WorldWideScience

Sample records for mercury ions

  1. Micro Mercury Ion Clock (MMIC)

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate micro clock based on trapped Hg ions with more than 10x size reduction and power; Fractional frequency stability at parts per 1014 level, adequate for...

  2. One-millipound mercury ion thruster

    Science.gov (United States)

    Hyman, J., Jr.; Dulgeroff, C. R.; Kami, S.; Williamson, W. S.

    1975-01-01

    A mercury ion thruster has been developed for efficient operation at the nominal 1-mlb thrust level with a specific impulse of about 3,000 sec and a total power consumption of about 120 W. At a beam voltage of 1,200 V and beam current of 72 mA, the discharge chamber operates with a propellant efficiency of 93.8% at an ion-generation energy of 276 eV/ion. The 8-cm diameter thruster advances proven component technology to assure the capability for thruster operation over an accumulated beam-on time in excess of 20,000 hours with a capability for 10,000 on-off duty cycles. Discharge chamber optimization has combined stable current-voltage characteristics with high performance efficiency by careful placement of the discharge cathode near the location of a magnetic-field zero just upstream of the thruster endplate.

  3. Fluorescent sensing and determination of mercury (II) ions in water ...

    African Journals Online (AJOL)

    In this study we report on a fluorescent sensing probe based on a naphthyl azo dye modified dibenzo-18-crown-6-ether (DB18C6) for the detection and determination of mercury (II) ions in water. The probe showed high sensitivity and selectivity towards the mercury (II) ion among various alkali, alkaline earth, and transition ...

  4. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    Science.gov (United States)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  5. Intensification Behavior of Mercury Ions on Gold Cyanide Leaching

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-01-01

    Full Text Available Cyanidation is the main method used to extract gold from gold raw materials; however, a serious problem with this method is the low leaching rate. In order to improve gold leaching, the intensification behavior of mercury ions on gold cyanide leaching, for two types of materials, sulphide gold concentrate and oxide gold ore, was investigated. The results showed that mercury ions, with only a 10−5 M dosage, could significantly intensify leaching and gold recovery. The dissolution behavior of gold plate was also intensified by 10−5 M mercury ions. Microstructure analysis showed that mercury ions intensified the cyanidation corrosion of the gold surface, resulting in a loose structure, where a large number of deep ravines and raised particles were evident across the whole gold surface. The loose structure added contact surface between the gold and cyanide, and accelerated gold dissolution. Moreover, mercury ions obstructed the formation of insoluble products, such as AuCN, Au(OHCN, and Au(OHx, that lead to a passivation membrane on the gold surface, reducing contact between the gold and cyanide. These effects, brought about by mercury ions, change the structure and product of the gold surface during gold cyanidation and promote gold leaching.

  6. Dynamics of electrons and heavy ions in Mercury's magnetosphere

    International Nuclear Information System (INIS)

    Ip, W.H.

    1987-01-01

    The present investigation of Mercury magnetosphere processes employs simple models for the adiabatic acceleration and convection of equatorially mirroring charged particles, as well as the current sheet acceleration effect and the acceleration of such exospheric ions as that of Na(+) by both electric and magnetic magnetospheric fields near Mercury's surface. The large gyroradii of such heavy ions as those of Na allow surface reimpact as well as magnetopause-interception losses to occur; gyromotion-derived kinetic energy could in the case of the latter process account for the loss of as many as half of the planet's exospheric ions. 27 references

  7. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  8. Functionalized diatom silica microparticles for removal of mercury ions

    International Nuclear Information System (INIS)

    Yu Yang; Addai-Mensah, Jonas; Losic, Dusan

    2012-01-01

    Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH 2 ) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g -1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  9. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  10. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    Science.gov (United States)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  11. Prediction of plasma properties in mercury ion thrusters

    Science.gov (United States)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  12. Advanced-technology 30-cm-diameter mercury ion thruster

    Science.gov (United States)

    Beattie, J. R.; Kami, S.

    1982-01-01

    An advanced-technology mercury ion thruster designed for operation at high thrust and high thrust-to-power ratio is described. The laboratory-model thruster employs a highly efficient discharge-chamber design that uses high-field-strength samarium-cobalt magnets arranged in a ring-cusp configuration. Ion extraction is achieved using an advanced three-grid ion-optics assembly which utilizes flexible mounts for supporting the screen, accel, and decel electrodes. Performance results are presented for operation at beam currents in the range from 1 to 5 A. The baseline specific discharge power is shown to be about 125 eV/ion, and the acceptable range of net-to-total accelerating-voltage ratio is shown to be in the range of 0.2-0.8 for beam currents in the range of 1-5 A.

  13. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Trapped Mercury 199 Ion Frequency Standard

    Science.gov (United States)

    1981-12-01

    ing resul t t h a t could possibly be explained by a for tu i t ious cancel la t ion of t w o e f f ec t s : t h e second order doppler...h a t t h e helium cooling is e f f ec t ive . O the r e f f e c t s of t he helium include nar rower l ines and a la rger s ignal indicat...Desaintfuscien, K. Barjllet, J . Viennet, P. Pet i t , and C. Audoin, Appl. Phys. 24, 107 (1981). 4. R, Ifflaender and G. Werth; Metrologia 13, 167 (1977

  15. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    International Nuclear Information System (INIS)

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.; Klarl, Barbara A.; Niemoeller, Olivier; Wieder, Thomas; Huber, Stephan M.; Duranton, Christophe; Lang, Florian

    2006-01-01

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg 2+ -induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg 2+ in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca 2+ -sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca 2+ activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca 2+ . The present experiments explored the effect of Hg 2+ ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg 2+ (1 μM) indeed significantly increased annexin binding from 2.3 ± 0.5% (control condition) to 23 ± 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K + -selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by ∼66% (n = 7) after challenge with mercury (1 μM). In conclusion, mercury ions activate a clotrimazole-sensitive K + -selective conductance leading to transient cell shrinkage. Moreover, Hg 2+ increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg 2+

  16. Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury

    Science.gov (United States)

    Aizawa, Sae; Delcourt, Dominique; Terada, Naoki

    2018-01-01

    We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they E × B drift across large-scale rolled up vortices. This energization is controlled by the characteristics of the electric field burst encountered along the particle path, the net energy change realized corresponding to the maximum E × B drift energy. This nonadiabatic energization also is responsible for prominent scattering of the particles toward the direction perpendicular to the magnetic field.

