesh – 48D, and a square mesh codend (40 mm square mesh – 40S for Parapenaeus longirostris in international waters of the Aegean Sea. Selectivity data were collected by using a covered codend method and analysed taking between-haul variation into account. The results indicate significant increases in L50 values in relation to an increase in mesh size and when the square mesh is used in the commercial trawl codend. The results demonstrate that the commercially used codend (40D is not selective enough for P. longirostris in terms of length at first maturity. Changing from a 40D to a 48D codend significantly improves selection, with an increase of about 15% in the L50 values (carapace length 14.5 mm for 40D and 16.6 mm for 48D. Similarly, 40 mm square mesh, which has recently been legislated for EU Mediterranean waters, showed a 12.4% higher mean L50 value (16.3 mm than 40 mm diamond mesh for this species. However, despite these improvements, the 48D and 40S codends still need further improvements to obtain higher selectivity closer to the length at first maturity (20 mm carapace length.

  9. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan

    2013-08-01

    We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  10. High-fidelity meshes from tissue samples for diffusion MRI simulations.

    Science.gov (United States)

    Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C

    2010-01-01

    This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

  11. [Implants for genital prolapse : Contra mesh surgery].

    Science.gov (United States)

    Hampel, C

    2017-12-01

    Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.

  12. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  13. Texturing of continuous LOD meshes with the hierarchical texture atlas

    Science.gov (United States)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  14. Geometry and Grid Modeling for Numerical Simulation

    National Research Council Canada - National Science Library

    Steinbrenner, John P; Michal, Todd; Yagle, Pat J; Abelanet, J. P

    2005-01-01

    .... API V2's architecture consists of a database and a meshing library. The database library owns all mesh data and contains API functions for the transfer of data between the mesh library and the application...

  15. Adaptive-mesh zoning by the equipotential method

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, A.M.

    1981-04-01

    An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.

  16. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  17. Current situation of transvaginal mesh repair for pelvic organ prolapse.

    Science.gov (United States)

    Zhu, Lan; Zhang, Lei

    2014-09-01

    Surgical mesh is a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where weakness exists. Surgical mesh has been used since the 1950s to repair abdominal hernias. In the 1970s, gynecologists began using surgical mesh products to indicate the repair of pelvic organ prolapse (POP), and in the 1990s, gynecologists began using surgical mesh for POP. Then the U.S. Food and Drug Administration (FDA) approved the first surgical mesh product specifically for use in POP. Surgical mesh materials can be divided into several categories. Most surgical mesh devices cleared for POP procedures are composed of non-absorbable synthetic polypropylene. Mesh can be placed in the anterior vaginal wall to aid in the correction of cystocele (anterior repair), in the posterior vaginal wall to aid in correction of rectocele (posterior repair), or attached to the top of the vagina to correct uterine prolapse or vaginal apical prolapse (apical repair). Over the past decades, surgical mesh products for transvaginal POP repair became incorporated into "kits" that included tools to aid in the delivery and insertion of the mesh. Surgical mesh kits continue to evolve, adding new insertion tools, tissue fixation anchors, surgical techniques, and ab- sorbable and biological materials. This procedure has been performed popularly. It was also performed increased in China. But this new technique met some trouble recently and let shake in urogynecology.

  18. Making lemonade from lemons: a case study on loss of space at the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Tobia, Rajia C; Feldman, Jonquil D

    2010-01-01

    The setting for this case study is the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, a health sciences campus with medical, dental, nursing, health professions, and graduate schools. During 2008-2009, major renovations to the library building were completed including office space for a faculty development department, multipurpose classrooms, a 24/7 study area, study rooms, library staff office space, and an information commons. The impetus for changes to the library building was the decreasing need to house collections in an increasingly electronic environment, the need for office space for other departments, and growth of the student body. About 40% of the library building was remodeled or repurposed, with a loss of approximately 25% of the library's original space. Campus administration proposed changes to the library building, and librarians worked with administration, architects, and construction managers to seek renovation solutions that meshed with the library's educational mission.

  19. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  20. Convergence study of global meshing on enamel-cement-bracket finite element model

    Science.gov (United States)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

    2017-09-01

    This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

  1. Resterilized Polypropylene Mesh for Inguinal Hernia Repair

    African Journals Online (AJOL)

    2018-04-19

    Apr 19, 2018 ... Conclusion: The use of sterilized polypropylene mesh for the repair of inguinal ... and nonabsorbable materials to reduce the tissue–mesh. INTRODUCTION ... which we have been practicing in our center since we introduced ...

  2. Clinical study for pancreatic fistula after distal pancreatectomy with mesh reinforcement

    Directory of Open Access Journals (Sweden)

    Akira Hayashibe

    2018-05-01

    Full Text Available Summary: Background: The purpose of this cohort study was to determine whether distal pancreatectomy with mesh reinforcement can reduce postoperative pancreatic fistula (POPF rates compared with bare stapler. Methods: In total, 51 patients underwent stapled distal pancreatectomy. Out of these, 22 patients (no mesh group underwent distal pancreatectomy with bare stapler and 29 patients (mesh group underwent distal pancreatectomy with mesh reinforced stapler. The risk factor for clinically relevant POPF (grades B and C after distal pancreatectomy was also evaluated. Results: Clinical characteristics were almost similar in both the groups. The days of the mean hospital stay and drainage tube insertion in the mesh group were significantly fewer than those in the no mesh group. The mean level of amylase in the discharge fluid in the mesh group was also significantly lower than that the in no mesh group. The rate of clinically relevant POPF (grades B and C in the mesh group was significantly lower than that in the no mesh group (p=0.016. Univariate analyses of risk factors for POPF (grades B and C revealed that only mesh reinforcement was associated with POPF (grades B and C. Moreover, on multivariate analyses of POPF risk factors with p value<0.2 in univariate analyses by logistic regression, mesh reinforcement was regarded as a significant factor for POPF(grades B and C. Conclusions: The distal pancreatectomy with mesh reinforced stapler was thought to be favorable for the prevention of clinically relevant POPF (grades B and C. Keywords: mesh reinforcement, pancreatic fistula, pancreatic surgery

  3. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  4. Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement

    International Nuclear Information System (INIS)

    Salmonson, Jay D; Anninos, Peter; Fragile, P Chris; Camarda, Karen

    2007-01-01

    A code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. It provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threaded oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. Some recent studies will be summarized

  5. Validation of the simpleFoam (RANS solver for the atmospheric boundary layer in complex terrain

    Directory of Open Access Journals (Sweden)

    Peralta C.

    2014-01-01

    Full Text Available We validate the simpleFoam (RANS solver in OpenFOAM (version 2.1.1 for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's blockMesh native mesher. The new tool is capable of adding orographic features and the forest canopy. Additionally, the mesh can be refined in regions with complex orography. We study both the classical benchmark case of Askervein hill [5] and the more recent Bolund island data set [6]. Our purpose is two-folded: to validate the performance of OpenFOAM steady state solvers, and the suitability of the new meshing tool to generate high quality structured meshes, which will be used in the future for performing more computationally intensive LES simulations in complex terrain.

  6. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  7. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  8. Laparoscopic removal of mesh used in pelvic floor surgery.

    Science.gov (United States)

    Khong, Su-Yen; Lam, Alan

    2009-01-01

    Various meshes are being used widely in clinical practice for pelvic reconstructive surgery despite the lack of evidence of their long-term safety and efficacy. Management of complications such as mesh erosion and dyspareunia can be challenging. Most mesh-related complications can probably be managed successfully via the transvaginal route; however, this may be impossible if surgical access is poor. This case report demonstrates the successful laparoscopic removal of mesh after several failed attempts via the vaginal route.

  9. GENERATION OF IRREGULAR HEXAGONAL MESHES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-07-01

    Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.

  10. Current role of mesh in vaginal prolapse surgery.

    Science.gov (United States)

    Richter, Lee A; Carter, Charelle; Gutman, Robert E

    2014-10-01

    This report summarizes the latest literature on transvaginal mesh (TVM) for the treatment of pelvic organ prolapse, with a focus on indications for use and management of complications. We describe trends in TVM by reviewing the recent literature and summarizing national meeting presentations. Vaginal mesh complications are most often managed surgically, and the majority of patients experiencing mesh-related pain have symptom improvement after intervention. New efforts will focus on identifying variables associated with success after intervention for mesh-related complications, to aid reconstructive pelvic surgeons in outcome prediction and patient counselling. Although the use of TVM has plateaued in recent years, we are seeing an exponential rise in synthetic mesh implant removal. Reconstructive pelvic surgeons advising patients with TVM complications should report that surgical intervention is often necessary, improvement rates of pain-related symptoms after surgery are high, and up to a third may require multiple interventions.

  11. Obturator foramen dissection for excision of symptomatic transobturator mesh.

    Science.gov (United States)

    Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R

    2012-05-01

    Groin pain after transobturator synthetic mesh placement can be recalcitrant to conservative therapy and ultimately requires surgical excision. We describe our experiences with and technique of obturator foramen dissection for mesh excision. The records of 8 patients treated from 2005 to 2010, were reviewed. Obturator dissection was performed via a lateral groin incision over the inferior pubic ramus at the level of the obturator foramen, typically in conjunction with orthopedic surgery. Five patients had transobturator mid urethral sling surgery for stress urinary incontinence, 2 had mid urethral sling and trocar based anterior vaginal wall mesh kits with transobturator passage of mesh arms for stress urinary incontinence and pelvic organ prolapse, and 1 had an anterior vaginal wall mesh kit for pelvic organ prolapse. Patients had 0 to 2 prior transvaginal mesh excisions before obturator surgery. All patients presented with intractable pain in the area of the obturator foramen and/or medial groin for which conservative treatment measures had failed. Six patients underwent concurrent vaginal and obturator dissection and 2 underwent obturator dissection alone. In all cases residual mesh (3 to 11 cm) was identified and excised from the obturator foramen. Mesh was closely associated to or traversing the adductor longus muscle and tendon with significant fibrous reaction in all cases. Postoperatively 5 patients were cured of pain and/or infection, and 3 reported no or some improvement at a mean followup of 6 months (range 1 to 12). Our experience suggests that surgical excision of residual mesh can alleviate many of the symptoms in many patients. In all cases mesh remnants were identified and removed, and typically involved neuromuscular structures adjacent to the obturator foramen. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  13. THM-GTRF: New Spider meshes, New Hydra-TH runs

    Energy Technology Data Exchange (ETDEWEB)

    Bakosi, Jozsef [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory; Francois, Marianne M. [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory; Nourgaliev, Robert [Los Alamos National Laboratory

    2012-06-20

    Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05, Sept. 2012.

  14. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  15. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  16. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  17. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  18. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  19. A conceptual framework for technology-enabled and technology-dependent user behavior toward device mesh and mesh app

    Directory of Open Access Journals (Sweden)

    Ming-Hsiung Hsiao

    2018-06-01

    Full Text Available The device mesh and mesh app revealed by Gartner as the future strategic technology trend are able to predict people's need from their historic data, then provides the needed services or service innovation to support their activity engagement. However, many theories have identified that it is the motivation, rather than technology, that drives people to engage in activities or tasks. For this reason, this study builds a conceptual framework by integrating the extant logic and theories to explore how future technology would generate benefits for people. It integrates task-technology fit (TTF model and motivation theory (mainly expectancy-value theory to explain such technology user behavior. It also points out the difference between technology-enabled and technology-dependent user behavior and concludes that too much emphasis on the role of technology with too little attention on motivation would distort technology user behavior, and the role of technology as well. Keywords: Device mesh, Mesh app, Expectancy-value theory, Task-technology fit (TTF, Technology-enabled user, Technology-dependent user

  20. A Survey of Solver-Related Geometry and Meshing Issues

    Science.gov (United States)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  1. Symptom resolution after operative management of complications from transvaginal mesh.

    Science.gov (United States)

    Crosby, Erin C; Abernethy, Melinda; Berger, Mitchell B; DeLancey, John O; Fenner, Dee E; Morgan, Daniel M

    2014-01-01

    Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. A retrospective review of all patients having surgery by the urogynecology group in the department of obstetrics and gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the χ or Fisher's exact test with significance at Pmesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure, 62% (n=56); pain, 64% (n=58); and dyspareunia, 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of patients, whereas pain was only successfully treated in 51% of patients. Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of patients. III.

