WorldWideScience

Sample records for mesenchymal stem cell-based

  1. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer

    Science.gov (United States)

    2014-09-01

    Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs; Jeffrey Karp ...clinical trials for CRPC. The team is composed of Drs. Jeffrey Karp Co-Director of Regenerative Therapeutics at the Brigham & Women’s Hospital...encapsulating a PSA-activated thapsigargin-based prodrug (G115, Fig. 5) were generated by the Karp lab with the properties outlined in Table 7. These

  2. Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies?

    DEFF Research Database (Denmark)

    Lepperdinger, Günter; Brunauer, Regina; Jamnig, Angelika

    2008-01-01

    The prospective clinical use of multipotent mesenchymal stromal stem cells (MSC) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. However, the challenges and risks for cell-based therapies are multifaceted. The risks for patients receiving stem...

  3. Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulati...

  4. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy?

    Science.gov (United States)

    Sanina, Cristina; Hare, Joshua M

    2015-07-17

    Cell-based treatment represents a new generation in the evolution of biological therapeutics. A prototypic cell-based therapy, the mesenchymal stem cell, has successfully entered phase III pivotal trials for heart failure, signifying adequate enabling safety and efficacy data from phase I and II trials. Successful phase III trials can lead to approval of a new biological therapy for regenerative medicine. © 2015 American Heart Association, Inc.

  5. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Science.gov (United States)

    2016-01-01

    The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria. PMID:27651799

  6. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  7. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host. PMID:22530882

  8. Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers

    Directory of Open Access Journals (Sweden)

    Yo Mabuchi

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently defined as multipotent stromal cells that undergo sustained in vitro growth and can give rise to cells of multiple mesenchymal lineages, such as adipocytes, chondrocytes, and osteoblasts. The regenerative and immunosuppressive properties of MSCs have led to numerous clinical trials exploring their utility for the treatment of a variety of diseases (e.g., acute graft-versus-host disease, Crohn’s disease, multiple sclerosis, osteoarthritis, and cardiovascular diseases including heart failure and myocardial infarction. On the other hand, conventionally cultured MSCs reflect heterogeneous populations that often contain contaminating cells due to the significant variability in isolation methods and the lack of specific MSC markers. This review article focuses on recent developments in the MSC research field, with a special emphasis on the identification of novel surface markers for the in vivo localization and prospective isolation of murine and human MSCs. Furthermore, we discuss the physiological importance of MSC subtypes in vivo with specific reference to data supporting their contribution to HSC niche homeostasis. The isolation of MSCs using selective markers (combination of PDGFRα and Sca-1 is crucial to address the many unanswered questions pertaining to these cells and has the potential to enhance their therapeutic potential enormously.

  9. Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence: Can We Manipulate Cell Aging and Function?

    Science.gov (United States)

    Szychlinska, Marta A; Stoddart, Martin J; D'Amora, Ugo; Ambrosio, Luigi; Alini, Mauro; Musumeci, Giuseppe

    2017-12-01

    Aging is the most prominent risk factor triggering several degenerative diseases, such as osteoarthritis (OA). Due to its poor self-healing capacity, once injured cartilage needs to be reestablished. This process might be approached through resorting to cell-based therapies and/or tissue engineering. Human mesenchymal stem cells (MSCs) represent a promising approach due to their chondrogenic differentiation potential. Presently, in vitro chondrogenic differentiation of MSCs is limited by two main reasons as follows: aging of MSCs, which determines the loss of cell proliferative and differentiation capacity and MSC-derived chondrocyte hypertrophic differentiation, which limits the use of these cells in cartilage tissue regeneration approach. The effect of aging on MSCs is fundamental for stem cell-based therapy development, especially in older subjects. In the present review we focus on homeostasis alterations occurring in MSC-derived chondrocytes during in vitro aging. Moreover, we deal with potential cell aging regulation approaches, such as cell stimulation through telomerase activators, mechanical strain, and epigenetic regulation. Future investigations in this field might provide new insights into innovative strategies for cartilage regeneration and potentially inspire novel therapeutic approaches for OA treatment.

  10. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  11. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions.

    Science.gov (United States)

    Mobasheri, Ali; Kalamegam, Gauthaman; Musumeci, Giuseppe; Batt, Mark E

    2014-07-01

    Osteoarthritis (OA) represents a final and common pathway for all major traumatic insults to synovial joints. OA is the most common form of degenerative joint disease and a major cause of pain and disability. Despite the global increase in the incidence of OA, there are no effective pharmacotherapies capable of restoring the original structure and function of damaged articular cartilage. Consequently cell-based and biological therapies for osteoarthritis (OA) and related orthopaedic disorders have become thriving areas of research and development. Autologous chondrocyte implantation (ACI) has been used for treatment of osteoarticular lesions for over two decades. Although chondrocyte-based therapy has the capacity to slow down the progression of OA and delay partial or total joint replacement surgery, currently used procedures are associated with the risk of serious adverse events. Complications of ACI include hypertrophy, disturbed fusion, delamination, and graft failure. Therefore there is significant interest in improving the success rate of ACI by improving surgical techniques and preserving the phenotype of the primary chondrocytes used in the procedure. Future tissue-engineering approaches for cartilage repair will also benefit from advances in chondrocyte-based repair strategies. This review article focuses on the structure and function of articular cartilage and the pathogenesis of OA in the context of the rising global burden of musculoskeletal disease. We explore the challenges associated with cartilage repair and regeneration using cell-based therapies that use chondrocytes and mesenchymal stem cells (MSCs). This paper also explores common misconceptions associated with cell-based therapy and highlights a few areas for future investigation. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Directory of Open Access Journals (Sweden)

    Alessandro Castorina

    2015-01-01

    Full Text Available Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration.Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  13. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Science.gov (United States)

    Castorina, Alessandro; Szychlinska, Marta Anna; Marzagalli, Rubina; Musumeci, Giuseppe

    2015-01-01

    Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential. PMID:26199588

  14. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Science.gov (United States)

    Castorina, Alessandro; Szychlinska, Marta Anna; Marzagalli, Rubina; Musumeci, Giuseppe

    2015-06-01

    Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  15. Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia.

    Directory of Open Access Journals (Sweden)

    Martin Hoffmann

    Full Text Available Therapeutic application of mesenchymal stem cells (MSC requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.

  16. Canine Mesenchymal Stem Cell Potential and the Importance of Dog Breed: Implication for Cell-Based Therapies.

    Science.gov (United States)

    Bertolo, Alessandro; Steffen, Frank; Malonzo-Marty, Cherry; Stoyanov, Jivko

    2015-01-01

    The study of canine bone marrow-derived mesenchymal stem cells (MSCs) has a prominent position in veterinary cell-based applications. Yet the plethora of breeds, their different life spans, and interbreed variations provide unclearness on what can be achieved specifically by such therapies. In this study, we compared a set of morphological, physiological, and genetic markers of MSCs derived from large dog breeds, namely, Border collie, German shepherd, Labrador, Malinois, Golden retriever, and Hovawart. We compared colony-forming units (CFUs) assay, population doubling time (PDT), senescence-associated β-galactosidase (SA-β-gal) activity, telomere length, and gene expression of MSCs, as well as the ability of cells to differentiate to osteogenic, adipogenic, and chondrogenic phenotypes. The influence of the culture media α-MEM, low-glucose DMEM, and high-glucose DMEM, used in cell isolation and expansion, was investigated in the presence and absence of basic fibroblast growth factor (bFGF). Initial cell yield was not affected by culturing medium, but MSCs expanded best in α-MEM supplemented with bFGF. After isolation, the number of MSCs was similar among breeds--as shown by equivalent CFUs--except in the Hovawart samples, which had fivefold less CFU. Telomere lengths were similar among breeds. MSCs divided actively only for 4 weeks in culture (PDT = ∼50 h/division), except Border collie cells divided for a longer time than cells from other groups. The percentage of senescent cells increased linearly in all breeds with time, with a faster rate in German shepherd, Labrador, and Golden retriever. Border collie cells underwent efficient osteogenic differentiation, Hovawart cells performed the best in chondrogenic differentiation, and Labrador cells in both, while German shepherd cells had the lower differentiation potential. MSCs from all breeds preserved the same adipogenic differentiation potential. In conclusion, despite variations, isolated MSCs can be

  17. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  18. Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells.

    Science.gov (United States)

    Monsel, Antoine; Zhu, Ying-Gang; Gennai, Stephane; Hao, Qi; Liu, Jia; Lee, Jae W

    2014-11-01

    Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver, or brain. Genomic, proteomic, and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of promitotic, antiapoptotic, antiinflammatory, and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, the authors review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. (ANESTHESIOLOGY 2014; 121:1099-121).

  19. Questions and Challenges in the Development of Mesenchymal Stromal/Stem Cell-Based Therapies in Veterinary Medicine.

    Science.gov (United States)

    Devireddy, Lax R; Boxer, Lynne; Myers, Michael J; Skasko, Mark; Screven, Rudell

    2017-10-01

    The therapeutic potential of stem cells has fascinated those interested in treating diseases in both human and animal subjects. Although the exact mechanism of action and the definitive effectiveness of stem cell therapies remain unclear, animal owner perceptions and a desire for improved treatment options have fueled the interest of clinicians and stakeholders. Standards do not yet exist to define the critical attributes of mesenchymal stem/stromal cell (MSC)-based products derived from veterinary species such as the dog, cat, and horse. This has led veterinary stakeholders to adopt those guidelines and criteria set forth for human MSC-based products; however, these criteria are not always applicable to MSCs from dogs, cats, and horses (e.g., variability in species-specific cell surface marker expression and antibody cross reactivity). Establishing useful standards and meaningful product quality criteria as well as the understanding of full spectrum of MSC functions and preclinical evidence for safety and therapeutic efficacy for veterinary (companion and recreational animals) MSC-based-products will be critical to furthering product development, and may ultimately facilitate the availability of FDA-approved MSC-based products for use in veterinary medicine.

  20. In Vitro Testing of Scaffolds for Mesenchymal Stem Cell-Based Meniscus Tissue Engineering—Introducing a New Biocompatibility Scoring System

    Directory of Open Access Journals (Sweden)

    Felix P. Achatz

    2016-04-01

    Full Text Available A combination of mesenchymal stem cells (MSCs and scaffolds seems to be a promising approach for meniscus repair. To facilitate the search for an appropriate scaffold material a reliable and objective in vitro testing system is essential. This paper introduces a new scoring for this purpose and analyzes a hyaluronic acid (HA gelatin composite scaffold and a polyurethane scaffold in combination with MSCs for tissue engineering of meniscus. The pore quality and interconnectivity of pores of a HA gelatin composite scaffold and a polyurethane scaffold were analyzed by surface photography and Berliner-Blau-BSA-solution vacuum filling. Further the two scaffold materials were vacuum-filled with human MSCs and analyzed by histology and immunohistochemistry after 21 days in chondrogenic media to determine cell distribution and cell survival as well as proteoglycan production, collagen type I and II content. The polyurethane scaffold showed better results than the hyaluronic acid gelatin composite scaffold, with signs of central necrosis in the HA gelatin composite scaffolds. The polyurethane scaffold showed good porosity, excellent pore interconnectivity, good cell distribution and cell survival, as well as an extensive content of proteoglycans and collagen type II. The polyurethane scaffold seems to be a promising biomaterial for a mesenchymal stem cell-based tissue engineering approach for meniscal repair. The new score could be applied as a new standard for in vitro scaffold testing.

  1. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection.

    Directory of Open Access Journals (Sweden)

    XiYou Wang

    Full Text Available The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs for diabetes induced erectile dysfunction (DED. AMSCs were pretreated with normoxia (20% O2, N-AMSCs or sub-lethal hypoxia (1% O2, H-AMSCs. The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF and its receptor FIK-1, angiotensin (Ang-1, basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, stromal derived factor-1 (SDF-1 and its CXC chemokine receptor 4 (CXCR4. DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg and were randomly divided into three groups-Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP and intracavernosal pressure (ICP were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05. Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF (p<0.01 and smooth muscle markers (α-SMA (p<0.01. Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

  2. Nicotine Augments the Beneficial Effects of Mesenchymal Stem Cell-based Therapy in Rat Model of Multiple Sclerosis.

    Science.gov (United States)

    Khezri, Shiva; Abtahi Froushani, Seyyed Meysam; Shahmoradi, Mozhgan

    2018-02-01

    Experimental autoimmune encephalomyelitis (EAE) in rats through immunization with guinea pig spinal cord homogenate (GPSCH) produces a chronic disease with a relapsing pattern such as multiple sclerosis (MS) in humans. In previous studies, the immunomodulatory benefits of mesenchymal stem cells (MSCs) and nicotine have already been determined. Thus, this research was conducted to assess the additional benefits of the combination therapy of MSCs and nicotine in a rat model of MS. EAE was induced by GPSCH and complete Freund's adjuvant (CFA) in female Wistar rats. The therapies were initiated at day 12 post-immunization (p.i.), when the rats developed a neurological disability score. The symptoms were recorded daily until day 33, when the rats were sacrificed. Finally, the splenocytes were evaluated by Enzyme-linked immunosorbent assay (ELISA) for cytokine production. The therapeutic treatment in the EAE rats with a combination of MSCs and nicotine exhibited a more desirable outcome, causing the regression of the average mean clinical score and neuropathological features to be more favorable than the treatment with either therapy alone. The combination therapy led to a significant reduction in the cumulative disease disability from day 21. For the EAE rats treated with nicotine and MSCs, this period was started from day 22 and 28 p.i., respectively. Besides the increase in the levels of IL-10, the combined therapy significantly reduced the splenocytes production of pro-inflammatory IL-17 as well as TNF-α more profoundly than either of the medications alone. In conclusion, the combination of MSCs and nicotine can be suggested as a promising strategy for further MS therapeutics improvement.

  3. Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs.

    Science.gov (United States)

    Farrell, M J; Shin, J I; Smith, L J; Mauck, R L

    2015-01-01

    Tissue engineering approaches for cartilage repair have focused on the use of mesenchymal stem cells (MSCs). For clinical success, MSCs must survive and produce extracellular matrix in the physiological context of the synovial joint, where low nutrient conditions engendered by avascularity, nutrient utilization, and waste production prevail. This study sought to delineate the role of microenvironmental stressors on MSC viability and functional capacity in three dimensional (3D) culture. We evaluated the impact of glucose and oxygen deprivation on the functional maturation of 3D MSC-laden agarose constructs. Since MSC isolation procedures result in a heterogeneous cell population, we also utilized micro-pellet culture to investigate whether clonal subpopulations respond to these microenvironmental stressors in a distinct fashion. MSC health and the functional maturation of 3D constructs were compromised by both glucose and oxygen deprivation. Importantly, glucose deprivation severely limited viability, and so compromised the functional maturation of 3D constructs to the greatest extent. The observation that not all cells died suggested there exists heterogeneity in the response of MSC populations to metabolic stressors. Population heterogeneity was confirmed through a series of studies utilizing clonally derived subpopulations, with a spectrum of matrix production and cell survival observed under conditions of metabolic stress. Our findings show that glucose deprivation has a significant impact on functional maturation, and that some MSC subpopulations are more resilient to metabolic challenge than others. These findings suggest that pre-selection of subpopulations that are resilient to metabolic challenge may improve in vivo outcomes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    Science.gov (United States)

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the

  5. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  6. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells...

  7. Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Stramandinoli-Zanicotti, Roberta Targa; Carvalho, André Lopes; Rebelatto, Carmen Lúcia Kuniyoshi; Sassi, Laurindo Moacir; Torres, Maria Fernanda; Senegaglia, Alexandra Cristina; Boldrinileite, Lidiane Maria; Correa-Dominguez, Alejandro; Kuligovsky, Crisciele; Brofman, Paulo Roberto Slud

    2014-06-01

    Stem cell-based regenerative medicine is one of the most intensively researched medical issues. Pre-clinical studies in a large-animal model, especially in swine or miniature pigs, are highly relevant to human applications. Mesenchymal stem cells (MSCs) have been isolated and expanded from different sources. This study aimed at isolating and characterizing, for the first time, bone marrow-derived MSCs (BM-MSCs) from a Brazilian minipig (BR1). Also, this aimed to validate a new large-animal model for stem cell-based tissue engineering. Bone marrow (BM) was aspirated from the posterior iliac crest of twelve adult male BR1 under general anesthesia. MSCs were selected by plastic-adherence as originally described by Friedenstein. Cell morphology, surface marker expression, and cellular differentiation were examined. The immunophenotypic profile was determined by flow cytometry. The differentiation potential was assessed by cytological staining and by RT-PCR. MSCs were present in all minipig BM samples. These cells showed fibroblastic morphology and were positive for the surface markers CD90 (88.6%), CD29 (89.8%), CD44 (86.9%) and negative for CD34 (1.61%), CD45 (1.83%), CD14 (1.77%) and MHC-II (2.69%). MSCs were differentiated into adipocytes, osteoblasts, and chondroblasts as demonstrated by the presence of lipidic-rich vacuoles, the mineralized extracellular matrix, and the great presence of glycosaminoglycans, respectively. The higher gene expression of adipocyte fatty-acid binding protein (AP2), alkaline phosphatase (ALP) and collagen type 2 (COLII) also confirmed the trilineage differentiation (panimal eligible as a useful large-animal model for stem cell-based studies in Brazil.

  8. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... for differentiation and/or providing bystander support for resident stromal cells. This chapter discusses the cellular and molecular properties of MSC, the mechanisms by which they can modulate immune responses and the clinical applications of MSC in disorders such as graft-versus-host disease and aplastic anaemia...

  9. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  10. Stem Cell-Based Therapies for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2014-01-01

    Full Text Available In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs, inducible pluripotent stem cells (iPSCs, neural stem cells (NSCs, and mesenchymal stem cell (MSCs might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.

  11. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models.

    Science.gov (United States)

    Liu, Linda N; Wang, Gang; Hendricks, Kyle; Lee, Keunmyoung; Bohnlein, Ernst; Junker, Uwe; Mosca, Joseph D

    2013-05-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation

  12. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells.

    Science.gov (United States)

    Karpov, Andrey A; Udalova, Daria V; Pliss, Michael G; Galagudza, Michael M

    2017-04-01

    Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct-limiting effects in numerous experimental and clinical studies. However, recent meta-analyses of randomized clinical trials on MSC-based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three-dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non-genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury. © 2016 John Wiley & Sons Ltd.

  13. Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study.

    Science.gov (United States)

    Chen, Chun; Qu, Zhiguo; Yin, Xiaoguang; Shang, Chunyu; Ao, Qiang; Gu, Yongquan; Liu, Ying

    2016-11-01

    This is a retrospective analysis of the clinical effects of transplant of mesenchymal stem cells (MSCs) derived from human umbilical cord-derived MSCs (hUC‑MSCs) for the treatment of osteonecrosis of the femoral head (ONFH). The biological characteristics of hUC-MSCs were assessed using flow cytometry. Nine eligible patients were enrolled in the study as they adhered to the Association Research Circulation Osseous (ARCO) classification of stage Ⅱ‑Ⅲa, and hUC‑MSCs were grafted by intra‑arterial infusion. Organize effective perfusion was assessed using the oxygen delivery index (ODI). The results showed that the ODI was increased at three days post‑operation. The MRI results revealed that at 12 and 24 months after treatment, the necrotic volume of the femoral heads was significantly reduced. No obvious abnormalities were observed. Taken together, these data indicate that intra‑arterially infused hUC‑MSCs migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. This finding suggested that intra‑arterial infusion of hUC‑MSCs MSCs is a feasible and relatively safe method for the treatment of femoral head necrosis.

  14. Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs.

    Directory of Open Access Journals (Sweden)

    Ainsley M Robinson

    Full Text Available The therapeutic benefits of mesenchymal stem cells (MSCs, such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis.At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS, guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM, or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs.MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome.MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted independently to their anti

  15. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  16. Potential of Stem Cell-Based Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Hany E. Marei

    2018-02-01

    Full Text Available Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs, mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

  17. Potential of Stem Cell-Based Therapy for Ischemic Stroke.

    Science.gov (United States)

    Marei, Hany E; Hasan, A; Rizzi, R; Althani, A; Afifi, N; Cenciarelli, C; Caceci, Thomas; Shuaib, Ashfaq

    2018-01-01

    Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs), mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s) by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

  18. Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Markert, Chad; Atala, Anthony; Cann, Jennifer K.; Christ, George; Furth, Mark; Ambrosio, Fabrisia; Childers, Martin K.

    2009-01-01

    Multipotent cells that can give rise to bone, cartilage, fat, connective tissue, skeletal and cardiac muscle are termed mesenchymal stem cells (MSCs). These cells were first identified in the bone marrow, distinct from blood-forming stem cells. Based on the embryologic derivation, availability, and various pro-regenerative characteristics, research exploring their use in cell therapy shows great promise for patients with degenerative muscle diseases and a number of other conditions. In this r...

  19. Mesenchymal Stem Cells: Angels or Demons?

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.

  20. Imaging stem cell differentiation for cell-based tissue repair.

    Science.gov (United States)

    Lee, Zhenghong; Dennis, James; Alsberg, Eben; Krebs, Melissa D; Welter, Jean; Caplan, Arnold

    2012-01-01

    Mesenchymal stem cells (MSCs) can differentiate into a number of tissue lineages and possess great potential in tissue regeneration and cell-based therapy. For bone fracture or cartilage wear and tear, stem cells need to be delivered to the injury site for repair. Assessing engraftment of the delivered cells and their differentiation status is crucial for the optimization of novel cell-based therapy. A longitudinal and quantitative method is needed to track stem cells transplanted/implanted to advance our understanding of their therapeutic effects and facilitate improvements in cell-based therapy. Currently, there are very few effective noninvasive ways to track the differentiation of infused stem cells. A brief review of a few existing approaches, mostly using transgenic animals, is given first, followed by newly developed in vivo imaging strategies that are intended to track implanted MSCs using a reporter gene system. Specifically, marker genes are selected to track whether MSCs differentiate along the osteogenic lineage for bone regeneration or the chondrogenic lineage for cartilage repair. The general strategy is to use the promoter of a differentiation-specific marker gene to drive the expression of an established reporter gene for noninvasive and repeated imaging of stem cell differentiation. The reporter gene system is introduced into MSCs by way of a lenti-viral vector, which allows the use of human cells and thus offers more flexibility than the transgenic animal approach. Imaging osteogenic differentiation of implanted MSCs is used as a demonstration of the proof-of-principle of this differentiation-specific reporter gene approach. This framework can be easily extended to other cell types and for differentiation into any other cell lineage for which a specific marker gene (promoter) can be identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  2. Mesenchymal stem cells in regenerative rehabilitation.

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  3. Mesenchymal stem cells avoid allogeneic rejection

    Directory of Open Access Journals (Sweden)

    Murphy J Mary

    2005-07-01

    Full Text Available Abstract Adult bone marrow derived mesenchymal stem cells offer the potential to open a new frontier in medicine. Regenerative medicine aims to replace effete cells in a broad range of conditions associated with damaged cartilage, bone, muscle, tendon and ligament. However the normal process of immune rejection of mismatched allogeneic tissue would appear to prevent the realisation of such ambitions. In fact mesenchymal stem cells avoid allogeneic rejection in humans and in animal models. These finding are supported by in vitro co-culture studies. Three broad mechanisms contribute to this effect. Firstly, mesenchymal stem cells are hypoimmunogenic, often lacking MHC-II and costimulatory molecule expression. Secondly, these stem cells prevent T cell responses indirectly through modulation of dendritic cells and directly by disrupting NK as well as CD8+ and CD4+ T cell function. Thirdly, mesenchymal stem cells induce a suppressive local microenvironment through the production of prostaglandins and interleukin-10 as well as by the expression of indoleamine 2,3,-dioxygenase, which depletes the local milieu of tryptophan. Comparison is made to maternal tolerance of the fetal allograft, and contrasted with the immune evasion mechanisms of tumor cells. Mesenchymal stem cells are a highly regulated self-renewing population of cells with potent mechanisms to avoid allogeneic rejection.

  4. Mesenchymal dental stem cells in regenerative dentistry.

    Science.gov (United States)

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  5. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  6. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity

    NARCIS (Netherlands)

    Luk, Franka; de Witte, Samantha F. H.; Korevaar, Sander S.; Roemeling, Marieke; Franquesa, Marcella; Strini, Tanja; van den Engel, Sandra; Gargesha, Madhusudhana; Roy, Debashish; Dor, Frank J. M. F.; Horwitz, Edwin M.; de Bruin, Ron W. F.; Betjes, Michiel G. H.; Baan, Carla C.; Hoogduijn, Martin J.

    2016-01-01

    Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of

  7. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  8. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential

    OpenAIRE

    Zheng, Yu-Liang; Sun, Yang-Peng; Zhang, Hong; Liu, Wen-Jing; Jiang, Rui; Li, Wen-Yu; Zheng, You-Hua; Zhang, Zhi-Guang

    2015-01-01

    Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogram...

  9. β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions

    NARCIS (Netherlands)

    D. Zwolanek (Daniela); M. Flicker (Magdalena); E. Kirstätter (Elisabeth); F. Zaucke (Frank); G.J.V.M. van Osch (Gerjo); R.G. Erben (Reinhold)

    2015-01-01

    textabstractMesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC

  10. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  11. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Science.gov (United States)

    Puglisi, Maria Ausiliatrice; Tesori, Valentina; Lattanzi, Wanda; Piscaglia, Anna Chiara; Gasbarrini, Giovanni Battista; D'Ugo, Domenico M.; Gasbarrini, Antonio

    2011-01-01

    Mesenchymal stem cells (MSCs), represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases. PMID:22228987

  12. Mesenchymal stem cells induce dermal fibroblast responses to injury

    International Nuclear Information System (INIS)

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  13. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo

    Science.gov (United States)

    Fan, Cungang; Wang, Dongliang; Zhang, Qingjun; Zhou, Jingru

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cell-based therapies are emerging as novel cell-based delivery vehicle for therapeutic agents. In the present study, we successfully isolated human umbilical cord mesenchymal stem cells by explant culture. The human umbilical cord senchymal stem cells were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cells as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cells demonstrated excellent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cells indicate that they may serve as a novel cellular vehicle for delivering therapeutic molecules in glioma therapy. PMID:25206518

  14. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    Science.gov (United States)

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. SIGNALING PATHWAYS ASSOCIATED WITH VX EXPOSURE IN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    2017-09-01

    administrative support. iv  Blank v  CONTENTS 1. INTRODUCTION...M.J.; Cheng, A.; Genever, P.G. Functional Nicotinic and Muscarinic Receptors on Mesenchymal Stem Cells. Stem Cells Dev. 2009, 18, 103–112. 12

  16. Stem cell-based therapies for osteoarthritis: challenges and opportunities.

    Science.gov (United States)

    Diekman, Brian O; Guilak, Farshid

    2013-01-01

    Regenerative medicine offers the exciting potential of developing alternatives to total joint replacement for treating osteoarthritis. In this article, we highlight recent work that addresses key challenges of stem cell-based therapies for osteoarthritis and provide examples of innovative ways in which stem cells can aid in the treatment of osteoarthritis. Significant progress has been made in understanding the challenges to successful stem cell therapy, such as the effects of age or disease on stem cell properties, altered stem cell function due to an inflammatory joint environment and phenotypic instability in vivo. Novel scaffold designs have been shown to enhance the mechanical properties of tissue-engineered cartilage and have also improved the integration of newly formed tissue within the joint. Emerging strategies such as injecting stem cells directly into the joint, manipulating endogenous stem cells to enhance regenerative capacity and utilizing stem cells for drug discovery have expanded the potential uses of stem cells in treating osteoarthritis. Several recent studies have greatly advanced the development and preclinical evaluation of potential stem cell-based treatments for osteoarthritis through novel approaches focused on cell therapy, tissue engineering and drug discovery.

  17. Activation and Differentiation of Mesenchymal Stem Cells.

    Science.gov (United States)

    Mishra, Pravin J; Banerjee, Debabrata

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells and exhibit two main characteristics that define stem cells: self-renewal and differentiation. MSCs can migrate to sites of injury, inflammation, and tumor. Moreover, MSCs undergo myofibroblast like differentiation, including increased production of α-SMA in response to transforming growth factor-β (TGF-β), a growth factor commonly secreted by tumor cells to evade immune surveillance. Based on our previous finding hMSCs become activated and resemble carcinoma-associated myofibroblasts upon prolonged exposure to conditioned medium from MDAMB231 human breast cancer cells. Here, we show that keratinocyte conditioned medium (KCM) induces differentiation of MSCs to resemble dermal myofibroblast like cells using immunofluorescence techniques demonstrating punctate vinculin staining, and F-actin filaments.

  18. Osteoarthritis and Mesenchymal Stem Cell Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Putri Purwanthi

    2017-08-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis that affects cartilage joints and leads to disability. OA becomes the major public health problem, as it is the most leading cause of disability and morbidity worldwide. Treatment choices for OA can be classified into several categories such as non-pharmacologic, pharmacologic, surgical therapy, and cell-based therapy. There is no curative treatment for OA, while conventional treatments that are commonly used focus on alleviating the pain as the main symptom of the disease. Mesenchymal stem cells (MSCs that can be found in several tissues of human body offer a new strategy for OA treatment owing to their ability to differentiate into chondrocytes. This article provides an overview about the basic concept of osteoarthritis as well as an insight about the MSCs therapy, including their basic characteristics, source, and transplantation strategies in the OA area.

  19. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  20. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Trošan, Peter; Čejka, Čestmír; Javorková, Eliška; Zajícová, Alena; Heřmánková, Barbora; Chudíčková, Milada; Čejková, Jitka

    2015-01-01

    Roč. 4, č. 9 (2015), s. 1052-1063 ISSN 2157-6564 R&D Projects: GA ČR(CZ) GA14-12580S; GA MZd NT14102; GA MŠk(CZ) LO1309; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : limbal stem cells * mesenchymal stem cells * alkali-injured ocular surface * corneal regeneration * stem cell-based therapy Subject RIV: FF - HEENT, Dentistry Impact factor: 4.247, year: 2015

  1. Global Distribution of Businesses Marketing Stem Cell-Based Interventions.

    Science.gov (United States)

    Berger, Israel; Ahmad, Amina; Bansal, Akhil; Kapoor, Tanvir; Sipp, Douglas; Rasko, John E J

    2016-08-04

    A structured search reveals that online marketing of stem-cell-based interventions is skewed toward developed economies including the United States, Ireland, Australia, and Germany. Websites made broad, imprecise therapeutic claims and frequently failed to detail procedures. Widespread marketing poses challenges to regulators, bioethicists, and those seeking realistic hope from therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  3. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.

  4. Mesenchymal stem cells in multiple sclerosis - translation to clinical trials.

    Science.gov (United States)

    Dulamea, A

    2015-01-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, characterized by an aberrant activation of the immune system and combining demyelination with neurodegeneration. Studies on experimental models of multiple sclerosis revealed immunomodulatory and immunosuppressive properties of mesenchymal stem cells. Clinical trials using mesenchymal stem cells therapy in multiple sclerosis patients showed tolerability, safety on short term, some immunomodulatory properties reducing the Th1 proinflammatory response and the inflammatory MRI parameters. The author reviews the data about experimental studies and clinical trials using mesenchymal stem cells for the treatment of multiple sclerosis.

  5. Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Junjun; Yu, Fang; Sun, Yao; Jiang, Beizhan; Zhang, Wenjun; Yang, Jianhua; Xu, Guo-Tong; Liang, Aibin; Liu, Shangfeng

    2015-03-01

    Recently, numerous types of human dental tissue-derived mesenchymal stem cells (MSCs) have been isolated and characterized, including dental pulp stem cells, stem cells from exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle progenitor cells, alveolar bone-derived MSCs, stem cells from apical papilla, tooth germ progenitor cells, and gingival MSCs. All these MSC-like cells exhibit self-renewal, multilineage differentiation potential, and immunomodulatory properties. Several studies have demonstrated the potential advantages of dental stem cell-based approaches for regenerative treatments and immunotherapies. This review outlines the properties of various dental MSC-like populations and the progress toward their use in regenerative therapy. Several dental stem cell banks worldwide are also introduced, with a view toward future clinical application. © 2014 AlphaMed Press.

  6. Stem Cell-Based Therapies in Chagasic Cardiomyopathy.

    Science.gov (United States)

    de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos

    2015-01-01

    Chagas disease is caused by Trypanosoma cruzi and can lead to a dilated cardiomyopathy decades after the prime infection by the parasite. As with other dilated cardiomyopathies, conventional pharmacologic therapies are not always effective and as heart failure progresses patients need heart transplantation. Therefore alternative therapies are highly desirable and cell-based therapies have been investigated in preclinical and clinical studies. In this paper we review the main findings of such studies and discuss future directions for stem cell-based therapies in chronic chagasic cardiomyopathy.

  7. Treatment of osteoarthritis with mesenchymal stem cells.

    Science.gov (United States)

    Wang, Wen; Cao, Wei

    2014-06-01

    Osteoarthritis (OA) is one of the most prevalent joint diseases with prominent symptoms affecting the daily life of millions of middle aged and elderly people. Despite this, there are no successful medical interventions that can prevent the progressive destruction of OA joints. The onset of pathological changes in OA is associated with deviant activity of mesenchymal stem cells (MSCs), the multipotent precursors of connective tissue cells that reside in joints. Current therapies for OA have resulted in poor clinical outcomes without repairing the damaged cartilage. Intra-articular delivery of culture-expanded MSCs has opened new avenues of OA treatment. Pre-clinical and clinical trials demonstrated the feasibility, safety, and efficacy of MSC therapy. The Wnt/β-catenin, bone morphogenetic protein 2, Indian hedgehog, and Mitogen-activated protein kinase signaling pathways have been demonstrated to be involved in OA and the mechanism of action of MSC therapies.