  17. Naked-eye sensor for rapid determination of mercury ion.

    Science.gov (United States)

    Liu, Jing; Wu, Dapeng; Yan, Xiaohui; Guan, Yafeng

    2013-11-15

    A naked-eye paper sensor for rapid determination of trace mercury ion in water samples was designed and demonstrated. The mercury-sensing rhodamine B thiolactone was immobilized in silica matrices and the silica matrices were impregnated firmly and uniformly in the filter paper. As water samples flow through the filter paper, the membrane color will change from white to purple red, which could be observed obviously with naked eye, when concentration of mercury ions equals to or exceeds 10nM, the maximum residue level in drinking water recommended by U.S. EPA. The color change can also be recorded by a flatbed scanner and then digitized, reducing the detection limit of Hg(2+) down to 1.2 nM. Moreover, this method is extremely specific for Hg(2+) and shows a high tolerance ratio of interferent coexisting ions. The presence of Na(+) (2 mM), K(+) (2 mM), Fe(3+) (0.1 mM), Zn(2+) (0.1 mM), Mg(2+) (0.1 mM), Ni(2+) (50 μM), Co(2+) (50 μM), Cd(2+) (50 μM), Pb(2+) (50 μM), Cu(2+) (50 μM) and Ag(+) (3.5 μM) did not interfere with the detection of Hg(2+) (25 nM). Finally, the present method was applied in the detection of Hg(2+) in mineral water, tap water and pond water. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Plasma property and performance prediction for mercury ion thrusters

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1979-01-01

    The discharge chambers of mercury ion thrusters are modelled so the principal effects and processes which govern discharge plasma properties and thruster performance are described. The conservation relations for mass, charge and energy when applied to the Maxwellian electron population in the ion production region yield equations which may be made one-dimensional by the proper choice of coordinates. Solutions to these equations with the appropriate boundary conditions give electron density and temperature profiles which agree reasonably well with measurements. It is then possible to estimate plasma properties from thruster design data and those operating parameters which are directly controllable. By varying the operating parameter inputs to the computer code written to solve these equations, perfromance curves are obtained which agree quite well with measurements.

  19. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  20. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    Science.gov (United States)

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  1. Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion

    Science.gov (United States)

    Ma, Yusha; Mei, Jing; Bai, Jianliang; Chen, Xu; Ren, Lili

    2018-05-01

    A novel ratiometric fluorescent nanosensor based on carbon dots has been synthesized via bonding rhodamine B hydrazide to the carbon dots surface by an amide reaction. The ratiometric fluorescent nanosensor showed only a single blue fluorescence emission around 450 nm. While, as mercury ion was added, due to the open-ring of rhodamine moiety bonded on the CDs surface, the orange emission of the open-ring rhodamine would increase obviously according to the concentration of mercury ion, resulting in the distinguishable dual emissions at 450 nm and 575 nm under a single 360 excitation wavelength. Meanwhile, the ratiometric fluorescent nanosensor based on carbon dots we prepared is more sensitive to qualitative and semi-quantitative detection of mercury ion in the range of 0–100 μM, because fluorescence changes gradually from blue to orange emission under 365 nm lamp with the increasing of mercury ion in the tested solution.

  2. Screened ion-ion interaction in mercury-chain compounds: Single chain

    International Nuclear Information System (INIS)

    Mohan, M.M.; Griffin, A.

    1985-01-01

    At room temperature, the mercury chains in Hg/sub 3-delta/AsF 6 exhibit phonons characteristic of a one-dimensional lattice. We calculate the screening of the Hg ion-ion interaction in a single chain by electrons moving in a cylindrical potential of finite radius, within the random-phase approximation. The resulting Bohm-Staver-type expression for the phonon velocity is (Z 2 mN/sub I//MN/sub e/)/sup 1/2/v/sub F/, where Z is the Hg ionic charge and N/sub I/ (N/sub e/) is the number of ions (electrons) per unit length. Use of the Tomonaga-Luttinger solution for the electronic response function (keeping only the small-momentum scattering processes) just renormalizes the Fermi velocity in this expression

  3. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  4. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George

    2009-04-30

    Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.

  5. Mercury removal from SRP radioactive waste streams using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.; Ebra, M.A.

    1986-01-01

    Mercury is present in varying concentrations in some Savannah River Plant (SRP) waste streams as a result of its use as a catalyst in the dissolution of fuel elements composed of uranium-aluminum alloys. It may be desirable to remove mercury from these streams before treatment of the waste for incorporation in glass for long-term storage. The glass forming process will also create waste from which mercury will have to be removed. The goal of mercury would be to eliminate ultimate emission of the toxic substance into the environment. This paper describes tests that demonstrate the feasibility of using a specific cation exchange resin, Duolite GT-73 for the removal of mercury from five waste streams generated at the SRP. Two of these streams are dilute; one is the condensate from a waste evaporator while the other is the effluent from an effluent treatment plant now under development. The three other streams are related to the Defense Waste Processing Facility (DWPF) that is being built at SRP. One of these streams is a concentrated salt solution (principally sodium nitrate and sodium hydroxide) that constitutes the soluble fraction of SRP waste and contains 20% mercury in the waste. The second stream is a slurry of the insoluble components in SRP waste and contains 80% of the mercury. The third stream is the offgas condensate from the glass melter system in the DWPF

  6. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents.

    Science.gov (United States)

    Li, Xin-Gui; Feng, Hao; Huang, Mei-Rong

    2009-01-01

    The highest Hg-ion adsorbance so far, namely up to 2063 mg g(-1), has been achieved by poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Sorption of Hg ions occurs mainly by redox and chelation mechanisms (see scheme), but also by ion exchange and physisorption.Poly(aniline (AN)-co-5-sulfo-2-anisidine (SA)) nanoparticles were synthesized by chemical oxidative copolymerization of AN and SA monomers, and their extremely strong adsorption of mercury ions in aqueous solution was demonstrated. The reactivity ratios of AN and SA comonomers were found to be 2.05 and 0.02, respectively. While AN monomer tends to homopolymerize, SA monomer tends to copolymerize with AN monomer because of the great steric hindrance and electron-attracting effect of the sulfo groups, despite the effect of conjugation of the methoxyl group with the benzene ring. The effects of initial mercury(II) concentration, sorption time, sorption temperature, ultrasonic treatment, and sorbent dosage on mercury-ion sorption onto AN/SA (50/50) copolymer nanoparticles with a number-average diameter of around 120 nm were significantly optimized. The results show that the maximum Hg-ion sorption capacity on the particulate nanosorbents can even reach 2063 mg of Hg per gram of sorbent, which would be the highest Hg-ion adsorbance so far. The sorption data fit to the Langmuir isotherm, and the process obeys pseudo-second-order kinetics. The IR and UV/Vis spectral data of the Hg-loaded copolymer particles suggest that some mercury(II) was directly reduced by the copolymer to mercury(I) and even mercury(0). A mechanism of sorption between the particles and Hg ions in aqueous solution is proposed, and a physical/ion exchange/chelation/redox sorption ratio of around 2/3/45/50 was found. Copolymer nanoparticles may be one of the most powerful and cost-effective sorbents of mercury ions, with a wide range of potential applications for the efficient removal and even recovery of the mercury ions from aqueous solution.

  7. MESSENGER Observations of the Spatial Distribution of Planetary Ions Near Mercury

    Science.gov (United States)

    Zurbuchen, Thomas H.; Raines, Jim M.; Slavin, James A.; Gershman, Daniel J.; Gilbert, Jason A.; Gloeckler, George; Anderson, Brian J.; Baker, Daniel N.; Korth, Haje; Krimigis, Stamatios M.; hide

    2011-01-01

    Global measurements by MESSENGER of the fluxes of heavy ions at Mercury, particularly sodium (Na(+)) and oxygen (O(+)), exhibit distinct maxima in the northern magnetic-cusp region, indicating that polar regions are important sources of Mercury's ionized exosphere, presumably through solar-wind sputtering near the poles. The observed fluxes of helium (He(+)) are more evenly distributed, indicating a more uniform source such as that expected from evaporation from a helium-saturated surface. In some regions near Mercury, especially the nightside equatorial region, the Na(+) pressure can be a substantial fraction of the proton pressure.