  2. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  3. Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation

    OpenAIRE

    Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank

    2014-01-01

    Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for ing...

  4. Reconstructive laparoscopic prolapse surgery to avoid mesh erosions

    Directory of Open Access Journals (Sweden)

    Devassy, Rajesh

    2013-09-01

    Full Text Available Introduction: The objective of the study is to examine the efficacy of the purely laparoscopic reconstructive management of cystocele and rectocele with mesh, to avoid the risk of erosion by the graft material, a well known complication in vaginal mesh surgery. Material and methods: We performed a prospective, single-case, non-randomized study in 325 patients who received laparoscopic reconstructive management of pelvic organe prolaps with mesh. The study was conducted between January 2004 and December 2012 in a private clinic in India. The most common prolapse symptoms were reducible vaginal lump, urinary stress incontinence, constipation and flatus incontinence, sexual dysfunction and dypareunia. The degree e of the prolaps was staged according to POPQ system. The approach was purely laparoscopic and involved the use of polypropylene (Prolene or polyurethane with activated regenerated cellulose coating (Parietex mesh. Results: The mean age was 55 (30–80 years and the most of the patients were multiparous (272/325. The patients received a plastic correction of the rectocele only (138 cases, a cystocele and rectocele (187 cases with mesh. 132 patients had a concomitant total hysterectomy; in 2 cases a laparoscopic supracervical hysterectomy was performed and 190 patients had a laparoscopic colposuspension. The mean operation time was 82.2 (60–210 minutes. The mean follow up was 3.4 (3–5 years. Urinary retention developed in 1 case, which required a new laparoscopical intervention. Bladder injury, observed in the same case was in one session closed with absorbable suture. There were four recurrences of the rectocele, receiving a posterior vaginal colporrhaphy. Erosions of the mesh were not reported or documented. Conclusion: The pure laparoscopic reconstructive management of the cystocele and rectocele with mesh seems to be a safe and effective surgical procedure potentially avoiding the risk of mesh erosions.

  5. Adaptive and dynamic meshing methods for numerical simulations

    Science.gov (United States)

    Acikgoz, Nazmiye

    For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad

  6. A Rare Complication of Composite Dual Mesh: Migration and Enterocutaneous Fistula Formation

    Directory of Open Access Journals (Sweden)

    Ozgur Bostanci

    2015-01-01

    Full Text Available Introduction. Mesh is commonly employed for abdominal hernia repair because it ensures a low recurrence rate. However, enterocutaneous fistula due to mesh migration can occur as a very rare, late complication, for which diagnosis is very difficult. Presentation of Case. Here we report the case of an enterocutaneous fistula due to late mesh migration in a mentally retarded, diabetic, 35-year-old male after umbilical hernia repair with composite dual mesh in 2010. Discussion. Mesh is a foreign substance, because of that some of the complications including hematoma, seroma, foreign body reaction, organ damage, infection, mesh rejection, and fistula formation may occur after implantation of the mesh. In the literature, most cases of mesh-associated enterocutaneous fistula due to migration involved polypropylene meshes. Conclusion. This case serves as a reminder of migration of composite dual meshes.

  7. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  8. The Analysis of the Usefulness of Welded Meshes to Embankment Reinforcement

    Directory of Open Access Journals (Sweden)

    Ćwirko Marcin

    2017-09-01

    Full Text Available The aim of this paper was to find an answer to the question about the possibility of using steel welded mesh in building the retaining walls of gabion baskets. In light of the currently used gabion structure solutions, among which double-woven mesh is much more popular, the focus was put on the possibility of using welded mesh. A numerical analysis was conducted to examine the behavior of welded and woven mesh subjected to various loads and the results obtained for both types of mesh were directly compared. The maximal displacement in mesh nodes was admitted as the measurement of the system behavior (in the case of both undamaged and damaged mesh.

  9. Enriching Triangle Mesh Animations with Physically Based Simulation.

    Science.gov (United States)

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  10. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  11. Different types of mesh fixation for laparoscopic repair of inguinal hernia: A protocol for systematic review and network meta-analysis with randomized controlled trials.

    Science.gov (United States)

    Wei, Kongyuan; Lu, Cuncun; Ge, Long; Pan, Bei; Yang, Huan; Tian, Jinhui; Cao, Nong

    2018-04-01

    Laparoscopic inguinal hernia repair has become a valid option for repair of an inguinal hernia. Due to there are several types of mesh fixation for laparoscopic repair of inguinal hernia. The study aims to assess and compare the efficacy of different types of mesh fixation for laparoscopic repair of inguinal hernia using network meta-analysis. We will systematically search PubMed, EMBASE the Cochrane library, and Chinese Biomedical Literature Database from their inception to March 2018. Randomized controlled trials (RCTs) that compared the effect of different types of mesh fixation for laparoscopic inguinal hernia repair will be included. The primary outcomes are chronic groin pain, incidence risk of hernia recurrence, and complications. Risk of bias assessment of the included RCTs will be conducted using to Cochrane risk of bias tool. A network meta-analysis will be performed using WinBUGS 1.4.3 software and the result figures will be generated using R x64 3.1.2 software and STATA V.12.0 software. Grading of Recommendations Assessment, Development and Evaluation (GRADE) will be used to assess the quality of evidence. The results of this study will be published in a peer-reviewed journal. Our study will generate evidence of laparoscopic repair of mesh fixation for adult patients with inguinal hernia and provide suggestions for clinical practice or guideline.

  12. Petroleum refining industry in China

    International Nuclear Information System (INIS)

    Walls, W.D.

    2010-01-01

    The oil refining industry in China has faced rapid growth in oil imports of increasingly sour grades of crude with which to satisfy growing domestic demand for a slate of lighter and cleaner finished products sold at subsidized prices. At the same time, the world petroleum refining industry has been moving from one that serves primarily local and regional markets to one that serves global markets for finished products, as world refining capacity utilization has increased. Globally, refined product markets are likely to experience continued globalization until refining investments significantly expand capacity in key demand regions. We survey the oil refining industry in China in the context of the world market for heterogeneous crude oils and growing world trade in refined petroleum products. (author)

  13. Finite element meshing approached as a global minimization process

    Energy Technology Data Exchange (ETDEWEB)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  14. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  15. Comparison of post-operative wound infection after inguinal hernia repair with polypropylene mesh and polyester mesh

    International Nuclear Information System (INIS)

    Mughal, M.A.; Ahmed, M.; Sajid, M.T.; Mustafa, Q.U.A.; Shukr, I.; Ahsan, J.

    2012-01-01

    Objective: To compare post operative wound infection frequency after inguinal hernia repair with polypropylene and polyester mesh using standard Lichtenstein hernioplasty technique. Study Design: Randomized controlled trial. Place and Duration: This study was conducted at general surgery department CMH/MH Rawalpindi from 8th April 2007 to 1st Jan 2008 over a period of 09 months. Patients and Materials: Sixty patients received through outpatient department with diagnosis of inguinal hernia satisfying inclusion/exclusion criteria were included. Patients were divided into two groups randomly. Group 1 included those patients in whom polypropylene mesh was used while group II patients were implanted with polyester mesh. Demographic as well as data concerning post operative wound infection was collected and analyzed. Results: Fifty seven patients (95%) were males while remaining (05%) were females. Mean age in group I was 41.17+-9.99 years while in group II was 41.47+-9.79 years (p=0.907). One patient (3.3%) in each group developed wound infection diagnosed by clinical evidence of pain at wound site, redness, induration and purulent discharge. Conclusion: There is no difference in post operative wound infection rate after inguinal Lichtenstein hernioplasty using either polypropylene or polyester mesh. (author)

  16. Does Attorney Advertising Influence Patient Perceptions of Pelvic Mesh?

    Science.gov (United States)

    Tippett, Elizabeth; King, Jesse; Lucent, Vincent; Ephraim, Sonya; Murphy, Miles; Taff, Eileen

    2018-01-01

    To measure the relative influence of attorney advertising on patient perceptions of pelvic mesh compared with a history of surgery and a first urology visit. A 52-item survey was administered to 170 female patients in 2 urology offices between 2014 and 2016. Multiple survey items were combined to form scales for benefit and risk perceptions of pelvic mesh, perceptions of the advertising, attitudes toward pelvic mesh, and knowledge of pelvic mesh and underlying medical conditions. Data were analyzed using hierarchical linear regression models. Exposure to attorney advertising was quite high; 88% reported seeing a mesh-related attorney advertisement in the last 6 months. Over half of patients reported seeing attorney advertisements more than once per week. A history of prior mesh implant surgery was the strongest predictor of benefit and risk perceptions of pelvic mesh. Exposure to attorney advertising was associated with higher risk perceptions but did not significantly affect perceptions of benefits. Past urologist visits increased perceptions of benefits but had no effect on risk perceptions. Attorney advertising appears to have some influence on risk perceptions, but personal experience and discussions with a urogynecologist or urologist also influence patient perceptions. Implications, limitations, and future research are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    Science.gov (United States)

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh

  18. Moving mesh generation with a sequential approach for solving PDEs

    DEFF Research Database (Denmark)

    In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...

  19. On the refinement calculus

    CERN Document Server

    Vickers, Trevor

    1992-01-01

    On the Refinement Calculus gives one view of the development of the refinement calculus and its attempt to bring together - among other things - Z specifications and Dijkstra's programming language. It is an excellent source of reference material for all those seeking the background and mathematical underpinnings of the refinement calculus.

  20. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  1. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  2. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng

    2014-07-27

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  3. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng; Sun, Xiang; Gomes, Maria Alexandra; Wallner, Johannes; Pottmann, Helmut

    2014-01-01

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  4. Mesh fixation in endoscopic inguinal hernia repair: evaluation of methodology based on a systematic review of randomised clinical trials.

    Science.gov (United States)

    Lederhuber, Hans; Stiede, Franziska; Axer, Stephan; Dahlstrand, Ursula

    2017-11-01

    The issue of mesh fixation in endoscopic inguinal hernia repair is frequently debated and still no conclusive data exist on differences between methods regarding long-term outcome and postoperative complications. The quantity of trials and the simultaneous lack of high-quality evidence raise the question how future trials should be planned. PubMed, EMBASE and the Cochrane Library were searched, using the filters "randomised clinical trials" and "humans". Trials that compared one method of mesh fixation with another fixation method or with non-fixation in endoscopic inguinal hernia repair were eligible. To be included, the trial was required to have assessed at least one of the following primary outcome parameters: recurrence; surgical site infection; chronic pain; or quality-of-life. Fourteen trials assessing 2161 patients and 2562 hernia repairs were included. Only two trials were rated as low risk for bias. Eight trials evaluated recurrence or surgical site infection; none of these could show significant differences between methods of fixation. Two of 11 trials assessing chronic pain described significant differences between methods of fixation. One of two trials evaluating quality-of-life showed significant differences between fixation methods in certain functions. High-quality evidence for differences between the assessed mesh fixation techniques is still lacking. From a socioeconomic and ethical point of view, it is necessary that future trials will be properly designed. As small- and medium-sized single-centre trials have proven unable to find answers, register studies or multi-centre studies with an evident focus on methodology and study design are needed in order to answer questions about mesh fixation in inguinal hernia repair.

  5. United States National Library of Medicine Drug Information Portal.

    Science.gov (United States)

    Hochstein, Colette; Goshorn, Jeanne; Chang, Florence

    2009-01-01

    The Drug Information Portal is a free Web resource from the National Library of Medicine (NLM) that provides a user-friendly gateway to current information for more than 15,000 drugs. The site guides users to related resources of NLM, the National Institutes of Health (NIH), and other government agencies. Current drug-related information regarding consumer health, clinical trials, AIDS, MeSH pharmacological actions, MEDLINE/PubMed biomedical literature, and physical properties and structure is easily retrieved by searching on a drug name. A varied selection of focused topics in medicine and drugs is also available from displayed subject headings. This column provides background information about the Drug Information Portal, as well as search basics.