  8. Mesenchymal stem cell therapy for laryngotracheal stenosis

    DEFF Research Database (Denmark)

    Jakobsen, Kathrine Kronberg; Grønhøj, Christian; Jensen, David H

    2017-01-01

    studies addressing the effect of MSC therapy on the airway. We assessed effect on inflammation, fibrosis, and MSC as a component in tissue engineering for treating defects in the airway. RESULTS: We identified eleven studies (n = 256 animals) from eight countries evaluating the effect of MSCs......BACKGROUND: Laryngotracheal stenosis (LTS) can be either congenital or acquired. Laryngeal stenosis is most often encountered after prolonged intubation. The mechanism for stenosis following intubation is believed to be hypertrophic scarring. Mesenchymal stem cells (MSCs) therapy has shown...... promising results in regenerative medicine. We aimed to systematically review the literature on MSC therapy for stenosis of the conductive airways. METHODS: PubMed, EMBASE, Google Scholar and the Cochrane Library were systematically searched from January 1980-January 2017 with the purpose of identifying all...

  9. Receptor control in mesenchymal stem cell engineering

    Science.gov (United States)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  10. Role of mesenchymal stem cells in osteoarthritis treatment

    Directory of Open Access Journals (Sweden)

    Ling Kong

    2017-04-01

    Full Text Available As the most common form of joint disorder, osteoarthritis (OA imposes a tremendous burden on health care systems worldwide. Without effective cure, OA represents a unique opportunity for innovation in therapeutic development. In contrast to traditional treatments based on drugs, proteins, or antibodies, stem cells are poised to revolutionize medicine as they possess the capacity to replace and repair tissues and organs such as osteoarthritic joints. Among different types of stem cells, mesenchymal stem cells (MSCs are of mesoderm origin and have been shown to generate cells for tissues of the mesoderm lineage, thus, raising the hope for them being used to treat diseases such as OA. However, given their ability to differentiate into other cell types, MSCs have also been tested in treating a myriad of conditions from diabetes to Parkinson's disease, apparently of the ectoderm and endoderm lineages. There are ongoing debates whether MSCs can differentiate into lineages outside of the mesoderm and consequently their effectiveness in treating conditions from the ectoderm and endoderm lineages. In this review, we discuss the developmental origin of MSCs, their differentiation potential and immunomodulatory effects, as well as their applications in treating OA. We suggest further investigations into new therapies or combination therapies that may provide more effective treatment for bone and joint diseases. Furthermore, cell-based therapy and its associated safety and effectiveness should be carefully evaluated before clinical translation. This review provides updated information on recent approval of clinical trials and related applications of MSCs, and discusses additional efforts on cell-based therapy for treating OA and other joint and bone diseases.

  11. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...

  12. Potential for Stem Cell-Based Periodontal Therapy

    Science.gov (United States)

    Bassir, Seyed Hossein; Wisitrasameewong, Wichaya; Raanan, Justin; Ghaffarigarakani, Sasan; Chung, Jamie; Freire, Marcelo; Andrada, Luciano C.; Intini, Giuseppe

    2015-01-01

    Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue. However, achieving complete and functional periodontal regeneration is challenging because the periodontium is a complex apparatus composed of different tissues, including bone, cementum, and periodontal ligament. Stem cell-based regenerative therapy may represent an effective therapeutic tool for periodontal regeneration due to their plasticity and ability to differentiate into different cell lineages. This review presents and critically analyzes the available information on stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for the development of more effective therapeutic protocols. PMID:26058394

  13. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  14. Mesenchymal stem cells in synovial fluid increase after meniscus injury.

    Science.gov (United States)

    Matsukura, Yu; Muneta, Takeshi; Tsuji, Kunikazu; Koga, Hideyuki; Sekiya, Ichiro

    2014-05-01

    Although relatively uncommon, spontaneous healing from a meniscus injury has been observed even within the avascular area. This may be the result of the existence of mesenchymal stem cells in synovial fluid. The purpose of this study was to investigate whether mesenchymal stem cells existed in the synovial fluid of the knee after meniscus injury. Synovial fluid was obtained from the knees of 22 patients with meniscus injury just before meniscus surgery and from 8 volunteers who had no history of knee injury. The cellular fraction of the synovial fluid was cultured for 14 days followed by analysis for multilineage potential and presentation of surface antigens characteristic of mesenchymal stem cells. Colony-forming efficiency and proliferation potential were also compared between the two groups. Cells with characteristics of mesenchymal stem cells were observed in the synovial fluid of injured knees to a much greater degree than in uninjured knees. The colony-forming cells derived from the synovial fluid of the knee with meniscus injury had multipotentiality and surface epitopes identical to mesenchymal stem cells. The average number of colony formation, obtained from 1 mL of synovial fluid, in meniscus-injured knees was 250, higher than that from healthy volunteers, which was 0.5 (p < 0.001). Total colony number per synovial fluid volume was positively correlated with the postinjury period (r = 0.77, p < 0.001). Mesenchymal stem cells were found to exist in synovial fluid from knees after meniscus injury. Mesenchymal stem cells were present in higher numbers in synovial fluid with meniscus injury than in normal knees. Total colony number per synovial fluid volume was positively correlated with the postinjury period. Our current human study and previous animal studies suggest the possibility that mesenchymal stem cells in synovial fluid increase after meniscus injury contributing to spontaneous meniscus healing.

  15. Application of mesenchymal stem cells in paediatrics

    Directory of Open Access Journals (Sweden)

    Wawryk-Gawda Ewelina

    2017-09-01

    Full Text Available Mesenchymal stem cells (MSC were described by Friedenstein in the 1970s as being a group of bone marrow non-hematopoietic cells that are the source of fibroblasts. Since then, knowledge about the therapeutic potential of MSCs has significantly increased. MSCs are currently used for the treatment of many diseases, both in adults and children. MSCs are used successfully in the case of autoimmune diseases, including rheumatic diseases, diabetes mellitus type 1, gastroenterological and neurological diseases. Moreover, treatment of such organ disorders as damage or hypoxia through application of MSC therapy has shown to be satisfactory. In addition, there are some types of congenital disorders, including osteogenesis imperfecta and Spinal Muscular Atrophy, that may be treated with cellular therapy. Most studies showed no other adverse effects than fever. Our study is an analysis that particularly focuses on the registered trials and results of MSCs application to under 18 patients with acute, chronic, recurrent, resistance and corticosteroids types of Graft-versus-Host Disease (GvHD. Stem cells currently play an important role in the treatment of many diseases. Long-term studies conducted on animals have shown that cell therapy is both effective and safe. The number of indications for use of these cells in the course of treatment of people is constantly increasing. The results of subsequent studies provide important data justifying the application of MSCs in the course of treatment of many diseases whose treatment is ineffective when utilizing other approaches.

  16. Stem Cell-Based Neuroprotective and Neurorestorative Strategies

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hung

    2010-05-01

    Full Text Available Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS, reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.

  17. Mesenchymal Stem Cells: Application for Immunomodulation and Tissue Repair

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth and diffe......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...

  18. Identification of regulatory factors for mesenchymal stem cell-derived salivary epithelial cells in a co-culture system.

    Directory of Open Access Journals (Sweden)

    Yun-Jong Park

    Full Text Available Patients with Sjögren's syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05 that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia.

  19. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  20. Autologous Mesenchymal Stem Cells in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Ashu Bhasin

    2011-12-01

    Full Text Available Background: Cell transplantation is a ‘hype and hope’ in the current scenario. It is in the early stage of development with promises to restore function in chronic diseases. Mesenchymal stem cell (MSC transplantation in stroke patients has shown significant improvement by reducing clinical and functional deficits. They are feasible and multipotent and have homing characteristics. This study evaluates the safety, feasibility and efficacy of autologous MSC transplantation in patients with chronic stroke using clinical scores and functional imaging (blood oxygen level-dependent and diffusion tensor imaging techniques. Methods: Twelve chronic stroke patients were recruited; inclusion criteria were stroke lasting 3 months to 1 year, motor strength of hand muscles of at least 2, and NIHSS of 4–15, and patients had to be conscious and able to comprehend. Fugl Meyer (FM, modified Barthel index (mBI, MRC, Ashworth tone grade scale scores and functional imaging scans were assessed at baseline, and after 8 and 24 weeks. Bone marrow was aspirated under aseptic conditions and expansion of MSC took 3 weeks with animal serum-free media (Stem Pro SFM. Six patients were administered a mean of 50–60 × 106 cells i.v. followed by 8 weeks of physiotherapy. Six patients served as controls. This was a non-randomized experimental controlled trial. Results: Clinical and radiological scanning was normal for the stem cell group patients. There was no mortality or cell-related adverse reaction. The laboratory tests on days 1, 3, 5 and 7 were also normal in the MSC group till the last follow-up. The FM and mBI showed a modest increase in the stem cell group compared to controls. There was an increased number of cluster activation of Brodmann areas BA 4 and BA 6 after stem cell infusion compared to controls, indicating neural plasticity. Conclusion: MSC therapy aiming to restore function in stroke is safe and feasible. Further randomized controlled trials are needed

  1. Perspectives of Stem Cell-Based Therapy for Age-Related Retinal Degenerative Diseases.

    Science.gov (United States)

    Holan, Vladimir; Hermankova, Barbora; Kossl, Jan

    2017-09-01

    Retinal degenerative diseases, which include age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and glaucoma, mostly affect the elderly population and are the most common cause of decreased quality of vision or even blindness. So far, there is no satisfactory treatment protocol to prevent, stop, or cure these disorders. A great hope and promise for patients suffering from retinal diseases is represented by stem cell-based therapy that could replace diseased or missing retinal cells and support regeneration. In this respect, mesenchymal stem cells (MSCs) that can be obtained from the particular patient and used as autologous cells have turned out to be a promising stem cell type for treatment. Here we show that MSCs can differentiate into cells expressing markers of retinal cells, inhibit production of pro-inflammatory cytokines by retinal tissue, and produce a number of growth and neuroprotective factors for retinal regeneration. All of these properties make MSCs a prospective cell type for cell-based therapy of age-related retinal degenerative diseases.

  2. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  3. Mesenchymal Stem Cells in Tissue Repair

    Directory of Open Access Journals (Sweden)

    Amy M DiMarino

    2013-09-01

    Full Text Available The advent of mesenchymal stem cell (MSC based therapies for clinical therapeutics has been an exciting and new innovation for the treatment of a variety of diseases associated with inflammation, tissue damage and subsequent regeneration and repair. Application-based ability to measure MSC potency and fate of the cells post-MSC therapy are the variables that confound the use of MSCs therapeutics in human diseases. An evaluation of MSC function and applications with attention to detail in the preparation as well as quality control (QC and quality assurance (QA are only as good as the assays that are developed. In vivo measures of efficacy and potency require an appreciation of the overall pathophysiology of the model and standardization of outcome measures. The new concepts of how MSC’s participate in the tissue regeneration and wound repair process and further, how this is impacted by estimates of efficacy and potency Are important new topics. In this regard,,, this chapter will review some of the in vitro and in vivo assays for MSC function and activity and their application to the clinical arena.

  4. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2004-01-01

    Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal...

  5. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...

  6. [Differentiation of mesenchymal stem cells of adipose tissue].

    Science.gov (United States)

    Salyutin, R V; Zapohlska, K M; Palyanytsya, S S; Sirman, V M; Sokolov, M F

    2015-03-01

    Experimental investigation were conducted with the objective to determine a stem cells, capacity to differentiate in adipogenic direction, if they were obtained from adipose tissue. The investigation results have witnessed, that the cells, obtained from adipose tissue, are capable for a tissue-speciphic differentiation in osteogenic, chondrogenic, and, principally--in adipogenic direction, what confirms a multypotent nature of mesenchymal stem cells of adipose tissue. Adipose tissue constitutes an alternative to the bone marrow, as a source of multipotent mesenchymal stem cells, which may be applied in further investigations, concerning determination of their defense possibility for the transplanted autologous adipose tissue from the tissue resorption, made in a lipophiling way.

  7. Expression of Neural Markers by Undifferentiated Mesenchymal-Like Stem Cells from Different Sources

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2014-01-01

    Full Text Available The spontaneous expression of neural markers, already demonstrated in bone marrow (BM mesenchymal stem cells (MSCs, has been considered as evidence of the MSCs’ predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs, human skin-derived mesenchymal stem cells (hS-MSCs, human periodontal ligament stem cells (hPDLSCs, and human dental pulp stem cells (hDPSCs. Our results demonstrate that the neuronal markers βIII-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of βIII-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of βIII-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells.

  8. Clinical Trials With Mesenchymal Stem Cells: An Update.

    Science.gov (United States)

    Squillaro, Tiziana; Peluso, Gianfranco; Galderisi, Umberto

    2016-01-01

    In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney

  9. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  10. Therapeutic application of mesenchymal stem cells in osteoarthritis.

    Science.gov (United States)

    Ruiz, Maxime; Cosenza, Stella; Maumus, Marie; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Osteoarthritis (OA) is a degenerative disease characterized by cartilage degradation and subchondral bone alterations. This disease represents a global public health problem whose prevalence is rapidly growing with the increasing aging of the population. With the discovery of mesenchymal stem cells (MSC) as possible therapeutic agents, their potential for repairing cartilage damage in OA is under investigation. Characterization of MSCs and their functional properties are mentioned with an insight into their trophic function and secretory profile. We present a special focus on the types of extracellular vesicles (EVs) that are produced by MSCs and their role in the paracrine activity of MSCs. We then discuss the therapeutic approaches that have been evaluated in pre-clinical models of OA and the results coming out from the clinical trials in patients with OA. MSC-based therapy seems a promising approach for the treatment of patients with OA. Further research is still needed to demonstrate their efficacy in clinical trials using controlled, prospective studies. However, the emergence of MSC-derived EVs as possible therapeutic agents could be an alternative to cell-based therapy.

  11. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  12. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer

    Directory of Open Access Journals (Sweden)

    Yue Cao

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs, an ideal cell source for regenerative therapy with no ethical issues, play an important role in diabetic foot ulcer (DFU. Growing evidence has demonstrated that MSCs transplantation can accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In this review, we clarify the mechanism of preclinical studies, as well as safety and efficacy of clinical trials in the treatment of DFU. Bone marrow-derived mesenchymal stem cells (BM-MSCs, compared with MSCs derived from other tissues, may be a suitable cell type that can provide easy, effective, and cost-efficient transplantation to treat DFU and protect patients from amputation.

  13. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.

    Science.gov (United States)

    Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H

    2017-01-01

    Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.

  14. Stem cell factor supports migration in canine mesenchymal stem cells.

    Science.gov (United States)

    Enciso, Nathaly; Ostronoff, Luciana L K; Mejías, Guillermo; León, Leticia G; Fermín, María Luisa; Merino, Elena; Fragio, Cristina; Avedillo, Luis; Tejero, Concepción

    2018-03-01

    Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25-30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.

  15. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  16. Potential uses for cord blood mesenchymal stem cells.

    Science.gov (United States)

    Zarrabi, Morteza; Mousavi, Seyed Hadi; Abroun, Saeid; Sadeghi, Bahareh

    2014-01-01

    Stem cell therapy is a powerful technique for the treatment of a number of diseases. Stem cells are derived from different tissue sources, the most important of which are the bone marrow (BM), umbilical cord (UC) blood and liver. Human UC mesenchymal stem cells (hUC-MSCs) are multipotent, non-hematopoietic stem cells that have the ability to self-renew and differentiate into other cells and tissues such as osteoblasts, adipocytes and chondroblasts. In a number of reports, human and mouse models of disease have hUC-MSCs treatments. In this article, we review studies that pertain to the use of hUC-MSCs as treatment for diseases.

  17. Isolation of Mesenchymal Stem Cells from Adipose Tissue

    OpenAIRE

    Islam, Andi Asadul

    2015-01-01

    BACKGROUND: In searching for the best source of stem cells, researcher found adipose stem cells as one of the ideal source due to its easiness in harvesting and its potential for differentiating into other cell lineage. METHODS: We isolated stem cells from adipose tissue, cultured and confirmed its immunophenotype using polymerase chain reaction. RESULTS: Cluster of differentiation (CD)44, CD73, CD90, CD105 were expressed, which represent immunophenotype of mesenchymal stem cells.  CONCLUSION...

  18. Applications of Mesenchymal Stem Cells in Oral and Craniofacial Regeneration.

    Science.gov (United States)

    Shakoori, Pasha; Zhang, Quanzhou; Le, Anh D

    2017-02-01

    The field of tissue engineering and regenerative medicine has been rapidly expanded through multidisciplinary integration of research and clinical practice in response to unmet clinical needs for reconstruction of dental, oral, and craniofacial structures. The significance of the various types of stem cells, specifically mesenchymal stem cells derived from the orofacial tissues, ranging from dental pulp stem cells to periodontal ligament stem cells to mucosa/gingiva has been thoroughly investigated and their applications in tissue regeneration are outlined in this article. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    ORGANIZATION: Johns Hopkins University, The Baltimore , MD 21218-2680 REPORT DATE: November 2015 TYPE OF REPORT: Final PREPARED FOR: U.S. Army... Baltimore , MD 21218-2680 Johns Hopkins University, The 1650 Orleans Street, Room 162 Baltimore , MD 21287 9. SPONSORING / MONITORING AGENCY NAME(S) AND...Levy, W. Nathaniel Brennen, Edward Han, David Marc Rosen, Juliet Musabeyezu, Helia Safaee, Sudhir Ranganath, Jessica Ngai, Martina Heinelt, Yuka

  20. Early Intervention Stem Cell-Based Therapy (EISCBT) for Corneal Burns and Trauma

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0465 TITLE: Early Intervention Stem Cell -Based Therapy (EISCBT) for Corneal Burns and Trauma PRINCIPAL INVESTIGATOR...Intervention Stem Cell -Based Therapy (EISCBT) for Corneal Burns and Trauma 5a. CONTRACT NUMBER W81WH-14-1-0465 5b. GRANT NUMBER 5c. PROGRAM...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project is to develop a stem cell -based regenerative

  1. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    . The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results: Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5o......Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low...

  2. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering.

    Science.gov (United States)

    Neuss, Sabine; Apel, Christian; Buttler, Patricia; Denecke, Bernd; Dhanasingh, Anandhan; Ding, Xiaolei; Grafahrend, Dirk; Groger, Andreas; Hemmrich, Karsten; Herr, Alexander; Jahnen-Dechent, Willi; Mastitskaya, Svetlana; Perez-Bouza, Alberto; Rosewick, Stephanie; Salber, Jochen; Wöltje, Michael; Zenke, Martin

    2008-01-01

    Biomaterials are used in tissue engineering with the aim to repair or reconstruct tissues and organs. Frequently, the identification and development of biomaterials is an iterative process with biomaterials being designed and then individually tested for their properties in combination with one specific cell type. However, recent efforts have been devoted to systematic, combinatorial and parallel approaches to identify biomaterials, suitable for specific applications. Embryonic and adult stem cells represent an ideal cell source for tissue engineering. Since stem cells can be readily isolated, expanded and transplanted, their application in cell-based therapies has become a major focus of research. Biomaterials can potentially influence e.g. stem cell proliferation and differentiation in both, positive or negative ways and biomaterial characteristics have been applied to repel or attract stem cells in a niche-like microenvironment. Our consortium has now established a grid-based platform to investigate stem cell/biomaterial interactions. So far, we have assessed 140 combinations of seven different stem cell types and 19 different polymers performing systematic screening assays to analyse parameters such as morphology, vitality, cytotoxicity, apoptosis, and proliferation. We thus can suggest and advise for and against special combinations for stem cell-based tissue engineering.

  3. Mesenchymal Stem Cells, Nanofiber Scaffolds and Ocular Surface Reconstruction

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Javorková, Eliška

    2013-01-01

    Roč. 9, č. 5 (2013), s. 609-619 ISSN 1550-8943 R&D Projects: GA ČR GAP304/11/0653; GA ČR(CZ) GAP301/11/1568 Grant - others:GA MŠk(CZ) UK668012; GA MŠk(CZ) SVV 265211 Institutional support: RVO:68378041 Keywords : mesenchymal stem cell s * limbal stem cell s * ocular surface injuries Subject RIV: EC - Immunology Impact factor: 3.214, year: 2013

  4. Advances of stem cell based-therapeutic approaches for tendon repair

    Directory of Open Access Journals (Sweden)

    Lidi Liu

    2017-04-01

    The translational potential of this article: This paper reviews recent progress on stem cell-based therapeutic approaches for tendon repair, which highlights its translational potential and challenges.

  5. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid

    2014-01-01

    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  6. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  7. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...

  8. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo P; Horsman, Michael Robert; Kassem, Moustapha

    2011-01-01

    . Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...

  9. Mesenchymal stem cells for the treatment of tendon disorders

    Czech Academy of Sciences Publication Activity Database

    Machová-Urdzíková, Lucia; Lesný, Petr; Syková, Eva; Jendelová, Pavla

    2013-01-01

    Roč. 6, 8A (2013), s. 14-23 ISSN 1937-6871 R&D Projects: GA ČR GAP304/10/0326 Institutional support: RVO:68378041 Keywords : Tendinophaty * Mesenchymal Stem Cells * Tendon Rupture Subject RIV: FP - Other Medical Disciplines

  10. The role of bone marrow derived mesenchymal stem cells in ...

    African Journals Online (AJOL)

    Stroke is the third most common cause of death, and a leading cause of physical disability in adults. Recovery after a major stroke is usually limited, but cell therapy, especially by application of mesenchymal stem cells (MSCs) is emerging with fixed neurologic deficits. The aim of the current study was directed to isolation ...

  11. Human bone marrow-derived mesenchymal stem cells | Nasef ...

    African Journals Online (AJOL)

    Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of ...

  12. white leghorn chimeras based on bone marrow mesenchymal stem

    African Journals Online (AJOL)

    white leghorn chimeras based on bone marrow mesenchymal stem cells. Xinxin Qin, Lei Rui, Wenting Zhang, Zhuyu Qiu and Zandong Li*. State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science,. China Agricultural University, Beijing 100193, China.

  13. Proteomic techniques for characterisation of mesenchymal stem cell secretome.

    Czech Academy of Sciences Publication Activity Database

    Kupcová Skalníková, Helena

    2013-01-01

    Roč. 95, č. 12 (2013), s. 2196-2211 ISSN 0300-9084 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR TA01011466 Institutional support: RVO:67985904 Keywords : mesenchymal stem cells * secretome * exosome * conditioned medium * proteomics Subject RIV: CE - Biochemistry Impact factor: 3.123, year: 2013

  14. Research on human placenta-derived mesenchymal stem cells ...

    African Journals Online (AJOL)

    PCR) technology, amplified hVEGF165 gene fragments from human leukemia cells HL-60. hVEGF165 gene was reconstructed in pIRES2-EGFP and transferred into the human placenta-derived mesenchymal stem cells (HPMSCs) by ...

  15. Investigation of the Mesenchymal Stem Cell Compartment by Means of a Lentiviral Barcode Library.

    Science.gov (United States)

    Bigildeev, A E; Cornils, K; Aranyossy, T; Sats, N V; Petinati, N A; Shipounova, I N; Surin, V L; Pshenichnikova, O S; Riecken, K; Fehse, B; Drize, N I

    2016-04-01

    The hematopoietic bone marrow microenvironment is formed by proliferation and differentiation of mesenchymal stem cells (MSCs). The MSC compartment has been less studied than the hematopoietic stem cell compartment. To characterize the structure of the MSC compartment, it is necessary to trace the fate of distinct mesenchymal cells. To do so, mesenchymal progenitors need to be marked at the single-cell level. A method for individual marking of normal and cancer stem cells based on genetic "barcodes" has been developed for the last 10 years. Such approach has not yet been applied to MSCs. The aim of this study was to evaluate the possibility of using such barcoding strategy to mark MSCs and their descendants, colony-forming units of fibroblasts (CFU-Fs). Adherent cell layers (ACLs) of murine long-term bone marrow cultures (LTBMCs) were transduced with a lentiviral library with barcodes consisting of 32 + 3 degenerate nucleotides. Infected ACLs were suspended, and CFU-F derived clones were obtained. DNA was isolated from each individual colony, and barcodes were analyzed in marked CFU-F-derived colonies by means of conventional polymerase chain reaction and Sanger sequencing. Barcodes were identified in 154 marked colonies. All barcodes appeared to be unique: there were no two distinct colonies bearing the same barcode. It was shown that ACLs included CFU-Fs with different proliferative potential. MSCs are located higher in the hierarchy of mesenchymal progenitors than CFU-Fs, so the presented data indicate that MSCs proliferate rarely in LTBMCs. A method of stable individual marking and comparing the markers in mesenchymal progenitor cells has been developed in this work. We show for the first time that a barcoded library of lentiviruses is an effective tool for studying stromal progenitor cells.

  16. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  17. Growth factor-defined culture medium for human mesenchymal stem cells.

    Science.gov (United States)

    Mimura, Sumiyo; Kimura, Naohiro; Hirata, Mitsuhi; Tateyama, Daiki; Hayashida, Midori; Umezawa, Akihiro; Kohara, Arihiro; Nikawa, Hiroki; Okamoto, Tetsuji; Furue, Miho K

    2011-01-01

    Human bone marrow-derived mesenchymal stem cells (hMSCs) are potential cellular sources of therapeutic stem cells as they have the ability to proliferate and differentiate into a wide array of mesenchymal cell types such as osteoblasts, chondroblasts and adipocytes. hMSCs have been used clinically to treat patients with graft vs. host disease, osteogenesis imperfect, or alveolar cleft, suggesting that transplantation of hMSCs is comparatively safe as a stem cell-based therapy. However, conventional culture medium for hMSCs contains fetal bovine serum (FBS). In the present study, we developed a growth factor-defined, serum-free medium for culturing hMSCs. Under these conditions, TGF-beta1 promoted proliferation of hMSCs. The expanded hMSC population expressed the human pluripotency markers SSEA-3, -4, NANOG, OCT3/4 and SOX2. Furthermore, double positive cells for SSEA-3 and a mesenchymal cell marker, CD105, were detected in the population. The potential to differentiate into osteoblasts and adipocytes was confirmed. This work provides a useful tool to understand the basic biological properties of hMSCs in culture.

  18. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    Full Text Available Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be

  19. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  20. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues.

    Science.gov (United States)

    Potdar, Pd; Sutar, Jp

    2010-01-01

    Mesenchymal stem cells (MSCs), are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively) samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD 13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  1. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  2. Glial origin of mesenchymal stem cells in a tooth model system

    NARCIS (Netherlands)

    Kaukua, Nina; Shahidi, Maryam Khatibi; Konstantinidou, Chrysoula; Dyachuk, Vyacheslav; Kaucka, Marketa; Furlan, Alessandro; An, Zhengwen; Wang, Longlong; Hultman, Isabell; Ahrlund-Richter, Lars; Blom, Hans; Brismar, Hjalmar; Lopes, Natalia Assaife; Pachnis, Vassilis; Suter, Ueli; Clevers, Hans; Thesleff, Irma; Sharpe, Paul; Ernfors, Patrik; Fried, Kaj; Adameyko, Igor

    2014-01-01

    Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells

  3. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  4. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Science.gov (United States)

    Li, Liru; Wang, Dejun; Zhou, Jun; Cheng, Yan; Liang, Tian; Zhang, Guangmei

    2015-01-01

    The mesenchymal stem cells (MSCs) derived from amniotic fluid (AF) have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs) and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I), but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II). RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  5. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein......The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...

  6. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    Science.gov (United States)

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  7. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion.

    Science.gov (United States)

    Bas, Esperanza; Van De Water, Thomas R; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M; Goldstein, Bradley J

    2014-03-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.

  8. Comparison of Alternative Mesenchymal Stem Cell Sources for Cell Banking and Musculoskeletal Advanced Therapies

    NARCIS (Netherlands)

    Cavallo, Carola; Cuomo, Carmela; Fantini, Sara; Ricci, Francesca; Tazzari, Pier Luigi; Lucarelli, Enrico; Donati, Davide; Facchini, Andrea; Lisignoli, Gina; Fornasari, Pier Maria; Grigolo, Brunella; Moroni, Lorenzo

    2011-01-01

    With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into

  9. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis.

    Science.gov (United States)

    Chang, Yu-Hsun; Liu, Hwan-Wun; Wu, Kun-Chi; Ding, Dah-Ching

    2016-01-01

    Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.

  10. Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells

    Science.gov (United States)

    Ma, Jin-Ling; van den Beucken, Jeroen J. J. P.; Pan, Ju-Li; Cui, Fu-Zhai; Chen, Su

    2014-03-01

    Cellular strategies remain a crucial component in bone tissue engineering (BTE). So far, the outcome of cell-based strategies from initial clinical trials is far behind compared to animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the tissue-engineered constructs. Cocultures, by introducing angiogenic cells into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, pre-clinical studies demonstrated that cocultures enhance vascularization and bone formation compared to monocultures. However, there has been no report on the application of cocultures in clinics. Therefore, this mini-review aims to provide an overview regarding (i) critical parameters in cocultures and the outcomes of cocultures compared to monocultures in the currently available pre-clinical studies using human mesenchymal stem cells implanted in orthotopic animal models; and (ii) the usage of monocultures in clinical application in BTE.

  11. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Choo, Sung-Sik; Kim, Seung-Jae; Song, Inbeom; Kim, Tae-Hyung

    2017-01-01

    In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials—including fullerenes graphene/graphene oxide and carbon nanotubes—have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.

  12. In vitro and in vivo neurogenic potential of mesenchymal stem cells ...

    Indian Academy of Sciences (India)

    Keywords. Clinical trials; mesenchymal stem cells (MSCs); neuronal differentiation; self-renewal. Abstract. Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a ...

  13. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-?), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-?. Within a few days of culture on the biomimetic polyacry...

  14. The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes

    Directory of Open Access Journals (Sweden)

    Nicola Napoli

    2014-01-01

    Full Text Available Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact.

  15. Human bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Lopez M

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD. This review summarizes the knowledge and possible future clinical uses of MSCs.

  16. Mesenchymal stem cells in diabetes treatment: progress and perspectives

    Directory of Open Access Journals (Sweden)

    Yu CHENG

    2016-08-01

    Full Text Available Diabetes is a chronic metabolic disorder caused by relative or absolute insulin deficient or reduced sensitivity of target cells to insulin. Mesenchymal stem cells (MSCs are adult stem cells with multiple differentiation potential, self-renewable and immunoregulatory properties. Accumulating evidences from clinic or animal experiments recent years showed that MSCs infusion could ameliorate hyperglycemia in diabetes. The research progress of MSCs in diabetes treatment is summarized and a corresponding perspective is herewith proposed in present paper. DOI: 10.11855/j.issn.0577-7402.2016.07.16

  17. The mechanosensor of mesenchymal stem cells: mechanosensitive channel or cytoskeleton?

    Science.gov (United States)

    Xiao, E; Chen, Chider; Zhang, Yi

    2016-09-20

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells. MSCs and their potential for use in regenerative medicine have been investigated extensively. Recently, the mechanisms by which MSCs detect mechanical stimuli have been described in detail. As in other cell types, both mechanosensitive channels, such as transient receptor potential melastatin 7 (TRPM7), and the cytoskeleton, including actin and actomyosin, have been implicated in mechanosensation in MSCs. This review will focus on discussing the precise role of TRPM7 and the cytoskeleton in mechanosensation in MSCs.

  18. Exosome: A Novel and Safer Therapeutic Refinement of Mesenchymal Stem Cell

    Directory of Open Access Journals (Sweden)

    Ronne Wee Yeh Yeo

    2013-01-01

    Full Text Available Mesenchymal stem cell (MSC has just been approved as the first “off-the-shelf” stem cell pharmaceutical drug with an anticipation of more approvals following completion of numerous rigorous clinical trials. Despite this progress, the rationale for MSC therapeutic efficacy remains tenuous and is increasingly rationalized on a secretion rather than differentiation mechanism. Recent studies identifying exosome as the secreted agent mediating MSC therapeutic efficacy could potentially reduce a cell-based drug to a safer biologic-based alternative. Here we review the development of MSC exosome as a potential first-in-class therapeutic, and the unique challenges in the manufacture and regulatory oversight of this new class of therapeutics.

  19. Pelvic Organ Distribution of Mesenchymal Stem Cells Injected Intravenously after Simulated Childbirth Injury in Female Rats

    Directory of Open Access Journals (Sweden)

    Michelle Cruz

    2012-01-01

    Full Text Available The local route of stem cell administration utilized presently in clinical trials for stress incontinence may not take full advantage of the capabilities of these cells. The goal of this study was to evaluate if intravenously injected mesenchymal stem cells (MSCs home to pelvic organs after simulated childbirth injury in a rat model. Female rats underwent either vaginal distension (VD or sham VD. All rats received 2 million GFP-labeled MSCs intravenously 1 hour after injury. Four or 10 days later pelvic organs and muscles were imaged for visualization of GFP-positive cells. Significantly more MSCs home to the urethra, vagina, rectum, and levator ani muscle 4 days after VD than after sham VD. MSCs were present 10 days after injection but GFP intensity had decreased. This study provides basic science evidence that intravenous administration of MSCs could provide an effective route for cell-based therapy to facilitate repair after injury and treat stress incontinence.

  20. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  1. Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges.