  8. Naked eye and smartphone applicable detection of toxic mercury ions using fluorescent carbon nanodots

    OpenAIRE

    BAÇ, BURCU; GENÇ, RÜKAN

    2017-01-01

    Chitosan passivated carbon nanodots (C-Dots$_{CHIT})$ were synthesized from expired molasses via a simple and green thermal synthesis procedure. As-synthesized C-Dots were nitrogen-doped (NC-Dots$_{CHIT})$ by posttreatment with liquid ammonia and used as nanoprobes for fluorometric detection of mercury ions (Hg(II)$_{aq.})$. Fluorescence response of NC-Dots$_{CHIT}$ in the presence of mercury was evaluated and compared with that of the polyethylene glycol passivated C-Dots$_{PEG}$. This sensi...

  9. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  10. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    OpenAIRE

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s)...

  11. Chitosan-stabilized Silver Nanoparticles for Colorimetric Assay of Mercury (II) Ions in aqueous system

    Science.gov (United States)

    Zarlaida, Fitri; Adlim, M.; Syukri Surbakti, M.; Fairuz Omar, Ahmad

    2018-05-01

    Mercury is considered as dangerous pollutant. Among the many form of mercury, the most stable and soluble in water is mercury (II) ions which it cause threat to human health and surroundings. Silver nanoparticles (AgNPs) used in this method were prepared by chitosan (chi) which act as stabilizing agent. The Chi-AgNPs has good dispersity with size ranging from 2.50 to 6.00 nm as shown by transmission electron microscopy (TEM) analysis and it is stable for 3 months. Color of Chi-AgNPs fades from brownish-yellow to colorless only with Hg2+ ions, but it shows no significant changes upon addition of other metal ions such as Al3+, Ba2+, Ca2+, Cd2+, Cr3+, Co2+, Cu2+, Fe2+, K+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, and Zn2+. The detection limit for Hg2+ ions by bare-eye is estimated to be ∼1µM. This method can be used for sensing mercury(II) ions in numerous water samples.

  12. Planetary Ions at Mercury: Unanswered Questions After MESSENGER

    Science.gov (United States)

    Raines, J. M.

    2018-05-01

    We will discuss the key open questions relating to planetary ions, including the behavior of recently created photoions, the near absence of Ca+ / K+ in MESSENGER ion measurements, and the role of ion sputtering in the system.

  13. Mercury

    Science.gov (United States)

    ... that mercuric chloride and methylmercury are possible human carcinogens. top How does mercury affect children? Very young ... billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum ...

  14. Development of a disposable mercury ion-selective optode based on tritylpicolinamide as ionophore

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Dam, H.H.; Reinhoudt, David; Verboom, Willem

    2007-01-01

    A disposable ion-selective optode for mercury based on trityl-picolinamide (T-Pico) as neutral ionophore was developed. The sensing layer consist of plasticised PVC incorporating T-Pico as a selective ionophore for Hg2+, ETH 5418 as a chromoionophore, and potassium

  15. Mercury

    CERN Document Server

    Mahoney, T J

    2014-01-01

    This gazetteer and atlas on Mercury lists, defines and illustrates every named (as opposed to merely catalogued) object and term as related to Mercury within a single reference work. It contains a glossary of terminology used, an index of all the headwords in the gazetteer, an atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer, and appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets. This book is useful for the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature.

  16. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  17. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor.

    Science.gov (United States)

    Lin, Shu Min; Geng, Shuo; Li, Na; Li, Nian Bing; Luo, Hong Qun

    2016-05-01

    Mercury ion is one of the most hazardous metal pollutants that can cause deleterious effects on human health and the environment even at low concentrations. It is necessary to develop new mercury detection methods with high sensitivity, specificity and rapidity. In this study, a novel and green strategy for synthesizing D-penicillamine-capped copper nanoparticles (DPA-CuNPs) was successfully established by a chemical reduction method, in which D-penicillamine and ascorbic acid were used as stabilizing agent and reducing agent, respectively. The as-prepared DPA-CuNPs showed strong red fluorescence and had a large Stoke's shift (270nm). Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, fluorescence spectroscopy, and ultraviolet-visible spectrophotometry were utilized to elucidate the possible fluorescence mechanism, which could be aggregation-induced emission effect. Based on the phenomenon that trace mercury ion can disperse the aggregated DPA-CuNPs, resulting in great fluorescence quench of the system, a sensitive and selective assay for mercury ion in aqueous solution with the DPA-CuNPs was developed. Under optimum conditions, this assay can be applied to the quantification of Hg(2+) in the 1.0-30μM concentration range and the detection limit (3σ/slope) is 32nM. The method was successfully applied to determine Hg(2+) in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Removal of mercury from sludge using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.

    1984-01-01

    Laboratory scale batch tests and fluidized bed column tests show that ES-465 cation exchange resin removes >90% of the mercury from formated simulated sludge and formated high-level radioactive sludge. Similar experiments using formated simulated sludge which has been steam stripped indicated that the resin is capable of removing about 75% of the mercury from that system in the same time 90% could be removed from sludge which has not been steam stripped. The percent removed can be improved by operating at higher temperatures. Early batch experiments showed that abrasion from vigorous stirring of the sludge/ES-465 mixture caused the resin to degrade into particles too small to separate from the slurry after reaction. To protect the resin from abrasion, a resin-in-sludge mode of operation was designed wherein the sludge slurry contacts the resin by flowing through a bed retained between two screens in a column. The process has been demonstrated using both a 0.5 in. internal 0.5 in. diameter upflow column containing two milliliters of resin and a 6.4 in. internal diameter stirred bed downflow column containing one liter of resin

  19. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    Science.gov (United States)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  20. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    International Nuclear Information System (INIS)

    Gao Shuyan; Jia Xiaoxia; Chen Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag + /Ag (0.7996 V) and Hg 2+ /Hg 2 2+ (0.920 V) that makes colorless Hg 2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg 2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg 2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg 2+ ions sensing motif shows great promise for sensing Hg 2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  1. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shuyan, E-mail: shuyangao@htu.cn; Jia Xiaoxia; Chen Yanli [Henan Normal University, College of Chemistry and Environmental Science (China)

    2013-01-15

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag{sup +}/Ag (0.7996 V) and Hg{sup 2+}/Hg{sub 2}{sup 2+} (0.920 V) that makes colorless Hg{sup 2+} ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg{sup 2+} ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg{sup 2+} ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg{sup 2+} ions sensing motif shows great promise for sensing Hg{sup 2+} ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  2. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    Science.gov (United States)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  3. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.

    Science.gov (United States)

    Jiao, Yang; Zhang, Lei; Zhou, Peng

    2016-04-01

    This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Status of the J-series 30-cm mercury ion thruster

    Science.gov (United States)

    Kami, S.; Dulgeroff, C. R.; Bechtel, R. T.

    1982-01-01

    This paper describes the status of the 30-cm J-series mercury ion thruster. This thruster was baselined for the Solar Electric Propulsion System (SEPS) vehicle. This thruster is described and several modifications plus suggested modifications are presented. Some of the modifications resulted from tests performed with the thruster. The operational characteristics of eight J-series thrusters are presented. Isolator contamination and flake formation are also discussed.

  5. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.

    Science.gov (United States)

    Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu

    2014-07-15

    An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.

  6. Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury

    Science.gov (United States)

    Aizawa, S.; Delcourt, D.; Terada, N.