  6. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  7. North American refining

    International Nuclear Information System (INIS)

    Osten, James; Haltmaier, Susan

    2000-01-01

    This article examines the current status of the North American refining industry, and considers the North American economy and the growth in demand in the petroleum industry, petroleum product demand and quality, crude oil upgrading to meet product standards, and changes in crude oil feedstocks such as the use of heavier crudes and bitumens. Refining expansion, the declining profits in refining, and changes due to environmental standards are discussed. The Gross Domestic Product and oil demand for the USA, Canada, Mexico, and Venezuela for the years 1995-2020 are tabulated

  8. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    Science.gov (United States)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  9. Micro-mesh fabric pollination bags for switchgrass

    Science.gov (United States)

    Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

  10. CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS

    African Journals Online (AJOL)

    The limited available bandwidth makes capacity analysis of the network very essential. ... Wireless mesh networks can also be employed for wide variety ofapplications such ... wireless mesh networks using OPNET (Optimized Network Engineering Tool) Modeller 1-J..5. The .... /bps using I I Mbps data rate and 12000 bits.

  11. Converting skeletal structures to quad dominant meshes

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

    2012-01-01

    We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...

  12. Long-term follow-up of treatment for synthetic mesh complications.

    Science.gov (United States)

    Hansen, Brooke L; Dunn, Guinn Ellen; Norton, Peggy; Hsu, Yvonne; Nygaard, Ingrid

    2014-01-01

    The objectives of this study are (1) to describe the presenting symptoms, findings, and treatment and (2) to describe the self-reported improvement and function at least 6 months after presentation in women presenting to 1 urogynecology division for complications associated with synthetic vaginal mesh. Women evaluated between 2006 and 2011 were identified by diagnostic codes. We abstracted information from the medical record and attempted to contact all women to complete a follow-up telephone survey questionnaire consisting of several validated instruments. A total of 111 women were evaluated for complications associated with synthetic vaginal mesh. The mean interval from index surgery was 2.4 years. Of these, 84% were referred from outside hospitals. Index surgeries included vaginal mesh kits/vaginally placed mesh (47%), midurethral mesh slings (37%), abdominally placed vaginal mesh (11%), and vaginal mesh kit with concomitantly placed mesh sling (5%). The most common complications were extrusion (65%), contraction (17%), and chronic pelvic pain (16%). A total of 98 women underwent some type of treatment (85 surgical) by urogynecologists, pelvic pain specialists, or physical therapists. Eighty-four (76%) provided follow-up information at mean interval since presentation of 2.3 years. At follow-up, the mean (SD) Pelvic Floor Distress Inventory score was 98 (67), the mean (SD) EQ-5D index score was 0.69 (0.23), and 22% reported vaginal discharge, 15% vaginal bleeding or spotting, and 45% sexual abstinence due to problems related to mesh. A total of 71% reported being overall better, whereas 29% were the same or worse. Two years after tertiary care level multidisciplinary treatment of vaginal mesh complications, many women still report symptoms that negatively impact their quality of life.

  13. Laparoscopic sacrocolpopexy versus transvaginal mesh for recurrent pelvic organ prolapse.

    Science.gov (United States)

    Iglesia, Cheryl B; Hale, Douglass S; Lucente, Vincent R

    2013-03-01

    Both expert surgeons agree with the following: (1) Surgical mesh, whether placed laparoscopically or transvaginally, is indicated for pelvic floor reconstruction in cases involving recurrent advanced pelvic organ prolapse. (2) Procedural expertise and experience gained from performing a high volume of cases is fundamentally necessary. Knowledge of outcomes and complications from an individual surgeon's audit of cases is also needed when discussing the risks and benefits of procedures and alternatives. Yet controversy still exists on how best to teach new surgical techniques and optimal ways to efficiently track outcomes, including subjective and objective cure of prolapse as well as perioperative complications. A mesh registry will be useful in providing data needed for surgeons. Cost factors are also a consideration since laparoscopic and especially robotic surgical mesh procedures are generally more costly than transvaginal mesh kits when operative time, extra instrumentation and length of stay are included. Long-term outcomes, particularly for transvaginal mesh procedures, are lacking. In conclusion, all surgery poses risks; however, patients should be made aware of the pros and cons of various routes of surgery as well as the potential risks and benefits of using mesh. Surgeons should provide patients with honest information about their own experience implanting mesh and also their experience dealing with mesh-related complications.

  14. A method to incorporate interstitial components into the TPS gynecologic rigid applicator library

    Directory of Open Access Journals (Sweden)

    Antonio Otal

    2017-01-01

    Full Text Available Purpose: T2 magnetic resonance imaging (MRI is recommended as the imaging modality for image-guided brachytherapy. In locally advanced cervical carcinoma, combined endocavitary and interstitial applicators are appropriate (Vienna or Utrecht. To cover extensive disease, Template Benidorm (TB was developed. Treatment planning system applicator libraries are currently unavailable for the Utrecht applicator or the TB. The purpose of this work is to develop an applicator library for both applicators. Material and methods: The library developed in this work has been used in the Oncentra Brachytherapy TPS, version 4.3.0, which has a brachytherapy module that includes a library of rigid applicators. To add the needles of the Utrecht applicator and to model the TB, we used FreeCAD and MeshLab. The reconstruction process was based on the points that the rigid section and the interstitial part have in common. This, together with the free length, allowed us to ascertain the position of the tip. Results: In case of the Utrecht applicator, one of the sources of uncertainty in the reconstruction was determining the distance of the tip of needle from the ovoid. In case of the TB, the large number of needles involved made their identification time consuming. The developed library resolved both issues. Conclusions : The developed library for the Utrecht and TB is feasible and efficient improving accuracy. It allows all the required treatment planning to proceed using just a T2 MRI sequence. The additional use of specific free available software applications makes it possible to add this information to the already existing library of the Oncentra Brachytherapy TPS. Specific details not included on this manuscript will be available under request. This library is also currently being implemented also into the Sagiplan v 2.0 TPS.

  15. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    Science.gov (United States)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    the potential of the method to simulate turbulent flows past geometrically complex bodies on locally refined meshes. In all the cases, the results are found to be in very good agreement with published data and savings in computational resources are achieved.

  16. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  17. Use of mesh in laparoscopic paraesophageal hernia repair

    DEFF Research Database (Denmark)

    Müller-Stich, Beat P.; Kenngott, Hannes G.; Gondan, Matthias

    2015-01-01

    Introduction. Mesh augmentation seems to reduce recurrences following laparoscopic paraesophageal hernia repair (LPHR). However, there is an uncertain risk of mesh-associated complications. Risk-benefit analysis might solve the dilemma. Materials and Methods. A systematic literature search...... potential benefits of LMAH. All data regarding LMAH were used to estimate risk of mesh-associated complications. Risk-benefit analysis was performed using a Markov Monte Carlo decision-analytic model. Results. Meta-analysis of 3 RCTs and 9 OCSs including 915 patients revealed a significantly lower...

  18. Robust diamond meshes with unique wettability properties.

    Science.gov (United States)

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  19. Refined isogeometric analysis for a preconditioned conjugate gradient solver

    KAUST Repository

    Garcia, Daniel

    2018-02-12

    Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) Garcia et al. (2017). At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree p=3, the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.

  20. A Multiscale Adaptive Mesh Refinement Approach to Architectured Steel Specification in the Design of a Frameless Stressed Skin Structure

    DEFF Research Database (Denmark)

    Nicholas, Paul; Stasiuk, David; Nørgaard, Esben

    2015-01-01

    This paper describes the development of a modelling approach for the design and fabrication of an incrementally formed, stressed skin metal structure. The term incremental forming refers to a progression of localised plastic deformation to impart 3D form onto a 2D metal sheet, directly from 3D...... design data. A brief introduction presents this fabrication concept, as well as the context of structures whose skin plays a significant structural role. Existing research into ISF privileges either the control of forming parameters to minimise geometric deviation, or the more accurate measurement...... of the impact of the forming process at the scale of the grain. But to enhance structural performance for architectural applications requires that both aspects are considered synthetically. We demonstrate a mesh-based approach that incorporates critical parameters at the scales of structure, element...

  1. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

    Directory of Open Access Journals (Sweden)

    Shih-Shien Weng

    2008-09-01

    Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

  2. VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...

    African Journals Online (AJOL)

    gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.

  3. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  4. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  5. Crack growth simulation for plural crack using hexahedral mesh generation technique

    International Nuclear Information System (INIS)

    Orita, Y; Wada, Y; Kikuchi, M

    2010-01-01

    This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.

  6. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D

  7. Towards Blockchain-enabled Wireless Mesh Networks

    OpenAIRE

    Selimi, Mennan; Kabbinale, Aniruddh Rao; Ali, Anwaar; Navarro, Leandro; Sathiaseelan, Arjuna

    2018-01-01

    Recently, mesh networking and blockchain are two of the hottest technologies in the telecommunications industry. Combining both can reformulate internet access and make connecting to the Internet not only easy, but affordable too. Hyperledger Fabric (HLF) is a blockchain framework implementation and one of the Hyperledger projects hosted by The Linux Foundation. We evaluate HLF in a real production mesh network and in the laboratory, quantify its performance, bottlenecks and limitations of th...

  8. The CFD Simulation on Thermal Comfort in a library Building in the Tropics

    International Nuclear Information System (INIS)

    Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.

    2010-01-01

    This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.

  9. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes

    International Nuclear Information System (INIS)

    Pautz, Shawn D.

    2002-01-01

    A new algorithm for performing parallel S n sweeps on unstructured meshes is developed. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with 'normal' mesh partitionings, nearly linear speedups on up to 126 processors are observed. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, no severe asymptotic degradation in the parallel efficiency is observed with modest (≤100) levels of parallelism. This result is a fundamental step in the development of efficient parallel S n methods

  10. A novel three-dimensional mesh deformation method based on sphere relaxation

    International Nuclear Information System (INIS)

    Zhou, Xuan; Li, Shuixiang

    2015-01-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations

  11. A novel three-dimensional mesh deformation method based on sphere relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)

    2015-10-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

  12. Refinement of Parallel and Reactive Programs

    OpenAIRE

    Back, R. J. R.

    1992-01-01

    We show how to apply the refinement calculus to stepwise refinement of parallel and reactive programs. We use action systems as our basic program model. Action systems are sequential programs which can be implemented in a parallel fashion. Hence refinement calculus methods, originally developed for sequential programs, carry over to the derivation of parallel programs. Refinement of reactive programs is handled by data refinement techniques originally developed for the sequential refinement c...

  13. Creating value in refining

    International Nuclear Information System (INIS)

    Cobb, C.B.

    2001-01-01

    This article focuses on recent developments in the US refining industry and presents a model for improving the performance of refineries based on the analysis of the refining industry by Cap Gemini Ernst and Young. The identification of refineries in risk of failing, the construction of pipelines for refinery products from Gulf State refineries, mergers and acquisitions, and poor financial performance are discussed. Current challenges concerning the stagnant demand for refinery products, environmental regulations, and shareholder value are highlighted. The structure of the industry, the creation of value in refining, and the search for business models are examined. The top 25 US companies and US refining business groups are listed

  14. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  15. The Primary Care Electronic Library: RSS feeds using SNOMED-CT indexing for dynamic content delivery.