    Science.gov (United States)

    Kerkis, Irina; Haddad, Monica Santoro; Valverde, Cristiane Wenceslau; Glosman, Sabina

    2015-12-14

    Huntington's disease (HD) is an inherited disease that causes progressive nerve cell degeneration. It is triggered by a mutation in the HTT gene that strongly influences functional abilities and usually results in movement, cognitive and psychiatric disorders. HD is incurable, although treatments are available to help manage symptoms and to delay the physical, mental and behavioral declines associated with the condition. Stem cells are the essential building blocks of life, and play a crucial role in the genesis and development of all higher organisms. Ablative surgical procedures and fetal tissue cell transplantation, which are still experimental, demonstrate low rates of recovery in HD patients. Due to neuronal cell death caused by accumulation of the mutated huntingtin (mHTT) protein, it is unlikely that such brain damage can be treated solely by drug-based therapies. Stem cell-based therapies are important in order to reconstruct damaged brain areas in HD patients. These therapies have a dual role: stem cell paracrine action, stimulating local cell survival, and brain tissue regeneration through the production of new neurons from the intrinsic and likely from donor stem cells. This review summarizes current knowledge on neural stem/progenitor cell and mesenchymal stem cell transplantation, which has been carried out in several animal models of HD, discussing cell distribution, survival and differentiation after transplantation, as well as functional recovery and anatomic improvements associated with these approaches. We also discuss the usefulness of this information for future preclinical and clinical studies in HD.

  2. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  3. Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Loibl, Markus; Lang, Siegmund; Hanke, Alexander; Herrmann, Marietta; Huber, Michaela; Brockhoff, Gero; Klein, Silvan; Nerlich, Michael; Angele, Peter; Prantl, Lukas; Gehmert, Sebastian

    2016-08-01

    Application of platelet-rich plasma and stem cells has become important in regenerative medicine. Recent literature supports the use of platelet-rich plasma as a cell culture media supplement to stimulate proliferation of adipose tissue-derived mesenchymal stem cells. The underlying mechanism of proliferation stimulation by platelet-rich plasma has not been investigated so far. Adipose tissue-derived mesenchymal stem cells were cultured in α-minimal essential medium supplemented with platelet-rich plasma or fetal calf serum. Cell proliferation was assessed with cell cycle kinetics using flow cytometric analyses after 48 hours. Differences in proteome expression of the adipose tissue-derived mesenchymal stem cells were analyzed using a reverse-phase protein array to quantify 214 proteins. Complementary Ingenuity Pathways Analysis and gene set enrichment analysis were performed using protein data, and confirmed by Western blot analysis. A higher percentage of adipose tissue-derived mesenchymal stem cells in the S phase in the presence of platelet-rich plasma advocates the proliferation stimulation. Ingenuity Pathways Analysis and gene set enrichment analysis confirm the involvement of the selected proteins in the process of cell growth and proliferation. Ingenuity Pathways Analysis revealed a participation in the top-ranked canonical pathways PI3K/AKT, PTEN, ILK, and IGF-1. Gene set enrichment analysis identified the authors' protein set as being part of significantly regulated protein sets with the focus on cell cycle, metabolism, and the Kyoto Encyclopedia of Genes and Genomes transforming growth factor-β signaling pathway. The present study provides evidence that platelet-rich plasma stimulates proliferation and induces a unique change in the proteomic profile of adipose tissue-derived mesenchymal stem cells. The interpretation of altered expression of regulatory proteins represents a step forward toward achieving good manufacturing practice-compliant criteria

  4. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  5. Role of Mesenchymal Stem Cells In Tumorigenesis

    Science.gov (United States)

    2009-08-01

    growth and metastasis. 1 Body. Methods: Isolation of mASC. Perirenal , pelvine and subcutaneous fat tissue were dissected from EGFP...tumor invasion in the inter- play of tissue resident stem cells from the fat tissue and breast cancer cells. 2009 Elsevier Ireland Ltd. All rights...Herfarth, Secretion of RANTES (CCL5) and interleukin-10 from mesenteric adipose tissue and from creeping fat in Crohn’s disease: regulation by steroid

  6. Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability

    Directory of Open Access Journals (Sweden)

    Thorsten Roland Doeppner

    2014-10-01

    Full Text Available Ischemic stroke remains a heavy burden for industrialized countries. The only causal therapy is the recanalization of occluded vessels via thrombolysis, which due to a narrow time window still can be offered only to a minority of patients. Since the majority of patients continues to exhibit neurological deficits even following successful thrombolysis, restorative therapies are urgently needed that promote brain remodeling and repair once stroke injury has occurred. Due to their unique properties of action, stem cell-based strategies gained increasing interest during recent years. Using various stroke models in both rodents and primates, the transplantation of stem cells, namely of bone marrow derived mesenchymal stem cells (MSCs or neural progenitor cells (NPCs, has been shown to promote neurological recovery most likely via indirect bystander actions. In view of promising observations, clinical proof-of-concept studies are currently under way, in which effects of stem and precursor cells are evaluated in human stroke patients. In this review we summarize already published studies, which due to the broad experience in other medical contexts mostly employed bone marrow-derived MSCs by means of intravenous transplantation. With the overall number of clinical trials limited in number, only a fraction of these studies used non-treated control groups, and only single studies were adequately blinded. Despite these limitations, first promising results justify the need for more elaborate clinical trials in order to make stem cell transplantation a success for stroke treatment in the future.

  7. Delivery of Placenta-Derived Mesenchymal Stem Cells Ameliorates Ischemia Induced Limb Injury by Immunomodulation

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-11-01

    Full Text Available Background: Peripheral artery disease (PAD is a major health burden in the world. Stem cell-based therapy has emerged as an attractive treatment option in regenerative medicine. In this study, we sought to test the hypothesis that stem cell-based therapy can ameliorate ischemia induced limb injury. Methods: We isolated mesenchymal stem cells derived from human placentas (PMSCs and intramuscularly transplanted them into injured hind limbs. Treatment with PMSCs reduced acute muscle fibers apoptosis induced by ischemia. Results: PMSC treatment significantly enhanced regeneration of the injured hind limb by reducing fibrosis and enhancing running capacity when the animals were subjected to treadmill training. Mechanistically, injected PMSCs can modulate acute inflammatory responses by reducing neutrophil and macrophage infiltration following limb ischemia. ELISA assays further confirmed that PMSC treatment can also reduce pro-inflammatory cytokines, TNF-α and IL-6, and enhance anti-inflammatory cytokine, IL-10 at the injury sites. Conclusion: Taken together, our results demonstrated that PMSCs can be a potential effective therapy for treatment of PAD via immunomodulation.

  8. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation.

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Lee, Wanhee; Song, Inbeom; Kim, Tae-Hyung

    2018-01-01

    (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.

  9. A Clinical Indications Prediction Scale Based on TWIST1 for Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Siddaraju V. Boregowda

    2016-02-01

    Full Text Available In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs also exhibit potent effector (angiogenic, antiinflammatory, immuno-modulatory functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties. Here we demonstrate that stem/progenitor and effector functions are coordinately regulated at the cellular level by the transcription factor Twist1 and specified within populations according to a hierarchical model. We further show that manipulation of Twist1 levels by genetic approaches or by exposure to widely used culture supplements including fibroblast growth factor 2 (Ffg2 and interferon gamma (IFN-gamma alters MSC efficacy in cell-based and in vivo assays in a predictable manner. Thus, by mechanistically linking stem/progenitor and effector functions our studies provide a unifying framework in the form of an MSC hierarchy that models the functional complexity of populations. Using this framework, we developed a CLinical Indications Prediction (CLIP scale that predicts how donor-to-donor heterogeneity and culture conditions impact the therapeutic efficacy of MSC populations for different disease indications.

  10. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis.

    Science.gov (United States)

    Koh, Yong-Gon; Jo, Seung-Bae; Kwon, Oh-Ryong; Suh, Dong-Suk; Lee, Seung-Woo; Park, Sung-Ho; Choi, Yun-Jin

    2013-04-01

    The purpose of this study was to evaluate the clinical and imaging results of patients who received intra-articular injections of autologous mesenchymal stem cells for the treatment of knee osteoarthritis. The study group comprised 18 patients (6 men and 12 women), among whom the mean age was 54.6 years (range, 41 to 69 years). In each patient the adipose synovium was harvested from the inner side of the infrapatellar fat pad by skin incision extension at the arthroscopic lateral portal site after the patient underwent arthroscopic debridement. After stem cells were isolated, a mean of 1.18 × 10(6) stem cells (range, 0.3 × 10(6) to 2.7 × 10(6) stem cells) were prepared with approximately 3.0 mL of platelet-rich plasma (with a mean of 1.28 × 10(6) platelets per microliter) and injected into the selected knees of patients. Clinical outcome was evaluated with the Western Ontario and McMaster Universities Osteoarthritis Index, the Lysholm score, and the visual analog scale (VAS) for grading knee pain. We also compared magnetic resonance imaging (MRI) data collected both preoperatively and at the final follow-up. Western Ontario and McMaster Universities Osteoarthritis Index scores decreased significantly (P stem cells injected. The results of our study are encouraging and show that intra-articular injection of infrapatellar fat pad-derived mesenchymal stem cells is effective for reducing pain and improving knee function in patients being treated for knee osteoarthritis. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  12. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  13. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease.

    Science.gov (United States)

    Kim, Jiyeon; Shapiro, Linda; Flynn, Aidan

    2015-07-01

    Cardiovascular disease (CVD) can be separated into two broad etiological categories, based on the presence or absence of ischemia as a causative factor. In both ischemic and non-ischemic heart disease, myocardial dysfunction or damage frequently results in the development of heart failure, characterized by dyspnea, fatigue and reduced survival. As one of the least regenerative organs in the human body, current standards of care are limited to mitigating loss and preventing recurrence of damage, rather than stimulating actual regeneration of functional heart tissue. Cell based therapies using progenitor cells from bone marrow and the heart itself have been evaluated in preclinical models, and have demonstrated some promise. Accordingly, several clinical trials using autologous stem and progenitor cells have been performed, showing that these cells can be used safely in humans, and suggesting that they may improve relevant clinical parameters in patients with heart disease. Two specific cell populations that are particularly promising are the bone marrow derived mesenchymal stem cell (MSC) and the heart muscle derived cardiac stem cell (CSC). This review will summarize preclinical studies evaluating these stem cell populations and will discuss the clinical application of these cells in contemporary clinical trials, and potential future investigations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  15. Multilineage Potential Research of Bovine Amniotic Fluid Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuhua Gao

    2014-02-01

    Full Text Available The use of amnion and amniotic fluid (AF are abundant sources of mesenchymal stem cells (MSCs that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC. The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy.

  16. Isolation of mesenchymal stem cells from human vermiform appendix.

    Science.gov (United States)

    De Coppi, Paolo; Pozzobon, Michela; Piccoli, Martina; Gazzola, Maria Vittoria; Boldrin, Luisa; Slanzi, Elisa; Destro, Roberta; Zanesco, Luigi; Zanon, Giovanni Franco; Gamba, Piergiorgio

    2006-09-01

    Recent findings have shown that pluripotent stem cells exist in areas outside the bone marrow (BM). Moreover, it has been demonstrated that the appendix is important for the development of mucosal gut immunity, and hematopoietic progenitors have been isolated from animal and human appendices. Non-inflamed appendices removed during laparotomy were processed and cultured until the appearance of adherent cells. Differentiations (performed under osteogenic, adipogenic, and myogenic conditions) were confirmed by immunohistochemistry and cytochemistry. Polymerase chain reaction and cytofluorimetric analyses were performed to evidence the presence of genes and protein specific lineages in appendix-derived mesenchymal stem cells (ADMCs). ADMCs were present in non-inflamed appendices. ADMCs under osteogenic conditions differentiated in osteoblasts and showed increased alkaline phosphatase expression; at the gene level, we observed the expression of Core binding factor alpha 1 (Cbfa1) and osteocalcin in osteogenic induced ADMCs. Under adipogenic conditions, lipidic drops in the cytoplasm, expression of lipoprotein lipase (LpL), and peroxisome proliferator-activated receptor gamma were observed; under myogenic conditions, myotubes expressing muscle specific proteins like desmin were formed. Myogenic regulatory factor 4 and MyoD were selectively induced in the ADMCs under myogenic conditions. This study shows for the first time that mesenchymal stem cells can be isolated from normal appendices obtained from a pediatric and adult age group (0-18 years of age). This finding not only may further knowledge of the maturation of the intestinal immunesystem but also could indicate a new physiological role of the human vermiform appendix.

  17. Perspectives of Stem Cell-Based Therapy for Age-Related Retinal Degenerative Diseases

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Heřmánková, Barbora; Kössl, Jan

    2017-01-01

    Roč. 26, č. 9 (2017), s. 1538-1541 ISSN 0963-6897 R&D Projects: GA ČR(CZ) GA17-04800S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : age-related retinal degenerative diseases * mesenchymal stem cells * stem cell therapy Subject RIV: FF - HEENT, Dentistry OBOR OECD: Ophthalmology Impact factor: 3.006, year: 2016

  18. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative

  19. Design and development of a magnetic device for mesenchymal stem cell retaining in deep targets

    Science.gov (United States)

    Banis, G. C.

    2017-12-01

    This paper focuses on the retaining of mesenchymal stem cells in blood flow conditions using the appropriate magnetic field. Mesenchymal stem cells can be tagged with magnetic nanoparticles and thus, they can be manipulated from distance, through the application of an external magnetic field. In this paper the case of kidney as target of the therapy is being studied.

  20. Therapeutic potential of mesenchymal stem cells in gastrointestinal cancers – current evidence

    Directory of Open Access Journals (Sweden)

    Qin J

    2016-09-01

    Full Text Available Jiwei Qin,1 Yue Zhao,2 Yan Wang,1 Christopher Betzler,2 Felix C Popp,2 Arvid Sen Gupta,2 Daniela Augsburger,2 Peter Camaj,2 Peter J Nelson,3 Christiane J Bruns2 1Department of Surgery, University of Munich, Munich, Germany; 2Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany; 3Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany Abstract: Mesenchymal stem (or stromal cells (MSCs are nonhematopoietic progenitor cells that can be obtained from bone marrow and adipose tissue. Due to the ability of MSCs to migrate to damaged and cancerous tissue, this behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy to improve the efficacy and minimize the toxicity of current gene therapy approaches in the treatment of cancers. In this review, we focus on the current developments of MSC-based gene therapy in gastrointestinal cancer studies, in particular, the role of MSCs as tumor-targeted therapy vehicles and the prospects in their clinical application. Keywords: mesenchymal stem cells, gastrointestinal cancers, cancer therapy

  1. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor

    2012-01-01

    the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications....... In the human studies, so-called cell assisted lipotransfer (CAL) increased the ASC concentration 2-5 times compared with non-manipulated fat grafts, which caused a questionable improvement in survival of fat grafts, compared with that of traditional lipofilling. In contrast, in two of the murine studies ASC...

  2. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  3. File list: Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  4. File list: Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  5. File list: DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  6. File list: Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  7. File list: Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  8. File list: Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  9. File list: Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  10. File list: Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  11. File list: NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  12. File list: InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  13. File list: InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  14. File list: NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  15. File list: DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660075,SRX660076 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  16. File list: NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  17. File list: InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  18. File list: InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660091,SRX660092 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  19. File list: Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  20. File list: DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  1. File list: NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  2. File list: DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  3. Stem Cell-Based Therapies for Epidermolysis Bullosa

    Science.gov (United States)

    2014-10-01

    Wynn R, Wraith E, Cavazzana-Calvo M, Rovelli A, Fischer A, Tolar J, Prasad VK, Escolar M, Gluckman E, O’Meara A, Orchard PJ, Veys P, Eapen M...Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK: Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children...publication on acceptance • Inclusion in PubMed, CAS, Scopus and Google Scholar • Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit

  4. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  5. Intra-arterial delivery of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Watanabe

    2016-01-01

    Full Text Available While treatments have been developed to combat stroke, such as intravenous recombinant tissue plasminogen activator and endovascular recanalization therapies, their ability to decrease the long-term disability that accompanies stroke is limited. Currently, stem cell research focused on mesenchymal stem cells (MSCs. MSCs are multipotent, nonhematopoietic stem cells found in the stromal fraction of the bone marrow, along with the connective tissue of most organs. MSCs are an increasingly appealing cell source due to the relative ease in which they can be retrieved, developed, and handled in vitro. Despite the fact that numerous paths of stem cell transport to the brain in acute ischemic stroke (AIS exist, the intra-arterial (IA route of stem cell transport is most attractive. This is due to its great potential for clinical translation, especially considering the growing clinical application of endovascular treatment for AIS. Here, we evaluate research examining IA delivery of MSCs to the stroke region. The results of the study revealed the maximum tolerated dose and that the optimal time for administration was 24 h, following cerebral ischemia. It is important that future translational studies are performed to establish IA administration of MSCs as a widely used treatment for AIS.

  6. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  7. Immunosuppressive and remodelling properties of mesenchymal stem cells in a model of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Patricia Semedo

    2009-12-01

    Full Text Available Objective: To investigate the role of mesenchymal stem cells in fibrogenesis using a model of chronic renal insufficiency. Methods: Mesenchymal stem cells  were obtained from tibias and femurs of Wistar-EPM rats. After three to five passages, the cells were submitted to phenotypic analyses and differentiation. Wistar rats were submitted to the 5/6 nephrectomy model, and 2.105 mesenchymal stem cells  were administered intravenously to each rat every two weeks until the eighth week. Rresults: Sex-determining region Y was observed in female rats treated with stem cells. Serum and urine analyses showed improvement of functional parameters in mesenchymal stem cells treated animals, such as creatinine, serum urea, and proteinuria. Moreover, hemocrit analysis showed improvement of anemia in mesenchymal stem cells treated animals. Masson’s Trichromium and Picrosirius Red staining demonstrated reduced levels of fibrosis in mesenchymal stem cells treated in animals. These results were corroborated by reduced vimentin, collagen I, TGFβ, FSP-1, MCP-1 and Smad3 mRNA expression. Renal IL-6 and TNFα mRNA expression levels were significantly decreased after mesenchymal stem cells treatment, while IL-4 and IL-10 expression were increased. Serum expression of IL-1α, IL-1β, IL-6, IFN-γ, TNF-α, and IL-10 was decreased in mesenchymal cell-treated animals. Cconclusions: Altogether, these results suggest that mesenchymal stem cells therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal lesion. The immunosuppresive and remodeling properties of the mesenchymal stem cells  may be involved in the improved fibrotic outcome.

  8. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang; Li, XiaoHong; Zhang, Saidan; Song, Yao-Hua

    2007-01-01

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies

  9. Mesenchymal stem cells homing to improve bone healing

    Directory of Open Access Journals (Sweden)

    Weiping Lin

    2017-04-01

    Full Text Available Cell therapy continues to attract growing interest as a promising approach to treat a variety of diseases. Mesenchymal stem cells (MSCs have been one of the most intensely studied candidates for cell therapy. Since the homing capacity of MSCs is an important determinant of effective MSC-based therapy, the enhancement of homing efficiency is essential for optimizing the therapeutic outcome. Furthermore, trafficking of endogenous MSCs to damaged tissues, also referred to as endogenic stem cell homing, and the subsequent participation of MSCs in tissue regeneration are considered to be a natural self-healing response. Therefore, strategies to stimulate and reinforce the mobilisation and homing of MSCs have become a key point in regenerative medicine. The current review focuses on advances in the mechanisms and factors governing trafficking of MSCs, and the relationship between MSC mobilisation and skeletal diseases, providing insights into strategies for their potential translational implications.

  10. Genetically engineered mesenchymal stem cells: applications in spine therapy.

    Science.gov (United States)

    Aslan, Hadi; Sheyn, Dima; Gazit, Dan

    2009-01-01

    Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.

  11. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives.

    Science.gov (United States)

    Pers, Y-M; Ruiz, M; Noël, D; Jorgensen, C

    2015-11-01

    Osteoarthritis (OA) is the most common form of degenerative arthritis, mainly characterized by the degradation of articular cartilage and associated with subchondral bone lesions. Novel therapeutic approaches for OA include cell-based therapies that have become thriving areas of research and development. In this context, mesenchymal stem or stromal cells (MSCs) have gained much interest based on their trophic and immunomodulatory properties that can help tissue repair/regeneration. The present review article discusses the interest of using MSCs in cell-therapy approaches with a focus on the mechanisms by which MSCs might exhibit a therapeutic potential in OA. Special attention is given to the anti-inflammatory function of MSCs and on miRNA modulation in OA for possible future innovative strategies. The paper also presents the current data on the undergoing MSCs-based clinical trials in OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley?

    Directory of Open Access Journals (Sweden)

    Jan Horák

    2017-01-01

    Full Text Available Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm “one disease, one drug” is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.

  13. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Mesenchymal stem cell and osteoarthritis: a literature review

    Directory of Open Access Journals (Sweden)

    Zhaleh Shariati Sarabi

    2016-04-01

    Full Text Available The most common disease in the aged population is osteoarthritis (OA that is resulting in progressive dysfunction following isolated cartilage injuries, subchondral bone remodeling, tissue loss, marginal osteophytes, and loss of joint space. Mesenchymal stem cells (MSCs are multipotent stem cells; they are able to produce many or all joint tissues. Bone marrow and adipose tissue are rich sources of mesenchymal cells that are useful for the reconstruction of injured tissues such as bone, cartilage, or cardiac muscle. Recently, some studies have been performed on the use of the direct intra-articular injection of mononuclear cells (MNCs and MSCs as potential therapeutic targets in OA. In this review, the history of MSCs in the treatment of OA are explained. Injection of Bone Marrow Aspirates Concentrate (BMAC has significantly improved both joint pain and function in radiologic findings; some studies suggested that the injection would be even more effective in early to moderate phases of OA. Injection of MSCs in combination with growth factors may be better solution for the treatment.

  15. Implications of mesenchymal stem cells in regenerative medicine.

    Science.gov (United States)

    Kariminekoo, Saber; Movassaghpour, Aliakbar; Rahimzadeh, Amirbahman; Talebi, Mehdi; Shamsasenjan, Karim; Akbarzadeh, Abolfazl

    2016-05-01

    Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.

  16. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies.

    Science.gov (United States)

    Arufe, Maria Carmen; De la Fuente, Alexandre; Fuentes, Isaac; Toro, Francisco Javier De; Blanco, Francisco Javier

    2011-06-18

    Articular cartilage disorders and injuries often result in life-long chronic pain and compromised quality of life. Regrettably, the regeneration of articular cartilage is a continuing challenge for biomedical research. One of the most promising therapeutic approaches is cell-based tissue engineering, which provides a healthy population of cells to the injured site but requires differentiated chondrocytes from an uninjured site. The use of healthy chondrocytes has been found to have limitations. A promising alternative cell population is mesenchymal stem cells (MSCs), known to possess excellent proliferation potential and proven capability for differentiation into chondrocytes. The "immunosuppressive" property of human MSCs makes them an important candidate for allogeneic cell therapy. The use of allogeneic MSCs to repair large defects may prove to be an alternative to current autologous and allogeneic tissue-grafting procedures. An allogeneic cell-based approach would enable MSCs to be isolated from any donor, expanded and cryopreserved in allogeneic MSC banks, providing a readily available source of progenitors for cell replacement therapy. These possibilities have spawned the current exponential growth in stem cell research in pharmaceutical and biotechnology communities. Our objective in this review is to summarize the knowledge about MSCs from umbilical cord stroma and focus mainly on their applications for joint pathologies.

  17. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  18. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.

    Science.gov (United States)

    Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E

    2016-06-01

    Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. © 2016 AlphaMed Press.

  19. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  20. Conventional and novel stem cell based therapies for androgenic alopecia

    Directory of Open Access Journals (Sweden)

    Talavera-Adame D

    2017-08-01

    Full Text Available Dodanim Talavera-Adame,1 Daniella Newman,2 Nathan Newman1 1American Advanced Medical Corp. (Private Practice, Beverly Hills, CA, 2Western University of Health Sciences, Pomona, CA, USA Abstract: The prevalence of androgenic alopecia (AGA increases with age and it affects both men and women. Patients diagnosed with AGA may experience decreased quality of life, depression, and feel self-conscious. There are a variety of therapeutic options ranging from prescription drugs to non-prescription medications. Currently, AGA involves an annual global market revenue of US$4 billion and a growth rate of 1.8%, indicating a growing consumer market. Although natural and synthetic ingredients can promote hair growth and, therefore, be useful to treat AGA, some of them have important adverse effects and unknown mechanisms of action that limit their use and benefits. Biologic factors that include signaling from stem cells, dermal papilla cells, and platelet-rich plasma are some of the current therapeutic agents being studied for hair restoration with milder side effects. However, most of the mechanisms exerted by these factors in hair restoration are still being researched. In this review, we analyze the therapeutic agents that have been used for AGA and emphasize the potential of new therapies based on advances in stem cell technologies and regenerative medicine. Keywords: stem cells, stem cell therapies, hair follicle, dermal papilla, androgenic alopecia, laser, hair regeneration

  1. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation.

    Science.gov (United States)

    Zhou, Ya-Jing; Liu, Jian-Min; Wei, Shu-Ming; Zhang, Yun-Hao; Qu, Zhen-Hua; Chen, Shu-Bo

    2015-08-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  2. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  3. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103 (Germany); Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [University Hospital Ulm, First Department of Medicine, Albert-Einstein-Allee 23, Ulm D-89081 (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103 (Germany); TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103 (Germany)

    2014-02-15

    differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig. - Highlights: • First time to show hepatocytic differentiation of porcine adipose tissue-derived MSC. • Hepatocytic-differentiated MSC display metabolic qualities of primary hepatocytes. • Metabolic potency varies between differentiated MSC from different tissues. • MSC are good candidates for pre-clinical evaluation of stem cell-based therapies.

  4. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential.

    Science.gov (United States)

    Zheng, Yu-Liang; Sun, Yang-Peng; Zhang, Hong; Liu, Wen-Jing; Jiang, Rui; Li, Wen-Yu; Zheng, You-Hua; Zhang, Zhi-Guang

    2015-01-01

    Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs), but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.

  5. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential.

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zheng

    Full Text Available Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs. CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs, but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.

  6. Myogenic differentiation of mesenchymal stem cells for muscle regeneration in urinary tract.

    Science.gov (United States)

    Yang, Bin; Zheng, Jun-hua; Zhang, Yuan-yuan

    2013-01-01

    This article was to review the current status of adult mesenchymal stem cells transplantation for muscle regeneration in urinary tract and propose the future prospect in this field. The data used in this review were mainly obtained from articles listed in Medline and PubMed (2000-2013). The search terms were "mesenchymal stem cells", "bladder", "stress urinary incontinence" and "tissue engineering". Articles regarding the adult mesenchymal stem cells for tissue engineering of bladder and stress urinary incontinence were selected and reviewed. Adult mesenchymal stem cells had been identified and well characterized in human bone marrow, adipose tissue, skeletal muscle and urine, and demonstrated the capability of differentiating into smooth muscle cells and skeletal muscle cells under myogenic differentiation conditions in vitro. Multiple preclinical and clinical studies indicated that adult mesenchymal stem cells could restore and maintain the structure and function of urinary muscle tissues after transplanted, and potentially improve the quality of life in patients. Smooth or skeletal myogenic differentiation of mesenchymal stem cells with regenerative medicine technology may provide a novel approach for muscle regeneration and tissue repair in urinary tract. The long-term effect and safety of mesenchymal stem cell transplantation should be further evaluated before this approach becomes widely used in patients.

  7. Feasibility of mesenchymal stem cell culture expansion for a phase I clinical trial in multiple sclerosis.

    Science.gov (United States)

    Planchon, Sarah M; Lingas, Karen T; Reese Koç, Jane; Hooper, Brittney M; Maitra, Basabi; Fox, Robert M; Imrey, Peter B; Drake, Kylie M; Aldred, Micheala A; Lazarus, Hillard M; Cohen, Jeffrey A

    2018-01-01

    Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited. To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use. In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1-2 × 10 6 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16-62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.

  8. Surface-Functionalized Silk Fibroin Films as a Platform To Guide Neuron-like Differentiation of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Manchineella, Shivaprasad; Thrivikraman, Greeshma; Basu, Bikramjit; Govindaraju, T

    2016-09-07

    Surface interactions at the biomaterial-cellular interface determine the proliferation and differentiation of stem cells. Manipulating such interactions through the surface chemistry of scaffolds renders control over directed stem cell differentiation into the cell lineage of interest. This approach is of central importance for stem cell-based tissue engineering and regenerative therapy applications. In the present study, silk fibroin films (SFFs) decorated with integrin-binding laminin peptide motifs (YIGSR and GYIGSR) were prepared and employed for in vitro adult stem cell-based neural tissue engineering applications. Functionalization of SFFs with short peptides showcased the peptide sequence and nature of functionalization-dependent differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Intriguingly, covalently functionalized SFFs with GYIGSR hexapeptide (CL2-SFF) supported hMSC proliferation and maintenance in an undifferentiated pluripotent state and directed the differentiation of hMSCs into neuron-like cells in the presence of a biochemical cue, on-demand. The observed morphological changes were further corroborated by the up-regulation of neuronal-specific marker gene expression (MAP2, TUBB3, NEFL), confirmed through semiquantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis. The enhanced proliferation and on-demand directed differentiation of adult stem cells (hMSCs) by the use of an economically viable short recognition peptide (GYIGSR), as opposed to the integrin recognition protein laminin, establishes the potential of SFFs for neural tissue engineering and regenerative therapy applications.

  9. Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro.

    Science.gov (United States)

    Schichor, Christian; Albrecht, Valerie; Korte, Benjamin; Buchner, Alexander; Riesenberg, Rainer; Mysliwietz, Josef; Paron, Igor; Motaln, Helena; Turnšek, Tamara Lah; Jürchott, Kathrin; Selbig, Joachim; Tonn, Joerg-Christian

    2012-03-01

    The interaction of human mesenchymal stem cells (hMSCs) and tumor cells has been investigated in various contexts. HMSCs are considered as cellular treatment vectors based on their capacity to migrate towards a malignant lesion. However, concerns about unpredictable behavior of transplanted hMSCs are accumulating. In malignant gliomas, the recruitment mechanism is driven by glioma-secreted factors which lead to accumulation of both, tissue specific stem cells as well as bone marrow derived hMSCs within the tumor. The aim of the present work was to study specific cellular interactions between hMSCs and glioma cells in vitro. We show, that glioma cells as well as hMSCs differentially express connexins, and that they interact via gap-junctional coupling. Besides this so-called functional syncytium formation, we also provide evidence of cell fusion events (structural syncytium). These complex cellular interactions led to an enhanced migration and altered proliferation of both, tumor and mesenchymal stem cell types in vitro. The presented work shows that glioma cells display signs of functional as well as structural syncytium formation with hMSCs in vitro. The described cellular phenomena provide new insight into the complexity of interaction patterns between tumor cells and host cells. Based on these findings, further studies are warranted to define the impact of a functional or structural syncytium formation on malignant tumors and cell based therapies in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Potential Spermatogenesis Recovery with Bone Marrow Mesenchymal Stem Cells in an Azoospermic Rat Model

    Directory of Open Access Journals (Sweden)

    Deying Zhang

    2014-07-01

    Full Text Available Non-obstructive azoospermia is the most challenging type of male infertility. Stem cell based therapy provides the potential to enhance the recovery of spermatogenesis following cancer therapy. Bone marrow-derived mesenchymal stem cells (BMSCs possess the potential to differentiate or trans-differentiate into multi-lineage cells, secrete paracrine factors to recruit the resident stem cells to participate in tissue regeneration, or fuse with the local cells in the affected region. In this study, we tested whether spermatogenically-induced BMSCs can restore spermatogenesis after administration of an anticancer drug. Allogeneic BMSCs were co-cultured in conditioned media derived from cultured testicular Sertoli cells in vitro, and then induced stem cells were transplanted into the seminiferous tubules of a busulfan-induced azoospermatic rat model for 8 weeks. The in vitro induced BMSCs exhibited specific spermatogonic gene and protein markers, and after implantation the donor cells survived and located at the basement membranes of the recipient seminiferous tubules, in accordance with what are considered the unique biological characteristics of spermatogenic stem cells. Molecular markers of spermatogonial stem cells and spermatogonia (Vasa, Stella, SMAD1, Dazl, GCNF, HSP90α, integrinβ1, and c-kit were expressed in the recipient testis tissue. No tumor mass, immune response, or inflammatory reaction developed. In conclusion, BMSCs might provide the potential to trans-differentiate into spermatogenic-like-cells, enhancing endogenous fertility recovery. The present study indicates that BMSCs might offer alternative treatment for the patients with azoospermatic infertility after cancer chemotherapy.

  11. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Pogozhykh, Denys, E-mail: pogozhykh@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Zernetsch, Holger, E-mail: zernetsch@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Hofmann, Nicola, E-mail: hofmann@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany); Mueller, Thomas, E-mail: mueller.thomas@mh-hannover.de [Institute for Transfusion Medicine, Medical School Hannover, D-30625 Hannover (Germany); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz University Hannover, D-30167 Hannover (Germany)

    2014-03-01

    Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200–400 μm) with narrow size distribution (± 5–7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 μm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15–25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate–cell interaction within these structures will be forthcoming. - Highlights: • High voltage alginate encapsulation of mesenchymal stem cells (MSCs) was designed. • Reproducible and spherical alginate beads were generated via high voltage. • Air flow encapsulation was utilized as a comparative approach to high voltage. • High voltage did not alter the viability and proliferation of encapsulated MSCs. • High voltage encapsulation can be scaled up and applied in cell-based therapy.

  12. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis.

    Science.gov (United States)

    Coates, Emily E; Riggin, Corinne N; Fisher, John P

    2013-07-01

    Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies. Copyright © 2012 Wiley Periodicals, Inc.

  13. Role of Mesenchymal Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases

    Science.gov (United States)

    2017-07-01

    stroma; cytokines; chemokines; mesenchymal stem cells; hematologic stem cells; metastasis; quiescence; animal models; fibrosis; basement membrane extract...chemokines; mesenchymal stem cells; hematologic stem cells; metastasis; quiescence; animal models; fibrosis; basement membrane extract; 3D culture...will publish our findings once these studies have been completed. The Kaplan and Green labs meet regularly to share data and discuss experimental

  14. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  15. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  16. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration.