    2018-05-01

    We examine the particle transport via the Kelvin-Helmholtz instability by using simulation. The heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they ExB drift across large-scale rolled up vortices.

  7. The activation of aluminium by mercury ions in non-aggressive media

    Energy Technology Data Exchange (ETDEWEB)

    Bessone, J.B. [INIEC-Dto de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)]. E-mail: jbessone@criba.edu.ar

    2006-12-15

    The presence of Hg at concentration less than 300 ppm in Al base alloys causes their passivation breakdown. On alloys used as sacrificial anodes, it causes a major lowering (>0.3 V) in their operational potential in chloride media. Mercury as trace constituent in the natural gas stream causes severe damage to cryogenic heat exchangers. The present paper presents evidences of the mechanism by which mercury produces its pronounced effect in aqueous non-aggressive media. The work was carried out using pure (99.99%) aluminium and mercury (II) acetate solutions of different concentrations and pH. Open circuit potential-time responses were obtained. The surface effects were followed by means of scanning microscopy and EDAX/X-Ray analysis. The results demonstrate that immediately after immersion, the initial air-formed oxide film underwent a dynamic crack-healing process at flaws in the film, possible associated to grain boundaries. The subsequent healing process, if any, depends on the media composition. Thus, in this special case, Hg{sup 2+} ions can be directly reduced on the bare aluminium, reaching a true metallic contact, and initiating surface diffusion. This enables the formation of an amalgam. Aluminium atoms diffuse through the liquid mercury and undergo oxidation at the amalgam/electrolyte interface. This process is responsible for the oxide detachment (by undermining) and the attack morphology (i.e., wide cavities). The presence of aggressive anions is not needed to initiate activation.

  8. Detection of mercury ions using L-cysteine modified electrodes by anodic stripping voltammetric method

    Science.gov (United States)

    Vanitha, M.; Balasubramanian, N.; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    The detection of contaminants in wastewater is of massive importance in today's situation as they pose a serious threat to the environment as well as humans. One such vital contaminants is mercury and its compound, the reported mercury detectors grieve from low sensitivity, high cost and slow response. In the present work graphene based electrode material is developed for sensing mercury contaminants in wastewater using electrochemical technique. The synthesized material graphene oxide (GO) modified with L-Cysteine in presence of polyvinylpyrrolidone (PVP) as capping agent was characterized using SEM, TEM and Raman Spectroscopic analysis. It is ascertained from the morphological characterization that the nanocomposite exhibits a spherical morphology. The L-cysteine modified graphene oxide electrode is electrochemically characterized using redox couple [Fe(CN)63-/4-] and electrochemical impedance spectroscopic (EIS) analysis. Electrochemical sensing of Hg (II) ions in solution was done using Square wave anodic stripping voltammetry (SWASV). The incorporation of graphene significantly increases the sensitivity and selectivity towards mercury sensing.

  9. Shedding light on the mercury mass discrepancy by weighing Hg52+ ions in a Penning trap

    International Nuclear Information System (INIS)

    Fritioff, T.; Bluhme, H.; Schuch, R.; Bergstroem, I.; Bjoerkhage, M.

    2003-01-01

    In their nuclear tables Audi and Wapstra have pointed out a serious mass discrepancy between their extrapolated values for the mercury isotopes and those from a direct measurement by the Manitoba group. The values deviate by as much as 85 ppb from each other with claimed uncertainties of about 16 and 7 ppb, respectively. In order to decide which values are correct the masses of the 198 Hg and 204 Hg isotopes have been measured in the Stockholm Penning trap mass spectrometer SMILETRAP using 52+ ions. This charge state corresponds to a filled Ni electron configuration for which the electron binding energy can be accurately calculated. The mass values obtained are 197.966 768 44(43) u for 198 Hg and 203.973 494 10(39) u for 204 Hg. These values agree with those measured by the Manitoba group, with a 3 times lower uncertainty. This measurement was made possible through the implementation of a cooling technique of the highly charged mercury ions during charge breeding in the electron beam ion source used for producing the Hg 52+ ions

  10. On the Effect of IMF Turning on Ion Dynamics at Mercury

    Science.gov (United States)

    Delcourt, D. C.; Moore, T. E.; Fok, M.-C. H.

    2011-01-01

    We investigate the effect of a rotation of the Interplanetary Magnetic Field (IMF) on the transport of magnetospheric ion populations at Mercury. We focus on ions of planetary origin and investigate their large-scale circulation using three-dimensional single-particle simulations. We show that a nonzero Bx component of the IMF leads to a pronounced asymmetry in the overall circulation pattern . In particular, we demonstrate that the centrifugal acceleration due to curvature of the E x B drift paths is more pronounced in one hemisphere than the other, leading to filling of the magnetospheric lobes and plasma sheet with more or less energetic material depending upon the hemisphere of origin. Using a time-varying electric and magnetic field model, we investigate the response of ions to rapid (a few tens of seconds) re-orientation of the IMF. We show that, for ions with gyroperiods comparable to the field variation time scale, the inductive electric field should lead to significant nonadiabatic energization, up to several hundreds of eVs or a few keVs. It thus appears that IMP turning at Mercury should lead to localized loading of the magnetosphere with energetic material of planetary origin (e.g., Na+).

  11. Visual and sensitive fluorescent sensing for ultratrace mercury ions by perovskite quantum dots.

    Science.gov (United States)

    Lu, Li-Qiang; Tan, Tian; Tian, Xi-Ke; Li, Yong; Deng, Pan

    2017-09-15

    Mercury ions sensing is an important issue for human health and environmental safety. A novel fluorescence nanosensor was designed for rapid visual detection of ultratrace mercury ions (Hg 2+ ) by using CH 3 NH 3 PbBr 3 perovskite quantum dots (QDs) based on the surface ion-exchange mechanism. The synthesized CH 3 NH 3 PbBr 3 QDs can emitt intense green fluorescence with high quantum yield of 50.28%, and can be applied for Hg 2+ sensing with the detection limit of 0.124 nM (24.87 ppt) in the range of 0 nM-100 nM. Furthermore, the interfering metal ions have no any influence on the fluorescence intensity of QDs, showing the perovskite QDs possess the high selectivity and sensitivity for Hg 2+ detection. The sensing mechanism of perovskite QDs for Hg 2+ is has also been investigated by XPS, EDX studies, showing Pb 2+ on the surface of perovskite QDs has been partially replaced by Hg 2+ . Spot plate test shows that the perovskite QDs can also be used for visual detection of Hg 2+ . Our research indicated the perovskite QDs are promising candidates for the visual fluorescence detection of environmental micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    Science.gov (United States)

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed.