    Science.gov (United States)

    Robinson, Judas; de Lusignan, Simon; Kostkova, Patty; Madge, Bruce; Marsh, A; Biniaris, C

    2006-01-01

    Rich Site Summary (RSS) feeds are a method for disseminating and syndicating the contents of a website using extensible mark-up language (XML). The Primary Care Electronic Library (PCEL) distributes recent additions to the site in the form of an RSS feed. When new resources are added to PCEL, they are manually assigned medical subject headings (MeSH terms), which are then automatically mapped to SNOMED-CT terms using the Unified Medical Language System (UMLS) Metathesaurus. The library is thus searchable using MeSH or SNOMED-CT. Our syndicate partner wished to have remote access to PCEL coronary heart disease (CHD) information resources based on SNOMED-CT search terms. To pilot the supply of relevant information resources in response to clinically coded requests, using RSS syndication for transmission between web servers. Our syndicate partner provided a list of CHD SNOMED-CT terms to its end-users, a list which was coded according to UMLS specifications. When the end-user requested relevant information resources, this request was relayed from our syndicate partner's web server to the PCEL web server. The relevant resources were retrieved from the PCEL MySQL database. This database is accessed using a server side scripting language (PHP), which enables the production of dynamic RSS feeds on the basis of Source Asserted Identifiers (CODEs) contained in UMLS. Retrieving resources using SNOMED-CT terms using syndication can be used to build a functioning application. The process from request to display of syndicated resources took less than one second. The results of the pilot illustrate that it is possible to exchange data between servers using RSS syndication. This method could be utilised dynamically to supply digital library resources to a clinical system with SNOMED-CT data used as the standard of reference.

  16. [Current state of transvaginal meshes by resolution of pelvic organ prolapse].

    Science.gov (United States)

    Jírová, J; Pán, M

    Treatment of pelvic organs prolapse with transvaginal mesh kits represents nowadays a widespread surgical method, which partially replaced classic operations due to high success rate and low count of recurrences. Just like any other surgical method, the placement of transvaginal mesh is linked with occurrence of complications. In this article we attempt to review the more and less known facts about trans-vaginal meshes, their efficacy, count of recurrence and the spectrum of complications and we try to compare this technique with traditional surgical methods used to treat pelvic organs prolapse (without graft materials). Review. Department of Obstetrics and Gynecology, Regional hospital Mladá Boleslav a.s., Mladá Boleslav. Overview of the results of recent studies published in the Czech and English language in recent years. Pelvic organ prolapse repair with vaginal mesh has generally lower count of relapse especially in patients with wide genital hiatal area and with major levator ani avulsion. The spectrum of complications differs from classical techniques because of the presence of synthetic nonabsorbable material. Some of the specific complications we did not encounter during classical operations include vaginal mesh erosion, infection of mesh associated with chronic pelvic pain, dyspareunia, protrusion of the mesh into the closest organs or the rejection and progressive extrusion of the mesh. Primary enthusiasm has now been replaced with worries of major complications. Future tasks should therefore be aimed at minimizing the rate of complications associated with transvaginal meshes. Except using well-known and safe materials and providing specialized training of physicians for each mesh implantation technique, other precautions outlined in this article should help, such as a closer specification of indication for the application of transvaginal mesh.

  17. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair.

    Science.gov (United States)

    Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D

    2011-08-01

    To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard(®)Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO(®) (LWPP, Ethicon, http://www.ethicon.com), and GORE(®)INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However, over time, inflammation decreased significantly for all mesh types (P 0.09). The maximum tensile strength of mesh in the abdominal wall decreased over time for HWPP, LWPP, and mkPTFE mesh materials alike. This trend may actually reflect inability to adequately grip specimens at later time points

  18. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    Science.gov (United States)

    Bilyeu, David

    code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular

  19. Engagement of Metal Debris into a Gear Mesh

    Science.gov (United States)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  20. About the Library - Betty Petersen Memorial Library

    Science.gov (United States)

    branch library of the NOAA Central Library. The library serves the NOAA Science Center in Camp Springs , Maryland. History and Mission: Betty Petersen Memorial Library began as a reading room in the NOAA Science Science Center staff and advises the library on all aspects of the library program. Library Newsletters

  1. 7th International Meshing Roundtable '98

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  2. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  3. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  4. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  5. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  6. Challenging the Myth: Transvaginal Mesh is Not Associated with Carcinogenesis.

    Science.gov (United States)

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Thomas, Dominique; Eilber, Karyn S; Clemens, J Quentin; Anger, Jennifer T

    2017-10-01

    We sought to determine if there was a potential link between synthetic polypropylene mesh implantation for transvaginal pelvic organ prolapse and stress urinary incontinence, and carcinogenesis using statewide administrative data. Women who underwent transvaginal surgery for pelvic organ prolapse or stress urinary incontinence with mesh between January 2008 and December 2009 in New York State were identified using ICD-9-CM procedure codes and CPT-4 codes. Patients in the mesh cohort were individually matched to 2 control cohorts based on comorbidities and procedure date. Carcinogenesis was determined before and after matching at 1, 2 and 3 years, and during the entire followup time. A total of 2,229 patients who underwent mesh based pelvic organ prolapse surgery and 10,401 who underwent sling surgery for stress urinary incontinence between January 2008 and December 2009 were included in the study. Mean followup was 6 years (range 5 to 7). Exact matching between the mesh and control cohorts resulted in 1,870 pairs for pelvic organ prolapse mesh and cholecystectomy (1:2), 1,278 pairs for pelvic organ prolapse mesh and hysterectomy (1:1), 7,986 pairs for sling and cholecystectomy (1:1) and 3,810 pairs for sling and hysterectomy (1:1). Transvaginal mesh implantation was not associated with an increased risk of a cancer diagnosis (pelvic/local cancers or any cancer) at 1 year and during the entire followup of up to 7 years. Transvaginal surgery with implantation of mesh was not associated with the development of malignancy at a mean followup of 6 years. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Incisional hernia prevention using a cyanoacrilate-fixed retrofascial mesh.

    Science.gov (United States)

    Hoyuela, Carlos; Juvany, Montserrat; Trias, Miquel; Ardid, Jordi; Martrat, Antoni

    2018-01-01

    The rate of incisional hernia in high-risk patients (obesity, cancer, etc.) is high, even in laparoscopic surgery. The aim of this study is to evaluate the safety of the use of cyanoacrylate fixed prophylactic meshes in the assistance incision in overweight or obese patients undergoing laparoscopic colorectal surgery. A prospective, non-randomized cohort study of patients undergoing elective laparoscopic resection for colorectal cancer between January 2013 and March 2016 was performed. Those with a body mass index greater than 25kg / m 2 were evaluated to implant a prophylactic meshes fixed with cyanoacrylate (Histoacryl®) as reinforcement of the assistance incision. 52 patients were analyzed (mean body mass index: 28.4±2kg / m 2 ). Prophylactic meshes was implanted in 15 patients. The time to put the mesh in place was always less than 5minutes. There was no significant difference in wound infection rate (12% vs. 10%). No mesh had to be explanted. Although the mean follow-up was shorter (14.1±4 vs. 22.3±9 months), there were no incisional hernia in the mesh group. On the other hand, in the non-mesh group, 1 acute evisceration (2.7%) and 4 incisional hernia of the assistance incision were observed (10.8%). There were no significant differences between groups regarding trocar incisional hernia (6.6 vs. 5.4%). The implantation of a reinforcement prophylactic mesh in overweight or obese patients undergoing laparoscopic colorectal surgery is safe and seems to reduce the short-term rate of incisional hernia. Fixation with cyanoacrylate is a rapid method that facilitates the procedure without additional complications. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. ZONE: a finite element mesh generator

    International Nuclear Information System (INIS)

    Burger, M.J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

  9. Ordering schemes for parallel processing of certain mesh problems

    International Nuclear Information System (INIS)

    O'Leary, D.

    1984-01-01

    In this work, some ordering schemes for mesh points are presented which enable algorithms such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite difference method on computers consisting of a two-dimensional grid of processors. Convergence results are presented for the discretization of u /SUB xx/ + u /SUB yy/ on a uniform mesh over a square, showing that the spectral radius of the iteration for these orderings is no worse than that for the standard row by row ordering of mesh points. Further applications of these mesh point orderings to network problems, more general finite difference operators, and picture processing problems are noted

  10. America's Star Libraries, 2010: Top-Rated Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2010-01-01

    The "LJ" Index of Public Library Service 2010, "Library Journal"'s national rating of public libraries, identifies 258 "star" libraries. Created by Ray Lyons and Keith Curry Lance, and based on 2008 data from the IMLS, it rates 7,407 public libraries. The top libraries in each group get five, four, or three stars. All included libraries, stars or…

  11. H-Morph: An indirect approach to advancing front hex meshing

    Energy Technology Data Exchange (ETDEWEB)

    OWEN,STEVEN J.; SAIGAL,SUNIL

    2000-05-30

    H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.

  12. Featured Library: Parrish Library

    OpenAIRE

    Kirkwood, Hal P, Jr

    2015-01-01

    The Roland G. Parrish Library of Management & Economics is located within the Krannert School of Management at Purdue University. Between 2005 - 2007 work was completed on a white paper that focused on a student-centered vision for the Management & Economics Library. The next step was a massive collection reduction and a re-envisioning of both the services and space of the library. Thus began a 3 phase renovation from a 2 floor standard, collection-focused library into a single floor, 18,000s...

  13. An Interpreted Language and System for the Visualization of Unstructured Meshes

    Science.gov (United States)

    Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.

  14. Southeast Asian oil markets and refining

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, N.D. [FACTS, Inc., Honolulu, Hawaii (United States)

    1999-09-01

    An overview of the Southeast Asian oil markets and refining is presented concentrating on Brunei, Malaysia, the Philippines, Singapore and Thailand refiners. Key statistics of the refiners in this region are tabulated. The demand and the quality of Indonesian, Malaysian, Philippine, Singapore and Thai petroleum products are analysed. Crude distillation unit capacity trends in the Southeastern Asian refining industry are discussed along with cracking to distillation ratios, refining in these countries, and the impact of changes in demand and refining on the product trade.

  15. Southeast Asian oil markets and refining

    International Nuclear Information System (INIS)

    Yamaguchi, N.D.

    1999-01-01

    An overview of the Southeast Asian oil markets and refining is presented concentrating on Brunei, Malaysia, the Philippines, Singapore and Thailand refiners. Key statistics of the refiners in this region are tabulated. The demand and the quality of Indonesian, Malaysian, Philippine, Singapore and Thai petroleum products are analysed. Crude distillation unit capacity trends in the Southeastern Asian refining industry are discussed along with cracking to distillation ratios, refining in these countries, and the impact of changes in demand and refining on the product trade

  16. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    Science.gov (United States)

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  17. Grouper: a compact, streamable triangle mesh data structure.

    Science.gov (United States)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  18. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    Energy Technology Data Exchange (ETDEWEB)

    Luffel, Mark [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Gurung, Topraj [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Lindstrom, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rossignac, Jarek [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU)

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  19. Male infertility after mesh hernia repair: A prospective study.

    Science.gov (United States)

    Hallén, Magnus; Sandblom, Gabriel; Nordin, Pär; Gunnarsson, Ulf; Kvist, Ulrik; Westerdahl, Johan

    2011-02-01

    Several animal studies have raised concern about the risk for obstructive azoospermia owing to vasal fibrosis caused by the use of alloplastic mesh prosthesis in inguinal hernia repair. The aim of this study was to determine the prevalence of male infertility after bilateral mesh repair. In a prospective study, a questionnaire inquiring about involuntary childlessness, investigation for infertility and number of children was sent by mail to a group of 376 men aged 18-55 years, who had undergone bilateral mesh repair, identified in the Swedish Hernia Register (SHR). Questionnaires were also sent to 2 control groups, 1 consisting of 186 men from the SHR who had undergone bilateral repair without mesh, and 1 consisting of 383 men identified in the general population. The control group from the SHR was matched 2:1 for age and years elapsed since operation. The control group from the general population was matched 1:1 for age and marital status. The overall response rate was 525 of 945 (56%). Method of approach (anterior or posterior), type of mesh, and testicular status at the time of the repair had no significant impact on the answers to the questions. Nor did subgroup analysis of the men ≤40 years old reveal any significant differences. The results of this prospective study in men do not support the hypothesis that bilateral inguinal hernia repair with alloplastic mesh prosthesis causes male infertility at a significantly greater rate than those operated without mesh. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Effect of strontium on the grain refining efficiency of Mg-3Al alloy refined by carbon inoculation

    International Nuclear Information System (INIS)

    Du Jun; Yang Jian; Kuwabara, Mamoru; Li Wenfang; Peng Jihua

    2009-01-01

    The effect of Sr on the grain refining efficiency of the Mg-3Al alloy refined by carbon inoculation has been investigated in the present study. A significant grain refinement was obtained for the Mg-3Al alloy treated with either 0.2% C or 0.2% Sr. The Al-C-O particles were found in the sample refined by 0.2% C, and the element O should come from reaction between Al 4 C 3 nuclei of Mg grains and water during the process of sample preparation. The grain size of the sample refined by carbon inoculation was further decreased after the combined addition of Sr. The grain size decreased with increasing Sr content. Much higher refining efficiency was obtained when the Sr addition was increased to 0.5%. Sr is an effective element to improve the grain refining efficiency for the Mg-Al alloys refined by carbon inoculation. The number of Al 4 C 3 particles in the sample refined by the combination of carbon and Sr was more than that in the sample refined by only carbon. No Al-C-O-Sr-rich particles were obviously found in the sample refined by the combination of carbon and a little (<0.5%) Sr addition

  1. The application of TINA in the MESH project

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Ferreira Pires, Luis; Pires, L.F.; Plagemann, Thomas; Goebel, Vera

    1998-01-01

    This paper discusses the application of TINA concepts, architectures and related design paradigms in the MESH project. MESH adopted TINA as a means to facilitate the design and implementation of a flexible platform for developing and providing interactive multimedia services. This paper reports on

  2. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  3. Cell adhesion on NiTi thin film sputter-deposited meshes

    International Nuclear Information System (INIS)

    Loger, K.; Engel, A.; Haupt, J.; Li, Q.; Lima de Miranda, R.; Quandt, E.; Lutter, G.; Selhuber-Unkel, C.