    Science.gov (United States)

    Richardson, Stephen M; Kalamegam, Gauthaman; Pushparaj, Peter N; Matta, Csaba; Memic, Adnan; Khademhosseini, Ali; Mobasheri, Reza; Poletti, Fabian L; Hoyland, Judith A; Mobasheri, Ali

    2016-04-15

    Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Mesenchymal stem cell in venous leg ulcer: An intoxicating therapy.

    Science.gov (United States)

    Athanerey, Anjali; Patra, Pradeep Kumar; Kumar, Awanish

    2017-08-01

    Venous leg ulcers (VLU) are a prevalent and reoccurring type of complicated wound, turning as a considerable public healthcare issue, with critical social and economic concern. There are both medical and surgical therapies to treat venous leg ulcers; however, a cure does not yet exist. Mesenchymal stem cells (MSC) are capable and proved of accelerating wound healing in vivo and their study with human chronic wounds is currently awaited. MSCs are a promising source of adult progenitor cells for cellular therapy and have been demonstrated to differentiate into various mesenchymal cell lineages. They have a crucial and integral role in native wound healing by regulating immune response and inflammation. Improved understanding of the cellular and molecular mechanisms at work in delayed wound healing compels to the development of cellular therapy in VLU. This review focuses on the current treatment option of VLU and further emphasizing the role of MSCs in accelerating the healing process. With further understanding of the mechanism of action of these cells in wound improvement and, the involvement of cytokines can also be revealed that could be used for the therapeutic purpose for VLU healing. Clinical uses of MSCs have been started already, and induced MSCs are surely a promising tool or compelling therapy for VLU. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  18. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    Full Text Available OBJECTIVE: Mesenchymal stem cells (MSCs can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. METHODS: Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. RESULTS: Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA, which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. CONCLUSIONS: IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation.

  19. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Devang M. Patel

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.

  20. Mesenchymal stem cells for cartilage repair in osteoarthritis.

    Science.gov (United States)

    Gupta, Pawan K; Das, Anjan K; Chullikana, Anoop; Majumdar, Anish S

    2012-07-09

    Osteoarthritis (OA) is a degenerative disease of the connective tissue and progresses with age in the older population or develops in young athletes following sports-related injury. The articular cartilage is especially vulnerable to damage and has poor potential for regeneration because of the absence of vasculature within the tissue. Normal load-bearing capacity and biomechanical properties of thinning cartilage are severely compromised during the course of disease progression. Although surgical and pharmaceutical interventions are currently available for treating OA, restoration of normal cartilage function has been difficult to achieve. Since the tissue is composed primarily of chondrocytes distributed in a specialized extracellular matrix bed, bone marrow stromal cells (BMSCs), also known as bone marrow-derived 'mesenchymal stem cells' or 'mesenchymal stromal cells', with inherent chondrogenic differentiation potential appear to be ideally suited for therapeutic use in cartilage regeneration. BMSCs can be easily isolated and massively expanded in culture in an undifferentiated state for therapeutic use. Owing to their potential to modulate local microenvironment via anti-inflammatory and immunosuppressive functions, BMSCs have an additional advantage for allogeneic application. Moreover, by secreting various bioactive soluble factors, BMSCs can protect the cartilage from further tissue destruction and facilitate regeneration of the remaining progenitor cells in situ. This review broadly describes the advances made during the last several years in BMSCs and their therapeutic potential for repairing cartilage damage in OA.

  1. Mesenchymal stem cell therapy: Two steps forward, one step back

    Science.gov (United States)

    Ankrum, James; Karp, Jeffrey M.

    2010-01-01

    Mesenchymal stem cell (MSC) therapy is poised to establish a new clinical paradigm; however, recent trials have produced mixed results. Although MSC were originally considered to treat connective tissue defects, preclinical studies revealed potent immunomodulatory properties that prompted the use of MSC to treat numerous inflammatory conditions. Unfortunately, although clinical trials have met safety endpoints, efficacy has not been demonstrated. We believe the challenge to demonstrate efficacy can be attributed in part to an incomplete understanding of the fate of MSC following infusion. Here, we highlight the clinical status of MSC therapy and discuss the importance of cell-tracking techniques, which have advanced our understanding of the fate and function of systemically infused MSC and might improve clinical application. PMID:20335067

  2. The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis

    Science.gov (United States)

    Sharaf-Eldin, Wessam E.; Abu-Shahba, Nourhan; Mahmoud, Marwa; El-Badri, Nagwa

    2016-01-01

    The effect of mesenchymal stem cells (MSCs) on bone formation has been extensively demonstrated through several in vitro and in vivo studies. However, few studies addressed the effect of MSCs on osteoclastogenesis and bone resorption. Under physiological conditions, MSCs support osteoclastogenesis through producing the main osteoclastogenic cytokines, RANKL and M-CSF. However, during inflammation, MSCs suppress osteoclast formation and activity, partly via secretion of the key anti-osteoclastogenic factor, osteoprotegerin (OPG). In vitro, co-culture of MSCs with osteoclasts in the presence of high concentrations of osteoclast-inducing factors might reflect the in vivo inflammatory pathology and prompt MSCs to exert an osteoclastogenic suppressive effect. MSCs thus seem to have a dual effect, by stimulating or inhibiting osteoclastogenesis, depending on the inflammatory milieu. This effect of MSCs on osteoclast formation seems to mirror the effect of MSCs on other immune cells, and may be exploited for the therapeutic potential of MSCs in bone loss associated inflammatory diseases. PMID:26823668

  3. Mesenchymal Stem Cells after Polytrauma: Actor and Target

    Directory of Open Access Journals (Sweden)

    Markus Huber-Lang

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma.

  4. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  5. Restoration of Corneal Transparency by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharad K. Mittal

    2016-10-01

    Full Text Available Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF. Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy.

  6. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    Science.gov (United States)

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  7. Separation of Mesenchymal Stem Cells Through a Strategic Centrifugation Protocol.

    Science.gov (United States)

    Ferlin, Kimberly M; Kaplan, David S; Fisher, John P

    2016-04-01

    Despite great promise surrounding mesenchymal stem cells (MSCs), their implementation for tissue engineering strategies remains in the development phases. Many of the concerns regarding the clinical use of MSCs originate from population heterogeneity, during both isolation and differentiation. In this study, we utilize our previously developed centrifugation cell adhesion protocol for the separation of MSCs. Our findings reveal that MSCs can be isolated from whole bone marrow using a 200 g (700 pN) centrifugal force after 24 h of culture on polystyrene with cell surface marker expression equivalent to positive controls. During differentiation, a centrifugation protocol with identical force parameters could be applied 14 days into chondrogenic differentiation to isolate differentiated chondrocytes, which exhibited increased expression of chondrogenic markers compared to controls. In summary, the use of our developed centrifugation cell adhesion protocol has proven to be an effective means to separate MSC populations, decreasing the heterogeneity of subsequent cell therapy products.

  8. Progress of stem/progenitor cell-based therapy for retinal degeneration.

    Science.gov (United States)

    Tang, Zhimin; Zhang, Yi; Wang, Yuyao; Zhang, Dandan; Shen, Bingqiao; Luo, Min; Gu, Ping

    2017-05-10

    Retinal degeneration (RD), such as age-related macular degeneration (AMD) and retinitis pigmentosa, is one of the leading causes of blindness. Presently, no satisfactory therapeutic options are available for these diseases principally because the retina and retinal pigmented epithelium (RPE) do not regenerate, although wet AMD can be prevented from further progression by anti-vascular endothelial growth factor therapy. Nevertheless, stem/progenitor cell approaches exhibit enormous potential for RD treatment using strategies mainly aimed at the rescue and replacement of photoreceptors and RPE. The sources of stem/progenitor cells are classified into two broad categories in this review, which are (1) ocular-derived progenitor cells, such as retinal progenitor cells, and (2) non-ocular-derived stem cells, including embryonic stem cells, induced pluripotent stem cells, and mesenchymal stromal cells. Here, we discuss in detail the progress in the study of four predominant stem/progenitor cell types used in animal models of RD. A short overview of clinical trials involving the stem/progenitor cells is also presented. Currently, stem/progenitor cell therapies for RD still have some drawbacks such as inhibited proliferation and/or differentiation in vitro (with the exception of the RPE) and limited long-term survival and function of grafts in vivo. Despite these challenges, stem/progenitor cells represent the most promising strategy for RD treatment in the near future.

  9. Mesenchymal stem cells are highly resistant to sulfur mustard.

    Science.gov (United States)

    Schmidt, Annette; Scherer, Michael; Thiermann, Horst; Steinritz, Dirk

    2013-12-05

    The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic

    OpenAIRE

    Whiting, Paul; Kerby, Julie; Coffey, Peter; da Cruz, Lyndon; McKernan, Ruth

    2015-01-01

    Since the first publication of the derivation of human embryonic stem cells in 1998, there has been hope and expectation that this technology will lead to a wave of regenerative medicine therapies with the potential to revolutionize our approach to managing certain diseases. Despite significant resources in this direction, the path to the clinic for an embryonic stem-cell-based regenerative medicine therapy has not proven straightforward, though in the past few years progress has been made. H...

  11. Promoting the Recovery of Injured Liver with Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate-Co-3-Hydroxyhexanoate) Scaffolds Loaded with Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Li, Pengshan; Zhang, Jin; Liu, Jing; Ma, Huan; Liu, Jie; Lie, Puchang; Wang, Yuechun; Liu, Gexiu; Zeng, Huilan; Li, Zhizhong; Wei, Xing

    2014-01-01

    Cell-based therapies are major focus of current research for treatment of liver diseases. In this study, mesenchymal stem cells were isolated from human umbilical cord Wharton's jelly (WJ-MSCs). Results confirmed that WJ-MSCs isolated in this study could express the typical MSC-specific markers and be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. They could also be induced to differentiate into hepatocyte-like cells. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3...

  12. Photobiomodulation of Dental Derived Mesenchymal Stem Cells: A Systematic Review.

    Science.gov (United States)

    Marques, Márcia Martins; Diniz, Ivana Márcia Alves; de Cara, Sueli Patricia Harumi Miyagi; Pedroni, Ana Clara Fagundes; Abe, Gabriela Laranjeira; D'Almeida-Couto, Roberta Souza; Lima, Paula Loures Valle; Tedesco, Tamara Kerber; Moreira, Maria Stella

    2016-11-01

    This study aimed to conduct a systematic review of the literature published from 2000 to August 2015, to investigate the effect of photobiomodulation (PBM) therapy on dentoalveolar-derived mesenchymal stem cells (ddMSCs), assessing whether a clear conclusion can be reached from the data presented. Systematic reviews provide the best evidence on the effectiveness of a procedure and permit investigation of factors that may influence the performance of a method. To the best of our knowledge, no previous systematic review has evaluated the effects of PBM only on ddMSCs. The search was conducted in PubMed /MEDLINE ® , Scopus and Web of Science databases, and reported according to the Preferred Reporting Items for Systematic Reviews and Metaanalyses (PRISMA Statement). Original research articles investigating the effects of PBM therapy on ddMSCs, published from 2000 to August 2015, were retrieved and used for this review according to the following eligibility criteria: evaluating PBM therapy, assessing stem cells of dentoalveolar origin, published in English, dealing with cells characterized as stem cells, and using light that did not need external chromophores. From the initial 3467 potentially relevant articles identified, 6 were excluded because they were duplicates, and 3453 were considered ineligible based on the inclusion criteria. Therefore, eight articles remained, and these were fully analyzed in order to closely check exclusion criteria items. Only one of them was excluded because the cultured cells studied were not characterized as stem cells. Finally, seven articles served as the basis for this systematic review. PBM therapy has no deleterious effects on ddMSCs. Although no other clear conclusion was obtained because of the scarce number of publications, the results of these studies are pointing to an important tendency of PBM therapy to improve ddMSCs' viability and proliferation.

  13. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  14. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology

    NARCIS (Netherlands)

    Scharstuhl, A.; Schewe, B.; Benz, K.; Gaissmaier, C.; Bühring, H.J.; Stoop, R.

    2007-01-01

    Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from

  15. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology.

    NARCIS (Netherlands)

    Scharstuhl, A.; Schewe, B.; Benz, K.; Gaissmaier, C.; Buhring, H.J.; Stoop, R.

    2007-01-01

    Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from

  16. CD90- (Thy-1- High Selection Enhances Reprogramming Capacity of Murine Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2013-01-01

    Full Text Available Background. Mesenchymal stem cells (MSCs, including adipose tissue-derived mesenchymal stem cells (ADSC, are multipotent and can differentiate into various cell types possessing unique immunomodulatory features. Several clinical trials have demonstrated the safety and possible efficacy of MSCs in organ transplantation. Thus, stem cell therapy is promising for tolerance induction. In this study, we assessed the reprogramming capacity of murine ADSCs and found that CD90 (Thy-1, originally discovered as a thymocyte antigen, could be a useful marker for cell therapy. Method. Murine ADSCs were isolated from B6 mice, sorted using a FACSAria cell sorter by selection of CD90Hi or CD90Lo, and then transduced with four standard factors (4F; Oct4, Sox2, Klf4, and c-Myc. Results. Unsorted, CD90Hi-sorted, and CD90Lo-sorted murine ADSCs were reprogrammed using standard 4F transduction. CD90Hi ADSCs showed increased numbers of alkaline phosphatase-positive colonies compared with CD90Lo ADSCs. The relative reprogramming efficiencies of unsorted, CD90Hi-sorted, and CD90Lo-sorted ADSCs were 100%, 116.5%, and 74.7%, respectively. CD90Hi cells were more responsive to reprogramming. Conclusion. CD90Hi ADSCs had greater reprogramming capacity than CD90Lo ADSCs, suggesting that ADSCs have heterogeneous subpopulations. Thus, CD90Hi selection presents an effective strategy to isolate a highly suppressive subpopulation for stem cell-based tolerance induction therapy.

  17. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    NARCIS (Netherlands)

    Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    2016-01-01

    Platelet-rich blood derivatives have been widely used in different fields of medicine and stem cell-based tissue engineering. They represent natural cocktails of autologous growth factors, which could provide an alternative for recombinant protein-based approaches. Platelet-rich blood derivatives,

  18. Stem and Progenitor Cell-Based Therapy of the Central Nervous System

    DEFF Research Database (Denmark)

    Goldman, Steven A.

    2016-01-01

    A variety of neurological disorders are attractive targets for stem and progenitor cell-based therapy. Yet many conditions are not, whether by virtue of an inhospitable disease environment, poorly understood pathophysiology, or poor alignment of donor cell capabilities with patient needs. Moreove...

  19. Mesenchymal stem cell therapy in osteoarthritis: advanced tissue repair or intervention with smouldering synovial activation?

    OpenAIRE

    van Lent, Peter LEM; van den Berg, Wim B

    2013-01-01

    Although it is generally accepted that osteoarthritis is a degenerative condition of the cartilage, other tissues such as synovium in which immunological and inflammatory reactions occur contribute to the development of joint pathology. This sheds new light on the potential mechanism of action of mesenchymal stem cell therapy in osteoarthritis. Rather than tissue repair due to local transformation of injected mesenchymal stem cells to chondrocytes and filling defects in cartilage, such treatm...

  20. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  1. Age-related characteristics of multipotent human nasal inferior turbinate-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Se Hwan Hwang

    Full Text Available BACKGROUND AND OBJECTIVES: Multipotent mesenchymal stem cells (MSCs represent a promising cell-based therapy for a number of degenerative conditions. Understanding the effect of aging on MSCs is crucial for both autologous therapy development and allogenic donors in older subjects whom degenerative diseases typically afflict. In this study, we investigated the influence of donor age on the characteristics, proliferation, and differentiation potential of in vitro cultures of multipotent human turbinated mesenchymal stem cells (hTMSCs from patients of various age groups. SUBJECTS AND METHODS: Twelve patients comprised the four age groups: (I 60 years. Inferior turbinate tissues were discarded from patients undergoing partial turbinectomy. After isolating hTMSCs, the expression of the hTMSC surface markers CD14, CD19, CD34, CD73, CD90, CD105, and HLA-DR was assessed by FACS analysis, and cell proliferation was assessed using a cell counting kit (CCK-8. The differentiation potential of hTMSCs was evaluated in osteogenic media by histology and determination of osteoblastic gene expression. RESULTS: FACS analysis revealed that hTMSCs were negative for CD14, CD19, CD34, and HLA-DR, and positive for CD73, CD90, and CD105, representing a characteristic MSC phenotype, and showed no significant differences among the age groups. Cellular proliferation and osteogenic differentiation potential of hTMSCs also showed no significant differences among the age groups. CONCLUSIONS: We conclude that donor age does not affect the characteristics, proliferation, and osteogenic differentiation potential of hTMSCs. Donor age may be excluded as a criterion in the guidelines for clinical use of the autologous or allogenic transplantation of hTMSCs.

  2. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell

    Directory of Open Access Journals (Sweden)

    Nur Shuhaidatul Sarmiza Abdul Halim

    2014-08-01

    Full Text Available Mesenchymal stem cells (MSCs hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1 and enhanced green fluorescent protein (eGFP into human adipose-derived MSCs (hAD-MSCs. The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.

  3. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  4. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.

  5. Ion Channels in Hematopoietic and Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Serena Pillozzi

    2012-01-01

    Full Text Available Hematopoietic stem cells (HSCs reside in bone marrow niches and give rise to hematopoietic precursor cells (HPCs. These have more restricted lineage potential and eventually differentiate into specific blood cell types. Bone marrow also contains mesenchymal stromal cells (MSCs, which present multilineage differentiation potential toward mesodermal cell types. In bone marrow niches, stem cell interaction with the extracellular matrix is mediated by integrin receptors. Ion channels regulate cell proliferation and differentiation by controlling intracellular Ca2+, cell volume, release of growth factors, and so forth. Although little evidence is available about the ion channel roles in true HSCs, increasing information is available about HPCs and MSCs, which present a complex pattern of K+ channel expression. K+ channels cooperate with Ca2+ and Cl− channels in regulating calcium entry and cell volume during mitosis. Other K+ channels modulate the integrin-dependent interaction between leukemic progenitor cells and the niche stroma. These channels can also regulate leukemia cell interaction with MSCs, which also involves integrin receptors and affects the MSC-mediated protection from chemotherapy. Ligand-gated channels are also implicated in these processes. Nicotinic acetylcholine receptors regulate cell proliferation and migration in HSCs and MSCs and may be implicated in the harmful effects of smoking.

  6. Mesenchymal Stem Cells Derived from Dental Pulp: A Review.

    Science.gov (United States)

    Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel; Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  7. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  8. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  9. Mesenchymal Stem Cells for the Treatment of Skin Diseases

    Directory of Open Access Journals (Sweden)

    Toshio Hasegawa

    2017-08-01

    Full Text Available Mesenchymal stem cell (MSC-based therapy involving both autologous and allogeneic MSCs shows great promise in treating several conditions. MSCs promote wound healing, and can differentiate into multiple cell lineages, including keratinocytes. Therefore, MSCs can be used for the treatment of congenital or acquired skin defects. Because of their immunomodulatory properties, MSCs may be useful for the treatment of inflammatory and autoimmune skin diseases. In particular, MSCs might be effective for the treatment of large vitiligo lesions as immunosuppressant or cultured grafts. MSCs can also be a novel cell source for regenerating hair in the treatment of scarring alopecia and androgenic alopecia. MSCs might also be an effective treatment for alopecia areata, which is associated with autoimmunity. Stem cell therapies with topical administration of MSCs and bone marrow transplantation were shown to alleviate recessive dystrophic epidermolysis bullosa in both animal models and human subjects. In addition to cell transplantation, the mobilization of endogenous MSCs has been attempted for skin regeneration. Overall, this review highlights the great potential of MSCs for the treatment of skin diseases in the near future.

  10. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    International Nuclear Information System (INIS)

    Shotorbani, Behnaz Banimohamad; Alizadeh, Effat; Salehi, Roya; Barzegar, Abolfazl

    2017-01-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  11. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  12. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium

    International Nuclear Information System (INIS)

    Apel, Anja; Groth, Ariane; Schlesinger, Sabine; Bruns, Helge; Schemmer, Peter; Buechler, Markus W.; Herr, Ingrid

    2009-01-01

    Great hope is set in the use of mesenchymal stem cells for gene therapy and regenerative medicine. Since the frequency of this subpopulation of stem cells in bone marrow is low, mesenchymal stem cells are expanded ex vivo and manipulated prior to experimental or clinical use. Different methods for isolation and expansion are available, but the particular effect on the stem cell character is unclear. While the isolation of mesenchymal stem cells by density centrifugation followed by selection of the plastic adherent fraction is frequently used, the composition of expansion media differs. Thus, in the present study we cultured mesenchymal stem cells isolated from five healthy young volunteers in three widely used expansion media and performed a detailed analysis of the effect on morphology, proliferation, clonogenicity, passaging, differentiation and senescence. By this way we clearly show that the type of expansion medium used determines the stem cell character and time of senescence which is critical for future gene therapeutic and regenerative approaches using mesenchymal stem cells

  13. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.

    Science.gov (United States)

    Liu, Zhongmin; Tang, Mingliang; Zhao, Jinping; Chai, Renjie; Kang, Jiuhong

    2018-02-16

    Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Silvia Lopa

    2018-01-01

    Full Text Available Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.

  15. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Carlos Augusto Galvão; Ginani, Fernanda [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Soares, Diego Moura [Universidade Federal de Pernambuco, Recife, PE (Brazil); Henriques, Águida Cristina Gomes; Freitas, Roseana de Almeida [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil)

    2014-07-01

    To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660nm; doses of 0.5 and 1.0J/cm{sup 2}). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4'-6-diamidino-2-phenylindole) at 72 hours. Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0J/cm{sup 2}, especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0J/cm{sup 2}, but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering.

  16. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Barboza, Carlos Augusto Galvão; Ginani, Fernanda; Soares, Diego Moura; Henriques, Águida Cristina Gomes; Freitas, Roseana de Almeida

    2014-01-01

    To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660nm; doses of 0.5 and 1.0J/cm 2 ). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4'-6-diamidino-2-phenylindole) at 72 hours. Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0J/cm 2 , especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0J/cm 2 , but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering

  17. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kyeong-Ah Kwak

    2018-01-01

    Full Text Available Alzheimer’s disease (AD, a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease’s pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.

  18. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  19. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton’s Jelly Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Kewalin Inthanon

    2016-01-01

    Full Text Available Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone-sericin (PLCL-SC copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS. The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton’s jelly mesenchymal stem cells (hWJMSC proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK. On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

  20. Mesenchymal stem cells in obesity: insights for translational applications.

    Science.gov (United States)

    Matsushita, Kenichi; Dzau, Victor J

    2017-10-01

    Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity. However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular, successful clinical application of MSCs will require extensive identification and characterization of the transcriptional regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their potential clinical applications for obesity.

  1. The endometrium as a source of mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S

    2015-06-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine. © 2015 by the Society for the Study of Reproduction, Inc.

  2. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Górski

    2016-08-01

    Full Text Available Since the discovery of bone marrow mesenchymal stem cells (BMMSCs, many researchers have focused their attention on new sources of mesenchymal stem cells (MSCs. Consequently, MSCs that display self-renewal capacity, multidifferentiation potential and immunomodulatory properties have been isolated from human oral tissues, including tooth, periodontal ligament, and gingiva. Oral MSCs involve dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, periodontal ligament stem cells (PDLSCs, dental follicle stem cells (DFCs, stem cells from apical papilla (SCAP and gingival stem cells (GMSCs. Current research on oral stem cells is expanding at an unprecedented rate. That being the case, a plethora of in vitro differentiation assays, immunodeficient animal transplantations and preclinical trials have demonstrated that these cells exhibit strong potential for both regenerative dentistry and medicine. Oral MSCs have proved their capability to repair cornea, dental pulp, periodontal, bone, cartilage, tendon, neural, muscle and endothelial tissues without neoplasm formation as well as to treat inflammatory diseases and immune disorders. This article describes the current understanding of oral MSCs and their prospective applications in cell-based therapy, tissue engineering and regenerative medicine. Special attention is placed on GMSCs as they are easily accessible and may be obtained in a convenient and minimally invasive way.

  3. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies.

    Science.gov (United States)

    Górski, Bartłomiej

    2016-08-17

    Since the discovery of bone marrow mesenchymal stem cells (BMMSCs), many researchers have focused their attention on new sources of mesenchymal stem cells (MSCs). Consequently, MSCs that display self-renewal capacity, multidifferentiation potential and immunomodulatory properties have been isolated from human oral tissues, including tooth, periodontal ligament, and gingiva. Oral MSCs involve dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle stem cells (DFCs), stem cells from apical papilla (SCAP) and gingival stem cells (GMSCs). Current research on oral stem cells is expanding at an unprecedented rate. That being the case, a plethora of in vitro differentiation assays, immunodeficient animal transplantations and preclinical trials have demonstrated that these cells exhibit strong potential for both regenerative dentistry and medicine. Oral MSCs have proved their capability to repair cornea, dental pulp, periodontal, bone, cartilage, tendon, neural, muscle and endothelial tissues without neoplasm formation as well as to treat inflammatory diseases and immune disorders. This article describes the current understanding of oral MSCs and their prospective applications in cell-based therapy, tissue engineering and regenerative medicine. Special attention is placed on GMSCs as they are easily accessible and may be obtained in a convenient and minimally invasive way.

  4. Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry

    Directory of Open Access Journals (Sweden)

    Shayee Miran

    2016-01-01

    Full Text Available Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.

  5. Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry.

    Science.gov (United States)

    Miran, Shayee; Mitsiadis, Thimios A; Pagella, Pierfrancesco

    2016-01-01

    Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.

  6. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  7. Células-tronco mesenquimais Mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Betânia Souza Monteiro

    2010-02-01

    Full Text Available Dentre todas as células-tronco estudadas até o presente momento, as mesenquimais (MSC destacam-se por sua elevada plasticidade, podendo originar tecidos mesodermais e não mesodermais. Além disso, possuem características imunomoduladoras e imunossupressoras que ampliam as possibilidades de utilização terapêutica. As MSC secretam uma grande variedade de citocinas pró e anti-inflamatórias e fatores de crescimento e, por meio dessas moléculas bioativas, proporcionam a modulação da resposta inflamatória, o restabelecimento do suprimento vascular e a reparação adequada do tecido, contribuindo para a homeostasia tissular e imunológica sob condições fisiológicas. Também podem induzir as demais células presentes no nicho tecidual a secretarem outros fatores solúveis que estimulam a diferenciação dessas células indiferenciadas, favorecendo o processo de reparação. A terapia celular com MSC é uma alternativa terapêutica promissora, porém a compreensão da biologia dessas células ainda é uma ciência em formação. Este artigo tem por objetivo realizar uma breve revisão sobre as células mesenquimais indiferenciadas.Of all the stem cells studied so far, the mesenchymal stem cells (MSC stand out for their high plasticity and capacity of generating mesodermal and non-mesodermal tissues. In addition, immunomodulatory and immunosuppressive features that expand possibilities for therapeutic use are present in these cells. A variety of pro and anti-inflammatory cytokines and growth factors are secrete for MSC and provide a modulation of inflammatory response, re-establishment of vascular supply and adequate repair of the tissue, contributing to tissue homeostasis under physiologic conditions. Therefore, they can induce secretion of soluble factors that stimulate their differentiation by other cells present at the niche's tissue, promoting the repair process. Cell therapy using MSC is a promises therapeutic alternative, but

  8. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    Full Text Available Human mesenchymal stem cells (MSCs are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL. Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG at optimal concentration can be resourcefully used for labeling of stem cells

  9. Ethical Perspectives on Stem Cell-based Cellular Therapies for Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Ebbesen, Mette; Pedersen, Finn Skou; Andersen, Svend

    2012-01-01

    The effect of stem cell-based therapies for neurodegenerative diseases such as Alzheimer disease, Huntington disease, and Parkinson disease are currently being investigated. Here we specify possible therapeutic effects and possible side effects for patients and conclude that cellular therapies may...... and Childress’ principles. We explain that the ethical issues of using stem cells for therapies for neurodegenerative diseases often referred to in the literature are related to the moral status of the blastocyst and the developing embryo. We believe that these are to be seen as potential human life...... have benefits for patients. The side effect described most commonly in the literature is the risk of tumor formation by stem cells not fully differentiated into neurons when transplanted or following viral transduction and subsequent differentiation to create induced pluripotent stem cells. This risk...

  10. Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Kyeong-Ah Kwak

    2018-01-01

    Full Text Available Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.

  11. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation.

    Directory of Open Access Journals (Sweden)

    Zhilong Li

    Full Text Available BACKGROUND: Mesenchymal stem cells (MSCs hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation.

  12. Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

    Science.gov (United States)

    Green, David W.; Kwon, Hyuk-Jae; Jung, Han-Sung

    2015-01-01

    Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC’s), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC’s led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I–IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC’s. PMID:25666352

  13. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...... bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106 and CD166 as revealed by immunohistochemical staining and flow cytometry (FACS) analysis. Ex vivo differentiation of h...

  14. Umbilical Cord-Derived Mesenchymal Stem Cells for Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is becoming an effective therapeutic modality for a variety of diseases. Mesenchymal stem cells (MSCs can be used to enhance hematopoietic engraftment, accelerate lymphocyte recovery, reduce the risk of graft failure, prevent and treat graft-versus-host disease, and repair tissue damage in patients receiving HSCT. Till now, most MSCs for human clinical application have been derived from bone marrow. However, acquiring bone-marrow-derived MSCs involves an invasive procedure. Umbilical cord is rich with MSCs. Compared to bone-marrow-derived MSCs, umbilical cord-derived MSCs (UCMSCs are easier to obtain without harm to the donor and can proliferate faster. No severe adverse effects were noted in our previous clinical application of UCMSCs in HSCT. Accordingly, application of UCMSCs in humans appears to be feasible and safe. Further studies are warranted.

  15. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury.

    Science.gov (United States)

    Zhang, Rui-Ping; Xu, Cheng; Liu, Yin; Li, Jian-Ding; Xie, Jun

    2015-03-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  16. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    Directory of Open Access Journals (Sweden)

    Nilay J Lakhkar

    2015-11-01

    Full Text Available In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5 that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.

  17. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  18. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord.

    Science.gov (United States)

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-09-15

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.

  19. Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation.

    Science.gov (United States)

    Hogan, Niamh M; Joyce, Myles R; Murphy, J Mary; Barry, Frank P; O'Brien, Timothy; Kerin, Michael J; Dwyer, Roisin M

    2013-06-14

    Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs+antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1 and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67-88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Science.gov (United States)

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord. PMID:25374590

  1. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Amitabh C. Pandey

    2017-01-01

    Full Text Available Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

  2. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  3. Mesenchymal Stem Cells Mitigate Cirrhosis through BMP7

    Directory of Open Access Journals (Sweden)

    Bing Li

    2015-01-01

    Full Text Available Background/Aims: Transplantation of mesenchymal stem cells (MSCs has therapeutic effects on various diseases, while its effect on developing cirrhosis as well as the underlying mechanism remained largely unknown. Methods: Twenty C57BL/6 mice were randomly separated into 2 groups of ten each. One group received transplantation of MSCs, while the other group received saline as control. The mice then received intraperitoneal injection of carbon tetrachloride (CCl4 twice per week for 8 weeks to develop cirrhosis. After another 4 weeks, the levels of cirrhosis in these mice were evaluated by liver fibrosis area, portal pressure, sodium balance and excretion. Transcripts of transforming growth factor β 1 (TGFβ1 and bone morphogenic protein 7 (BMP7 in the mouse livers were quantified by RT-qPCR. BMP7-depleted MSCs were prepared and applied in this model, and compared to MSCs. Results: Liver fibrosis, portal hypertension and sodium retention that were developed by CCl4, were all significantly alleviated by MSCs transplantation, which decreased TGFβ1 levels and increased BMP7 levels in the injured liver. MSCs were found to express extremely high levels of BMP7. Knockdown of BMP7 in MSCs completely abolished the protective effect of MSCs against CCl4-induced cirrhosis. Conclusions: MSCs mitigate cirrhosis through their production of BMP7 against the fibrogenic effect of TGFβ1 in the injured liver.

  4. Mesenchymal Stem Cells for Treating Articular Cartilage Defects and Osteoarthritis.

    Science.gov (United States)

    Wang, Yu; Yuan, Mei; Guo, Quan-yi; Lu, Shi-bi; Peng, Jiang

    2015-01-01

    Articular cartilage damage and osteoarthritis are the most common joint diseases. Joints are prone to damage caused by sports injuries or aging, and such damage regularly progresses to more serious joint disorders, including osteoarthritis, which is a degenerative disease characterized by the thinning and eventual wearing out of articular cartilage, ultimately leading to joint destruction. Osteoarthritis affects millions of people worldwide. Current approaches to repair of articular cartilage damage include mosaicplasty, microfracture, and injection of autologous chondrocytes. These treatments relieve pain and improve joint function, but the long-term results are unsatisfactory. The long-term success of cartilage repair depends on development of regenerative methodologies that restore articular cartilage to a near-native state. Two promising approaches are (i) implantation of engineered constructs of mesenchymal stem cell (MSC)-seeded scaffolds, and (ii) delivery of an appropriate population of MSCs by direct intra-articular injection. MSCs may be used as trophic producers of bioactive factors initiating regenerative activities in a defective joint. Current challenges in MSC therapy are the need to overcome current limitations in cartilage cell purity and to in vitro engineer tissue structures exhibiting the required biomechanical properties. This review outlines the current status of MSCs used in cartilage tissue engineering and in cell therapy seeking to repair articular cartilage defects and related problems. MSC-based technologies show promise when used to repair cartilage defects in joints.