    Science.gov (United States)

    Douglas, Thomas A; Sturm, Matthew; Blum, Joel D; Polashenski, Christopher; Stuefer, Svetlana; Hiemstra, Christopher; Steffen, Alexandra; Filhol, Simon; Prevost, Romain

    2017-10-03

    Atmospheric mercury (Hg) is deposited to Polar Regions during springtime atmospheric mercury depletion events (AMDEs) that require halogens and snow or ice surfaces. The fate of this Hg during and following snowmelt is largely unknown. We measured Hg, major ions, and stable water isotopes from the snowpack through the entire spring melt runoff period for two years. Our small (2.5 ha) watershed is near Barrow (now Utqiaġvik), Alaska. We measured discharge, made 10 000 snow depths, and collected over 100 samples of snow and meltwater for chemical analysis in 2008 and 2009 from the watershed snowpack and ephemeral stream channel. Results show an "ionic pulse" of mercury and major ions in runoff during both snowmelt seasons, but major ion and Hg runoff concentrations were roughly 50% higher in 2008 than in 2009. Though total discharge as a percent of total watershed snowpack water equivalent prior to the melt was similar in both years (36% in 2008 melt runoff and 34% in 2009), it is possible that record low precipitation in the summer of 2007 led to the higher major ion and Hg concentrations in 2008 melt runoff. Total dissolved Hg meltwater runoff of 14.3 (± 0.7) mg/ha in 2008 and 8.1 (± 0.4) mg/ha in 2009 is five to seven times higher than that reported from other arctic watersheds. We calculate 78% of snowpack Hg was exported with snowmelt runoff in 2008 and 41% in 2009. Our results suggest AMDE Hg complexed with Cl - or Br - may be less likely to be photochemically reduced and re-emitted to the atmosphere prior to snowmelt, and we estimate that roughly 25% of the Hg in snowmelt is attributable to AMDEs. Projected Arctic warming, with more open sea ice leads providing halogen sources that promote AMDEs, may provide enhanced Hg deposition, reduced Hg emission and, ultimately, an increase in snowpack and snowmelt runoff Hg concentrations.

  14. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    Science.gov (United States)

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  15. Histidine–dialkoxyanthracene dyad for selective and sensitive detection of mercury ions

    KAUST Repository

    Patil, Sachin

    2017-12-18

    Histidine-dialkoxyanthracene (HDA) was synthesised as a turn off type fluorescent sensor for fast and sensitive detection of mercury ions (Hg2+) in aqueous media. The two histidine moieties act as ‘claws’ to selectively complex Hg2+. The binding ratio of HDA to Hg2+ was 1:1 (metal-to-ligand ratio). The association constant for Hg2+ towards the receptor HDA obtained from Benesi–Hildebrand plot was found to be 3.22 × 104 M−1 with detection limit as low as 4.7 nM (0.94 μg/L).

  16. Selective and sensitive fluorescence-shift probes based on two dansyl groups for mercury(ii) ion detection.

    Science.gov (United States)

    Ma, Li-Jun; Liu, Jialun; Deng, Lefang; Zhao, Meili; Deng, Zhifu; Li, Xutian; Tang, Jian; Yang, Liting

    2014-11-01

    Two probes ( and ) bearing two dansyl fluorophores were synthesized and applied to the detection of mercury(ii) ions in aqueous solution. These probes exhibited a selective response to Hg(2+) in a buffered solution, with high sensitivity and a unique fluorescence response signal which displayed a blue-shift effect in the fluorescence emission peak. The Hg(2+) recognition mechanisms of the probes were determined by NMR spectroscopy, ESI-MS and UV-vis spectroscopy. The results showed that probe and mercury(ii) ions formed an unusual 2:2 stoichiometric ratio complex, while probe and Hg(2+) formed a multidentate complex with a stoichiometric ratio of 2:1.

  17. Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2012-11-01

    Full Text Available A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD on ZnO nanorods (ZnO-NRs has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS. The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10−6 mM to 0.5 × 10−4 mM, and from 0.5 × 10−4 mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10−3 mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users.

  18. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods.

    Science.gov (United States)

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-11-06

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10(-6) mM to 0.5 × 10(-4) mM, and from 0.5 × 10(-4) mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10(-3) mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users.

  19. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  20. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.

    Science.gov (United States)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E; Ding, Zhong-Tao

    2015-02-25

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A molecular-gap device for specific determination of mercury ions

    Science.gov (United States)

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-11-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy.

  2. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  3. High-thrust and low-power operation of a 30-cm-diameter mercury ion thruster

    Science.gov (United States)

    Beattie, J. R.; Kami, S.

    1981-01-01

    An investigation of a 30-cm-diameter mercury ion thruster designed for high-thrust and low-power operation is described. Experimental results are presented which indicate that good performance and long lifetime are achieved by using a boundary magnetic field arrangement to confine the ionizing electrons. Details of advanced ion-optics designs are discussed, and performance measurements obtained with an advanced two-grid ion-optics assembly are presented. Scaling of the state-of-the-art hollow cathode for higher emission-current capability is described, and performance and lifetime measurements are presented for the scaled cathode.

  4. Determination of total mercury in seafood by ion-selective electrodes based on a thiol functionalized ionic liquid

    Directory of Open Access Journals (Sweden)

    Juan Miao

    2018-04-01

    Full Text Available A mercury(II ion-selective electrode with an ionic liquid (IL, 1-methyl-2-butylthioimidazolium bis(trifluoromethanesulphonylimide ([C1C4Sim]NTf2 as active material was constructed. Parameters affecting the performance of the electrodes such as the dosages of the IL and carbon nanotubes and the aqueous pH values were investigated. Experimental results indicated that the optimal composition of the electrode filling material was 47.6% [C1C4Sim]NTf2, 47.6% tetrabutylphosphonium bis(trifluoromethanesulphonylimide (TBPNTf2 and 4.8% carboxylic multi-walled carbon nanotubes (MWCNTs-COOH. Under the selected conditions, the proposed electrodes showed a good linear response in the concentration range of 10−10–10−5 mol L−1 and had a detection limit of 4.1 × 10−11 mol L−1. No great interference from common metal ions was found. The proposed electrodes were applied to determine Hg2+ in seafood samples; the results were comparable to those of the direct mercury analyzer. Keywords: Ionic liquids (ILs, Mercury, Ion-selective electrodes, Carbon nanotubes, Seafood

  5. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  6. MRP2 and the Handling of Mercuric Ions in Rats Exposed Acutely to Inorganic and Organic Species of Mercury

    Science.gov (United States)

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2011-01-01

    Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg2+), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg2+ through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR− rats were injected intravenously with a non-nephrotoxic dose of HgCl2 (0.5 μmol/kg) or CH3HgCl (5 mg/kg), containing [203Hg], in the presence or absence of cysteine (Cys; 1.25 μmol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [203Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg2+ and methylmercury (CH3Hg+) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR− rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR− rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg2+ and CH3Hg+ are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney. PMID:21134393

  7. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian-Qing; Liang, Hai-Qing [Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114 (China); Cao, Zhong, E-mail: zhongcao2004@163.com [Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114 (China); Xiao, Qing [Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114 (China); Xiao, Zhong-Liang, E-mail: xiaozhongliang@163.com [Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114 (China); State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Song, Liu-Bin [Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Dan [Hunan Airbluer Environmental Protection Technology Co., Ltd., Changsha 410014 (China); Wang, Fu-Liang [State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China)

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg{sup 2+} in aqueous solution, which had a working concentration range of 1.0 × 10{sup −} {sup 8}–1.0 × 10{sup −4} mol L{sup −1}, with a Nernst response slope of 28.83 ± 0.4 mV/-pC, a detection limit of 4.5 × 10{sup −9} mol L{sup −1}, and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8–103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg{sup 2+} has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction. - Highlights: • A simple and rapid mercury ion selective electrode has been well constructed. • The Au/1-UDT electrode for sensing Hg{sup 2+} has a sensitivity of 28.83 ± 0.4 mV/− pC. • The ISE method has a detection limit of Hg{sup 2+} down to 4.5 × 10{sup −9} mol L{sup −1}. • A mechanism with density functional theory for recognition of Hg{sup 2+} is developed. • The quantum chemical computation demonstrates Au-Hg metallophilic interaction.