    2016-01-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm 2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm 2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  4. PNet: A Python Library for Petri Net Modeling and Simulation

    OpenAIRE

    Zhu En Chay; Bing Feng Goh; Maurice HT Ling

    2016-01-01

    Petri Net is a formalism to describe changes between 2 or more states across discrete time and has been used to model many systems. We present PNet – a pure Python library for Petri Net modeling and simulation in Python programming language. The design of PNet focuses on reducing the learning curve needed to define a Petri Net by using a text-based language rather than programming constructs to define transition rules. Complex transition rules can be refined as regular Python functions. To de...

  5. Multigroup cross section library; WIMS library

    International Nuclear Information System (INIS)

    Kannan, Umasankari

    2000-01-01

    The WIMS library has been extensively used in thermal reactor calculations. This multigroup constants library was originally developed from the UKNDL in the late 60's and has been updated in 1986. This library has been distributed with the WIMS-D code by NEA data bank. The references to WIMS library in literature are the 'old' which is the original as developed by the AEA Winfrith and the 'new' which is the current 1986 WIMS library. IAEA has organised a CRP where a new and fully updated WIMS library will soon be available. This paper gives an overview of the definitions of the group constants that go into any basic nuclear data library used for reactor calculations. This paper also outlines the contents of the WIMS library and some of its shortcomings

  6. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  7. Adaptive Mesh Iteration Method for Trajectory Optimization Based on Hermite-Pseudospectral Direct Transcription

    Directory of Open Access Journals (Sweden)

    Humin Lei

    2017-01-01

    Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.

  8. In vitro extracellular matrix model to evaluate stroma cell response to transvaginal mesh.

    Science.gov (United States)

    Wu, Ming-Ping; Huang, Kuan-Hui; Long, Cheng-Yu; Yang, Chau-Chen; Tong, Yat-Ching

    2014-04-01

    The use of surgical mesh for female pelvic floor reconstruction has increased in recent years. However, there is paucity of information about the biological responses of host stroma cells to different meshes. This study was aimed to establish an in vitro experimental model to study the micro-environment of extracellular matrix (ECM) with embedded mesh and the stroma cell behaviors to different synthetic meshes. Matrigel multi-cellular co-culture system with embedded mesh was used to evaluate the interaction of stroma cells and synthetic mesh in a simulated ECM environment. Human umbilical vein endothelial cells (HUVEC) and NIH3T3 fibroblasts were inoculated in the system. The established multi-cellular Matrigel co-culture system was used to detect stroma cell recruitment and tube formation ability for different synthetic meshes. HUVEC and NIH3T3 cells were recruited into the mesh interstices and organized into tube-like structures in type I mesh material from Perigee, Marlex and Prolift 24 hr after cell inoculation. On the contrary, there was little recruitment of HUVEC and NIH3T3 cells into the type III mesh of intra-vaginal sling (IVS). The Matrigel multi-cellular co-culture system with embedded mesh offers a useful in vitro model to study the biological behaviors of stroma cells in response to different types of synthetic meshes. The system can help to select ideal mesh candidates before actual implantation into the human body. © 2013 Wiley Periodicals, Inc.

  9. Vacuum assisted closure therapy in the treatment of mesh infection after hernia repair.

    Science.gov (United States)

    Tamhankar, A P; Ravi, K; Everitt, N J

    2009-10-01

    Mesh related infection after prosthetic abdominal wall hernia repair is a difficult clinical problem, particularly in an era of evolving microbial resistance. Commonly advocated treatment for such infection involves complete mesh excision which usually leaves a complicated weak wound. We report the use ofVAC therapy for mesh infections that allows mesh preservation leaving a sound wound. From june 2002 to January 2007, four patients with mesh related infection after abdominal wall hernia repair were treated with VAC therapy. Patients' notes were reviewed to gather clinical details. Mesh infection was evident after a variable period (day three to eight years) following hernia repair. Of the four patients, one had infection with methicillin resistant Staphylococcus aureus (MRSA), while the bacteriological cultures from two confirmed Staphylococcus aureus in one and a mixture of Pseudomonas and enterococcus species in the other. One patient failed to show significant bacterial growth on pus swab culture, having had prior broad-spectrum antibiotic treatment for mesh infection. Three patients had complete mesh preservation and one had partial mesh excision. All patients were treated with VAC therapy, following the drainage of their operation sites, until the visible mesh was covered with granulation (one to seven weeks). No patient had a recurrent hernia after complete wound healing. VAC therapy allows salvage of infected exposed mesh by promoting granulation through the mesh. Judicious use of VAC therapy may prevent the need of mesh excision and its wound related complications.

  10. Linearly Refined Session Types

    Directory of Open Access Journals (Sweden)

    Pedro Baltazar

    2012-11-01

    Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.

  11. Coarse-mesh method for multidimensional, mixed-lattice diffusion calculations

    International Nuclear Information System (INIS)

    Dodds, H.L. Jr.; Honeck, H.C.; Hostetler, D.E.

    1977-01-01

    A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (''hex'') is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex

  12. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...

  13. Status of the Polyhedral Mesh Generator using SALOME PLATFORM and TetGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    Recently developed porous body approach codes such as SPACE and CUPID require a CAD system to estimate the porosity. Since they use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be described for the efforts to combine TetGen with it. In section 2, brief introduction will be made on the CAD and mesh generation capability of SALOME and Tetgen. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Procedures to merge boundary faces and to cut concave cells are developed to remove concave cells to get final convex polyhedral mesh. Treating the internal boundary face, i.e. non-manifold face will be the next task in the future investigation

  14. Parallel Performance Optimizations on Unstructured Mesh-based Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid

    2015-01-01

    © The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.

  15. Sacral colpopexy versus transvaginal mesh colpopexy in obese patients.

    Science.gov (United States)

    McDermott, Colleen D; Park, Jean; Terry, Colin L; Woodman, Patrick J; Hale, Douglass S

    2013-05-01

    Obesity can predispose women to pelvic organ prolapse and can also affect the success of pelvic organ prolapse surgery. The purpose of this study was to compare the postoperative anatomical outcomes following sacral colpopexy (SC) and transvaginal mesh colpopexy in a group of obese women with pelvic organ prolapse. We conducted a retrospective cohort study of obese women who underwent SC (n = 56) or transvaginal mesh colpopexy (n = 35). Follow-up ranged from 6 to 12 months. Preoperative, perioperative, and postoperative variables were compared using Student t, Mann-Whitney U, and Fisher exact tests, and by analysis of covariance. The women in the SC group had significantly higher mean apical vaginal measurements (P transvaginal mesh colpopexy group. There were no significant differences between the groups for other postoperative outcomes, including mesh erosion, recurrent prolapse symptoms, dyspareunia, and surgical satisfaction (P > 0.05). In these 91 obese patients with pelvic organ prolapse, SC resulted in better anatomical outcomes than transvaginal mesh colpopexy. However, the two procedures had similar outcomes with regard to recurrent symptoms and surgical satisfaction.

  16. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    Science.gov (United States)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  17. An optimization-based framework for anisotropic simplex mesh adaptation

    Science.gov (United States)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  18. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    Science.gov (United States)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  19. Library 3.0 intelligent libraries and apomediation

    CERN Document Server

    Kwanya, Tom; Underwood, Peter

    2015-01-01

    The emerging generation of research and academic library users expect the delivery of user-centered information services. 'Apomediation' refers to the supporting role librarians can give users by stepping in when users need help. Library 3.0 explores the ongoing debates on the "point oh” phenomenon and its impact on service delivery in libraries. This title analyses Library 3.0 and its potential in creating intelligent libraries capable of meeting contemporary needs, and the growing role of librarians as apomediators. Library 3.0 is divided into four chapters. The first chapter introduces and places the topic in context. The second chapter considers "point oh” libraries. The third chapter covers library 3.0 librarianship, while the final chapter explores ways libraries can move towards '3.0'.

  20. Robotic removal of eroded vaginal mesh into the bladder.

    Science.gov (United States)

    Macedo, Francisco Igor B; O'Connor, Jeffrey; Mittal, Vijay K; Hurley, Patrick

    2013-11-01

    Vaginal mesh erosion into the bladder after midurethral sling procedure or cystocele repair is uncommon, with only a few cases having been reported in the literature. The ideal surgical management is still controversial. Current options for removal of eroded mesh include: endoscopic, transvaginal or abdominal (either open or laparoscopic) approaches. We, herein, present the first case of robotic removal of a large eroded vaginal mesh into the bladder and discuss potential benefits and limitations of the technique. © 2013 The Japanese Urological Association.

  1. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse.

    Science.gov (United States)

    Altman, Daniel; Väyrynen, Tapio; Engh, Marie Ellström; Axelsen, Susanne; Falconer, Christian

    2011-05-12

    The use of standardized mesh kits for repair of pelvic-organ prolapse has spread rapidly in recent years, but it is unclear whether this approach results in better outcomes than traditional colporrhaphy. In this multicenter, parallel-group, randomized, controlled trial, we compared the use of a trocar-guided, transvaginal polypropylene-mesh repair kit with traditional colporrhaphy in women with prolapse of the anterior vaginal wall (cystocele). The primary outcome was a composite of the objective anatomical designation of stage 0 (no prolapse) or 1 (position of the anterior vaginal wall more than 1 cm above the hymen), according to the Pelvic Organ Prolapse Quantification system, and the subjective absence of symptoms of vaginal bulging 12 months after the surgery. Of 389 women who were randomly assigned to a study treatment, 200 underwent prolapse repair with the transvaginal mesh kit and 189 underwent traditional colporrhaphy. At 1 year, the primary outcome was significantly more common in the women treated with transvaginal mesh repair (60.8%) than in those who underwent colporrhaphy (34.5%) (absolute difference, 26.3 percentage points; 95% confidence interval, 15.6 to 37.0). The surgery lasted longer and the rates of intraoperative hemorrhage were higher in the mesh-repair group than in the colporrhaphy group (Pmesh-repair group and 0.5% in the colporrhaphy group (P=0.07), and the respective rates of new stress urinary incontinence after surgery were 12.3% and 6.3% (P=0.05). Surgical reintervention to correct mesh exposure during follow-up occurred in 3.2% of 186 patients in the mesh-repair group. As compared with anterior colporrhaphy, use of a standardized, trocar-guided mesh kit for cystocele repair resulted in higher short-term rates of successful treatment but also in higher rates of surgical complications and postoperative adverse events. (Funded by the Karolinska Institutet and Ethicon; ClinicalTrials.gov number, NCT00566917.).