  5. Mesenchymal stem cells for cartilage regeneration in osteoarthritis.

    Science.gov (United States)

    Kristjánsson, Baldur; Honsawek, Sittisak

    2017-09-18

    Osteoarthritis (OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with lack of conventional treatment, patients are often left with no other choices than arthroplasty. Over the last years, multipotent stromal cells have been used in efforts to treat OA. Mesenchymal stem/progenitor cells (MSCs) are stromal cells that can differentiate into bone, fat, and cartilage cells. They reside within bone marrow and fat. MSCs can also be found in synovial joints where they affect the progression of OA. They can be isolated and proliferated in an incubator before being applied in clinical trials. When it comes to treatment, emphasis has hitherto been on autologous MSCs, but allogenic cells from healthy donors are emerging as another source of the cells. The first adaptations of MSCs revolved in the use of cell-rich matrix, delivered as invasive surgical procedure, which resulted in production of hyaline cartilage and fibrocartilage. However, the demand for less invasive delivery of cells has prompted the use of direct intra-articular injections, wherein a large amount of suspended cells are implanted in the cartilage defect.

  6. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Directory of Open Access Journals (Sweden)

    Sean D. Owens

    2016-01-01

    Full Text Available Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM or adipose tissue derived MSCs (ad-MSCs were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89% were positive for anti-bovine serum albumin (BSA antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection.

  7. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  8. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate

    Directory of Open Access Journals (Sweden)

    Cristina Sobacchi

    2017-05-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.

  9. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  10. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    Science.gov (United States)

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  11. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    Science.gov (United States)

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  12. Immunomodulatory effect of Mesenchymal Stem Cells on B cells

    Directory of Open Access Journals (Sweden)

    Marcella eFranquesa

    2012-07-01

    Full Text Available The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches.Mesenchymal Stem Cells (MSC are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

  13. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine.

    Science.gov (United States)

    Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I

    2013-11-15

    Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.

  14. The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Wessam E. Sharaf-Eldin

    2016-01-01

    Full Text Available The effect of mesenchymal stem cells (MSCs on bone formation has been extensively demonstrated through several in vitro and in vivo studies. However, few studies addressed the effect of MSCs on osteoclastogenesis and bone resorption. Under physiological conditions, MSCs support osteoclastogenesis through producing the main osteoclastogenic cytokines, RANKL and M-CSF. However, during inflammation, MSCs suppress osteoclast formation and activity, partly via secretion of the key anti-osteoclastogenic factor, osteoprotegerin (OPG. In vitro, co-culture of MSCs with osteoclasts in the presence of high concentrations of osteoclast-inducing factors might reflect the in vivo inflammatory pathology and prompt MSCs to exert an osteoclastogenic suppressive effect. MSCs thus seem to have a dual effect, by stimulating or inhibiting osteoclastogenesis, depending on the inflammatory milieu. This effect of MSCs on osteoclast formation seems to mirror the effect of MSCs on other immune cells, and may be exploited for the therapeutic potential of MSCs in bone loss associated inflammatory diseases.

  15. Novel supplier of mesenchymal stem cell: subacromial bursa.

    Science.gov (United States)

    Lhee, S-H; Jo, Y H; Kim, B Y; Nam, B M; Nemeno, J G; Lee, S; Yang, W; Lee, J I

    2013-10-01

    Mesenchymal stem cells (MSCs) are multipotent stromal elements that can differentiate into a variety of cell types. MSCs are good sources of therapeutic cells for degenerative diseases. For these reason, many researchers have focused on searching for other sources of MSCs. To obtain MSCs for clinical use requires surgery of the donor that therefore can induce donor morbidity, since the common sources at present are bone marrow and adipose tissues. In this study, we investigated the existence of MSCs in postoperative discarded tissues. Subacromial bursal tissues were obtained from the shoulders of 3 injured patients. The cells from the bursa tissues were isolated through treatment with collagenase. The isolated cells were then seeded and expanded by serial passaging under normal culture system. To evaluate MSC characteristics of the cells, their MSC markers were confirmed by mRNA and protein expression. Multipotent ability was assessed using differentiation media and immunohistochemistry. Cells from the bursa expressed MSCs markers-CD29, CD73, CD90, and PDGFRB (platelet-derived growth factor receptor-beta). Moreover, as to their multipotency, bursal cells differentiated into adipocytes (fat cells), osteocytes (bone cells), and chondrocytes (cartilage cells). In summary, we showed that MSCs could be generated from the subacromial bursa, which is medical waste after surgery. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Shoichiro Kokabu

    2016-01-01

    Full Text Available Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3, which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment.

  17. Do we still need human embryonic stem cells for stem cell-based therapies? Epistemic and ethical aspects.

    Science.gov (United States)

    Hug, Kristina; Hermerén, Göran

    2011-11-01

    While scientific community disagrees about similarities and differences between human embryonic stem (hES) cells and human induced pluripotent stem (hiPS) cells, some politicians embrace translational hiPS cell research as a replacement for translational hES cell research. We examine the ethical relevance of the main differences between hES and hiPS cell-based therapies and discuss whether, given the current state of knowledge, certain differences are essential. We discuss whether well-founded preferences can be made in hypothetical scenarios with varying levels of patient safety, treatment efficacy, treatment accessibility and ethical controversy.

  18. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene

    DEFF Research Database (Denmark)

    Bentzon, J.F.; Stenderup, K.; Hansen, F.D.

    2005-01-01

    Engraftment of mesenchymal stem cells (MSC) in peripheral tissues for replenishing of local stem cell function has been proposed as a therapeutic approach to degenerative diseases. We have previously reported the development of an immortalized human telomerase reverse transcriptase transduced MSC...

  19. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche

    NARCIS (Netherlands)

    Castrechini, N. M.; Murthi, P.; Gude, N. M.; Erwich, J. J. H. M.; Gronthos, S.; Zannettino, A.; Brennecke, S. R.; Kalionis, B.; Brennecke, S.P.

    The chorionic villi of human term placentae are a rich source of mesenchymal stem cells (PMSCs) The stem cell "niche" within the chorionic villi regulates how PMSCs participate in placental tissue generation, maintenance and repair, but the anatomic location of the niche has not been defined A

  20. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review.

    Science.gov (United States)

    Freitag, Julien; Bates, Dan; Boyd, Richard; Shah, Kiran; Barnard, Adele; Huguenin, Leesa; Tenen, Abi

    2016-05-26

    Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition.

  1. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration

    Directory of Open Access Journals (Sweden)

    Anna Bajek

    2011-01-01

    Full Text Available Tissue engineering is an interdisciplinary field that offers new opportunities for regeneration of diseased and damaged tissue with the use of many different cell types,including adult stem cells. In tissue engineering and regenerative medicine the most popular are mesenchymal stem cells (MSCs isolated from bone marrow. Bone marrow mesenchymal stem cells are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles and cardiomyocytes. It has also been shown that these cells can differentiate into ecto- and endodermal cells, e.g. neuronal cells, glial cells, keratinocytes and hepatocytes. The availability of autologous MSCs, their proliferative potential and multilineage differentiation capacity make them an excellent tool for tissue engineering and regenerative medicine. The aim of this publication is to present characteristic and biological properties of mesenchymal stem cells isolated from bone marrow.

  2. Chondrogenesis of synovium-derived mesenchymal stem cells in gene-transferred co-culture system.

    Science.gov (United States)

    Varshney, Rohan R; Zhou, Ruijie; Hao, Jinghua; Yeo, Suan Siong; Chooi, Wai Hon; Fan, Jiabing; Wang, Dong-An

    2010-09-01

    A co-culture strategy has been developed in this study wherein rabbit synovial mesenchymal stem cells (SMSCs) are co-cultured with growth factor (GF) transfected articular chondrocytes. Toward this end, both SMSCs and early passage rabbit articular chondrocytes that had been adenovirally transduced with transforming growth factor-beta 3 (TGF-beta3) gene were separately encapsulated in alginate beads and co-cultured in the same pool of chondrogenic medium. The chondrocytes act as transfected companion cells (TCCs) providing GF supply to induce chondrogenic differentiation of SMSCs that play the role of therapeutic progenitor cells (TPCs). Against the same TCC based TGF-beta3 release profile, the co-culture was started at different time points (Day 0, Day 10 and Day 20) but made to last for identical periods of exposure (30 days) so that the exposure conditions could be optimized in terms of initiation and duration. Transfection of TCCs prevents the stem cell based TPCs from undergoing the invasive procedure. It also prevents unpredictable complications in the TPCs caused by long-term constitutive over-expression of a GF. The adenovirally transfected TCCs exhibit a transient GF expression which results in a timely termination of GF supply to the TPCs. The TCC-sourced transgenic TGF-beta3 successfully induced chondrogenesis in the TPCs. Real-time PCR results show enhanced expression of cartilage markers and immuno/histochemical staining for Glycosaminoglycans (GAG) and Collagen II also shows abundant extracellular matrix (ECM) production and chondrogenic morphogenesis in the co-cultured TPCs. These results confirm the efficacy of directing stem cell differentiation towards chondrogenesis and cartilage tissue formation by co-culturing them with GF transfected chondrocytes.

  3. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    International Nuclear Information System (INIS)

    Winkler, Sandra; Borkham-Kamphorst, Erawan; Stock, Peggy; Brückner, Sandra; Dollinger, Matthias; Weiskirchen, Ralf; Christ, Bruno

    2014-01-01

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH

  4. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  5. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  6. Unproven stem cell-based interventions and achieving a compromise policy among the multiple stakeholders.

    Science.gov (United States)

    Matthews, Kirstin R W; Iltis, Ana S

    2015-11-04

    In 2004, patient advocate groups were major players in helping pass and implement significant public policy and funding initiatives in stem cells and regenerative medicine. In the following years, advocates were also actively engaged in Washington DC, encouraging policy makers to broaden embryonic stem cell research funding, which was ultimately passed after President Barack Obama came into office. Many advocates did this because they were told stem cell research would lead to cures. After waiting more than 10 years, many of these same patients are now approaching clinics around the world offering experimental stem cell-based interventions instead of waiting for scientists in the US to complete clinical trials. How did the same groups who were once (and often still are) the strongest supporters of stem cell research become stem cell tourists? And how can scientists, clinicians, and regulators work to bring stem cell patients back home to the US and into the clinical trial process? In this paper, we argue that the continued marketing and use of experimental stem cell-based interventions is problematic and unsustainable. Central problems include the lack of patient protection, US liability standards, regulation of clinical sites, and clinician licensing. These interventions have insufficient evidence of safety and efficacy; patients may be wasting money and time, and they may be forgoing other opportunities for an intervention that has not been shown to be safe and effective. Current practices do not contribute to scientific progress because the data from the procedures are unsuitable for follow-up research to measure outcomes. In addition, there is no assurance for patients that they are receiving the interventions promised or of what dosage they are receiving. Furthermore, there is inconsistent or non-existent follow-up care. Public policy should be developed to correct the current situation. The current landscape of stem cell tourism should prompt a re

  7. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways.

    Directory of Open Access Journals (Sweden)

    Roy Blum

    2010-09-01

    Full Text Available Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system.We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2, lipid metabolism (e.g., Srebp1 and cell migration (e.g., Areb6 and Rreb1. Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche.We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a

  8. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  9. Concise Review: Cancer Cells, Cancer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development

    Science.gov (United States)

    Papaccio, Federica; Paino, Francesca; Regad, Tarik; Desiderio, Vincenzo; Tirino, Virginia

    2017-01-01

    Abstract Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self‐renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro‐or anti‐tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management. Stem Cells Translational Medicine 2017;6:2115–2125 PMID:29072369

  10. Adipose Stem Cells as Alternatives for Bone Marrow Mesenchymal Stem Cells in Oral Ulcer Healing

    Science.gov (United States)

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-01-01

    Background and Objectives Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Methods and Results Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Results: MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. Conclusions MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing. PMID:24298363

  11. Platelet-Derived Growth Factor Receptor-Positive Pericytic Cells of White Adipose Tissue from Critical Limb Ischemia Patients Display Mesenchymal Stem Cell-Like Properties.

    Science.gov (United States)

    Kim, Eo Jin; Seo, Sang Gyo; Shin, Hyuk Soo; Lee, Doo Jae; Kim, Ji Hye; Lee, Dong Yeon

    2017-06-01

    The pericytes in the blood vessel wall have recently been identified to be important in regulating vascular formation, stabilization, remodeling, and function. We isolated and identified pericyte-like platelet-derived growth factor receptor beta-positive (PDGFRβ+) cells from the stromal vascular fraction (SVF) of adipose tissue from critical limb ischemia (CLI) patients and investigated their potential as a reliable source of stem cells for cell-based therapy. De-identified subcutaneous fat tissues were harvested after amputation in CLI patients. Freshly isolated SVF cells and culture-expanded adipose-derived stem cells (ADSCs) were quantified using flow cytometry. A matrigel tube formation assay and multi-lineage differentiation were performed to assess pericytic and mesenchymal stem cell (MSC)-like characteristics of PDGFRβ+ ADSCs. PDGFRβ+ cells were located in the pericytic area of various sizes of blood vessels and coexpressed mesenchymal stem cell markers. PDGFRβ+ cells in freshly isolated SVF cells expressed a higher level of stem cell markers (CD34 and CXCR4) and mesenchymal markers (CD13, CD44, CD54, and CD90) than PDGFRβ- cells. In vitro expansion of PDGFRβ+ cells resulted in enrichment of the perivascular mesenchymal stem-like (PDGFRβ+/CD90+/CD45-/CD31-) cell fractions. The Matrigel tube formation assay revealed that PDGFRβ+ cells were located in the peritubular area. PDGFRβ+ ADSCs cells demonstrated a good multilineage differentiation potential. Pericyte-like PDGFRβ+ cells from the SVF of adipose tissue from CLI patients had MSC-like characteristics and could be amplified by in vitro culture with preservation of their cell characteristics. We believe PDGFRβ+ cells in the SVF of adipose tissue can be used as a reliable source of stem cells even in CLI patients.

  12. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kadivar, Mehdi; Khatami, Shohreh; Mortazavi, Yousef; Shokrgozar, Mohammad Ali; Taghikhani, Mohammad; Soleimani, Masoud

    2006-01-01

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric α-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty

  13. Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition

    OpenAIRE

    Morel, Anne-Pierre; Lièvre, Marjory; Thomas, Clémence; Hinkal, George; Ansieau, Stéphane; Puisieux, Alain

    2008-01-01

    Recently, two novel concepts have emerged in cancer biology: the role of so-called "cancer stem cells" in tumor initiation, and the involvement of an epithelial-mesenchymal transition (EMT) in the metastatic dissemination of epithelial cancer cells. Using a mammary tumor progression model, we show that cells possessing both stem and tumorigenic characteristics of "cancer stem cells" can be derived from human mammary epithelial cells following the activation of the Ras-MAPK pathway. The acquis...

  14. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition.

    Science.gov (United States)

    Li, Yuqing; Zhong, Canrong; Liu, Dawei; Yu, Wenjing; Chen, Weikang; Wang, Yan; Shi, Songtao; Yuan, Yan

    2018-01-01

    The major transmission route for Kaposi sarcoma-associated herpesvirus (KSHV) infection is the oral cavity through saliva. Kaposi sarcoma (KS) frequently occurs in the oral cavity in HIV-positive individuals and is often the first presenting sign of AIDS. However, the oral target cells for KSHV infection and the cellular origin of Kaposi sarcoma remain unknown. Here we present clinical and experimental evidences that Kaposi sarcoma spindle cells may originate from virally modified oral mesenchymal stem cells (MSC). AIDS-KS spindle cells expressed neuroectodermal stem cell marker (Nestin) and oral MSC marker CD29, suggesting an oral/craniofacial MSC lineage of AIDS-associated Kaposi sarcoma. Furthermore, oral MSCs were highly susceptible to KSHV infection, and infection promoted multilineage differentiation and mesenchymal-to-endothelial transition (MEndT). KSHV infection of oral MSCs resulted in expression of a large number of cytokines, a characteristic of Kaposi sarcoma, and upregulation of Kaposi sarcoma signature and MEndT-associated genes. These results suggest that Kaposi sarcoma may originate from pluripotent MSC and KSHV infection transforms MSC to Kaposi sarcoma-like cells through MEndT. Significance: These findings indicate that Kaposi sarcomas, which arise frequently in AIDS patients, originate from neural crest-derived mesenchymal stem cells, with possible implications for improving the clnical treatment of this malignancy. Cancer Res; 78(1); 230-45. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Quantification of Mesenchymal Stem Cell (MSC delivery to a target site using in vivo confocal microscopy.

    Directory of Open Access Journals (Sweden)

    Luke J Mortensen

    Full Text Available The ability to deliver cells to appropriate target tissues is a prerequisite for successful cell-based therapy. To optimize cell therapy it is therefore necessary to develop a robust method of in vivo cell delivery quantification. Here we examine Mesenchymal Stem Cells (MSCs labeled with a series of 4 membrane dyes from which we select the optimal dye combination for pair-wise comparisons of delivery to inflamed tissue in the mouse ear using confocal fluorescence imaging. The use of an optimized dye pair for simultaneous tracking of two cell populations in the same animal enables quantification of a test population that is referenced to an internal control population, thereby eliminating intra-subject variations and variations in injected cell numbers. Consistent results were obtained even when the administered cell number varied by more than an order of magnitude, demonstrating an ability to neutralize one of the largest sources of in vivo experimental error and to greatly reduce the number of cells required to evaluate cell delivery. With this method, we are able to show a small but significant increase in the delivery of cytokine pre-treated MSCs (TNF-α & IFN-γ compared to control MSCs. Our results suggest future directions for screening cell strategies using our in vivo cell delivery assay, which may be useful to develop methods to maximize cell therapeutic potential.

  16. Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Allison I Hoch

    Full Text Available Mesenchymal stem cells (MSCs are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+. Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM. Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs. The addition of a neutralizing VEGF(165/121 antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair.

  17. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1 After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2 Our culture medium is not supplemented with any additional growth factor. (3 Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4 Our method has been carefully tested in several mouse strains and the results are reproducible. (5 We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.

  18. Mesenchymal Stem Cells-Derived Exosomes: A Possible Therapeutic Strategy for Osteoporosis.

    Science.gov (United States)

    Li, Yue; Jin, Daxiang; Xie, Weixing; Wen, Longfei; Chen, Weijian; Xu, Jixi; Ding, Jinyong; Ren, Dongcheng; Xiao, Zenglin

    2018-04-03

    Osteoporosis is a common age-related disorder characterized by low bone mass and deterioration in bone microarchitecture, leading to increased skeletal fragility and fracture risk. The pathophysiology of osteoporosis is multifactorial. It is related to the imbalance between osteoblasts and osteoclasts; reduced bone mass and increased adipogenesis in the bone marrow. Moreover, angiogenesis, inflammatory process and miRNAs have shown effects in the formation of osteoporosis. In the recent years, mesenchymal stem cells (MSCs) have been regarded as an excellent choice for cell-based tissue engineering therapy of osteoporosis. Growing evidence showed that, paracrine effect have been considered as the predominant mechanism for the role of MSCs in tissue repair. Recently, many studies have proposed that MSCs-derived exosomes are effective for a variety of diseases like cancer, cardiovascular diseases, etc. However, whether the MSCs-derived exosomes could serve as a novel therapeutic tool for osteoporosis has not clearly described. In this review, we summarize the MSCs-derived exosomes and the relationship with osteogenesis, osteoclast differentiation, angiogenesis, immune processes and miRNAs. Finally, we suggest that MSCs-derived exosomes might be a promising therapeutic method for osteoporosis in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  20. Physical properties of mesenchymal stem cells are coordinated by the perinuclear actin cap

    International Nuclear Information System (INIS)

    Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Shimizu, Yuji; Yuba, Shunsuke; Miyake, Jun

    2011-01-01

    Highlights: → Cell thickness and stiffness of rat MSC are inversely correlated. → Perinuclear actin cap coordinates the cell thickness and stiffness of rat MSC. → Physical properties of rat MSCs regulate their proliferation activity. → Physical properties of MSCs are potent indicators for their physiological functions. -- Abstract: Mesenchymal stem cells (MSCs) have been extensively investigated for their applications in regenerative medicine. Successful use of MSCs in cell-based therapies will rely on the ability to effectively identify their properties and functions with a relatively non-destructive methodology. In this study, we measured the surface stiffness and thickness of rat MSCs with atomic force microscopy and clarified their relation at a single-cell level. The role of the perinuclear actin cap in regulating the thickness, stiffness, and proliferative activity of these cells was also determined by using several actin cytoskeleton-modifying reagents. This study has helped elucidate a possible link between the physical properties and the physiological function of the MSCs, and the corresponding regulatory role of the actin cytoskeleton.

  1. Ectopic Bone Formation by Mesenchymal Stem Cells Derived from Human Term Placenta and the Decidua.

    Directory of Open Access Journals (Sweden)

    Gina D Kusuma

    Full Text Available Mesenchymal stem cells (MSCs are one of the most attractive cell types for cell-based bone tissue repair applications. Fetal-derived MSCs and maternal-derived MSCs have been isolated from chorionic villi of human term placenta and the decidua basalis attached to the placenta following delivery, respectively. Chorionic-derived MSCs (CMSCs and decidua-derived MSCs (DMSCs generated in this study met the MSCs criteria set by International Society of Cellular Therapy. These criteria include: (i adherence to plastic; (ii >90% expression of CD73, CD105, CD90, CD146, CD44 and CD166 combined with <5% expression of CD45, CD19 and HLA-DR; and (iii ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. In vivo subcutaneous implantation into SCID mice showed that both bromo-deoxyuridine (BrdU-labelled CMSCs and DMSCs when implanted together with hydroxyapatite/tricalcium phosphate particles were capable of forming ectopic bone at 8-weeks post-transplantation. Histological assessment showed expression of bone markers, osteopontin (OPN, osteocalcin (OCN, biglycan (BGN, bone sialoprotein (BSP, and also a marker of vasculature, alpha-smooth muscle actin (α-SMA. This study provides evidence to support CMSCs and DMSCs as cellular candidates with potent bone forming capacity.

  2. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  3. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials.

    Science.gov (United States)

    Labrador-Velandia, Sonia; Alonso-Alonso, María Luz; Alvarez-Sanchez, Sara; González-Zamora, Jorge; Carretero-Barrio, Irene; Pastor, José Carlos; Fernandez-Bueno, Iván; Srivastava, Girish Kumar

    2016-11-26

    Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells (MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in I/II phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase III-IV. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases.

  4. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age.

    Directory of Open Access Journals (Sweden)

    Verena Dexheimer

    Full Text Available UNLABELLED: Mesenchymal stem cells (MSC are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5-80 years were characterized regarding colony-forming unit-fibroblast (CFU-F numbers, single cell cloning efficiency (SSCE, osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. CONCLUSION: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals.

  5. Physical properties of mesenchymal stem cells are coordinated by the perinuclear actin cap

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Takanori, E-mail: takanori.kihara@gmail.com [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Haghparast, Seyed Mohammad Ali; Shimizu, Yuji [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Yuba, Shunsuke [Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-46 Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Miyake, Jun [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2011-05-27

    Highlights: {yields} Cell thickness and stiffness of rat MSC are inversely correlated. {yields} Perinuclear actin cap coordinates the cell thickness and stiffness of rat MSC. {yields} Physical properties of rat MSCs regulate their proliferation activity. {yields} Physical properties of MSCs are potent indicators for their physiological functions. -- Abstract: Mesenchymal stem cells (MSCs) have been extensively investigated for their applications in regenerative medicine. Successful use of MSCs in cell-based therapies will rely on the ability to effectively identify their properties and functions with a relatively non-destructive methodology. In this study, we measured the surface stiffness and thickness of rat MSCs with atomic force microscopy and clarified their relation at a single-cell level. The role of the perinuclear actin cap in regulating the thickness, stiffness, and proliferative activity of these cells was also determined by using several actin cytoskeleton-modifying reagents. This study has helped elucidate a possible link between the physical properties and the physiological function of the MSCs, and the corresponding regulatory role of the actin cytoskeleton.

  6. Mesenchymal Stem Cells for the Treatment of Spinal Arthrodesis: From Preclinical Research to Clinical Scenario

    Directory of Open Access Journals (Sweden)

    F. Salamanna

    2017-01-01

    Full Text Available The use of spinal fusion procedures has rapidly augmented over the last decades and although autogenous bone graft is the “gold standard” for these procedures, alternatives to its use have been investigated over many years. A number of emerging strategies as well as tissue engineering with mesenchymal stem cells (MSCs have been planned to enhance spinal fusion rate. This descriptive systematic literature review summarizes the in vivo studies, dealing with the use of MSCs in spinal arthrodesis surgery and the state of the art in clinical applications. The review has yielded promising evidence supporting the use of MSCs as a cell-based therapy in spinal fusion procedures, thus representing a suitable biological approach able to reduce the high cost of osteoinductive factors as well as the high dose needed to induce bone formation. Nevertheless, despite the fact that MSCs therapy is an interesting and important opportunity of research, in this review it was detected that there are still doubts about the optimal cell concentration and delivery method as well as the ideal implantation techniques and the type of scaffolds for cell delivery. Thus, further inquiry is necessary to carefully evaluate the clinical safety and efficacy of MSCs use in spine fusion.

  7. A Novel Technique for Accelerated Culture of Murine Mesenchymal Stem Cells that Allows for Sustained Multipotency.

    Science.gov (United States)

    Caroti, Courtney M; Ahn, Hyunhee; Salazar, Hector F; Joseph, Giji; Sankar, Sitara B; Willett, Nick J; Wood, Levi B; Taylor, W Robert; Lyle, Alicia N

    2017-10-17

    Bone marrow derived mesenchymal stem cells (MSCs) are regularly utilized for translational therapeutic strategies including cell therapy, tissue engineering, and regenerative medicine and are frequently used in preclinical mouse models for both mechanistic studies and screening of new cell based therapies. Current methods to culture murine MSCs (mMSCs) select for rapidly dividing colonies and require long-term expansion. These methods thus require months of culture to generate sufficient cell numbers for feasibility studies in a lab setting and the cell populations often have reduced proliferation and differentiation potential, or have become immortalized cells. Here we describe a simple and reproducible method to generate mMSCs by utilizing hypoxia and basic fibroblast growth factor supplementation. Cells produced using these conditions were generated 2.8 times faster than under traditional methods and the mMSCs showed decreased senescence and maintained their multipotency and differentiation potential until passage 11 and beyond. Our method for mMSC isolation and expansion will significantly improve the utility of this critical cell source in pre-clinical studies for the investigation of MSC mechanisms, therapies, and cell manufacturing strategies.

  8. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  9. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Shanmugasundaram, Shobana; Chaudhry, Hans; Arinzeh, Treena Livingston

    2011-03-01

    Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.

  10. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis.

    Science.gov (United States)

    Khader, Ateka; Sherman, Lauren S; Rameshwar, Pranela; Arinzeh, Treena L

    2016-12-15

    Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na 2 WO 4 ), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na 2 WO 4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na 2 WO 4 compared to control, without Na 2 WO 4 . In the induction medium containing insulin, cells in 0.01 mM Na 2 WO 4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na 2 WO 4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na 2 WO 4 also expressed chondrogenic markers. Na 2 WO 4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na 2 WO 4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.

  11. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    Directory of Open Access Journals (Sweden)

    Aileen I. Tsai

    2017-01-01

    Full Text Available This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P<0.001 and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P<0.001. In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P=0.006 and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P<0.001 was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL- 6 and monocyte chemoattractant protein- (MCP- 1, P<0.01, and innate immune response [toll-like receptor 1 (TLR1 and TLR8, P<0.05; TLR2, TLR3, and TLR6, P<0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation.

  12. Mesenchymal stem cell therapy in the treatment of hip osteoarthritis

    Science.gov (United States)

    Mardones, Rodrigo; Jofré, Claudio M.; Tobar, L.

    2017-01-01

    Abstract This study was performed to investigate the safety and efficacy of the intra-articular infusion of ex vivo expanded autologous bone marrow-derived mesenchymal stem cells (BM-MSC) to a cohort of patients with articular cartilage defects in the hip. The above rationale is sustained by the notion that MSCs express a chondrocyte differential potential and produce extracellular matrix molecules as well as regulatory signals, that may well contribute to cure the function of the damaged hip joint. A cohort of 10 patients with functional and radiological evidences of hip osteoarthritis, either in one or both legs, was included in the study. BM-MSC (the cell product) were prepared and infused into the damaged articulation(s) of each patient (60 × 106 cells in 3 weekly/doses). Before and after completion of the cell infusion scheme, patients were evaluated (hip scores for pain, stiffness, physical function, range of motion), to assess whether the infusion of the respective cell product was beneficial. The intra-articular injection of three consecutive weekly doses of ex vivo expanded autologous BM-MSC to patients with articular cartilage defects in the hip and proved to be a safe and clinically effective treatment in the restoration of hip function and range of motion. In addition, the statistical significance of the above data is in line with the observation that the radiographic scores (Tönnis Classification of Osteoarthritis) of the damaged leg(s) remained without variation in 9 out of 10 patients, after the administration of the cell product. PMID:28630737

  13. Lipopolysaccharides priming mesenchymal stem cells accelerate diabetic wound healing viaexosomes

    Directory of Open Access Journals (Sweden)

    Dong-dong TI

    2016-08-01

    Full Text Available Objective  To study the therapeutic effect of exosome derived from lipopolysaccharides (LPS priming mesenchymal stem cells (MSCs for diabetic wound healing. Methods  Human umbilical cord MSCs were treated with LPS (100ng/ml for 2 days, the supernatant were then collected, and exosomes were harvested by density gradient centrifugation and identified. Diabetic cutaneous wounds were prepared and the animals were divided into the following three groups: control group, untreated MSCs derived exosome (un-exosome treatment group and LPS primed MSCs derived exosome (LPS-exosome treatment group. Exosomes (60μg were injected dispersively into the wound edge daily for 10 days. After treatment, the therapeutic results were evaluated by gross observation of the wounds, the expression levels of inflammation related factors and macrophage subtype markers in the injured sites were detected by qRT-PCR at day 3, 7 and 14 after treatment. Results  Compared with control group, the diabetic wound healing was obviously improved in LPS-exosome treatment group after treatment for 7 and 14 days, with faster wound close, depressed expression of pro-inflammatory factors IL -1, IL -12 and M1 macrophage surface marker iNOS, and up-regulation of anti-inflammatory factors IL-10, TGF-βand M2 macrophage surface marker CD163, the differences were significant (P<0.05. Conclusions  LPS-exosome may balance macrophage plasticity, restrain chronic inflammation and accelerate diabetic cutaneous wound healing. DOI: 10.11855/j.issn.0577-7402.2016.07.02

  14. Mesenchymal Stem Cell Treatment of Inflammation-Induced Cancer.

    Science.gov (United States)

    Prakash, Monica D; Miller, Sarah; Randall-Demllo, Sarron; Nurgali, Kulmira

    2016-11-01

    Cancer development is often associated with chronic inflammation. To date, research into inflammation-induced cancer has largely focused on chemokines, cytokines, and their downstream targets. These inflammatory mediators may promote tumor growth, invasion, metastasis, and facilitate angiogenesis. However, the exact mechanisms by which inflammation promotes neoplasia remain unclear. Inflammatory bowel disease (IBD) is characterized by recurrent, idiopathic intestinal inflammation, the complications of which are potentially fatal. IBD incidence in Australia is 24.2 per 100,000 and its peak onset is in people aged 15 to 24 years. Symptoms include abdominal pain, cramps, bloody stool, and persistent diarrhoea or constipation and so seriously compromise quality of life. However, due to its unknown etiology, current treatment strategies combat the symptoms rather than the disease and are limited by inefficacy, toxicity, and adverse side-effects. IBD is also associated with an increased risk of colorectal cancer, for which treatment options are similarly limited. In recent years, there has been much interest in the therapeutic potential of mesenchymal stem cells (MSCs). However, whether MSCs suppress or promote tumor development is still contentious within the literature. Many studies indicate that MSCs exert anti-tumor effects and suppress tumor growth, whereas other studies report pro-tumor effects. Studies using MSCs as treatment for IBD have shown promising results in both animal models and human trials. However, as MSC treatment is still novel, the long-term risks remain unknown. This review aims to summarize the current literature on MSC treatment of inflammation-induced cancer, with a focus on colorectal cancer resulting from IBD.

  15. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation.

    Science.gov (United States)

    Nasuno, Masanao; Arimura, Yoshiaki; Nagaishi, Kanna; Isshiki, Hiroyuki; Onodera, Kei; Nakagaki, Suguru; Watanabe, Shuhei; Idogawa, Masashi; Yamashita, Kentaro; Naishiro, Yasuyoshi; Adachi, Yasushi; Suzuki, Hiromu; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-04-01

    The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease. © AlphaMed Press.

  16. Mesenchymal stem cells promote formation of colorectal tumors in mice.

    Science.gov (United States)

    Tsai, Kuo-Shu; Yang, Shung-Haur; Lei, Yen-Ping; Tsai, Chih-Chien; Chen, Hsin-Wei; Hsu, Chih-Yuan; Chen, Ling-Lan; Wang, Hsei-Wei; Miller, Stephanie A; Chiou, Shih-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2011-09-01

    Tumor-initiating cells are a subset of tumor cells with the ability to form new tumors; however, they account for less than 0.001% of the cells in colorectal or other types of tumors. Mesenchymal stem cells (MSCs) integrate into the colorectal tumor stroma; we investigated their involvement in tumor initiation. Human colorectal cancer cells, MSCs, and a mixture of both cell types were injected subcutaneously into immunodeficient mice. We compared the ability of each injection to form tumors and investigated the signaling pathway involved in tumor initiation. A small number (≤ 10) of unsorted, CD133⁻, CD166⁻, epithelial cell adhesion molecule⁻(EpCAM⁻), or CD133⁻/CD166⁻/EpCAM⁻ colorectal cancer cells, when mixed with otherwise nontumorigenic MSCs, formed tumors in mice. Secretion of interleukin (IL)-6 by MSCs increased the expression of CD133 and activation of Janus kinase 2-signal transducer and activator of transcription 3 (STAT3) in the cancer cells, and promoted sphere and tumor formation. An antibody against IL-6 or lentiviral-mediated transduction of an interfering RNA against IL-6 in MSCs or STAT3 in cancer cells prevented the ability of MSCs to promote sphere formation and tumor initiation. IL-6, secreted by MSCs, signals through STAT3 to increase the numbers of colorectal tumor-initiating cells and promote tumor formation. Reagents developed to disrupt this process might be developed to treat patients with colorectal cancer. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Role of Slug transcription factor in human mesenchymal stem cells.