  8. Electron-stimulated desorption of silicates: A potential source for ions in Mercury's space environment

    Czech Academy of Sciences Publication Activity Database

    McLain, J.L.; Sprague, A.L.; Grieves, G.A.; Schriver, D.; Trávníček, Pavel M.; Orlando, T.M.

    2011-01-01

    Roč. 116, - (2011), E03007/1-E03007/9 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z10030501 Keywords : auger decay * Mercury * Mercury's exosphere * magnetospheric interactions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.021, year: 2011

  9. Synthesis of silver nanoparticles using Matricaria recutita (Babunah plant extract and its study as mercury ions sensor

    Directory of Open Access Journals (Sweden)

    Imran Uddin

    2017-11-01

    Full Text Available Silver (Ag nanoparticles comprise a highly selective approach for development of nanosensors for the detection of Hg2+ ions. When Ag nanoparticles mixes with Hg2+ ions, loses its UV–Vis absorption intensity. Here, green synthesis of Ag nanoparticles was done using plant extract of Matricaria recutita (Babunah under ambient conditions. Biosynthesized Ag nanoparticles are well-dispersed having quasi-spherical shape and average particle size of 11nm. XRD, SAED and HRTEM analysis showed that nanoparticles are well crystalline in nature and having cubic phase of geometry. We report here highly selective colorimetric detection of mercury ions (Hg2+ using biosynthesized Ag nanoparticles. Keywords: Herbal extract, Nanosensor, Biosynthesis, Matricaria recutita, Silver nanoparticles

  10. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles.

    Science.gov (United States)

    Arshadi, M; Mousavinia, F; Khalafi-Nezhad, A; Firouzabadi, H; Abbaspourrad, A

    2017-11-01

    In this paper, a novel heterogeneous nanodendrimer with generation of G2.0 was prepared by individual grafting of diethylenetriamine, triazine and l-cysteine methyl ester on the modified aluminum-silicate mixed oxides as a potent adsorbent of Hg(II) ions from aqueous media. The prepared nanodendrimer was characterized by nuclear magnetic resonance spectrum ( 1 H NMR and 13 C NMR), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), zeta potential (ζ), inductively coupled plasma atomic emission spectroscopy (ICP-AES), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption experiments at -196°C and elemental analysis. Equilibrium and kinetic models for Hg(II) ions removal were used by investigating the effect of the contact time, adsorbent dosage, initial Hg(II) ions concentrations, effect of solution's temperature, interfering ions, and initial pH. The contact time to approach equilibrium for higher removal was 6min (3232mgg -1 ). The removal of Hg(II) ions has been assessed in terms of pseudo-first- and -second-order kinetics, and the Freundlich, Langmuir and Sips isotherms models have also been applied to the equilibrium removal data. The removal kinetics followed the mechanism of the pseudo-second order equation, where the chemical sorption is the rate-limiting step of removal process and not involving mass transfer in solution, which was further proved by several techniques such as zeta potential, FT-IR and DS UV-vis. The thermodynamic parameters (ΔG, ΔH and ΔS) implied that the removal of mercury ions was feasible, spontaneous and chemically exothermic in nature between 15 and 80°C. The nanodendrimer indicated high reusability due to its high removal ability after 15 adsorption-desorption runs. The adsorption mechanisms of Hg(II) ions onto the nanodendrimer was further studied by diverse techniques such as FTIR, EDS, zeta potential, DR UV-Vis spectroscopy and SEM

  11. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    Science.gov (United States)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  12. Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation

    International Nuclear Information System (INIS)

    Chen, Zhengbo; Zhang, Chenmeng; Tan, Yuan; Zhou, Tianhui; Ma, He; Wan, Chongqing; Lin, Yuqing; Li, Kai

    2015-01-01

    We are presenting a colorimetric assay for mercury (II) ions. It is based on citosan-functionalized gold nanoparticles (AuNPs) that act as a signaling probe. Hg (II) induces the aggregation of the chitosan-AuNPs through a chelation reaction that occurs between chitosan and Hg (II). This results in a strong decrease of the absorbance of the modified AuNPs and a color change from red to blue. This sensing system displays excellent selectivity over other metal ions and a detection limit as low as 1.35 μM which is lower than the allowed level of Hg (II) in drinking water (30 μM) as defined by World Health Organization. The method is inexpensive, facile, sensitive, and does not require the addition of other reagents in order to improving sensitivity. (author)

  13. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II Ions

    Directory of Open Access Journals (Sweden)

    Kate Grudpan

    2010-03-01

    Full Text Available A new macromolecule possessing two dansyl moieties and based on 2-[4-(2-aminoethylthiobutylthio]ethanamine was prepared as a fluorescent sensor and its mercury sensing properties toward various transition metal, alkali, and alkali earth ions were investigated. The designed compound exhibited pronounced Hg2+-selective ON-OFF type fluorescence switching upon binding. The new compoundprovided highly selective sensing to Hg2+ in acetonitrile-water solvent mixtures with a detection limit of 2.49 x 10-7 M or 50 ppb. The molecular modeling results indicated that ions-recognition of the sensor originated from a self assembly process of the reagentand Hg2+ to form a helical wrapping structure with the favorable electrostatic interactions of Hg2+coordinated with sulfur, oxygen, nitrogen atoms and aromatic moieties.

  14. Phragmites karka as a Biosorbent for the Removal of Mercury Metal Ions from Aqueous Solution: Effect of Modification

    Directory of Open Access Journals (Sweden)

    Muhammad Hamid Raza

    2015-01-01

    Full Text Available Batch scale studies for the adsorption potential of novel biosorbent Phragmites karka (Trin, in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R model, Freundlich isotherm, and Langmuir isotherm were applied. The values of qmax for natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both natural P. karka and treated P. karka. RL values indicate that comparatively treated P. karka was more feasible for mercury adsorption compared to natural P. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.

  15. A dip-and-read test strip for the determination of mercury(II) ion in aqueous samples based on urease activity inhibition.

    Science.gov (United States)

    Shi, Guo-Qing; Jiang, Guibin

    2002-11-01

    A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.

  16. Hematological Changes Induced by Mercury Ions and Ionizing Radiation in Experimental Animals

    International Nuclear Information System (INIS)

    Kim, Jin-Kyu; Lee, Yun-Jong; Choi, Dae-Seong; Kim, Ji-Hyang; Cebulska-Wasilewska, Antonina

    2006-01-01

    Toxic metals such as lead, chromium, cadmium, mercury and arsenic are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Mercury, one of the most diffused and hazardous organ specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which has unique characteristics for a target organ specificity. Although reports indicate that mercury induces deleterious damage, little is known about its effects on living organisms. Ionizing radiation, an extensively used therapeutic modality in oncology, not only eradicates neoplastic cells but also generates inevitable side effects for normal tissues. Such biological effects are made through the production of reactive oxygen species which include a superoxide anion, a hydroxyl radical and a hydrogen peroxide. These reactive species may contribute to the radiation-induced cytotoxicity (e.g., chromosome aberrations, protein oxidation, and muscle injury) and to the metabolic and morphologic changes (e.g., increased muscle proteolysis and changes in the central nervous system) in animals and humans. In the present study, radioimmunoassay of the cortisol in the serum and the analysis of the hematological components and enzymes related to a tissue injury were carried out to evaluate the effects of mercury chloride in comparison with those of ionizing radiation