  2. A Unified 3D Mesh Segmentation Framework Based on Markov Random Field

    OpenAIRE

    Z.F. Shi; L.Y. Lu; D. Le; X.M. Niu

    2012-01-01

    3D Mesh segmentation has become an important research field in computer graphics during the past decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. In this paper, we present a definition of mesh segmentation according to labeling problem. Inspired by the Markov Random Field (MRF) based image segmentation, we propose a new framework of 3D mesh segmentation based on MRF and use graph cuts to solve it. Any features of 3D mesh can be integra...

  3. Development of a multimaterial, two-dimensional, arbitrary Lagrangian-Eulerian mesh computer program

    International Nuclear Information System (INIS)

    Barton, R.T.

    1982-01-01

    We have developed a large, multimaterial, two-dimensional Arbitrary Lagrangian-Eulerian (ALE) computer program. The special feature of an ALE mesh is that it can be either an embedded Lagrangian mesh, a fixed Eulerian mesh, or a partially embedded, partially remapped mesh. Remapping is used to remove Lagrangian mesh distortion. This general purpose program has been used for astrophysical modeling, under the guidance of James R. Wilson. The rationale behind the development of this program will be used to highlight several important issues in program design

  4. Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification

    Energy Technology Data Exchange (ETDEWEB)

    Blottner, F.G.; Lopez, A.R.

    1998-10-01

    This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.

  5. Croatian library leaders’ views on (their library quality

    Directory of Open Access Journals (Sweden)

    Kornelija Petr Balog

    2014-04-01

    Full Text Available The purpose of this paper is to determine and describe the library culture in Croatian public libraries. Semi-structured interviews with 14 library directors (ten public and four academic were conducted. The tentative discussion topics were: definition of quality, responsibility for quality, satisfaction with library services, familiarization with user perspective of library and librarians, monitoring of user expectations and opinions. These interviews incorporate some of the findings of the project Evaluation of library and information services: public and academic libraries. The project investigates library culture in Croatian public and academic libraries and their preparedness for activities of performance measurement. The interviews reveal that library culture has changed positively in the past few years and that library leaders have positive attitude towards quality and evaluation activities. Library culture in Croatian libraries is a relatively new concept and as such was not actively developed and/or created. This article looks into the library culture of Croatian libraries, but at the same time investigates whether there is any trace of culture of assessment in them. Also, this article brings the latest update on views, opinions and atmosphere in Croatian public and academic libraries.

  6. Clinical and ultrasonographic study of patients presenting with transvaginal mesh complications.

    Science.gov (United States)

    Manonai, Jittima; Rostaminia, Ghazaleh; Denson, Lindsay; Shobeiri, S Abbas

    2016-03-01

    The objective of this study was to investigate the clinical and ultrasonographic findings of women who had three-dimensional endovaginal ultrasound (EVUS) for the management of vaginal mesh complications. This was a retrospective study of patients that had EVUS due to mesh complications at a tertiary care center. The clinical charts were reviewed. The stored 3D volumes were reviewed regarding mesh information by two examiners independently. The predictive value of physical examination for detection of vaginal mesh was calculated. Patient outcomes were reviewed. Seventy-nine patients presented to our center because of their, or their physicians' concern regarding mesh complications. Forty-one (51.9%) had vaginal/pelvic pain, and 51/62 (82.2%) of sexually active women experienced dyspareunia. According to ultrasonographic findings, mesh or sling was not demonstrated in six patients who believed they have had mesh/sling implantation. The positive predictive value for vaginal examination was 94.5% (95% CI: 84.9%-98.8%), negative predictive value was 12.5% (95% CI: 2.8%-32.4%), sensitivity was 72.2% (95% CI: 59.4%-81.2%), and specificity was 50.0% (95% CI: 12.4%-87.6%). Fifty-four patients were indicated for surgical treatment. Median postoperative review was 12 (range, 3-18) months and 38/53 (71.7%) patients were satisfied. The most common complaints of vaginal mesh complications were pain and dyspareunia. EVUS appeared to be helpful for assessing mesh presence, location, and extent including planning for surgical intervention. © 2015 Wiley Periodicals, Inc.

  7. Autoclaved Sand-Lime Products with a Polypropylene Mesh

    Science.gov (United States)

    Kostrzewa, Paulina; Stępień, Anna

    2017-10-01

    The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.

  8. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2016-01-01

    Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

  9. Riding Bare-Back on unstructured meshes for 21. century criticality calculations - 244

    International Nuclear Information System (INIS)

    Kelley, K.C.; Martz, R.L.; Crane, D.L.

    2010-01-01

    MCNP has a new capability that permits tracking of neutrons and photons on an unstructured mesh which is embedded as a mesh universe within its legacy geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. Transport results are calculated for mesh elements through a path length estimator while element to element tracking is performed on the mesh. The results from MCNP can be exported to Abaqus/CAE for visualization or other-physics analysis. The simple Godiva criticality benchmark problem was tested with this new mesh capability. Computer run time is proportional to the number of mesh elements used. Both first and second order polyhedrons are used. Models that used second order polyhedrons produced slightly better results without significantly increasing computer run time. Models that used first order hexahedrons had shorter runtimes than models that used first order tetrahedrons. (authors)

  10. Adaptive mesh generation for image registration and segmentation

    DEFF Research Database (Denmark)

    Fogtmann, Mads; Larsen, Rasmus

    2013-01-01

    measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....

  11. Laparoscopy-like operative vaginoscopy: a new approach to manage mesh erosions.

    Science.gov (United States)

    Billone, Valentina; Amorim-Costa, Célia; Campos, Sara; Rabischong, Benoĭt; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    2015-01-01

    Mesh erosion through the vagina is the most common complication of synthetic mesh used for pelvic organ prolapse repair. However, conventional transvaginal mesh excision has many technical limitations. We aimed at creating and describing a new surgical technique for transvaginal removal of exposed mesh that would enable better exposition and access, thus facilitating optimal treatment. A step-by-step video showing the technique. A university tertiary care hospital. Five patients previously submitted to pelvic organ prolapse repair using synthetic mesh, presenting mesh erosion through the vagina. Mesh excision using a laparoscopy-like operative vaginoscopy in which standard laparoscopic instruments are used through a single-incision laparoscopic surgery port device placed in the vagina. In all cases, a very good exposure of the mesh was achieved, a minimal tissue traction was required, and the procedures were performed in a very ergonomic way. All the patients were discharged on the same day of the surgery and had a painless postoperative course. So far, there have been no cases of relapse. This seems to be a simple, cheap, and valuable minimally invasive technique with many advantages in comparison with the conventional approach. More cases and time are necessary to access its long-term efficacy. It may possibly be used for the management of other conditions. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  12. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut

    2016-01-01

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals

  13. Recurrence and Pain after Mesh Repair of Inguinal Hernias

    African Journals Online (AJOL)

    Abstract. Background: Surgery for inguinal hernias has ... repair. Methods: The study was conducted on all inguinal hernia patients operated between 1st. October ... bilateral (1.6%). Only 101 .... Open Mesh Versus Laparoscopic Mesh. Repair ...

  14. Commercial refining in the Mediterranean

    International Nuclear Information System (INIS)

    Packer, P.

    1999-01-01

    About 9% of the world's oil refining capacity is on the Mediterranean: some of the world's biggest and most advanced refineries are on Sicily and Sardinia. The Mediterranean refineries are important suppliers to southern Europe and N. Africa. The article discusses commercial refining in the Mediterranean under the headings of (i) historic development, (ii) product demand, (iii) refinery configurations, (iv) refined product trade, (v) financial performance and (vi) future outlook. Although some difficulties are foreseen, refining in the Mediterranean is likely to continue to be important well into the 21st century. (UK)

  15. Field Encapsulation Library The FEL 2.2 User Guide

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  16. MUSIC: a mesh-unrestricted simulation code

    International Nuclear Information System (INIS)

    Bonalumi, R.A.; Rouben, B.; Dastur, A.R.; Dondale, C.S.; Li, H.Y.H.

    1978-01-01

    A general formalism to solve the G-group neutron diffusion equation is described. The G-group flux is represented by complementing an ''asymptotic'' mode with (G-1) ''transient'' modes. A particular reduction-to-one-group technique gives a high computational efficiency. MUSIC, a 2-group code using the above formalism, is presented. MUSIC is demonstrated on a fine-mesh calculation and on 2 coarse-mesh core calculations: a heavy-water reactor (HWR) problem and the 2-D lightwater reactor (LWR) IAEA benchmark. Comparison is made to finite-difference results

  17. An Implementation and Parallelization of the Scale Space Meshing Algorithm

    Directory of Open Access Journals (Sweden)

    Julie Digne

    2015-11-01

    Full Text Available Creating an interpolating mesh from an unorganized set of oriented points is a difficult problemwhich is often overlooked. Most methods focus indeed on building a watertight smoothed meshby defining some function whose zero level set is the surface of the object. However in some casesit is crucial to build a mesh that interpolates the points and does not fill the acquisition holes:either because the data are sparse and trying to fill the holes would create spurious artifactsor because the goal is to explore visually the data exactly as they were acquired without anysmoothing process. In this paper we detail a parallel implementation of the Scale-Space Meshingalgorithm, which builds on the scale-space framework for reconstructing a high precision meshfrom an input oriented point set. This algorithm first smoothes the point set, producing asingularity free shape. It then uses a standard mesh reconstruction technique, the Ball PivotingAlgorithm, to build a mesh from the smoothed point set. The final step consists in back-projecting the mesh built on the smoothed positions onto the original point set. The result ofthis process is an interpolating, hole-preserving surface mesh reconstruction.

  18. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures.

  19. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    International Nuclear Information System (INIS)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S.

    2016-01-01

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures

  20. 3D Mesh Compression and Transmission for Mobile Robotic Applications

    Directory of Open Access Journals (Sweden)

    Bailin Yang

    2016-01-01

    Full Text Available Mobile robots are useful for environment exploration and rescue operations. In such applications, it is crucial to accurately analyse and represent an environment, providing appropriate inputs for motion planning in order to support robot navigation and operations. 2D mapping methods are simple but cannot handle multilevel or multistory environments. To address this problem, 3D mapping methods generate structural 3D representations of the robot operating environment and its objects by 3D mesh reconstruction. However, they face the challenge of efficiently transmitting those 3D representations to system modules for 3D mapping, motion planning, and robot operation visualization. This paper proposes a quality-driven mesh compression and transmission method to address this. Our method is efficient, as it compresses a mesh by quantizing its transformed vertices without the need to spend time constructing an a-priori structure over the mesh. A visual distortion function is developed to govern the level of quantization, allowing mesh transmission to be controlled under different network conditions or time constraints. Our experiments demonstrate how the visual quality of a mesh can be manipulated by the visual distortion function.

  1. Refining Nodes and Edges of State Machines

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Snook, Colin

    2011-01-01

    State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple conventions...... refinement theory and UML-B state machine refinement influences the style of node refinement. Hence we propose a method with direct proof of state machine refinement avoiding the detour via Event-B that is needed by UML-B....

  2. 22nd International Meshing Roundtable

    CERN Document Server

    Staten, Matthew

    2014-01-01

    This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA.  The first IMR was held in 1992, and the conference series has been held annually since.  Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics.  The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.

  3. 21st International Meshing Roundtable

    CERN Document Server

    Weill, Jean-Christophe

    2013-01-01

    This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.

  4. Kinetic solvers with adaptive mesh in phase space

    Science.gov (United States)

    Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.

  5. Solution adaptive grids applied to low Reynolds number flow

    Science.gov (United States)

    de With, G.; Holdø, A. E.; Huld, T. A.

    2003-08-01

    A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.