    Science.gov (United States)

    Torreggiani, Elena; Lisignoli, Gina; Manferdini, Cristina; Lambertini, Elisabetta; Penolazzi, Letizia; Vecchiatini, Renata; Gabusi, Elena; Chieco, Pasquale; Facchini, Andrea; Gambari, Roberto; Piva, Roberta

    2012-04-01

    The pathways that control mesenchymal stem cells (MSCs) differentiation are not well understood, and although some of the involved transcription factors (TFs) have been characterized, the role of others remains unclear. We used human MSCs from tibial plateau (TP) trabecular bone, iliac crest (IC) bone marrow and Wharton's jelly (WJ) umbilical cord demonstrating a variability in their mineral matrix deposition, and in the expression levels of TFs including Runx2, Sox9, Sox5, Sox6, STAT1 and Slug, all involved in the control of osteochondroprogenitors differentiation program. Because we reasoned that the basal expression level of some TFs with crucial role in the control of MSC fate may be correlated with osteogenic potential, we considered the possibility to affect the hMSCs behaviour by using gene silencing approach without exposing cells to induction media. In this study we found that Slug-silenced cells changed in morphology, decreased in their migration ability, increased Sox9 and Sox5 and decreased Sox6 and STAT1 expression. On the contrary, the effect of Slug depletion on Runx2 was influenced by cell type. Interestingly, we demonstrated a direct in vivo regulatory action of Slug by chromatin immunoprecipitation, showing a specific recruitment of this TF in the promoter of Runx2 and Sox9 genes. As a whole, our findings have important potential implication on bone tissue engineering applications, reinforcing the concept that manipulation of specific TF expression levels may elucidate MSC biology and the molecular mechanisms, which promote osteogenic differentiation. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  18. Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Alkhalil

    2015-02-01

    Full Text Available Aim This study was focused on the isolation and characterization of mesenchymal stem cells (MSCs from human dental pulp (DPSC. Methods The study was performed in the Department for Oral and Cranio-Maxillo- Facial Surgey Hamad Medical Corporation, Doha, Qatar and Weill Cornell Medical Colleague Doha, Qatar, in period 2010-2011. Dental pulp was extracted from premolars and third molars of 19 healthy patients. The pulp was digested in a solution of 3 mg/mL collagenase type I and 4 mg/mL dispase for 1 hour at 37C. After filtration, cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM Low Glucoses with 20% Fetal Bovine Serum (FBS, 2mM L-glutamine and antibiotics (100 U/mL penicillin, 100 ug/mL streptomycin at 37 °C under 5% CO2. Cultures were treated with osteoinductive medium for differentiation MSC in to the osteoblast cell line. Staining with Alizarin red were used for the detection of the osteoblast production and calcification new formed tissue. Results On the total of three out of 19 patients it was possible to isolate DPMSCs after 2 to 3 weeks: in one patient it was not possible to expand MSCs because of infection, and in other two patients positive Alizarin red staining reaction showed osteogenic differentiation capability and strong mineralization in vitro. Conclusion The main advantage of using DPSC is absence of morbidity. MSCs could be isolated noninvasively from teeth, routinely extracted in the clinic and discarded as medical waste. Standardization of clinical and laboratory protocols for DPMSCs isolation and team work coordination could lead to significantly improved result.

  19. Tracking mesenchymal stem cells using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Jens T Rosenberg

    2016-01-01

    Full Text Available Recent translational studies in the fields of tissue regeneration and cell therapy have characterized mesenchymal stem cells (MSCs as a potentially effective and accessible measure for treating ischemic cerebral and neurodegenerative disorders such as stroke, Parkinson's disease, and amyotrophic lateral sclerosis. Developing more efficient cell tracking techniques bear the potential to optimize MSC transplantation therapies by providing a more accurate picture of the fate and area of effect of implanted cells. Currently, determining the location of transplanted MSCs involves a histological approach, but magnetic resonance imaging (MRI presents a noninvasive paradigm that permits repeat evaluations. To visualize MSCs using MRI, the implanted cells must be treated with an intracellular contrast agent. These are commonly paramagnetic compounds, many of which are based on superparamagnetic iron oxide (SPIO nanoparticles. Recent research has set out characterize the effects of SPIO-uptake on the cellular activity of in vitro human MSCs and the resultant influence that respective SPIO concentration has on MRI sensitivity. As these studies reveal, SPIO-uptake has no effect on the cellular processes of proliferation and differentiation while producing high contrast MRI signals. Moreover, transplantation of SPIO-labeled MSCs in animal models encouragingly showed no loss in MRI contrast, suggesting that SPIO labeling may be an appealing regime for lasting MRI detection. This study is a review article. Referred literature in this study has been listed in the reference part. The datasets supporting the conclusions of this article are available online by searching the PubMed. Some original points in this article come from the laboratory practice in our research centers and the authors' experiences.

  20. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    Science.gov (United States)

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Mesenchymal stem cell secretome and regenerative therapy after cancer.

    Science.gov (United States)

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T; Donnenberg, Vera S; Donnenberg, Albert D

    2013-12-01

    Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus

  2. Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates

    Science.gov (United States)

    Berman, Dora M.; Willman, Melissa A.; Han, Dongmei; Kleiner, Gary; Kenyon, Norman M.; Cabrera, Over; Karl, Julie A.; Wiseman, Roger W.; O'Connor, David H.; Bartholomew, Amelia M.; Kenyon, Norma S.

    2010-01-01

    OBJECTIVE To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation. RESEARCH DESIGN AND METHODS Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection. RESULTS MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood. CONCLUSIONS MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy. PMID:20622174

  3. Defining human mesenchymal stem cell efficacy in vivo

    Directory of Open Access Journals (Sweden)

    Lennon Donald P

    2010-10-01

    Full Text Available Abstract Allogeneic human mesenchymal stem cells (hMSCs can suppress graft versus host disease (GvHD and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma.

  4. [Cell-based therapies - an innovative therapeutic option in ophthalmology: Treating corneal diseases with stem cells].

    Science.gov (United States)

    Bakker, Ann-Christin; Langer, Barbara

    2015-11-01

    Pathological changes and disorders of the cornea are a major cause of severe visual impairment and blindness. Replacement of a pathologically altered cornea with healthy corneal tissue from the eye of a suitable donor is among the most common and successful transplantation procedures in medicine. In Germany, approximately 5000-6000 corneal transplantations are performed each year, but the total demand per year is estimated to be twice as high. With a success rate of 90%, the outcome of cornea transplantation is very favourable. However, long-term maintenance and regeneration of a healthy new cornea requires tissue-specific corneal stem cells residing at the basal layer of the limbus, which is the annular transition zone between the cornea and sclera. When this important limbal stem cell population is destroyed or dysfunctional, a pathological condition known as limbal stem cell deficiency (LSCD) manifests. Limbal stem cell deficiency describes conditions associated with impaired corneal wound healing and regeneration. In this situation, transplantation of healthy limbal stem cells is the only curative treatment approach for restoration of an intact and functional ocular surface. To date, treatment of LSCD presents a great challenge for ophthalmologists. However, innovative, cell-therapeutic approaches may open new, promising treatment perspectives. In February 2015, the European Commission granted marketing authorization to the first stem cell-based treatment in the European Union. The product named Holoclar® is an advanced therapy medicinal product (ATMP) for the treatment of moderate to severe LSCD due to physical and chemical burns in adults. Further cell-based treatment approaches are in clinical development.

  5. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring.

    Directory of Open Access Journals (Sweden)

    Evangelia K Siska

    Full Text Available Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device.

  6. Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection.

    Directory of Open Access Journals (Sweden)

    Sylvia Stemberger

    Full Text Available Mesenchymal stem cells (MSC are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA, a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP-αsynuclein (αSYN MSA model.MSCs were intravenously applied in aged (PLP-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc. MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α in brain lysates together with immunohistochemistry for T-cells and microglia. Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.

  7. Mesenchymal stem cells cultured on magnetic nanowire substrates

    Science.gov (United States)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  8. Mesenchymal stem cells cultured on magnetic nanowire substrates

    KAUST Repository

    Perez, Jose E.

    2016-12-28

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  9. Pluripotent stem cells isolated from umbilical cord form embryonic like bodies in a mesenchymal layer culture.

    Science.gov (United States)

    Tsagias, Nikos; Kouzi-Koliakos, Kokkona; Karagiannis, Vasileios; Tsikouras, P; Koliakos, George G

    2015-03-01

    Recently the matrix of umbilical cord began to use as an alternative source of stem cells additionally to the blood of umbilical cord. Umbilical cord has been used mainly for mesenchymal stem cell banking. The immunological characteristics of mesenchymal stem cells in combination with their ability to avoid rejection make them an attractive biological material for transplantations. In this study the isolation of small in size pluripotent stem cells from umbilical cord expressing early transcription factors with characteristics that resemble to embryonic stem cells is investigated. Pluripotent stem cells were isolated from human umbilical cords, by a new strategy method based on unique characteristics such as the small size and the positivity on early transcription factors OCT and Nanog. An enriched population of CXCR4(+) OCT(+) Nanog(+) CD45(-) small stem cells from the cord was isolated. This fraction was able to create alkaline phosphatase positive like spheres forms in a mesenchymal layer with multilineage differentiation capacity. Our results were assessed by RT PCR and electophoresis for the pluripotent genes. These data suggest that umbilical cord provides an attractive source not only of mesenchymal stem cells but moreover of pluripotent stem cells. The method described herein should be applied in the field of stem cell banking in addition to the classical umbilical cord harvesting method. Isolation of a population of cells with pluripotent characteristics from umbilical cord. Adoption of a second centrifugation step for the pluripotent stem isolation. Increasing the value of the cord and explaining the pluripotency. This work will enhance the value of umbilical cord harvesting.

  10. File list: ALL.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...77 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  11. File list: His.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  12. File list: Oth.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 TFs and others Adipocyte Adipose-Derived...kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  13. File list: ALL.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...71 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  14. File list: His.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  15. File list: His.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  16. File list: ALL.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...79 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  17. File list: ALL.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...71 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  18. File list: His.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  19. File list: Oth.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 TFs and others Adipocyte Adipose-Derived...kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  20. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy.

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-09-15

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  1. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  2. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    Science.gov (United States)

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  3. Does mesenchymal stem cell improve the liver regeneration after the 70% hepatectomy?

    Science.gov (United States)

    Alves, Ana Karina Soares; Lanzoni, Valéria; Fuziy, Rogério Aoki; Franco, Rita Maria Aparecida Monteiro Moura; Maeda, Carlos Toshinori; Lopes, Gaspar de Jesus; Linhares, Marcelo Moura

    2017-07-01

    To evaluate the effects of mesenchymal stem cells on liver regeneration in rats following a 70% hepatectomy. Forty rats were subjected to 70% hepatectomy and then ~106 mesenchymal stem cells (test group), or saline solution (control group), were infused into their livers via the portal vein. Each treatment group was divided into early and late subgroups (euthanized 3 d and 5 d following the operation, respectively). Group comparisons of Albumin, aminotransaminases (AST, ALT), and Alcaline Phosphatase (AP) levels, proliferative index (ki-67+ straining), and mitotic cell counts were conducted. No significant differences in liver regeneration rate, number of mitoses, proliferative index, or serum levels of albumin, AST, or AP were observed. ALT levels were higher in the test group than in the control group (p<.05). Mesenchymal stem-cell therapy did not improve liver regeneration rate 3 d or 5 d after 70% hepatectomy in rats. Likewise, the therapy appeared not to affect liver function, proliferative index, or number of mitoses significantly.

  4. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  5. The Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles on Hematopoietic Stem Cells Fate

    Directory of Open Access Journals (Sweden)

    Hamze Timari

    2017-12-01

    Full Text Available Hematopoietic stem cells (HSCs are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs. Recent investigations demonstrated that some biological functions and effects of MSCs are mediated by their EVs. MSC-EVs are the cell membrane and endosomal membrane compartments, which are important mediators in the intercellular communications. MSC-EVs contain some of the molecules such as proteins, mRNA, siRNA, and miRNA from their parental cells. MSC-EVs are able to inhibit tumor, repair damaged tissue, and modulate immune system responses. MSC-EVs compared to their parental cells, may have the specific safety advantages such as the lower potential to trigger immune system responses and limited side effects. Recently some studies demonstrated the effect of MSC-EVs on the expansion, differentiation, and clinical applications of HSCs such as improvement of hematopoietic stem cell transplantation (HSCT and inhibition of graft versus host disease (GVHD. HSCT may be the only therapeutic choice for patients who suffer from malignant and non-malignant hematological disorders. However, there are several severe side effects such GVHD that restricts the successfulness of HSCT. In this review, we will discuss the most important effects of MSCs and MSC-EVs on the improvement of HSCT, inhibition and treatment of GVHD, as well as, on the expansion of HSCs.

  6. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    International Nuclear Information System (INIS)

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-01-01

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: ► Spontaneous transformation of cynomolgus monkey MSCs in vitro. ► Transformed mesenchymal cells lack multipotency. ► Transformed mesenchymal cells are highly tumorigenic. ► Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  7. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  8. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhenhua [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Department of Anatomy, Anhui Medical University, Hefei, 230032 (China); Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Chen, Zhiguo, E-mail: chenzhiguo@gmail.com [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, CA (United States); Zhang, Y. Alex, E-mail: yaz@bjsap.org [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China)

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  9. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    Science.gov (United States)

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  10. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  11. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Lyndah Chow

    2017-12-01

    Full Text Available Mesenchymal stem cells (MSCs exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC; as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC, including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders.

  12. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Espinoza I

    2013-09-01

    Full Text Available Ingrid Espinoza,1,2 Radhika Pochampally,1,2 Fei Xing,1 Kounosuke Watabe,1,3 Lucio Miele1,4 1Cancer Institute, 2Department of Biochemistry, 3Department of Microbiology, 4Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT have been reported. This review describes the role of Notch in the “stemness” program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process. Keywords: Notch signaling, EMT, cancer stem cells, mesenchymal stem cells, metastases, Notch inhibitors

  13. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Burns, Jorge S; Nielsen, Ole

    2009-01-01

    Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can...... spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found...... of cancer-germline antigens in hMSC-TERT20 cells, while their expression levels in primary human mesenchymal stem cells remained unaffected. The expression pattern of cancer-germline antigens in tumorigenic mesenchymal stem cells and sarcomas, plus their susceptibility to enhancement by epigenetic...

  14. Uniaxial cyclic strain of human adipose–derived mesenchymal stem cells and C2C12 myoblasts in coculture

    Directory of Open Access Journals (Sweden)

    James M Dugan

    2014-03-01

    Full Text Available Tissue engineering skeletal muscle in vitro is of great importance for the production of tissue-like constructs for treating tissue loss due to traumatic injury or surgery. However, it is essential to find new sources of cells for muscle engineering as efficient in vitro expansion and culture of primary myoblasts are problematic. Mesenchymal stem cells may be a promising source of myogenic progenitor cells and may be harvested in large numbers from adipose tissue. As skeletal muscle is a mechanically dynamic tissue, we have investigated the effect of cyclic mechanical strain on the myogenic differentiation of a coculture system of murine C2C12 myoblasts and human adipose–derived mesenchymal stem cells. Fusion of mesenchymal stem cells with nascent myotubes and expression of human sarcomeric proteins was observed, indicating the potential for myogenic differentiation of human mesenchymal stem cells. Cyclic mechanical strain did not affect the fusion of mesenchymal stem cells, but maturation of myotubes was perturbed.

  15. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    OpenAIRE

    Himeno, Tatsuhito; Kamiya, Hideki; Naruse, Keiko; Cheng, Zhao; Ito, Sachiko; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Kato, Jiro; Suzuki, Hirohiko; Kito, Tetsutaro; Hamada, Yoji; Oiso, Yutaka; Isobe, Kenichi; Nakamura, Jiro

    2013-01-01

    Background. Although pathological involvements of diabetic polyneuropathy (DPN) have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs) ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs) into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSC...

  16. Safety and Efficacy of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Therapy for Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    S N Leow

    Full Text Available To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs on retinal structure and function in Royal College of Surgeons (RCS rats.RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8 and placebo control group (n = 8. In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT. Retinal function was assessed by electroretinography (ERG 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies.No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells.Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies.

  17. Safety and Efficacy of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Therapy for Retinal Degeneration.

    Science.gov (United States)

    Leow, S N; Luu, Chi D; Hairul Nizam, M H; Mok, P L; Ruhaslizan, R; Wong, H S; Wan Abdul Halim, Wan Haslina; Ng, M H; Ruszymah, B H I; Chowdhury, S R; Bastion, M L C; Then, K Y

    2015-01-01

    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats. RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8) and placebo control group (n = 8). In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT). Retinal function was assessed by electroretinography (ERG) 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies. No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL) in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells. Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies.

  18. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury

    DEFF Research Database (Denmark)

    Oliveri, Roberto S; Bello, Segun; Biering-Sørensen, Fin

    2013-01-01

    Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti-inflammatory ......Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti...

  19. Carriers in mesenchymal stem cell osteoblast mineralization-State-of-the-art

    DEFF Research Database (Denmark)

    Dahl, Morten; Jørgensen, Niklas Rye; Hørberg, Mette

    2014-01-01

    PURPOSE: Tissue engineering is a new way to regenerate bone tissue, where osteogenic capable cells combine with an appropriate scaffolding material. Our aim was in a Medline Search to evaluate osteoblast mineralization in vitro and in vivo including gene expressing combining mesenchymal stem cells...... (MSCs) and five different carriers, titanium, collagen, calcium carbonate, calcium phosphate and polylactic acid-polyglycolic acid copolymer for purpose of a meta-or a descriptive analysis. MATERIALS AND METHODS: The search included the following MeSH words in different combinations-mesenchymal stem...

  20. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    OpenAIRE

    Babaei, Parvin; Soltani Tehrani, Bahram; Alizadeh, Arsalan

    2012-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs) grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months) were tested in Morris water maze (MWM) and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells ( 5 0 0 × 1 0 3 / ...

  1. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    Science.gov (United States)

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation

  2. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids.

    Science.gov (United States)

    Murphy, Kaitlin C; Whitehead, Jacklyn; Zhou, Dejie; Ho, Steve S; Leach, J Kent

    2017-12-01

    Mesenchymal stem cells (MSCs) secrete endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE 2 ) that promote angiogenesis, modulate the inflammatory microenvironment, and stimulate wound repair, and MSC spheroids secrete more trophic factors than dissociated, individual MSCs. Compared to injection of cells alone, transplantation of MSCs in a biomaterial can enhance their wound healing potential by localizing cells at the defect site and upregulating trophic factor secretion. To capitalize on the therapeutic potential of spheroids, we engineered a fibrin gel delivery vehicle to simultaneously enhance the proangiogenic and anti-inflammatory potential of entrapped human MSC spheroids. We used multifactorial statistical analysis to determine the interaction between four input variables derived from fibrin gel synthesis on four output variables (gel stiffness, gel contraction, and secretion of VEGF and PGE 2 ). Manipulation of the four input variables tuned fibrin gel biophysical properties to promote the simultaneous secretion of VEGF and PGE 2 by entrapped MSC spheroids while maintaining overall gel integrity. MSC spheroids in stiffer gels secreted the most VEGF, while PGE 2 secretion was highest in more compliant gels. Simultaneous VEGF and PGE 2 secretion was greatest using hydrogels with intermediate mechanical properties, as small increases in stiffness increased VEGF secretion while maintaining PGE 2 secretion by entrapped spheroids. The fibrin gel formulation predicted to simultaneously increase VEGF and PGE 2 secretion stimulated endothelial cell proliferation, enhanced macrophage polarization, and promoted angiogenesis when used to treat a wounded three-dimensional human skin equivalent. These data demonstrate that a statistical approach is an effective strategy to formulate fibrin gel formulations that enhance the wound healing potential of human MSCs. Mesenchymal stem cells (MSCs) are under investigation for wound

  3. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    Directory of Open Access Journals (Sweden)

    Janice Kim

    2015-11-01

    Full Text Available Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  4. Isolation and characterization of exosome from human embryonic stem cell-derived c-myc-immortalized mesenchymal stem cells

    NARCIS (Netherlands)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; De Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular

  5. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  6. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells.

    Science.gov (United States)

    Ji, Yuan; Ma, Yongbin; Chen, Xiang; Ji, Xianyan; Gao, Jianyi; Zhang, Lei; Ye, Kai; Qiao, Fuhao; Dai, Yao; Wang, Hui; Wen, Xiangmei; Lin, Jiang; Hu, Jiabo

    2017-08-01

    Human embryonic stem cell derived-mesenchymal stem cells (hESC‑MSCs) are able to inhibit proliferation of leukemia cells. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells (hESC‑MSC‑MVs) might play an important part in antitumor activity. Microvesicles were isolated by ultracentrifugation and identified under a scanning electron microscopy and transmission electron microscope separately. After 48-h cocultured with hESC‑MSCs and hESC‑MSC‑MVs, the number of K562 and HL60 was counted and tumor cell viability was measured by CCK8 assay. The expression of proteins Bcl-2 and Bax were estimated by western blotting. Transmission electron microscope and western blot analysis were adopted to evaluate the autophagy level. Results showed that both hESC‑MSCs and hESC‑MSC‑MVs inhibited proliferation of leukemia cells in a concentration-dependent manner. hESC‑MSC‑MVs reduced the ratio of Bcl/Bax, enhanced the protein level of Beclin-1 and LC3-II conversion, thus upregulating autophagy and apoptosis. In conclusion, microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibited tumor growth and stimulated autophagy and excessive autophagy might induce apoptosis.

  7. Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-09-01

    Full Text Available Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs, which can be used as a therapeutic approach against type 1 diabetes (T1D. As repression factors may inhibit differentiation, the efficiency of this process is insufficient for cell transplantation. In this study, we used the mouse insulin 2 (Ins2 promoter sequence and performed a DNA affinity precipitation assay combined with liquid chromatography-mass spectrometry to identify the transcription factor, chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI. Functionally, bmMSCs were reprogrammed into IPCs via COUP-TFI suppression and MafA overexpression. The differentiated cells expressed higher levels of genes specific for islet endocrine cells, and they released C-peptide and insulin in response to glucose stimulation. Transplantation of IPCs into streptozotocin-induced diabetic mice caused a reduction in hyperglycemia. Mechanistically, COUP-TFI bound to the DR1 (direct repeats with 1 spacer element in the Ins2 promoter, thereby negatively regulating promoter activity. Taken together, the data provide a novel mechanism by which COUP-TFI acts as a negative regulator in the Ins2 promoter. The differentiation of bmMSCs into IPCs could be improved by knockdown of COUP-TFI, which may provide a novel stem cell-based therapy for T1D. Keywords: siRNAs, differentiation, stem cell transplantation, diabetes, mesenchymal stem cells

  8. The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Duan X

    2017-09-01

    Full Text Available Xiaohui Duan,1,* Liejing Lu,1,* Yong Wang,2 Fang Zhang,1 Jiaji Mao,1 Minghui Cao,1 Bingling Lin,1 Xiang Zhang,1 Xintao Shuai,2,3 Jun Shen1 1Department of Radiology, Sun Yat-Sen Memorial Hospital, 2PCFM Lab of Ministry of Education, School of Materials Science and Engineering, 3BME Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Understanding the long-term fate and potential mechanisms of mesenchymal stem cells (MSCs after transplantation is essential for improving functional benefits of stem cell-based stroke treatment. Magnetic resonance imaging (MRI is considered an attractive and clinically translatable tool for longitudinal tracking of stem cells, but certain controversies have arisen in this regard. In this study, we used SPION-loaded cationic polymersomes to label green fluorescent protein (GFP-expressing MSCs to determine whether MRI can accurately reflect survival, long-term fate, and potential mechanisms of MSCs in ischemic stroke therapy. Our results showed that MSCs could improve the functional outcome and reduce the infarct volume of stroke in the brain. In vivo MRI can verify the biodistribution and migration of grafted cells when pre-labeled with SPION-loaded polymersome. The dynamic change of low signal volume on MRI can reflect the tendency of cell survival and apoptosis, but may overestimate long-term survival owing to the presence of iron-laden macrophages around cell graft. Only a small fraction of grafted cells survived up to 8 weeks after transplantation. A minority of these surviving cells were differentiated into astrocytes, but not into neurons. MSCs might exert their therapeutic effect via secreting paracrine factors rather than directing cell replacement through differentiation into neuronal and/or glial phenotypes. Keywords: mesenchymal stem cells, magnetic resonance imaging, superparamagnetic iron oxide

  9. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis

    Directory of Open Access Journals (Sweden)

    Yunfei Zheng

    2016-02-01

    Full Text Available Background. Mouse dental mesenchymal cells (mDMCs from tooth germs of cap or later stages are frequently used in the context of developmental biology or whole-tooth regeneration due to their odontogenic potential. In vitro-expanded mDMCs serve as an alternative cell source considering the difficulty in obtaining primary mDMCs; however, cultured mDMCs fail to support tooth development as a result of functional failures of specific genes or pathways. The goal of this study was to identify the genes that maintain the odontogenic potential of mDMCs in culture. Methods. We examined the odontogenic potential of freshly isolated versus cultured mDMCs from the lower first molars of embryonic day 14.5 mice. The transcriptome of mDMCs was detected using RNA sequencing and the data were validated by qRT-PCR. Differential expression analysis and pathway analysis were conducted to identify the genes that contribute to the loss of odontogenic potential. Results. Cultured mDMCs failed to develop into well-structured tooth when they were recombined with dental epithelium. Compared with freshly isolated mDMCs, we found that 1,004 genes were upregulated and 948 were downregulated in cultured mDMCs. The differentially expressed genes were clustered in the biological processes and signaling pathways associated with tooth development. Following in vitro culture, genes encoding a wide array of components of MAPK, TGF-β/BMP, and Wnt pathways were significantly downregulated. Moreover, the activities of Bdnf, Vegfα, Bmp2, and Bmp7 were significantly inhibited in cultured mDMCs. Supplementation of VEGFα, BMP2, and BMP7 restored the expression of a subset of downregulated genes and induced mDMCs to form dentin-like structures in vivo. Conclusions. Vegfα, Bmp2, and Bmp7 play a role in the maintenance of odontogenic potential in mDMCs.

  10. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study.

    Science.gov (United States)

    Kim, Y S; Choi, Y J; Lee, S W; Kwon, O R; Suh, D S; Heo, D B; Koh, Y G

    2016-02-01

    Cartilage regenerative procedures using the cell-based tissue engineering approach involving mesenchymal stem cells (MSCs) have been receiving increased interest because of their potential for altering the progression of osteoarthritis (OA) by repairing cartilage lesions. The aim of this study was to investigate the clinical and magnetic resonance imaging (MRI) outcomes of MSC implantation in OA knees and to determine the association between clinical and MRI outcomes. Twenty patients (24 knees) who underwent arthroscopic MSC implantation for cartilage lesions in their OA knees were evaluated at 2 years after surgery. Clinical outcomes were evaluated according to the International Knee Documentation Committee (IKDC) score and the Tegner activity scale, and cartilage repair was assessed according to the MRI Osteoarthritis Knee Score (MOAKS) and Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. The clinical outcomes significantly improved (P Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of periodontal ligament and gingiva-derived mesenchymal stem cells for regenerative therapies.

    Science.gov (United States)

    Santamaría, Silvia; Sanchez, Nerea; Sanz, Mariano; Garcia-Sanz, Jose A

    2017-05-01

    Tissue-engineering therapies using undifferentiated mesenchymal cells (MSCs) from intra-oral origin have been tested in experimental animals. This experimental study compared the characteristics of undifferentiated mesenchymal stem cells from either periodontal ligament or gingival origin, aiming to establish the basis for the future use of these cells on regenerative therapies. Gingiva-derived mesenchymal stem cells (GMSCs) were obtained from de-epithelialized gingival biopsies, enzymatically digested and expanded in conditions of exponential growth. Their growth characteristics, phenotype, and differentiation ability were compared with those of periodontal ligament-derived mesenchymal stem cells (PDLMSCs). Both periodontal ligament- and gingiva-derived cells displayed a MSC-like phenotype and were able to differentiate into osteoblasts, chondroblasts, and adipocytes. These cells were genetically stable following in vitro expansion and did not generate tumors when implanted in immunocompromised mice. Furthermore, under suboptimal growth conditions, GMSCs proliferated with higher rates than PDLMSCs. Stem cells derived from gingival biopsies represent bona fide MSCs and have demonstrated genetic stability and lack of tumorigenicity. Gingiva-derived MSCs may represent an accessible source of messenchymal stem cells to be used in future periodontal regenerative therapies.

  12. Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats

    Directory of Open Access Journals (Sweden)

    Jae Chul Lee

    2015-11-01

    Full Text Available Background: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs may have multiple therapeutic applications for cell based therapy including the treatment of pulmonary artery hypertension (PAH. As low survival rates and potential tumorigenicity of implanted cells could undermine the mesenchymal stem cell (MSC cell-based therapy, we chose to investigate the use of conditioned medium (CM from a culture of MSC cells as a feasible alternative. Methods: CM was prepared by culturing hUCB-MSCs in three-dimensional spheroids. In a rat model of PAH induced by monocrotaline, we infused CM or the control unconditioned culture media via the tail-vein of 6-week-old Sprague-Dawley rats. Results: Compared with the control unconditioned media, CM infusion reduced the ventricular pressure, the right ventricle/(left ventricle+interventricular septum ratio, and maintained respiratory function in the treated animals. Also, the number of interleukin 1α (IL-1α, chemokine (C-C motif ligand 5 (CCL5, and tissue inhibitor of metalloproteinase 1 (TIMP-1–positive cells increased in lung samples and the number of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL–positive cells decreased significantly in the CM treated animals. Conclusions: From our in vivo data in the rat model, the observed decreases in the TUNEL staining suggest a potential therapeutic benefit of the CM in ameliorating PAH-mediated lung tissue damage. Increased IL-1α, CCL5, and TIMP-1 levels may play important roles in this regard.

  13. The Cannabinoid Receptor Type 1 Is Essential for Mesenchymal Stem Cell Survival and Differentiation: Implications for Bone Health

    Directory of Open Access Journals (Sweden)

    Aoife Gowran

    2013-01-01

    Full Text Available Significant loss of bone due to trauma, underlying metabolic disease, or lack of repair due to old age surpasses the body’s endogenous bone repair mechanisms. Mesenchymal stem cells (MSCs are adult stem cells which may represent an ideal cell type for use in cell-based tissue engineered bone regeneration strategies. The body’s endocannabinoid system has been identified as a central regulator of bone metabolism. The aim of the study was to elucidate the role of the cannabinoid receptor type 1 in the differentiation and survival of MSCs. We show that the cannabinoid receptor type 1 has a prosurvival function during acute cell stress. Additionally, we show that the phytocannabinoid, Δ9-Tetrahydrocannabinol, has a negative impact on MSC survival and osteogenesis. Overall, these results show the potential for the modulation of the cannabinoid system in cell-based tissue engineered bone regeneration strategies whilst highlighting cannabis use as a potential cause for concern in the management of orthopaedic patients.

  14. [Effects of catalase on human umbilical cord mesenchymal stem cells].

    Science.gov (United States)

    Hu, Lin-Ping; Gao, Ying-Dai; Zheng, Guo-Guang; Shi, Ying-Xu; Xie, Yin-Liang; Liu, Yong-Jun; Yuan, Wei-Ping; Cheng, Tao

    2010-04-01

    This study was aimed to investigate the growth and multiple differentiation potential of human umbilical cord tissue derived mesenchymal stem cells (UC-MSCs) transfected by a retroviral vector with catalase (CAT) gene. The UC-MSCs cultured in vitro were transfected by using pMSCV carrying GFP (pMSCV-GFP) and pMSCV carrying CAT (pMSCV-GFP-CAT) respectively, then the MSC-GFP cell line and MSC-GFP-CAT cell line were obtained by sorting of flow cytometry. The GFP expression was observed by a fluorescent microscopy at 48 hours after CAT gene transfection. The GFP+ cells were sorted by flow cytometry. The activity of CAT in GFP+ cells was detected by catalase assay kit. The proliferative capacity of transfected UC-MSCs was determined by cell counting kit-8. The differentiation ability of gene-transfected GFP+ cells into osteogenesis and adipogenesis was observed by von Kossa and oil red O staining. The results indicated that green fluorescence in UC-MSCs was observed at 48 hours after transfection, and the fluorescence gradually enhanced to a steady level on day 3. The percentage of MSCs-GFP was (25.54+/-8.65)%, while the percentage of MSCs-GFP-CAT was (35.4+/-18.57)%. The activity of catalase in UC-MSCs, MSCs-GFP, MSCs-GFP-CAT cells were 19.5, 20.3, 67.2 U, respectively. The transfected MSCs-GFP-CAT could be induced into osteoblasts and adipocytes. After 21 days, von Kossa staining showed induced osteoblasts. Many lipid droplets with high refractivity occurred in cytoplasm of the transfected UC-MSCs, and showed red fat granules in oil red O staining cells. There were no significant differences between transfected and non-transfected UC-MSCs cells (p>0.05). It is concluded that UC-MSCs are successfully transfected by retrovirus carrying GFP or CAT gene, the activity of catalase increased by 3.4-fold. The transfected UC-MSCs maintain proliferation potential and ability of differentiation into osteoblasts and adipocytes.