  17. Hematological Changes Induced by Mercury Ions and Ionizing Radiation in Experimental Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Kyu; Lee, Yun-Jong; Choi, Dae-Seong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Ji-Hyang [Biotechnology Research Institute, Seoul (Korea, Republic of); Cebulska-Wasilewska, Antonina [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland)

    2006-07-01

    Toxic metals such as lead, chromium, cadmium, mercury and arsenic are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Mercury, one of the most diffused and hazardous organ specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which has unique characteristics for a target organ specificity. Although reports indicate that mercury induces deleterious damage, little is known about its effects on living organisms. Ionizing radiation, an extensively used therapeutic modality in oncology, not only eradicates neoplastic cells but also generates inevitable side effects for normal tissues. Such biological effects are made through the production of reactive oxygen species which include a superoxide anion, a hydroxyl radical and a hydrogen peroxide. These reactive species may contribute to the radiation-induced cytotoxicity (e.g., chromosome aberrations, protein oxidation, and muscle injury) and to the metabolic and morphologic changes (e.g., increased muscle proteolysis and changes in the central nervous system) in animals and humans. In the present study, radioimmunoassay of the cortisol in the serum and the analysis of the hematological components and enzymes related to a tissue injury were carried out to evaluate the effects of mercury chloride in comparison with those of ionizing radiation.

  18. One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study

    Directory of Open Access Journals (Sweden)

    Rahbar

    2015-10-01

    Full Text Available Background In the recent years, mercury contamination has attracted great deal of attention due to its serious environmental threat. Objectives The main goal of this study was application of one-step synthesized magnetic (magnetite chitosan nanoparticles (MCNs in the removal of mercury ions from petrochemical waste water. Materials and Methods This study was performed in batch and column modes. Effects of various parameters such as pH, adsorbent dose, contact time, temperature and agitation speed for the removal of mercury ions by MCNs investigated in batch mode. Afterwards, optimum conditions were exploited in column mode. Different kinetic models were also studied. Results An effective Hg (II removal (99.8% was obtained at pH 6, with 50 mg of MCNs for an initial concentration of this ion in petrochemical waste water (5.63 mg L-1 and 10 minutes agitation of the solution. The adsorption kinetic data was well fitted to the pseudo-second-order model. Conclusions Experimental results showed that MCNs is an excellent sorbent for removal of mercury ions from petrochemical waste water. In addition, highly complex matrix of this waste does not affect the adsorption capability of MCNs.

  19. A Combined Experimental and Modeling Program to Study the Impact of Solar Wind Ions on the Surface and Exosphere of Mercury

    Science.gov (United States)

    Savin, D. W.; Bostick, B. C.; Domingue, D. L.; Ebel, D. S.; Harlow, G. E.; Killen, R. M.

    2018-05-01

    We aim to improve the interpretation of in-situ and remote-sensing data of Mercury. We will use updated exosphere and spectrophotometric models incorporating new data from lab simulations of solar wind ion irradiation of Mercury’s regolith surface.

  20. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver graphene oxide nanocomposite materials

    International Nuclear Information System (INIS)

    Kamali, Khosro Zangeneh; Pandikumar, Alagarsamy; Jayabal, Subramaniam; Huang, Nay Ming; Ramaraj, Ramasamy; Lim, Hong Ngee; Ong, Boon Hoong; Bien, Chia Sheng Daniel; Kee, Yeh Yee

    2016-01-01

    The article describes a facile method for the preparation of a conjugate composed of silver nanoparticles and graphene oxide (Ag GO) via chemical reduction of silver precursors in the presence of graphene oxide (GO) while sonicating the solution. The Ag GO was characterized by X-ray photoelectron spectroscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. The nanocomposite undergoes a color change from yellow to colorless in presence of Hg(II), and this effect is based on the disappearance of the localized surface plasmon resonance absorption of the AgNPs due to the formation of silver-mercury amalgam. The presence of GO, on the other hand, prevents the agglomeration of the AgNPs and enhances the stability of the nanocomposite material in solution. Hence, the probe represents a viable optical probe for the determination of mercury(II) ions in that it can be used to visually detect Hg(II) concentrations as low as 100 μM. The instrumental LOD is 338 nM. (author)

  2. Mercury-induced fragmentation of n-decane and n-undecane in positive mode ion mobility spectrometry.

    Science.gov (United States)

    Gunzer, F

    2015-09-21

    Ion mobility spectrometry is a well-known technique for trace gas analysis. Using soft ionization techniques, fragmentation of analytes is normally not observed, with the consequence that analyte spectra of single substances are quite simple, i.e. showing in general only one peak. If the concentration is high enough, an extra cluster peak involving two analyte molecules can often be observed. When investigating n-alkanes, different results regarding the number of peaks in the spectra have been obtained in the past using this spectrometric technique. Here we present results obtained when analyzing n-alkanes (n-hexane to n-undecane) with a pulsed electron source, which show no fragmentation or clustering at all. However, when investigating a mixture of mercury and an n-alkane, a situation quite typical in the oil and gas industry, a strong fragmentation and cluster formation involving these fragments has been observed exclusively for n-decane and n-undecane.

  3. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  4. Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors

    Science.gov (United States)

    Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong

    2018-04-01

    In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

  5. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    Science.gov (United States)

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-07

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.

  6. Application of a DNA-based luminescence switch-on method for the detection of mercury(II) ions in water samples from Hong Kong

    Science.gov (United States)

    He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung

    2012-12-01

    Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.

  7. Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy.

    Science.gov (United States)

    Liu, Xiaojun; Wu, Zhangjian; Zhang, Qingquan; Zhao, Wenfeng; Zong, Chenghua; Gai, Hongwei

    2016-02-16

    Mercury severely damages the environment and human health, particularly when it accumulates in the food chain. Methods for the colorimetric detection of Hg(2+) have increasingly been developed over the past decade because of the progress in nanotechnology. However, the limits of detection (LODs) of these methods are mostly either comparable to or higher than the allowable maximum level (10 nM) in drinking water set by the US Environmental Protection Agency. In this study, we report a single Au nanoparticle (AuNP)-based colorimetric assay for Hg(2+) detection in solution. AuNPs modified with oligonucleotides were fixed on the slide. The fixed AuNPs bound to free AuNPs in the solution in the presence of Hg(2+) because of oligonucleotide hybridization. This process was accompanied by a color change from green to yellow as observed under an optical microscope. The ratio of changed color spots corresponded with Hg(2+) concentration. The LOD was determined as 1.4 pM, which may help guard against mercury accumulation. The proposed approach was applied to environmental samples with recoveries of 98.3 ± 7.7% and 110.0 ± 8.8% for Yuquan River and industrial wastewater, respectively.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud, E-mail: m.ghaneimotlagh@yahoo.com [Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali; Heydari, Abolfazl [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ghanei-Motlagh, Reza [Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa)

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2′–((9E,10E)–1,4–dihydroxyanthracene–9,10–diylidene) bis(hydrazine–1–carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO–IIP was characterized by means of Fourier transform infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO–IIP. The prepared RGO–IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO–IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L{sup −1}. The limit of detection (LOD) was found to be 0.02 μg L{sup −1} (S/N = 3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. - Highlights: • The novel Hg(II)-imprinted polymer was synthesized and characterized. • The resulting RGO–IIP was applied for electrochemical monitoring of Hg(II) ions. • The proposed sensor was successfully applied for determination of Hg(II) in real water samples.