  6. Short term post-operative morphing of sacrocolpopexy mesh measured by magnetic resonance imaging.

    Science.gov (United States)

    Sindhwani, Nikhil; Callewaert, Geertje; Deprest, Thomas; Housmans, Susanne; Van Beckevoort, Dirk; Deprest, Jan

    2018-04-01

    Sacrocolpopexy (SC) involves suspension of the vaginal vault or cervix to the sacrum using a mesh. Following insertion, the meshes have been observed to have undergone dimensional changes. To quantify dimensional changes of meshes following implantation and characterize their morphology in-vivo. 24 patients underwent SC using PolyVinyliDeneFluoride mesh loaded with Fe 3 O 4 particles. Tailored anterior and posterior mesh flaps were sutured to the respective vaginal walls, uniting at the apex. The posterior flap continued to the sacrum and was attached there. Meshes were visualized on magnetic resonance (MR) imaging at 12 [3-12] (median [range]) months postoperatively and 3D models of the mesh were generated. Dynamic MR sequences were acquired during valsalva to record mesh mobility. The area of the vagina effectively supported by the mesh (Effective Support Area (ESA)) was calculated. The 3D models' wall thickness map was analyzed to identify the locations of mesh folding. Intraclass correlation (ICC) was calculated to test the reliability of the methods. To measure the laxity and flatness of the mesh, the curvature and the ellipticity of the sacral flap were calculated. The ESA calculation methodology had ICC = 0.97. A reduction of 75.49 [61.55-78.67] % (median [IQR]) in area, 47.64 [38.07-59.81] % in anterior flap, and of 23.95 [10.96-27.21] % in the posterior flap was measured. The mesh appeared thicker near its attachment at the sacral promontory (n = 19) and near the vaginal apex (n = 22). The laxity of the mesh was 1.13 [1.10-1.16] and 60.55 [49.76-76.25] % of the sacral flap was flat. We could not reliably measure mesh mobility (ICC = 0.16). A methodology for complete 3D characterization of SC meshes using MR images was presented. After implantation, the supported area is much lower than what is prepared prior to implantation. We propose this happened during the surgery itself. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Anomalies in the refinement of isoleucine

    International Nuclear Information System (INIS)

    Berntsen, Karen R. M.; Vriend, Gert

    2014-01-01

    The side-chain torsion angles of isoleucines in X-ray protein structures are a function of resolution, secondary structure and refinement software. Detailing the standard torsion angles used in refinement software can improve protein structure refinement. A study of isoleucines in protein structures solved using X-ray crystallography revealed a series of systematic trends for the two side-chain torsion angles χ 1 and χ 2 dependent on the resolution, secondary structure and refinement software used. The average torsion angles for the nine rotamers were similar in high-resolution structures solved using either the REFMAC, CNS or PHENIX software. However, at low resolution these programs often refine towards somewhat different χ 1 and χ 2 values. Small systematic differences can be observed between refinement software that uses molecular dynamics-type energy terms (for example CNS) and software that does not use these terms (for example REFMAC). Detailing the standard torsion angles used in refinement software can improve the refinement of protein structures. The target values in the molecular dynamics-type energy functions can also be improved

  8. Anomalies in the refinement of isoleucine

    Energy Technology Data Exchange (ETDEWEB)

    Berntsen, Karen R. M.; Vriend, Gert, E-mail: gerrit.vriend@radboudumc.nl [Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen (Netherlands)

    2014-04-01

    The side-chain torsion angles of isoleucines in X-ray protein structures are a function of resolution, secondary structure and refinement software. Detailing the standard torsion angles used in refinement software can improve protein structure refinement. A study of isoleucines in protein structures solved using X-ray crystallography revealed a series of systematic trends for the two side-chain torsion angles χ{sub 1} and χ{sub 2} dependent on the resolution, secondary structure and refinement software used. The average torsion angles for the nine rotamers were similar in high-resolution structures solved using either the REFMAC, CNS or PHENIX software. However, at low resolution these programs often refine towards somewhat different χ{sub 1} and χ{sub 2} values. Small systematic differences can be observed between refinement software that uses molecular dynamics-type energy terms (for example CNS) and software that does not use these terms (for example REFMAC). Detailing the standard torsion angles used in refinement software can improve the refinement of protein structures. The target values in the molecular dynamics-type energy functions can also be improved.

  9. Grain refinement of zinc-aluminium alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2006-01-01

    It is now well-established that the structure of the zinc-aluminum die casting alloys can be modified by the binary Al-Ti or the ternary Al-Ti-B master alloys. in this paper, grain refinement of zinc-aluminum alloys by rare earth materials is reviewed and discussed. The importance of grain refining of these alloys and parameters affecting it are presented and discussed. These include parameters related to the Zn-Al alloys cast, parameters related to the grain refining elements or alloys and parameters related to the process. The effect of addition of other alloying elements e.g. Zr either alone or in the presence of the main grain refiners Ti or Ti + B on the grain refining efficiency is also reviewed and discussed. Furthermore, based on the grain refinement and the parameters affecting it, a criterion for selection of the optimum grain refiner is suggested. Finally, the recent research work on the effect of grain refiners on the mechanical behaviour, impact strength, wear resistance, and fatigue life of these alloys are presented and discussed. (author)

  10. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  11. Assessment of Pain and Quality of Life in Lichtenstein Hernia Repair Using a New Monofilament PTFE Mesh: Comparison of Suture vs. Fibrin-Sealant Mesh Fixation.

    Science.gov (United States)

    Fortelny, René H; Petter-Puchner, Alexander H; Redl, Heinz; May, Christopher; Pospischil, Wolfgang; Glaser, Karl

    2014-01-01

    Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e., the Infinit(®) mesh by W. L. Gore & Associates. This study was designed as a controlled prospective single-center two-cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin-sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e., seroma, infection), pain, and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year. Significantly, less postoperative pain was reported in the fibrin-sealant group compared to the suture group at 6 weeks (P = 0.035), 6 months (P = 0.023), and 1 year (P = 0.011) postoperatively. Additionally, trends toward a higher postoperative quality of life, a faster surgical procedure, and a shorter hospital stay were seen in the fibrin-sealant group. Fibrin-sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  12. Assessment of pain and quality of life in Lichtenstein hernia repair using a new monofilament PTFE mesh: comparison of suture vs. fibrin sealant mesh fixation

    Directory of Open Access Journals (Sweden)

    René H Fortelny

    2014-11-01

    Full Text Available Background: Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e. the Infinit® mesh by W. L. Gore & Associates. Methods: This study was designed as a controlled prospective single-centre two cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e. seroma, infection, pain and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year.Results: Significantly less postoperative pain was reported in the fibrin sealant group compared to the suture group at 6 weeks (P=0.035, 6 months (P=0.023 and 1 year (P=0.011 postoperatively. Additionally trends towards a higher postoperative quality of life, a faster surgical procedure and a shorter hospital stay were seen in the fibrin sealant group.Conclusion: Fibrin sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  13. 3D face analysis by using Mesh-LBP feature

    Science.gov (United States)

    Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.

  14. Saskatchewan Residents’ Use of The Cochrane Library

    Directory of Open Access Journals (Sweden)

    Dorothy Anne Forbes

    2007-11-01

    Full Text Available There is strong evidence of failure to translate research findings into the health care decision-making process of consumers, practitioners and policy makers (Grimshaw, 2007. Recognizing that The Cochrane Database of Systematic Reviews contained in The Cochrane Library (the Library are the “gold standard” of systematic reviews, Saskatchewan’s Health Quality Council provided funding for a provincial license and an evaluation study. In July 2004, Saskatchewan became the first province in Canada to provide all residents with access to the Library. The primary aim of the study was to enhance and evaluate the use of the Library over three years. Since September 2004, over 46 training sessions have been conducted on searching the Library online databases. Attendees at the workshops were informed of the evaluation study and invited to participate. Those who consented to participate were telephoned following the workshops and audio-taped interviews were conducted. Usage of the Library was also tracked using data available from Wiley InterScience. Three month (n=94, six month (n=71, nine month (n=79, and 12 month (n=72 telephone interviews were conducted. Most participants were librarians (n=31.5%, followed by nurses (16.3%, therapists (7.6%, library support staff (5.4%, pharmacists (4.3%, physicians (3.3%, and others (30.5. Most were between 40 to 65 years of age (71.6% and female (92.4%. Most respondents had accessed the Library at the three-month (65.2% and six-month (64.2% follow-up interviews. However, this percent fell to 45.2% at the nine-month and 27.4% at the twelve-month interview. MeSH searches were more frequent than standard keyword searches and HTML full text retrievals were more common than PDF versions. It is assumed that HTML versions were scanned for particular information whereas PDF versions were selected when the person wished to save and read the whole review. Librarians, practitioners and consumers are more likely to be

  15. The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing

    Directory of Open Access Journals (Sweden)

    Kniat Aleksander

    2014-04-01

    Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.

  16. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Constancio, Silva

    2006-07-01

    In 2004, refining margins showed a clear improvement that persisted throughout the first three quarters of 2005. This enabled oil companies to post significantly higher earnings for their refining activity in 2004 compared to 2003, with the results of the first half of 2005 confirming this trend. As for petrochemicals, despite a steady rise in the naphtha price, higher cash margins enabled a turnaround in 2004 as well as a clear improvement in oil company financial performance that should continue in 2005, judging by the net income figures reported for the first half-year. Despite this favorable business environment, capital expenditure in refining and petrochemicals remained at a low level, especially investment in new capacity, but a number of projects are being planned for the next five years. (author)

  17. Refining and petrochemicals

    International Nuclear Information System (INIS)

    Constancio, Silva

    2006-01-01

    In 2004, refining margins showed a clear improvement that persisted throughout the first three quarters of 2005. This enabled oil companies to post significantly higher earnings for their refining activity in 2004 compared to 2003, with the results of the first half of 2005 confirming this trend. As for petrochemicals, despite a steady rise in the naphtha price, higher cash margins enabled a turnaround in 2004 as well as a clear improvement in oil company financial performance that should continue in 2005, judging by the net income figures reported for the first half-year. Despite this favorable business environment, capital expenditure in refining and petrochemicals remained at a low level, especially investment in new capacity, but a number of projects are being planned for the next five years. (author)

  18. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent

    2012-11-06

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of the one minimized by centroidal Voronoi tessellation, and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh elements to best approximate the input, without estimating any differential quantities. Therefore, it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated. © 2012 Springer-Verlag London.

  19. In vitro analysis of biopolymer coating with glycidoxypropyltrimethoxysilane on hernia meshes.

    Science.gov (United States)

    Metzler, Steffen; Zankovych, Sergiy; Rauchfuß, Falk; Dittmar, Yves; Jandt, Karin; Jandt, Klaus D; Settmacher, Utz; Scheuerlein, Hubert

    2017-07-01

    Certain coatings may improve the biocompatibility of hernia meshes. The coating with self-assembled monolayers, such as glycidoxypropyltrimethoxysilane (GOPS) can also improve the materials characteristics of implants. This approach was not yet explored in hernia meshes. It was the aim of this work to clarify if and how hernia meshes with their three-dimensional structure can be coated with GOPS and with which technique this coating can be best characterized. Commercially available meshes made from polypropylene (PP), polyester (PE), and expanded polytetrafluorethylene (ePTFE) have been coated with GOPS. The coatings were analyzed via X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM), and cell proliferation test (mouse fibroblasts). Cell viability and cytotoxicity were tested by MTT test. With the GOPS surface modification, the adherence of mouse fibroblasts on polyester meshes and the proliferation on ePTFE meshes were increased compared to noncoated meshes. Both XPS and CLSM are limited in their applicability and validity due to the three-dimensional mesh structure while CLSM was overall more suitable. In the MTT test, no negative effects of the GOPS coating on the cells were detected after 24 h. The present results show that GOPS coating of hernia meshes is feasible and effective. GOPS coating can be achieved in a fast and cost-efficient way. Further investigations are necessary with respect to coating quality and adverse effects before such a coating may be used in the clinical routine. In conclusion, GOPS is a promising material that warrants further research as coating of medical implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1083-1090, 2017. © 2016 Wiley Periodicals, Inc.

  20. Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling

    International Nuclear Information System (INIS)

    Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H.

    2003-01-01

    In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)

  1. Are patient specific meshes required for EIT head imaging?

    Science.gov (United States)

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  2. Mapping method for generating three-dimensional meshes: past and present

    International Nuclear Information System (INIS)

    Cook, W.A.; Oakes, W.R.