  15. Effects of sulfur mustard on mesenchymal stem cells.

    Science.gov (United States)

    Schmidt, Annette; Steinritz, Dirk; Rothmiller, Simone; Thiermann, Horst; Scherer, A Michael

    2017-08-14

    Chronic wound healing disorders that occur as a result of a sulfur mustard (SM) exposure present a particular challenge. These chronic wounds are similar to other chronic wounds. In the past, it has been shown that mesenchymal stem cells (MSC) play an important role in the healing of chronic wounds. An important property to support wound healing is their ability to migrate. However, we were able to show that SM leads to a reduction in MSC migration even at low concentrations. Currently, exposed MSCs are still able to differentiate. Further alterations are not known. The current investigation therefore focused onto the question how SM affects MSC. The effect of SM on MSC was investigated. Here, the alkylation of DNA was considered, and DNA adducts were quantified over a period of 48h. The modification of the nuclei under the influence of SM was analyzed as well as proliferation of the cells by immunohistochemical staining with Ki-67 and quantification. For the quantification of the apoptosis rate, antibodies against cleaved Caspase-3, 8, and apoptosis inducing factor (AIF) were used. The senescence analysis was performed after histological staining against β-galactosidase. Quantifications were carried out by using the TissueQuest System and the software TissueFAX. SM exposure of MSC results in a dose dependent formation of nuclear DNA adducts. 4h after exposure the cells display a decreasing concentration of DNA adducts. This process is accompanied by a change of nuclei shape but without an increase of apoptosis induction. In parallel the number of cells undergoing senescence increases as a function of the SM concentration. SM exposure of MSC leads to adduct formation on chromosomal DNA. These DNA adducts can be reduced without MSC are undergoing apoptosis. This indicates an active DNA damage response (DDR) pathway in combination with the formation of persistent nuclear DNA damage foci. This process is accompanied by a reduced capability of proliferation and a

  16. Effect of silver nanoparticles on human mesenchymal stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Christina Sengstock

    2014-11-01

    Full Text Available Background: Silver nanoparticles (Ag-NP are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan.Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions. Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of

  17. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic.

    Science.gov (United States)

    Whiting, Paul; Kerby, Julie; Coffey, Peter; da Cruz, Lyndon; McKernan, Ruth

    2015-10-19

    Since the first publication of the derivation of human embryonic stem cells in 1998, there has been hope and expectation that this technology will lead to a wave of regenerative medicine therapies with the potential to revolutionize our approach to managing certain diseases. Despite significant resources in this direction, the path to the clinic for an embryonic stem-cell-based regenerative medicine therapy has not proven straightforward, though in the past few years progress has been made. Here, with a focus upon retinal disease, we discuss the current status of the development of such therapies. We also highlight some of our own experiences of progressing a retinal pigment epithelium cell replacement therapy towards the clinic. © 2015 The Author(s).

  18. Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future?

    Directory of Open Access Journals (Sweden)

    Dario Siniscalco

    2012-01-01

    Full Text Available Autism and autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease.

  19. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence

    Directory of Open Access Journals (Sweden)

    Natasha S Lewis

    2017-04-01

    Full Text Available Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies.

  20. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells

    DEFF Research Database (Denmark)

    Weilner, Sylvia; Schraml, Elisabeth; Wieser, Matthias

    2016-01-01

    Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration....... However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells....... As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation...

  1. Mesenchymal stem cells show little tropism for the resting and differentiated cancer stem cell-like glioma cells.

    Science.gov (United States)

    Liu, Zhenlin; Jiang, Zhongmin; Huang, Jianyong; Huang, Shuqiang; Li, Yanxia; Sheng, Feng; Yu, Simiao; Yu, Shizhu; Liu, Xiaozhi

    2014-04-01

    Intrinsic resistance of glioma cells to radiation and chemotherapy is currently hypothesized to be partially attributed to the existence of cancer stem cells. Emerging studies suggest that mesenchymal stem cells may serve as a potential carrier for delivery of therapeutic genes to disseminated glioma cells. However, the tropism character of mesenchymal stem cells for cancer stem cell-like glioma cells has rarely been described. In this study, we obtained homologous bone marrow-derived (BM-) and adipose tissue-derived (AT-) mesenchymal stem cells (MSCs), fibroblast, and cancer stem cell-like glioma cells (CSGCs) from tumor-bearing mice, and compared the tropism character of BM- and AT-MSCs for CSGCs with various form of existence. To characterize the cell proliferation and differentiation, the spheroids of CSGCs were cultured on the surface of the substrate with different stiffness, combined with or withdrew basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) in medium. Our results showed that the CSGCs during the process of cell proliferation, but not in resting and differentiated status, display strong tropism characteristics on both BM- and AT-MSCs, as well as the expression of their cell chemokine factors which mediate cell migration. If the conclusion is further confirmed, it may expose a fatal flaw of MSCs as tumor-targeted delivery of therapeutic agents in the treatment of the CSGCs, even other cancer stem cells, because there always exist a part of cancer stem cells that are in resting status. Overall, our findings provide novel insight into the complex issue of the MSCs as drug delivery in the treatment of brain tumors, especially in tumor stem cells.

  2. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Lucas Felipe de Oliveira

    2015-01-01

    Full Text Available Systemic arterial hypertension (SAH, a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs, which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2 increases their therapeutic effects in spontaneously hypertensive rats (SHRs. Adult female SHRs were administered an intraperitoneal injection of vehicle solution n=10, MSCs cultured in conventional medium (DMEM plus 10% FBS, n=11, or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n=10. Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH.

  3. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    Science.gov (United States)

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  4. Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations

    Czech Academy of Sciences Publication Activity Database

    Hájková, Michaela; Heřmánková, Barbora; Javorková, Eliška; Boháčová, Pavla; Zajícová, Alena; Holáň, Vladimír; Krulová, Magdaléna

    2017-01-01

    Roč. 13, č. 1 (2017), s. 104-115 ISSN 1550-8943 R&D Projects: GA ČR(CZ) GA14-12580S; GA MŠk(CZ) LO1508; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : mesenchymal stem cells * immunosuppressive drugs * stem cell therapy Subject RIV: FF - HEENT, Dentistry OBOR OECD: Immunology Impact factor: 2.967, year: 2016

  5. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    Directory of Open Access Journals (Sweden)

    Maria E. Gonzalez

    2017-01-01

    Full Text Available Increased collagen deposition by breast cancer (BC-associated mesenchymal stem/multipotent stromal cells (MSC promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2 is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  6. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency

    Science.gov (United States)

    McMurray, Rebecca J.; Gadegaard, Nikolaj; Tsimbouri, P. Monica; Burgess, Karl V.; McNamara, Laura E.; Tare, Rahul; Murawski, Kate; Kingham, Emmajayne; Oreffo, Richard O. C.; Dalby, Matthew J.

    2011-08-01

    There is currently an unmet need for the supply of autologous, patient-specific stem cells for regenerative therapies in the clinic. Mesenchymal stem cell differentiation can be driven by the material/cell interface suggesting a unique strategy to manipulate stem cells in the absence of complex soluble chemistries or cellular reprogramming. However, so far the derivation and identification of surfaces that allow retention of multipotency of this key regenerative cell type have remained elusive. Adult stem cells spontaneously differentiate in culture, resulting in a rapid diminution of the multipotent cell population and their regenerative capacity. Here we identify a nanostructured surface that retains stem-cell phenotype and maintains stem-cell growth over eight weeks. Furthermore, the study implicates a role for small RNAs in repressing key cell signalling and metabolomic pathways, demonstrating the potential of surfaces as non-invasive tools with which to address the stem cell niche.

  7. Mesenchymal Stem Cell Therapy for the Treatment of Vocal Fold Scarring

    DEFF Research Database (Denmark)

    Wingstrand, Vibe Lindeblad; Larsen, Christian Grønhøj; Jensen, David H

    2016-01-01

    parameters revealed a decreased dynamic viscosity (η') and elastic modulus (G'), i.e., decreased resistance and stiffness, in scarred vocal folds treated with mesenchymal stem cells compared to non-treated scarred vocal folds. Mucosal wave amplitude was increased in scarred vocal folds treated...

  8. Effects of Wnt signaling on proliferation and differntiationof human mesenchymal stem cells

    NARCIS (Netherlands)

    de Boer, Jan; Wang, Hongjun; van Blitterswijk, Clemens

    2004-01-01

    Mesenchymal stem cells are pluripotent cells from bone marrow, which can be differentiated into the osteogenic, chondrogenic, and adipogenic lineages in vitro and are a source of cells in bone and cartilage tissue engineering. An improvement in current tissue-engineering protocols requires more

  9. Obstructive Apneas Induce Early Release of Mesenchymal Stem Cells into Circulating Blood

    Science.gov (United States)

    Carreras, Alba; Almendros, Isaac; Acerbi, Irene; Montserrat, Josep M.; Navajas, Daniel; Farré, Ramon

    2009-01-01

    Study Objectives: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. Design: Prospective controlled animal study. Setting: University laboratory. Patients or Participants: Twenty male Sprague-Dawley rats (250–300 g). Interventions: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. Measurements and Results: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 ± 1.16; mean ± SEM) than in controls (1.70 ± 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. Conclusions: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood. Citation: Carreras A; Almendros I; Acerbi I; Montserrat JM; Navajas D; Farré R. Obstructive apneas induce early release of mesenchymal stem cells into circulating blood. SLEEP 2009;32(1):117-119. PMID:19189787

  10. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice.

    Science.gov (United States)

    Itaba, Noriko; Matsumi, Yoshiaki; Okinaka, Kaori; Ashla, An Afida; Kono, Yohei; Osaki, Mitsuhiko; Morimoto, Minoru; Sugiyama, Naoyuki; Ohashi, Kazuo; Okano, Teruo; Shiota, Goshi

    2015-11-10

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentration-dependent manner. Hexachlorophene rapidly induced hepatic differentiation of human MSCs judging from expression of liver-specific genes and proteins, PAS staining, and urea production. The effect of orthotopic transplantation of human mesenchymal stem cell-engineered hepatic cell sheets against acute liver injury was examined in one-layered to three-layered cell sheets system. Transplantation of human mesenchymal stem cell-engineered hepatic cell sheets enhanced liver regeneration and suppressed liver injury. The survival rates of the mice were significantly improved. High expression of complement C3 and its downstream signals including C5a, NF-κB, and IL-6/STAT-3 pathway was observed in hepatic cell sheets-grafted tissues. Expression of phosphorylated EGFR and thioredoxin is enhanced, resulting in reduction of oxidative stress. These findings suggest that orthotopic transplantation of hepatic cell sheets manufactured from MSCs accelerates liver regeneration through complement C3, EGFR and thioredoxin.

  11. Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses.

    Science.gov (United States)

    Maia, Leandro; da Cruz Landim-Alvarenga, Fernanda; Taffarel, Marilda Onghero; de Moraes, Carolina Nogueira; Machado, Gisele Fabrino; Melo, Guilherme Dias; Amorim, Rogério Martins

    2015-03-15

    Recent studies have demonstrated numerous biological properties of mesenchymal stem cells and their potential application in treating complex diseases or injuries to tissues that have difficulty regenerating, such as those affecting the central and peripheral nervous system. Thus, therapies that use mesenchymal stem cells are promising because of their high capacity for self-regeneration, their low immunogenicity, and their paracrine, anti-inflammatory, immunomodulatory, anti-apoptotic and neuroprotective effects. In this context, the purpose of this study was to evaluate the feasibility and safety of intrathecal transplantation of bone marrow-derived mesenchymal stem cells in horses, for future application in the treatment of neurological diseases. During the neurological evaluations, no clinical signs were observed that were related to brain and/or spinal cord injury of the animals from the control group or the treated group. The hematological and cerebrospinal fluid results from day 1 and day 6 showed no significant differences (P > 0.05) between the treated group and the control group. Additionally, analysis of the expression of matrix metalloproteinase (MMP) -2 and -9 in the cerebrospinal fluid revealed only the presence of pro-MMP-2 (latent), with no significant difference (P > 0.05) between the studied groups. The results of the present study support the hypothesis of the feasibility and safety of intrathecal transplantation of autologous bone marrow-derived mesenchymal stem cells, indicating that it is a promising pathway for cell delivery for the treatment of neurological disorders in horses.

  12. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state

    NARCIS (Netherlands)

    Fahy, N.; Vries-van Melle, M.L. de; Lehmann, J.; Wei, W.; Grotenhuis, N.; Farrell, E.; Kraan, P.M. van der; Murphy, J.M.; Bastiaansen-Jenniskens, Y.M.; Osch, G.J.V.M. van

    2014-01-01

    OBJECTIVE: Mesenchymal stem cells (MSCs) are a promising cell type for the repair of damaged cartilage in osteoarthritis (OA). However, OA synovial fluid and factors secreted by synovium impede chondrogenic differentiation of MSCs, and the mechanism responsible for this effect remains unclear. In

  13. Mesenchymal Stem Cell Therapy for Protection and Repair of Injured Vital Organs

    NARCIS (Netherlands)

    van Poll, D.; Parekkadan, B.; Rinkes, I. H. M. Borel; Tilles, A. W.; Yarmush, M. L.

    Recently there has been a paradigm shift in what is considered to be the therapeutic promise of mesenchymal stem cells (MSCs) in diseases of vital organs. Originally, research focused on MSCs as a source of regenerative cells by differentiation of transplanted cells into lost cell types. It is now

  14. Development of novel monoclonal antibodies that define differentiation stages of human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kortesidis, Angela; Zannettino, Andrew C W

    2011-01-01

    Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing...

  15. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina

    2007-01-01

    the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...

  16. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro

    NARCIS (Netherlands)

    Vonk, Lucienne A.; van Dooremalen, Sanne F.J.; Liv, Nalan; Klumperman, Judith; Coffer, Paul J.; Saris, Daniël B.F.; Lorenowicz, Magdalena J.

    2018-01-01

    Osteoarthritis (OA) is a rheumatic disease leading to chronic pain and disability with no effective treatment available. Recently, allogeneic human mesenchymal stromal/stem cells (MSC) entered clinical trials as a novel therapy for OA. Increasing evidence suggests that therapeutic efficacy of MSC

  17. Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Jensen, Thomas; Dolatshahi-Pirouz, Alireza; Foss, Morten

    2010-01-01

    In vitro studies of the initial attachment, spreading and motility of human bone mesenchymal stem cells have been carried out on bovine osteopontin (OPN) coated hydroxyapatite (HA) and gold (Au) model surfaces. The adsorption of OPN extracted from bovine milk was monitored by the quartz crystal...

  18. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation

    DEFF Research Database (Denmark)

    Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha

    2017-01-01

    Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic...

  19. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Blagoev, Blagoy; Haack-Sorensen, M.

    2005-01-01

    Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics...

  20. In vitro and in vivo neurogenic potential of mesenchymal stem cells ...

    Indian Academy of Sciences (India)

    Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic ...

  1. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia

    DEFF Research Database (Denmark)

    Fink, Trine; Abildtrup, Lisbeth Ann; Fogd, Kirsten

    2004-01-01

    Human mesenchymal stem cells (hMSCs) have the capacity to differentiate along several pathways to form bone, cartilage, tendon, muscle, and adipose tissues. The adult hMSCs reside in vivo in the bone marrow in niches where oxygen concentration is far below the ambient air, which is the most...

  2. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...

  3. Can mesenchymal stem cells be used as a future weapon against ...

    African Journals Online (AJOL)

    Background: Mesenchymal stem cells (MSCs) are recruited to the stroma of cancers. They interact with cancer cells to promote invasion and metastasis or to suppress tumor growth. The unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anticancer agents. Aim: The aim of this study ...

  4. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    NARCIS (Netherlands)

    Beerling, Evelyne; Seinstra, Daniëlle; de Wit, Elzo; Kester, Lennart; van der Velden, Daphne; Maynard, Carrie; Schäfer, Ronny; van Diest, Paul; Voest, Emile; van Oudenaarden, Alexander; Vrisekoop, Nienke; van Rheenen, Jacco

    2016-01-01

    Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT) has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells

  5. Proteomic Analysis and Identification of Paracrine Factors in Mesenchymal Stem Cell-Conditioned Media under Hypoxia

    Directory of Open Access Journals (Sweden)

    Suk-Won Song

    2016-11-01

    Full Text Available Background/Aims: We previously showed that a hypoxic environment modulates the antiarrhythmic potential of mesenchymal stem cells. Methods: To investigate the mechanism by which secreted proteins contribute to the pathogenesis of antiarrhythmic potential in mesenchymal stem cells, we used two-dimensional electrophoresis combined with MALDI-TOF-MS to perform a proteomic analysis to compare the paracrine media produced by normoxic and hypoxic cells. Results: The proteomic analysis revealed that 66 protein spots out of a total of 231 matched spots indicated differential expression between the normoxic and hypoxic conditioned media of mesenchymal stem cells. Interestingly, two tropomyosin isoforms were dramatically increased in the hypoxic conditioned medium of mesenchymal stem cells. An increase in tropomyosin was confirmed using Western blot to analyze the conditioned media between normoxic and hypoxic cells. In a network analysis based on gene ontology (GO Molecular Function by GeneMANIA analysis, most of the identified proteins were found to be involved in the regulation of heart processes. Conclusion: Our results show that hypoxia up-regulates tropomyosin and other secreted proteins which suggests that tropomyosin may be involved in regulating proarrhythmic and antiarrhythmic functions.

  6. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function

    NARCIS (Netherlands)

    F. Luk (Franka); Carreras-Planella, L. (Laura); S.S. Korevaar (Sander); S.F. De Witte (Samantha Fh); F.E. Borràs (Francesc); M.G.H. Betjes (Michiel); C.C. Baan (Carla); M.J. Hoogduijn (Martin); M. Franquesa (Marcella)

    2017-01-01

    textabstractThe immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) makes them a promising tool for treatment of immune disease and organ transplantation. The effects of MSC on B cells are characterized by an abrogation of plasmablast formation and induction of regulatory B cells

  7. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We

  8. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  9. Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism

    NARCIS (Netherlands)

    Schop, D.; Janssen, F.W.; Borgart, E.; de Bruijn, Joost Dick; van Dijkhuizen-Radersma, R.

    2008-01-01

    For the continuous and fast expansion of mesenchymal stem cells (MSCs), microcarriers have gained increasing interest. The aim of this study was to evaluate the growth and metabolism profiles of MSCs, expanded in a microcarrier-based cultivation system. We investigated various cultivation conditions

  10. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were in...

  11. Osteogenic Differentiation of Miniature Pig Mesenchymal Stem Cells in 2D and 3D Environment

    Czech Academy of Sciences Publication Activity Database

    Juhásová, Jana; Juhás, Štefan; Klíma, Jiří; Strnádel, Ján; Holubová, Monika; Motlík, Jan

    2011-01-01

    Roč. 60, č. 3 (2011), s. 559-571 ISSN 0862-8408 R&D Projects: GA MŠk 1M0538; GA MŠk 2B06130 Institutional research plan: CEZ:AV0Z50450515 Keywords : miniature pig * mesenchymal stem cells * cell differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.555, year: 2011

  12. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  13. In vitro mesenchymal stem cell response to a CO{sub 2} laser modified polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, D.G., E-mail: d.waugh@chester.ac.uk [Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ (United Kingdom); Hussain, I. [School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Lawrence, J.; Smith, G.C. [Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ (United Kingdom); Cosgrove, D. [School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Toccaceli, C. [Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ (United Kingdom)

    2016-10-01

    With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO{sub 2} laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO{sub 2} laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3 μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1 atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO{sub 2} laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000 cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO{sub 2} laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.

  14. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H

    2012-01-01

    Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.

  15. Side-by-Side Comparison of the Biological Characteristics of Human Umbilical Cord and Adipose Tissue-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Hu

    2013-01-01

    Full Text Available Both human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs have been explored as attractive mesenchymal stem cells (MSCs sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.

  16. Engraftment of donor mesenchymal stem cells in chimeric BXSB includes vascular endothelial cells and hepatocytes

    Directory of Open Access Journals (Sweden)

    Jones OY

    2011-12-01

    Full Text Available Olcay Y Jones1, Faysal Gok2, Elisabeth J Rushing3, Iren Horkayne-Szakaly4, Atif A Ahmed51Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, USA; 2Department of Pediatrics, Gulhane Military Medical Academy, Ankara, Turkey; 3Institut für Neuropathologie, Universitäts Spital Zürich, Zürich, Switzerland; 4Department of Neuropathology, Armed Forces Institute of Pathology, Washington, DC, USA; 5Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, MO, USAAbstract: Somatic tissue engraftment was studied in BXSB mice treated with mesenchymal stem cell transplantation. Hosts were conditioned with nonlethal radiation prior to introducing donor cells from major histocompatibility complex-matched green fluorescent protein transgenic mice. Transplant protocols differed for route of injection, ie, intravenous (i.v. versus intraperitoneal (i.p., and source of mesenchymal stem cells, ie, unfractionated bone marrow cells, ex vivo expanded mesenchymal stem cells, or bone chips. Tissue chimerism was determined after short (10–12 weeks or long (62 weeks posttransplant follow-up by immunohistochemistry for green fluorescent protein. Engraftment of endothelial cells was seen in several organs including liver sinusoidal cells in i.v. treated mice with ex vivo expanded mesenchymal stem cells or with unfractionated bone marrow cells. Periportal engraftment of liver hepatocytes, but not engraftment of endothelial cells, was found in mice injected i.p. with bone chips. Engraftment of adipocytes was a common denominator in both i.v. and i.p. routes and occurred during early phases post-transplant. Disease control was more robust in mice that received both i.v. bone marrow and i.p. bone chips compared to mice that received i.v. bone marrow alone. Thus, the data support potential use of mesenchymal stem cell transplant for treatment of severe lupus. Future studies are needed to optimize

  17. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-01-01

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  18. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies.

    Science.gov (United States)

    Ratcliffe, Elizabeth; Glen, Katie E; Naing, May Win; Williams, David J

    2013-01-01

    Apart from haematopoietic stem cell transplantation for haematological disorders many stem cell-based therapies are experimental. However, with only 12 years between human embryonic stem cell isolation and the first clinical trial, development of stem cell products for regenerative medicine has been rapid and numerous clinical trials have begun to investigate their therapeutic potential. This review summarizes key clinical trial data, current and future perspectives on stem cell-based products undergoing clinical trials, based on literature search and author research. It is widely recognized that the ability to stimulate stem cell differentiation into specialized cells for use as cellular therapies will revolutionize health care and offer major hope for numerous diseases for which there are limited or no therapeutic options. Stem cell-based products are unique and cover a large range of disorders to be treated; therefore, there is significant potential for variation in cell source, type, processing manipulation, the bioprocessing approach and scalability, the cost and purity of manufacture, final product quality and mode of action. As such there are gaps in regulatory and manufacturing frameworks and technologies, only a small number of products are currently within late phase clinical trials and few products have achieved commercialization. Recent developments are encouraging acceleration through the difficulties encountered en route to clinical trials and commercialization of stem cell therapies. The field is growing year on year with the first clinical trial using induced pluripotent stem cells anticipated by end 2013.

  19. [Osteogenic potential of bone marrow mesenchymal stem cells from ovariectomied osteoporotic rat].

    Science.gov (United States)

    Li, Dong-ju; Ge, Dong-xia; Wu, Wen-chao; Wu, Jiang; Li, Liang

    2005-05-01

    To investigate the difference of osteogenic potential of bone marrow mesenchymal stem cells (MSCs) between healthy rats and osteoporotic rats. We established the animal model of osteoporosis by performing ovariectom on the 3-month-old female Sprague-Dawley rats. Bone marrow mesenchymal stem cells(MSCs) were isolated from the rats of control group and of ovariectomized (ovx) group by means of the density-gradient centrifugation method, and the 3rd-4th passage MSCs were used in all the experiments. The experiments comprised 4 groups: (1) Marrow mesenchymal stem cells control group (MSCs control group); (2) Marrow mesenchymal stem cells ovx group (MSCs ovx group); (3) Osteogenesis induction control group (OSI control group); (4) Osteogenesis induction ovx group (OSI ovx group). Cell cycle and proliferation index (PI) of MSCs were detected by flow cytometry. The expression of alkaline phosphatase (ALP) was detected by dynamics method with substrate of phosphoric acid para-Nitro benzene. The levels of osteocalcin were detected with the isotope labelling method. (1) PI of MSCs was lower in MSCs ovx group than in MSCs control group. (2) The expression of alkaline phosphatase (ALP) was much higher in OSI control group than in the MSCs control group; the expression of alkaline phosphatase (ALP) was much higher in the OSI control group than in OSI ovx group after 7-day and 14-day osteogenic induction. (3) The level of osteocalcin was much higher in the OSI control group than in the MSCs control group after 14-day, 21-day, 28-day osteogenic induction. The level of osteocalcin was much higher in the OSI control group than in the OSI ovx group. Both the proliferative potential and the osteogenic potential of bone marrow mesenchymal stem cells (MSCs) from the ovariectomized osteoporotic rat are decreased.

  20. Establishing a Quality Control System for Stem Cell-Based Medicinal Products in China.

    Science.gov (United States)

    Yuan, Bao-Zhu

    2015-12-01

    Stem cell-based medicinal products (SCMPs) are emerging as novel therapeutic products. The success of its development depends on the existence of an effective quality control system, which is constituted by quality control technologies, standards, reference materials, guidelines, and the associated management system in accordance with regulatory requirements along product lifespan. However, a worldwide, effective quality control system specific for SCMPs is still far from established partially due to the limited understanding of stem cell sciences and lack of quality control technologies for accurately assessing the safety and biological effectiveness of SCMPs before clinical use. Even though, based on the existing regulations and current stem cell sciences and technologies, initial actions toward the goal of establishing such a system have been taken as exemplified by recent development of new "interim guidelines" for governing quality control along development of SCMPs and new development of the associated quality control technologies in China. In this review, we first briefly introduced the major institutions involved in the regulation of cell substrates and therapeutic cell products in China and the existing regulatory documents and technical guidelines used as critical references for developing the new interim guidelines. With focus only on nonhematopoietic stem cells, we then discussed the principal quality attributes of SCMPs as well as our thinking of proper testing approaches to be established with relevant evaluation technologies to ensure all quality requirements of SCMPs along different manufacturing processes and development stages. At the end, some regulatory and technical challenges were also discussed with the conclusion that combined efforts should be taken to promote stem cell regulatory sciences to establish the effective quality control system for SCMPs.

  1. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  2. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling.

    Science.gov (United States)

    Fan, Wenshuai; Li, Jinghuan; Wang, Yiming; Pan, Jianfeng; Li, Shuo; Zhu, Liang; Guo, Changan; Yan, Zuoqin

    2016-05-27

    Mesenchymal stem cells (MSCs) are considered to be suitable for cell-based tissue regeneration. Expressions of different cell surface markers confer distinct differentiation potential to different sub-populations of MSCs. Understanding the effect of cell surface markers on MSC differentiation is essential to their targeted application in different tissues. Although CD105 positive MSCs possess strong chondrogenic capacity, the underlying mechanisms are not clear. In this study, we observed a considerable heterogeneity with respect to CD105 expression among MSCs isolated from synovium. The CD105(+) and CD105(-) synovium-derived MSCs (SMSCs) were sorted to compare their differentiation capacities and relative gene expressions. CD105(+) subpopulation had higher gene expressions of AGG, COL II and Sox9, and showed a stronger affinity for Alcian blue and immunofluorescent staining for aggrecan and collagenase II, as compared to those in CD105(-) cells. However, no significant difference was observed with respect to gene expressions of ALP, Runx2, LPL and PPARγ. CD105(+) SMSCs showed increased levels of Smad2 phosphorylation, while total Smad2 levels were similar between the two groups. There was no difference in activation of Smad1/5. These results were further confirmed by CD105-knockdown in SMSCs. Our findings suggest a stronger chondrogenic potential of CD105(+) SMSCs in comparison to that of CD105(-) SMSCs and that CD105 enhances chondrogenesis of SMSCs by regulating TGF-β/Smad2 signaling pathway, but not Smad1/5. Our study provides a better understanding of CD105 with respect to chondrogenic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection.

    Directory of Open Access Journals (Sweden)

    Simone Avanzi

    Full Text Available Fetal membranes (FM derived mesenchymal stromal/stem cells (MSCs are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2, Varicella zoster virus (VZV, and Human Cytomegalovirus (HCMV, but not with Epstein-Barr virus (EBV, Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8 although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.

  4. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  5. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases.

    Science.gov (United States)

    Lo Furno, Debora; Mannino, Giuliana; Giuffrida, Rosario

    2018-05-01

    Mesenchymal stem cells (MSCs) can differentiate into not only cells of mesodermal lineages, but also into endodermal and ectodermal derived elements, including neurons and glial cells. For this reason, MSCs have been extensively investigated to develop cell-based therapeutic strategies, especially in pathologies whose pharmacological treatments give poor results, if any. As in the case of irreversible neurological disorders characterized by progressive neuronal death, in which behavioral and cognitive functions of patients inexorably decline as the disease progresses. In this review, we focus on the possible functional role exerted by MSCs in the treatment of some disabling neurodegenerative disorders such as Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Huntington's Disease, and Parkinson's Disease. Investigations have been mainly performed in vitro and in animal models by using MSCs generally originated from umbilical cord, bone marrow, or adipose tissue. Positive results obtained have prompted several clinical trials, the number of which is progressively increasing worldwide. To date, many of them have been primarily addressed to verify the safety of the procedures but some improvements have already been reported, fortunately. Although the exact mechanisms of MSC-induced beneficial activities are not entirely defined, they include neurogenesis and angiogenesis stimulation, antiapoptotic, immunomodulatory, and anti-inflammatory actions. Most effects would be exerted through their paracrine expression of neurotrophic factors and cytokines, mainly delivered at damaged regions, given the innate propensity of MSCs to home to injured sites. Hopefully, in the near future more efficacious cell-replacement therapies will be developed to substantially restore disease-disrupted brain circuitry. © 2017 Wiley Periodicals, Inc.

  6. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  7. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver.

    Science.gov (United States)

    Stock, Peggy; Brückner, Sandra; Ebensing, Sabine; Hempel, Madlen; Dollinger, Matthias M; Christ, Bruno

    2010-04-01

    Donor organ shortage is still the major obstacle for the clinical application of hepatocyte transplantation in the treatment of liver diseases. However, generation of hepatocyte-like cells from mesenchymal stem cells (MSCs) has become a real alternative to the isolation of primary hepatocytes. MSCs are extracted from the tissue by collagenase digestion and enriched by their capacity to grow on plastic surfaces. Enriched cells display distinct mesenchymal surface markers and are capable of multiple lineage differentiation. In the presence of specific growth conditions, the cells adopt functional features of differentiated hepatocytes. After orthotopic transplantation, differentiated human stem cells engraft in the host liver parenchyma of immunocompromised mice. This protocol describes the in vitro differentiation of stem cells from human bone marrow and their transplantation into livers of immunodeficient mice. The cell culture procedures take about 4-5 weeks, and cells engrafted in the mouse liver may be detected 2-3 months after transplantation.

  8. Amniotic mesenchymal stem cells display neurovascular tropism and aid in the recovery of injured peripheral nerves.

    Science.gov (United States)

    Li, YongNan; Guo, Longzhe; Ahn, Hyun Sook; Kim, Moo Hyun; Kim, Sung-Whan

    2014-06-01

    Recently, we reported that human amniotic membrane-derived mesenchymal stem cells (AMMs) possess great angiogenic potential. In this study, we determined whether local injection of AMMs ameliorates peripheral neuropathy. AMMs were transplanted into injured sciatic nerves. AMM injection promoted significant recovery of motor nerve conduction velocity and voltage amplitude compared to human adipose-derived mesenchymal stem cells. AMM implantation also augmented blood perfusion and increased intraneural vascularity. Whole-mount fluorescent imaging analysis demonstrated that AMMs exhibited higher engraftment and endothelial incorporation abilities in the sciatic nerve. In addition, the higher expression of pro-angiogenic factors was detected in AMMs injected into the peripheral nerve. Therefore, these data provide novel therapeutic and mechanistic insights into stem cell biology, and AMM transplantation may represent an alternative therapeutic option for treating peripheral neuropathy. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Hoare, Stacey F.; Kassem, Moustapha

    2006-01-01

    The human adult mesenchymal stem cell (hMSC) does not express telomerase and has been shown to be the target for neoplastic transformation after transduction with hTERT. These findings lend support to the stem cell hypothesis of cancer development but by supplying hTERT, the molecular events...... required to upregulate hTERT expression in cancer development are missed. Therefore, the hMSC is ideal for the identification of molecular mechanisms regulating telomerase gene expression in stem cells. This study shows that the repression of hTERT expression in hMSC is chromatin based...

  10. MicroRNAs as Regulators of Adipogenic Differentiation of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha

    2015-01-01

    MicroRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma......, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel...

  11. β-Catenin Does Not Confer Tumorigenicity When Introduced into Partially Transformed Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sajida Piperdi

    2012-01-01

    Full Text Available Although osteosarcoma is the most common primary malignant bone tumor in children and adolescents, its cell of origin and the genetic alterations are unclear. Previous studies have shown that serially introducing hTERT, SV40 large TAg, and H-Ras transforms human mesenchymal stem cells into two distinct sarcomas cell populations, but they do not form osteoid. In this study, β-catenin was introduced into mesenchymal stem cells already containing hTERT and SV40 large TAg to analyze if this resulted in a model which more closely recapitulated osteosarcoma. Results. Regardless of the level of induced β-catenin expression in the stable transfectants, there were no marked differences induced in their phenotype or invasion and migration capacity. Perhaps more importantly, none of them formed tumors when injected into immunocompromised mice. Moreover, the resulting transformed cells could be induced to osteogenic and chondrogenic differentiation but not to adipogenic differentiation. Conclusions. β-catenin, although fostering osteogenic differentiation, does not induce the malignant features and tumorigenicity conveyed by oncogenic H-RAS when introduced into partly transformed mesenchymal stem cells. This may have implications for the role of β-catenin in osteosarcoma pathogenesis. It also may suggest that adipogenesis is an earlier branch point than osteogenesis and chondrogenesis in normal mesenchymal differentiation.