    1982-01-01

    Two transformations are derived in this paper. One is a mapping of a unit square onto a surve and the other is a mapping of a unit cube onto a three-dimensional region. Two meshing computer programs are then discussed that use these mappings. The first is INGEN, which has been used to calculate three-dimensional meshes for approximately 15 years. This meshing program uses an index scheme to number boundaries, surfaces, and regions. With such an index scheme, it is possible to control nodal points, elements, and boundary conditions. The second is ESCHER, a meshing program now being developed. Two primary considerations governing development of ESCHER are that meshes graded using quadrilaterals are required and that edge-line geometry defined by Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) systems will be a major source of geometry definition. This program separates the processes of nodal-point connectivity generation, computation of nodal-point mapping space coordinates, and mapping of nodal points into model space

  3. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  4. Deflating link buffers in a wireless mesh network

    KAUST Repository

    Jamshaid, Kamran; Shihada, Basem; Showail, Ahmad; Levis, Philip

    2014-01-01

    We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.

  5. Deflating link buffers in a wireless mesh network

    KAUST Repository

    Jamshaid, Kamran

    2014-05-01

    We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.

  6. Grain refinement of aluminum and its alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    Grain refinement of aluminum and its alloys by the binary Al-Ti and Ternary Al-Ti-B master alloys is reviewed and discussed. The importance of grain refining to the cast industry and the parameters affecting it are presented and discussed. These include parameters related to the cast, parameters related to the grain refining alloy and parameters related to the process. The different mechanisms, suggested in the literature for the process of grain refining are presented and discussed, from which it is found that although the mechanism of refining by the binary Al-Ti is well established the mechanism of grain refining by the ternary Al-Ti-B is still a controversial matter and some research work is still needed in this area. The effect of the addition of other alloying elements in the presence of the grain refiner on the grain refining efficiency is also reviewed and discussed. It is found that some elements e.g. V, Mo, C improves the grain refining efficiency, whereas other elements e.g. Cr, Zr, Ta poisons the grain refinement. Based on the parameters affecting the grain refinement and its mechanism, a criterion for selection of the optimum grain refiner is forwarded and discussed. (author)

  7. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    Science.gov (United States)

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2018-02-01

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting

  8. Outcome of transvaginal mesh and tape removed for pain only.

    Science.gov (United States)

    Hou, Jack C; Alhalabi, Feras; Lemack, Gary E; Zimmern, Philippe E

    2014-09-01

    Because there is reluctance to operate for pain, we evaluated midterm outcomes of vaginal mesh and synthetic suburethral tape removed for pain as the only indication. After receiving institutional review board approval we reviewed a prospective database of women without a neurogenic condition who underwent surgery for vaginal mesh or suburethral tape removal with a focus on pain as the single reason for removal and a minimum 6-month followup. The primary outcome was pain level assessed by a visual analog scale (range 0 to 10) at baseline and at each subsequent visit with the score at the last visit used for analysis. Parameters evaluated included demographics, mean time to presentation and type of mesh or tape inserted. From 2005 to 2013, 123 patients underwent surgical removal of mesh (69) and suburethral tape (54) with pain as the only indication. Mean followup was 35 months (range 6 to 59) in the tape group and 22 months (range 6 to 47) in the mesh group. The visual analog scale score decreased from a mean preoperative level of 7.9 to 0.9 postoperatively (p = 0.0014) in the mesh group and from 5.3 to 1.5 (p = 0.00074) in the tape group. Pain-free status, considered a score of 0, was achieved in 81% of tape and 67% of mesh cases, respectively. No statistically significant difference was found between the groups. When pain is the only indication for suburethral tape or vaginal mesh removal, a significant decrease in the pain score can be durably expected after removal in most patients at midterm followup. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Mesh size effects on assessments of planktonic hydrozoan abundance and assemblage structure

    Science.gov (United States)

    Nogueira Júnior, Miodeli; Pukanski, Luis Eduardo de M.; Souza-Conceição, José M.

    2015-04-01

    The choice of appropriate mesh-size is paramount to accurately quantify planktonic assemblages, however there is no such information available for hydrozoans. Here planktonic hydrozoan abundance and assemblage structure were compared using 200 and 500 μm meshes at Babitonga estuary (S Brazil), throughout a year cycle. Species richness and Shannon-Wiener diversity were higher in the 200 μm mesh, while evenness was typically higher in the 500 μm. Assemblage structure was significantly different between meshes (PERMANOVA, P 8 mm in October. These results suggest that both meshes have their drawbacks and the best choice would depend on the objectives of each study. Nevertheless species richness, total abundances and most taxa were better represented by the 200 μm mesh, suggesting that it is more appropriate to quantitatively sample planktonic hydrozoan assemblages.

  10. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  11. Management of complications arising from transvaginal mesh kit procedures: a tertiary referral center's experience.

    Science.gov (United States)

    Hurtado, Eric A; Appell, Rodney A

    2009-01-01

    This case series' purpose is to review a referral center's experience with complications from mesh kits. A chart review of 12 patients who presented with complications associated with transvaginal mesh kit procedures was performed. All patients underwent complete surgical removal of the mesh to treat mesh exposure, pain, or vaginal bleeding/discharge followed by an anterior or posterior repair. The mean follow-up time after surgery was 3.4 months. Eight of 12 patients had mesh that had formed a fibrotic band. Six of 12 patients had complete resolution of pain. Of the nine patients with mesh exposure, all required significant resection of the vaginal wall. No further mesh exposure occurred. The use of transvaginal mesh kits may cause previously undescribed complications such as pelvic/vaginal pain or large extrusions requiring complete removal. Removal of all mesh except the arms may cure or significantly improve these problems.

  12. Speaking of users: on user discourses in the field of public libraries

    Directory of Open Access Journals (Sweden)

    Ase Hedemark

    2005-01-01

    Full Text Available Introduction. The aim of the study reported is to examine user discourses identified in the Swedish public library field. The following questions are posed: What user discourses can be found and what characterises them? How are users categorised and what does this categorisation imply? The departure point in this paper is that the ways users are categorised influence their information behaviour. Plausible consequences for the relation between the interest of the public library and the users are discussed. Method. The empirical focus of the paper is a discourse analysis with a starting-point in Ernesto Laclaus and Chantal Mouffes discourse theory. Analysis. Sixty-two articles from three established Swedish library journals are analysed through a model in four phases. These phases include designations of users, user categories, themes within which users are described and user discourses. Results. Four user discourses are revealed: a general education discourse, a pedagogical discourse, an information technology discourse and an information management discourse. Conclusion. The discourses hold both levels of idealizing and experience related rhetoric. The dominant general education discourse is based on a tradition of fostering and refining as well as educating the general public and thereby reproduces inequality between the user and the library.

  13. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    Science.gov (United States)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  14. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Boutchko, R; Gullberg, G T; Sitek, A

    2013-01-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  15. Niobium-base grain refiner for aluminium

    International Nuclear Information System (INIS)

    Silva Pontes, P. da; Robert, M.H.; Cupini, N.L.

    1980-01-01

    A new chemical grain refiner for aluminium has been developed, using inoculation of a niobium-base compound. When a bath of molten aluminium is inoculated whith this refiner, an intermetallic aluminium-niobium compound is formed which acts as a powerful nucleant, producing extremely fine structure comparable to those obtained by means of the traditional grain refiner based on titanium and boron. It was found that the refinement of the structure depends upon the weight percentage of the new refiner inoculated as well as the time of holding the bath after inoculation and before pouring, but mainly on the inoculating temperature. (Author) [pt

  16. LOOM-P: a finite element mesh generation program with on-line graphic display

    International Nuclear Information System (INIS)

    Ise, Takeharu; Yamazaki, Toshio.

    1977-06-01

    A description of the two-dimensional mesh generation program, LOOM-P, is given in detail. The program is developed newly to produce a mesh network for a reactor core geometry with the help of an automatic mesh generation routine built in it, under the control of the refresh-type graphic display. It is therefore similar to the edit program of the self-organizing mesh generator, QMESH-RENUM. Additional techniques are incorporated to improve the pattern of mesh elements by means of on-line conversational mode. The obtained mesh network is edited out as input data to the three-dimensional neutron diffusion theory code, FEM-BABEL. (auth.)

  17. Indian refining industry

    International Nuclear Information System (INIS)

    Singh, I.J.

    2002-01-01

    The author discusses the history of the Indian refining industry and ongoing developments under the headings: the present state; refinery configuration; Indian capabilities for refinery projects; and reforms in the refining industry. Tables lists India's petroleum refineries giving location and capacity; new refinery projects together with location and capacity; and expansion projects of Indian petroleum refineries. The Indian refinery industry has undergone substantial expansion as well as technological changes over the past years. There has been progressive technology upgrading, energy efficiency, better environmental control and improved capacity utilisation. Major reform processes have been set in motion by the government of India: converting the refining industry from a centrally controlled public sector dominated industry to a delicensed regime in a competitive market economy with the introduction of a liberal exploration policy; dismantling the administered price mechanism; and a 25 year hydrocarbon vision. (UK)

  18. The long-term behavior of lightweight and heavyweight meshes used to repair abdominal wall defects is determined by the host tissue repair process provoked by the mesh.

    Science.gov (United States)

    Pascual, Gemma; Hernández-Gascón, Belén; Rodríguez, Marta; Sotomayor, Sandra; Peña, Estefania; Calvo, Begoña; Bellón, Juan M

    2012-11-01

    Although heavyweight (HW) or lightweight (LW) polypropylene (PP) meshes are widely used for hernia repair, other alternatives have recently appeared. They have the same large-pore structure yet are composed of polytetrafluoroethylene (PTFE). This study compares the long-term (3 and 6 months) behavior of meshes of different pore size (HW compared with LW) and composition (PP compared with PTFE). Partial defects were created in the lateral wall of the abdomen in New Zealand White rabbits and then repaired by the use of a HW or LW PP mesh or a new monofilament, large-pore PTFE mesh (Infinit). At 90 and 180 days after implantation, tissue incorporation, gene and protein expression of neocollagens (reverse transcription-polymerase chain reaction/immunofluorescence), macrophage response (immunohistochemistry), and biomechanical strength were determined. Shrinkage was measured at 90 days. All three meshes induced good host tissue ingrowth, yet the macrophage response was significantly greater in the PTFE implants (P .05). Host collagen deposition is mesh pore size dependent whereas the macrophage response induced is composition dependent with a greater response shown by PTFE. In the long term, macroporous meshes show comparable biomechanical behavior regardless of their pore size or composition. Copyright © 2012 Mosby, Inc. All rights reserved.

  19. Constructing C1 Continuous Surface on Irregular Quad Meshes

    Institute of Scientific and Technical Information of China (English)

    HE Jun; GUO Qiang

    2013-01-01

    A new method is proposed for surface construction on irregular quad meshes as extensions to uniform B-spline surfaces. Given a number of control points, which form a regular or irregular quad mesh, a weight function is constructed for each control point. The weight function is defined on a local domain and is C1 continuous. Then the whole surface is constructed by the weighted combination of all the control points. The property of the new method is that the surface is defined by piecewise C1 bi-cubic rational parametric polynomial with each quad face. It is an extension to uniform B-spline surfaces in the sense that its definition is an analogy of the B-spline surface, and it produces a uniform bi-cubic B-spline surface if the control mesh is a regular quad mesh. Examples produced by the new method are also included.

  20. Spanish Refining

    International Nuclear Information System (INIS)

    Lores, F.R.

    2001-01-01

    An overview of petroleum refining in Spain is presented (by Repsol YPF) and some views on future trends are discussed. Spain depends heavily on imports. Sub-headings in the article cover: sources of crude imports, investments and logistics and marketing, -detailed data for each are shown diagrammatically. Tables show: (1) economic indicators (e.g. total GDP, vehicle numbers and inflation) for 1998-200; (2) crude oil imports for 1995-2000; (3) oil products balance for 1995-2000; (4) commodities demand, by product; (5) refining in Spain in terms of capacity per region; (6) outlets in Spain and other European countries in 2002 and (7) sales distribution channel by product