  12. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype

    Science.gov (United States)

    Medici, Damian; Kalluri, Raghu

    2012-01-01

    Vascular endothelial cells can demonstrate considerable plasticity to generate other cell types during embryonic development and disease progression. This process occurs through a cell differentiation mechanism known as endothelial-mesenchymal transition (EndMT). The generation of mesenchymal cells from endothelium is a crucial step in endothelial cell differentiation to several lineages including fibroblasts, myofibroblasts, mural cells, osteoblasts, chondrocytes, and adipocytes. Such differentiation patterns have been observed in systems of cardiac development, fibrosis, diabetic nephropathy, heterotopic ossification and cancer. Here we describe the EndMT program and discuss the current evidence of EndMT-mediated acquisition of stem cell characteristics and multipotent differentiation capabilities. PMID:22554794

  13. Concise Review: Optimized Strategies for Stem Cell-Based Therapy in Myocardial Repair: Clinical Translatability and Potential Limitation.

    Science.gov (United States)

    Wu, Rongrong; Hu, Xinyang; Wang, Jian'an

    2018-01-13

    Ischemic heart diseases (IHDs) remain major public health problems with high rates of morbidity and mortality worldwide. Despite significant advances, current therapeutic approaches are unable to rescue the extensive and irreversible loss of cardiomyocytes caused by severe ischemia. Over the past 16 years, stem cell-based therapy has been recognized as an innovative strategy for cardiac repair/regeneration and functional recovery after IHDs. Although substantial preclinical animal studies using a variety of stem/progenitor cells have shown promising results, there is a tremendous degree of skepticism in the clinical community as many stem cell trials do not confer any beneficial effects. How to accelerate stem cell-based therapy toward successful clinical application attracts considerate attention. However, many important issues need to be fully addressed. In this Review, we have described and compared the effects of different types of stem cells with their dose, delivery routes, and timing that have been routinely tested in recent preclinical and clinical findings. We have also discussed the potential mechanisms of action of stem cells, and explored the role and underlying regulatory components of stem cell-derived secretomes/exosomes in myocardial repair. Furthermore, we have critically reviewed the different strategies for optimizing both donor stem cells and the target cardiac microenvironments to enhance the engraftment and efficacy of stem cells, highlighting their clinical translatability and potential limitation. Stem Cells 2018. © AlphaMed Press 2018.

  14. Mesenchymal Stem Cells for Treatment of CNS Injury

    OpenAIRE

    Azari, Michael F; Mathias, Louisa; Ozturk, Ezgi; Cram, David S; Boyd, Richard L; Petratos, Steven

    2010-01-01

    Brain and spinal cord injuries present significant therapeutic challenges. The treatments available for these conditions are largely ineffective, partly due to limitations in directly targeting the therapeutic agents to sites of pathology within the central nervous system (CNS). The use of stem cells to treat these conditions presents a novel therapeutic strategy. A variety of stem cell treatments have been examined in animal models of CNS trauma. Many of these studies have used stem cells as...

  15. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.

    Science.gov (United States)

    Bhuptani, Ronak S; Patravale, Vandana B

    2016-12-30

    The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data.

    Science.gov (United States)

    Gamie, Zakareya; MacFarlane, Robert J; Tomkinson, Alicia; Moniakis, Alexandros; Tran, Gui Tong; Gamie, Yehya; Mantalaris, Athanasios; Tsiridis, Eleftherios

    2014-11-01

    Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.

  17. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    Science.gov (United States)

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    Intense scientific research over the past two decades has yielded much knowledge about embryonic stem cells, mesenchymal stem cells from bone marrow, as well as epithelial stem cells from the skin and cornea. However, the billions of dollars spent in this research have not overcome the fundamental difficulties intrinsic to these stem cell strains related to ethics (embryonic stem cells), as well as to technical issues such as accessibility, ease of cell selection and cultivation, and expansion/mass production, while maintaining consistency of cell stemness (all of the stem cell strains already mentioned). Overcoming these technical hurdles has made stem cell technology expensive and any potential translational products unaffordable for most patients. Commercialization efforts have been rendered unfeasible by this high cost. Advanced biomedical research is on the rise in Asia, and new innovations have started to overcome these challenges. The Nobel Prize-winning Japanese development of iPSCs has effectively introduced a possible replacement for embryonic stem cells. For non-embryonic stem cells, cord lining stem cells (CLSCs) have overcome the preexisting difficulties inherent to mesenchymal stem cells from the bone marrow as well as epithelial stem cells from the skin and cornea, offering a realistic, practical, and affordable alternative for tissue repair and regeneration. This novel CLSC technology was developed in Singapore in 2004 and has 22 international patents granted to date, including those from the US and UK. CLSCs are derived from the umbilical cord outer lining membrane (usually regarded as medical waste) and is therefore free from ethical dilemmas related to its collection. The large quantity of umbilical cord lining membrane that can be collected translates to billions of stem cells that can be grown in primary stem cell culture and therefore very rapid and inexpensive cell cultivation and expansion for clinical translational therapies. Both

  18. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  19. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-04-15

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group.

  20. Adipose derived mesenchymal stem cells – Their osteogenicity and osteoblast in vitro mineralization on titanium granule carriers

    DEFF Research Database (Denmark)

    Dahl, Morten; Syberg, Susanne; Jørgensen, Niklas Rye

    2013-01-01

    Adipose derived mesenchymal stem cells (ADMSCs) may be osteogenic, may generate neoangiogenisis and may be progenitors for differentiated osteoblast mineralization. Titanium granules may be suitable as carriers for these cells. The aim was to demonstrate the osteogenic potential of ADMSCs...

  1. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015).

    Science.gov (United States)

    Singh, Aastha; Singh, Abhishek; Sen, Dwaipayan

    2016-06-04

    Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.

  2. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. PMID:25206893

  3. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  4. Therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis

    International Nuclear Information System (INIS)

    Chang Pengyu; Cui Shuang; Luo Jinghua; Qu Chao; Jiang Xin; Qu Yaqin; Dong Lihua

    2014-01-01

    Objective: To evaluate the therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis. Methods: A total of 52 male Sprague-Dawley rats were used in the present study. Herein, 46 rats were randomly selected and irradiated with a dose of 15 Gy at their abdomens. Two hours post-irradiation, 23 rats were randomly selected and infused intraperitoneally with adipose-derived mesenchymal stem cells in passage 6 from young-female donor. The other 23 rats were intraperitoneally infused with PBS. The rest 6 rats were set as normal control. During the first 10 days post-irradiation, peripheral blood-samples from irradiated rats were harvested for testing the levels of IL-10 in serum using ELISA assay. Additionally, after isolating the thymic cells and peripheral blood mononuclear cells, the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in thymus and peripheral blood were tested by flow-cytometry. Finally, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were analyzed by H&E staining and Masson Trichrome staining, respectively. Based on the MPO-immunohistochemistry staining, the type of infiltrated cells was identified. The Kaplan-Meier method was used for analyzing the survival rate of irradiated rats. Results: During a period of 30 days post-irradiation, the irradiated rats receiving adipose-derived mesenchymal stem cells survived longer than those receiving PBS (t = 4.53, P < 0.05). Compared to the irradiated rats with PBS-treatment, adipose-derived mesenchymal stem cells could elevate the level of IL-10 in serum (7 d: t = 13.93, P < 0.05) and increase the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in both peripheral blood (3.5 d: t = 7.72, 7 d: t = 11.11, 10 d: t = 6.99, P < 0.05) and thymus (7 d: t = 16.17, 10 d: t = 12.12, P < 0.05). Moreover, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were mitigated by adipose

  5. Stem cell transplantation and mesenchymal cells to treat autoimmune diseases

    NARCIS (Netherlands)

    Tyndall, Alan; van Laar, Jacob M.

    2016-01-01

    Since the start of the international stem cell transplantation project in 1997, over 2000 patients have received a haematopoietic stem cell transplant (HSCT), mostly autologous, as treatment for a severe autoimmune disease, the majority being multiple sclerosis (MS), systemic sclerosis (SSc) and

  6. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme.

    Science.gov (United States)

    Sneddon, Julie B; Borowiak, Malgorzata; Melton, Douglas A

    2012-11-29

    One goal of regenerative medicine, to use stem cells to replace cells lost by injury or disease, depends on producing an excess of the relevant cell for study or transplantation. To this end, the stepwise differentiation of stem cells into specialized derivatives has been successful for some cell types, but a major problem remains the inefficient conversion of cells from one stage of differentiation to the next. If specialized cells are to be produced in large numbers it will be necessary to expand progenitor cells, without differentiation, at some steps of the process. Using the pancreatic lineage as a model for embryonic-stem-cell differentiation, we demonstrate that this is a solvable problem. Co-culture with organ-matched mesenchyme permits proliferation and self-renewal of progenitors, without differentiation, and enables an expansion of more than a million-fold for human endodermal cells with full retention of their developmental potential. This effect is specific both to the mesenchymal cell and to the progenitor being amplified. Progenitors that have been serially expanded on mesenchyme give rise to glucose-sensing, insulin-secreting cells when transplanted in vivo. Theoretically, the identification of stage-specific renewal signals can be incorporated into any scheme for the efficient production of large numbers of differentiated cells from stem cells and may therefore have wide application in regenerative biology.

  7. MicroRNA-508 defines the stem-like/mesenchymal subtype in colorectal cancer.

    Science.gov (United States)

    Yan, Ting-Ting; Ren, Lin-Lin; Shen, Chao-Qin; Wang, Zhen-Hua; Yu, Ya-Nan; Liang, Qian; Tang, Jia-Yin; Chen, Ying-Xuan; Sun, Dan-Feng; Zgodziński, Witold; Majewski, Marek; Radwan, Piotr; Kryczek, Ilona; Zhong, Ming; Chen, Jinxian; Liu, Qiang; Zou, Weiping; Chen, Hao-Yan; Hong, Jie; Fang, Jing-Yuan

    2018-01-26

    Colorectal cancer (CRC) includes an invasive stem-like/mesenchymal subtype but its genetic drivers, functional and clinical relevance are uncharacterized. Here we report the definition of an altered microRNA (miR) signature defining this subtype which includes a major genomic loss of miR-508. Mechanistic investigations showed that this microRNA affected the expression of cadherin CDH1 and the transcription factors ZEB1, SALL4, BMI1 and BMI1. Loss of miR-508 in CRC was associated with upregulation of the novel hypoxia-induced long non-coding RNA AK000053. Ectopic expression of miR-508 in CRC cells blunted epithelial-mesenchymal transition (EMT), stemness, migration, and invasive capacity in vitro and in vivo. In clinical CRC specimens, expression of miRNA-508 negatively correlated with stemness and EMT-associated gene expression and inversely correlated with patient survival. Overall, our results showed that miRNA-508 is a key functional determinant of the stem-like/mesenchymal CRC subtype and a candidate therapeutic target for its treatment. Copyright ©2018, American Association for Cancer Research.

  8. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives

    Directory of Open Access Journals (Sweden)

    Zomer HD

    2015-09-01

    Full Text Available Helena D Zomer,1 Atanásio S Vidane,1 Natalia N Gonçalves,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil Abstract: Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells. Keywords: cell transplantation, cell therapy, iPS, MSC

  9. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  10. Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications

    Science.gov (United States)

    Konoplyannikov, A. G.; Alekseenskiy, A. E.; Zlotin, S. G.; Smirnov, B. B.; Kalsina, S. Sh.; Lepehina, L. A.; Semenkova, I. V.; Agaeva, E. V.; Baboyan, S. B.; Rjumshina, E. A.; Nosachenko, V. V.; Konoplyannikov, M. A.

    2015-09-01

    Combined use of complexes of the most active chemotherapeutic drugs and detonation nanodiamonds (DND) is a new trend in cancer therapy, which is probably related to selective chemotherapeutic drug delivery by DND to the zone of so-called cancer stem cells (CSC). Stable DND complexes of 4-5 nm size with salinomycin—a strong CSC inhibitor—have been obtained (as a suspension). It has been demonstrated that a complex administration considerably increases the drug antitumor effect on the transplantable tumor of LLC mice. A similar effect has been observed in CSC models in vivo, obtained by exposure of stem cells of normal mice tissues to a carcinogen 1,2-dimethylhydrazine. It has also been found out, that administration of DND complexes with the conditioned medium from mesenchymal stem cells (MSC) cultures to mice results in a considerable stimulation of stem cell pools in normal mice tissues, which can be used in regenerative medicine.

  11. Comparison of mesenchymal stem cells isolated from pulp and periodontal ligament.

    Science.gov (United States)

    Hakki, Sema S; Kayis, Seyit Ali; Hakki, Erdogan E; Bozkurt, S Buket; Duruksu, Gokhan; Unal, Zehra Seda; Turaç, Gizem; Karaoz, Erdal

    2015-02-01

    Cell-based therapy using mesenchymal stem cells (MSCs) seems promising to obtain regeneration of dental tissues. A comparison of tissue sources, including periodontal ligament (PDL) versus pulp (P), could provide critical information to select an appropriate MSC population for designing predictable regenerative therapies. The purpose of this study is to compare the proliferation and stemness and the MSC-specific and mineralized tissue-specific gene expression of P-MSCs and PDL-MSCs. MSCs were obtained from PDL and P tissue of premolars (n = 3) extracted for orthodontic reasons. MSC proliferation was evaluated using a real-time cell analyzer for 160 hours. Telomerase activity was evaluated by a telomeric repeat amplification protocol assay based on enzyme-linked immunosorbent assay. Total RNA was isolated from the MSCs on day 3. A polymerase chain reaction (PCR) array was used to compare the expression of MSC-specific genes. The expression of mineralized tissue-associated genes, including Type I collagen (COL I), runt-related transcription factor 2 (RunX2), bone sialoprotein (BSP), and osteocalcin (OCN) messenger RNA (mRNA), was evaluated using quantitative real-time PCR. Higher proliferation potential and telomerase activity were observed in the P-MSCs compared to PDL-MSCs of premolar teeth. Fourteen of 84 genes related to MSCs were expressed differently in the PDL-MSCs versus the P-MSCs. The expressions of bone morphogenetic protein 2 (BMP2) and BMP6; sex-determining region Y-box 9 (SOX9); integrin, alpha 6 (ITGA6); melanoma cell adhesion molecule (MCAM); phosphatidylinositol glycan anchor biosynthesis, class S (PIGS); prominin 1 (PROM1); ribosomal protein L13A (RPL13A); and microphthalmia-associated transcription factor (MITF) were higher in the P-MSCs compared to the PDL-MSCs, and higher expression of matrix metalloproteinase 2 (MMP2), interleukin (IL)-6, insulin (INS), alanyl (membrane) aminopeptidase (ANPEP), and IL-10 were observed in the PDL-MSCs. However

  12. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    Science.gov (United States)

    Allahverdiyev, Adil M.; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  13. Percutaneous transplantation of human umbilical cord-derived mesenchymal stem cells in a dog suspected to have fibrocartilaginous embolic myelopathy

    OpenAIRE

    Chung, Wook-Hun; Park, Seon-Ah; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Kang, Eun-Hee; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Hwang, Soo-Han; Han, Hoon; Kim, Hwi-Yool

    2013-01-01

    The use of human umbilical cord blood-derived mesenchymal stem cells for cell transplantation therapy holds great promise for repairing spinal cord injury. Here we report the first clinical trial transplantation of human umbilical cord (hUCB)-derived mesenchymal stem cells (MSCs) into the spinal cord of a dog suspected to have fibrocartilaginous embolic myelopathy (FCEM) and that experienced a loss of deep pain sensation. Locomotor functions improved following transplantation in a dog. Based ...

  14. Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors.

    Directory of Open Access Journals (Sweden)

    Prapot Tanthaisong

    Full Text Available Articular cartilage is an avascular, alymphatic, and aneural system with very low regeneration potential because of its limited capacity for self-repair. Mesenchymal stem cells (MSCs are the preferred choice for cell-based therapies. Glycogen synthase kinase 3 (GSK-3 inhibitors are compounds that can induce the Wnt signaling pathway, which is involved in chondrogenesis and cartilage development. Here, we investigated the influence of lithium chloride (LiCl and SB216763 synergistically with TGF-β3 on chondrogenic differentiation in human mesenchymal stem cells derived from Wharton's jelly tissue (hWJ-MSCs. hWJ-MSCs were cultured and chondrogenic differentiation was induced in monolayer and pellet experiments using chondrogenic medium, chondrogenic medium supplemented with LiCl, or SB216763 for 4 weeks. After in vitro differentiation, cultured cells were examined for the expression of Sox9, ACAN, Col2a1, and β-catenin markers. Glycosaminoglycan (GAG accumulation was also examined by Alcian blue staining. The results indicated that SB216763 was more effective than LiCl as evidenced by a higher up-regulation of the expression of cartilage-specific markers, including Sox9, ACAN, Col2a1 as well as GAG accumulation. Moreover, collagen type II expression was strongly observed in cells cultured in the chondrogenic medium + SB216763 as evidenced by western blot analysis. Both treatments appeared to mediate the Wnt signaling pathway by up-regulating β-catenin gene expression. Further analyses showed that all treatments suppressed the progression of chondrocyte hypertrophy, determined by decreased expression of Col10a1 and Runx2. These results indicate that LiCl and SB216763 are potential candidates for further in vivo therapeutic trials and would be of great importance for cartilage regeneration.

  15. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.

    Science.gov (United States)

    Ambre, Avinash H; Katti, Dinesh R; Katti, Kalpana S

    2015-06-01

    Nanoclay modified with unnatural amino acid was used to design a nanoclay-hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two-stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100-595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  16. Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells

    Science.gov (United States)

    Komada, Yukiya; Yamane, Toshiyuki; Kadota, Daiji; Isono, Kana; Takakura, Nobuyuki; Hayashi, Shin-Ichi; Yamazaki, Hidetoshi

    2012-01-01

    Mesenchymal cells arise from the neural crest (NC) or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled) and mesoderm-derived (Mesp1-labeled) cells contribute to the development of dental, thymic, and bone marrow (BM) mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F) assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet–derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC) chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ. PMID:23185234

  17. Biocompatibility of quantum dots (CdSe/ZnS ) in human amniotic membrane-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Wang, Gongping; Zeng, Guangwei; Wang, Caie; Wang, Huasheng; Yang, Bo; Guan, Fangxia; Li, Dongpeng; Feng, Xiaoshan

    2015-06-01

    Amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) are a potential source of mesenchymal stem cells which could be used to repair skin damage. The use of mesenchymal stem cells to repair skin damage requires safe, effective and biocompatible agents to evaluate the effectiveness of the result. Quantum dots (QDs) composed of CdSe/ZnS are semiconductor nanocrystals with broad excitation and narrow emission spectra, which have been considered as a new chemical and fluorescent substance for non-invasively labeling different cells in vitro and in vivo. This study investigated the cytotoxic effects of QDs on hAM-dMSCs at different times following labeling. Using 0.75, 1.5 and 3.0 μL between quantum dots, labeled human amniotic mesenchymal stem cells were collected on days 1, 2 and 4 and observed morphological changes, performed an MTT cell growth assay and flow cytometry for mesenchymal stem cells molecular markers. Quantum dot concentration 0.75 μg/mL labeled under a fluorescence microscope, cell morphology was observed, The MTT assay showed cells in the proliferative phase. Flow cytometry expression CD29, CD31, CD34, CD44, CD90, CD105 and CD106. Within a certain range of concentrations between quantum dots labeled human amniotic mesenchymal stem cells has good biocompatibility.

  18. Cell-Based Therapies for Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Stella Bernardi

    2012-01-01

    Full Text Available In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out.

  19. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis.

    Science.gov (United States)

    Zhu, Yu; Wang, Yuchen; Zhao, Bizeng; Niu, Xin; Hu, Bin; Li, Qing; Zhang, Juntao; Ding, Jian; Chen, Yunfeng; Wang, Yang

    2017-03-09

    Osteoarthritis (OA) is the most common joint disease worldwide. In the past decade, mesenchymal stem cells (MSCs) have been used widely for the treatment of OA. A potential mechanism of MSC-based therapies has been attributed to the paracrine secretion of trophic factors, in which exosomes may play a major role. In this study, we aimed to compare the effectiveness of exosomes secreted by synovial membrane MSCs (SMMSC-Exos) and exosomes secreted by induced pluripotent stem cell-derived MSCs (iMSC-Exos) on the treatment of OA. Induced pluripotent stem cell-derived MSCs and synovial membrane MSCs were characterized by flow cytometry. iMSC-Exos and SMMSC-Exos were isolated using an ultrafiltration method. Tunable resistive pulse-sensing analysis, transmission electron microscopy, and western blots were used to identify exosomes. iMSC-Exos and SMMSC-Exos were injected intra-articularly in a mouse model of collagenase-induced OA and the efficacy of exosome injections was assessed by macroscopic, histological, and immunohistochemistry analysis. We also evaluated the effects of iMSC-Exos and SMMSC-Exos on proliferation and migration of human chondrocytes by cell-counting and scratch assays, respectively. The majority of iMSC-Exos and SMMSC-Exos were approximately 50-150 nm in diameter and expressed CD9, CD63, and TSG101. The injection of iMSC-Exos and SMMSC-Exos both attenuated OA in the mouse OA model, but iMSC-Exos had a superior therapeutic effect compared with SMMSC-Exos. Similarly, chondrocyte migration and proliferation were stimulated by both iMSC-Exos and SMMSC-Exos, with iMSC-Exos exerting a stronger effect. The present study demonstrated that iMSC-Exos have a greater therapeutic effect on OA than SMMSC-Exos. Because autologous iMSCs are theoretically inexhaustible, iMSC-Exos may represent a novel therapeutic approach for the treatment of OA.

  20. Adipose tissue as mesenchymal stem cells source in equine tendinitis treatment

    Directory of Open Access Journals (Sweden)

    Armando de Mattos Carvalho

    2016-12-01

    Full Text Available Tendinitis is an important high-relapse-rate disease, which compromises equine performance and may result in early athletic life end to affected animals. Many therapies have been set to treat equine tendinitis; however, just few result in improved relapse rates, quality of extracellular matrix (ECM and increased biomechanical resistance of the treated tissue. Due to advances in the regenerative medicine, promising results were initially obtained through the implantation of mesenchymal stem cells (MSC derived from the bone marrow in the equine tendon injury. Since then, many studies have been using MSCs from different sources for therapeutic means in equine. The adipose tissue has appeared as feasible MSC source. There are promising results involving equine tendinitis therapy using mesenchymal stem cells from adipose tissue (AdMSCs.

  1. Hydrogel-based nanocomposites and mesenchymal stem cells: a promising synergistic strategy for neurodegenerative disorders therapy.

    Science.gov (United States)

    Albani, Diego; Gloria, Antonio; Giordano, Carmen; Rodilossi, Serena; Russo, Teresa; D'Amora, Ugo; Tunesi, Marta; Cigada, Alberto; Ambrosio, Luigi; Forloni, Gianluigi

    2013-01-01

    Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS) neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs), to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs) that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  2. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  3. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores

    Directory of Open Access Journals (Sweden)

    S Lavenus

    2011-08-01

    Full Text Available Titanium implants are widely used in orthopaedic and dental surgery. Surface properties play a major role in cell and tissue interactions. The adhesion and differentiation of mesenchymal stem cells were studied as a function of nanostructures. Titanium surfaces with nanopores 30, 150 and 300 nm in diameter were prepared by physical vapour deposition. PCR arrays indicated that the expression of integrins was modulated by the nanopore size. Human Mesenchymal Stem Cells (hMSCs exhibited more branched cell morphology on Ti30 than on other surfaces. Ti30 and Ti150 induced osteoblastic differentiation while Ti300 had a limited effect. Overall, nanopores of 30 nm may promote early osteoblastic differentiation and, consequently, rapid osseointegration of titanium implants.

  4. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology.

    Science.gov (United States)

    Hara, Kenji; Yamada, Yoichi; Nakamura, Sayaka; Umemura, Eri; Ito, Kenji; Ueda, Minoru

    2011-12-01

    Tissue engineering and regenerative medicine using stem cell biology has been a promising field for treatment of local and systemic intractable diseases. Recently, stem cells from human exfoliated deciduous teeth (SHED) have been identified as a novel population of stem cells. This study focused on the characterization of SHED as compared with bone marrow-derived mesenchymal stem cells (BMMSCs). We investigated potential characteristics of SHED by using DNA microarray, real-time reverse transcriptase polymerase chain reaction, and immunofluorescence analysis. Multiple gene expression profiles indicated that the expression of 2753 genes in SHED had changed by ≥2.0-fold as compared with that in BMMSCs. One of the most significant pathways that accelerated in SHED was that of bone morphogenetic protein (BMP) receptor signaling, which contains several cascades such as PKA, JNK, and ASK1. When the BMP signaling pathway was stimulated by BMP-2, the expression of BMP-2, BMP-4, Runx2, and DSPP was up-regulated significantly in SHED than that in BMMSCs. Furthermore, the BMP-4 protein was expressed much higher in SHED but not in BMMSCs, as confirmed by immunofluorescence. By using the gene expression profiles, this study indicates that SHED is involved in the BMP signaling pathway and suggests that BMP-4 might play a crucial role in this. These results might be useful for effective cell-based tissue regeneration, including that of bone, pulp, and dentin, by applying the characteristics of SHED. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Murine Mesenchymal Stem Cell Commitment to Differentiation is Regulated by Mitochondrial Dynamics

    OpenAIRE

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J.

    2015-01-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105+CD90+CD73+CD29+CD34? mesodermal precursors which, after in vitro induction, undergo chondro, adipo and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dy...

  6. Efficacy of supraspinatus tendon repair using mesenchymal stem cells along with a collagen I scaffold

    OpenAIRE

    Tornero-Esteban, Pilar; Hoyas, Jos? Antonio; Villafuertes, Esther; Rodr?guez-Bobada, Cruz; L?pez-Gordillo, Yamila; Rojo, Francisco J.; Guinea, Gustavo V.; Paleczny, Anna; L?piz-Morales, Yaiza; Rodriguez-Rodriguez, Luis; Marco, Fernando; Fern?ndez-Guti?rrez, Benjam?n

    2015-01-01

    Objectives: Our main objective was to biologically improve rotator cuff healing in an elderly rat model using mesenchymal stem cells (MSCs) in combination with a collagen membrane and compared against other current techniques. Methods: A chronic rotator cuff tear injury model was developed by unilaterally detaching the supraspinatus (SP) tendons of Sprague-Dawley rats. At 1 month postinjury, the tears were repaired using one of the following techniques: (a) classical surgery using sutures...

  7. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors

    OpenAIRE

    Hyuck Joon Kwon; Gyu Seok Lee; Honggu Chun

    2016-01-01

    Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. However, although preclinical and clinical studies have demonstrated superior effects of ES on cartilage repair, the effects of ES on chondrogenesis remain elusive. Since mesenchyme stem cells (MSCs) have high therapeutic potential for cartilage regeneration, we investigated the actions of ES during chondrogenesis of MSCs. Herein, we demonstrate for the first time that ES enhances expression levels...

  8. Mesenchymal Stromal (Stem) Cell Therapy Fails to Improve Outcomes in Experimental Severe Influenza

    OpenAIRE

    Darwish, Ilyse; Banner, David; Mubareka, Samira; Kim, Hani; Besla, Rickvinder; Kelvin, David J.; Kain, Kevin C.; Liles, W. Conrad

    2013-01-01

    RATIONALE: Severe influenza remains a major public health threat and is responsible for thousands of deaths annually. Increasing antiviral resistance and limited effectiveness of current therapies highlight the need for new approaches to influenza treatment. Extensive pre-clinical data have shown that mesenchymal stromal (stem) cell (MSC) therapy can induce anti-inflammatory effects and enhance repair of the injured lung. We hypothesized that MSC therapy would improve survival, dampen lung in...

  9. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Heřmánková, Barbora; Boháčová, Pavla; Kössl, Jan; Chudíčková, Milada; Hájková, Michaela; Krulová, Magdaléna; Zajícová, Alena; Javorková, Eliška

    2016-01-01

    Roč. 12, č. 6 (2016), s. 654-663 ISSN 1550-8943 R&D Projects: GA ČR(CZ) GA14-12580S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1508; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : mesenchymal stem cells * regulatory B cells * cytokine environment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.967, year: 2016

  10. Ameloblastin Peptides Modulates the Osteogenic Capacity of Human Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Stakkestad, O.; Lyngstadaas, S. P.; Vondrášek, Jiří; Gordeladze, J. O.; Reseland, J. E.

    2017-01-01

    Roč. 8, Feb 7 (2017), č. článku 58. ISSN 1664-042X Institutional support: RVO:61388963 Keywords : ameloblastin * biomineralization * bone growth * exon 5 * human mesenchymal stem cells * osteogenesis * proliferation Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 4.134, year: 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293776/pdf/fphys-08-00058.pdf

  11. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts

    OpenAIRE

    Chowdhury, Ridwana; Webber, Jason P.; Gurney, Mark; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled

    2015-01-01

    Stromal fibroblasts become altered in response to solid cancers, to exhibit myofibroblastic characteristics, with disease promoting influence. Infiltrating mesenchymal stem cells (MSC) may contribute towards these changes, but the factors secreted by cancer cells that impact MSC differentiation are poorly understood.\\ud \\ud We investigated the role of nano-metre sized vesicles (exosomes), secreted by prostate cancer cells, on the differentiation of bone-marrow MSC (BM-MSC), and the subsequent...

  12. The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread

    Science.gov (United States)

    2014-12-01

    Regeneration: Detergent -Mediated Decellularization And Initial Recellularization With Mesenchymal Stem Cells, In Vitro. Tissue Eng. Part A. 2012 Aug 23. 3...immunological skin diseases. Clin Rev Allergy Immunol 33: 144–155. 25. Brown JM, Nemeth K, Kushnir-Sukhov NM, Metcalfe DD, Mezey E (2011) Bone marrow...stromal cells inhibit mast cell function via a COX2-dependent mechanism. Clin Exp Allergy 41: 526–534. 26. Bianchi G, Borgonovo G, Pistoia V

  13. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    OpenAIRE

    Cunping Yin; Yuan Liang; Jian Zhang; Guangping Ruan; Zian Li; Rongqing Pang; Xinghua Pan

    2016-01-01

    Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord o...

  14. Studies on Culture and Osteogenic Induction of Human Mesenchymal Stem Cells under CO2-Independent Conditions

    OpenAIRE

    Chen, Jian; Zhang, Cui; Feng, Yiding; Zong, Chen; Chen, Jiarong; Tang, Zihua; Jia, Bingbing; Tong, Xiangming; Zheng, Qiang; Wang, Jinfu

    2013-01-01

    Human mesenchymal stem cells (hMSCs) are one of the important factors that regulate bone anabolism. Osteoporosis resulting from microgravity during spaceflight may possibly be due to a decrease in osteogenesis mediated by hMSCs. This speculation should be verified through culture and osteogenic induction of hMSCs in a microgravity environment during spaceflight. Control of CO2 is a key component in current experimental protocols for growth, survival, and proliferation of in vitro cultured cel...

  15. Nanotechnology and mesenchymal stem cells with chondrocytes in prevention of partial growth plate arrest in pigs

    Czech Academy of Sciences Publication Activity Database

    Plánka, L.; Srnec, R.; Rauser, P.; Starý, D.; Filová, Eva; Jančář, J.; Juhásová, Jana; Křen, J.; Nečas, A.; Gál, P.

    2012-01-01

    Roč. 156, č. 2 (2012), s. 128-134 ISSN 1213-8118 R&D Projects: GA MZd(CZ) NS9896 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50450515 Institutional support: RVO:68378041 ; RVO:67985904 Keywords : mesenchymal stem cells * growth plate defect * bone bridge Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.990, year: 2012

  16. Microarray based analysis of gene regulation by mesenchymal stem cells in breast cancer

    OpenAIRE

    Zhang, Ming; Gao, Chang E.; Li, Wen Hui; Yang, Yi; Chang, Li; Dong, Jian; Ren, Yan Xin; Chen, De Dian

    2017-01-01

    Breast cancer is one of the most common malignant tumors with a high case-fatality rate among women. The present study aimed to investigate the effects of mesenchymal stem cells (MSCs) on breast cancer by exploring the potential underlying molecular mechanisms. The expression profile of GSE43306, which refers to MDA-MB-231 cells with or without a 1:1 ratio of MSCs, was downloaded from Gene Expression Omnibus database for differentially expressed gene (DEG) screening. The Database for Annotati...

  17. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    International Nuclear Information System (INIS)

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-01

    Highlights: ► Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). ► The adipogenic impact depends strongly on the window of exposure. ► Bisphenol A reduces the potential of MSC to differentiate into adipocytes. ► DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. ► BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  18. Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bunnell Bruce A

    2009-01-01

    Full Text Available Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP. This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.

  19. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Anne [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Alexander [Department of Cardiothoracic Surgery, Martin Luther University, Faculty of Medicine, Halle (Germany); Riemann, Dagmar [Department of Immunology, Martin Luther University, Faculty of Medicine, Halle (Germany); Knelangen, Julia [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Blueher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Koch, Holger [Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Ruhr-University Bochum, Bochum (Germany); Fischer, Bernd [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  20. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.