  10. l-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xuejuan; Li, Shifeng; Zhuang, Lulu; Tang, Jiaoning, E-mail: tjn@szu.edu.cn [Shenzhen University, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering (China)

    2016-07-15

    l-Tryptophan-capped carbon quantum dots (l-CQDs) were facilely synthesized through “green” methodology, and the obtained material was utilized as a sensitive and selective fluorescence sensor for mercury ion (Hg{sup 2+}) in pure aqueous solutions. Carboxyl-functionalized CQDs were first green synthesized by a one-step hydrothermal route, and l-tryptophan was then attached to CQDs via direct surface condensation reaction in aqueous solution at room temperature. The as-synthesized l-CQDs had an average size of ca. 5 nm with a good dispersity in water, and exhibited a favorable selectivity for Hg{sup 2+} ions over a range of other common metal cations in aqueous solution (10 mM PBS buffer, pH 6.0). Upon the addition of Hg{sup 2+}, a complete fluorescence quenching (ON–OFF switching) of l-CQDs was evident from the fluorescence titration experiment, and the fluorescence detection limit of Hg{sup 2+} was calculated to be 11 nM, which indicated that the obtained environmentally friendly l-CQDs had sensitive detection capacity for Hg{sup 2+} in aqueous solution.

  11. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    Science.gov (United States)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  12. Trace-level mercury ion (Hg2+) analysis in aqueous sample based on solid-phase extraction followed by microfluidic immunoassay.

    Science.gov (United States)

    Date, Yasumoto; Aota, Arata; Terakado, Shingo; Sasaki, Kazuhiro; Matsumoto, Norio; Watanabe, Yoshitomo; Matsue, Tomokazu; Ohmura, Naoya

    2013-01-02

    Mercury is considered the most important heavy-metal pollutant, because of the likelihood of bioaccumulation and toxicity. Monitoring widespread ionic mercury (Hg(2+)) contamination requires high-throughput and cost-effective methods to screen large numbers of environmental samples. In this study, we developed a simple and sensitive analysis for Hg(2+) in environmental aqueous samples by combining a microfluidic immunoassay and solid-phase extraction (SPE). Using a microfluidic platform, an ultrasensitive Hg(2+) immunoassay, which yields results within only 10 min and with a lower detection limit (LOD) of 0.13 μg/L, was developed. To allow application of the developed immunoassay to actual environmental aqueous samples, we developed an ion-exchange resin (IER)-based SPE for selective Hg(2+) extraction from an ion mixture. When using optimized SPE conditions, followed by the microfluidic immunoassay, the LOD of the assay was 0.83 μg/L, which satisfied the guideline values for drinking water suggested by the United States Environmental Protection Agency (USEPA) (2 μg/L; total mercury), and the World Health Organisation (WHO) (6 μg/L; inorganic mercury). Actual water samples, including tap water, mineral water, and river water, which had been spiked with trace levels of Hg(2+), were well-analyzed by SPE, followed by microfluidic Hg(2+) immunoassay, and the results agreed with those obtained from reduction vaporizing-atomic adsorption spectroscopy.

  13. Results of the mission profile life test. [for J-series mercury ion engines

    Science.gov (United States)

    Bechtel, R. T.; Trump, G. E.; James, E. L.

    1982-01-01

    Seven J series 30-cm diameter thrusters have been tested in segments of up to 5,070 hr, for 14,541 hr in the Mission Profile Life Test facility. Test results have indicated the basic thruster design to be consistent with the lifetime goal of 15,000 hr at 2-A beam. The only areas of concern identified which appear to require additional verification testing involve contamination of mercury propellant isolators, which may be due to facility constituents, and the ability of specially covered surfaces to contain sputtered material and prevent flake formation. The ability of the SCR, series resonant inverter power processor to operate the J series thruster and autonomous computer control of the thruster/processor system were demonstrated.

  14. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    Science.gov (United States)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  15. Behavior of mercury, lead, cesium, and uranyl ions on four SRS soils

    International Nuclear Information System (INIS)

    Bibler, J.P.; Marson, D.B.

    1992-01-01

    Samples of four Savannah River Site (SRS) soils were tested for sorption behavior with Hg 2+ , Pb 2+ , UO 2 2+ , and Cs + ions. The purpose of the study was to determine the selectivity of the different soils for these ions alone and in the presence of the competing cations, H + and Ca 2+ . Distribution constants, Kd's, for the test ions in various solutions have been determined for the four soils. In general, sorption by all of the soils appeared to be more complex than a simple ion exchange or adsorption process. In particular, the presence of organic matter in soil increased the capacity of the soil due to its chelating ability. Similar soils did not react similarly toward each metal cation

  16. Determination of soluble bromine in an extra-high-pressure mercury discharge lamp by sodium hydroxide decomposition-suppressed ion chromatography.

    Science.gov (United States)

    Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu

    2006-02-01

    We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.

  17. Novel styrylbenzothiazolium dye-based sensor for mercury, cyanide and hydroxide ions

    Science.gov (United States)

    Gwon, Seon-Young; Rao, Boddu Ananda; Kim, Hak-Soo; Son, Young-A.; Kim, Sung-Hoon

    2015-06-01

    We report the design and synthesis of a novel styrylbenzothiazolium (3) derivative developed as a fluorescent and colorimetric chemodosimeter with high selectivity toward Hg2+, CN- and OH- ions. An obvious loss of pink color in the presence of Hg2+ and CN- ions could make it a suitable "naked eye" indicator. We propose a sensing mechanism whereby the benzenoid form is changed to a quinoid form upon Hg2+ binding in a 1:1 stoichiometric ratio. More significantly, the styrylbenzothiazolium-Hg2+ and styrylbenzothiazolium-CN- complexes exhibited a dual-channel chromo-fluorogenic response. The sensors exhibit remarkable Hg2+-, CN--, and OH--selective red fluorescence but remain dark-green in the presence of a wide range of tested metal ions and anions.

  18. Sodium Pick-Up Ion Observations in the Solar Wind Upstream of Mercury

    Science.gov (United States)

    Jasinski, J. M.; Raines, J. M.; Slavin, J. A.; Regoli, L. R.; Murphy, N.

    2018-05-01

    We present the first observations of sodium pick-up ions upstream of Mercury’s magnetosphere. From these observations we infer properties of Mercury’s sodium exosphere and implications for the solar wind interaction with Mercury’s magnetosphere.

  19. Resolution of limonene 1,2-epoxide diastereomers by mercury(II) ions

    NARCIS (Netherlands)

    Werf, M. van der; Jongejan, H.; Franssen, M.C.R.

    2001-01-01

    When HgCl2 was added to a diastereomeric mixture of cis- and trans-(4S)-limonene 1,2-epoxide, the Hg(II) ions stereoselectively complexed to the cis epoxide, enabling ring opening by water. The resulting mercuric salt could be demetalated by treatment with NaBH4, giving a mixture of diastereomeric

  20. Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish.

    Science.gov (United States)

    Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua

    2018-01-05

    Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017

  1. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters

    International Nuclear Information System (INIS)

    Chen Jinlong; Gao Yingchun; Xu, ZhiBing; Wu, GenHua; Chen, YouCun; Zhu, ChangQing

    2006-01-01

    Mono-disperse CdSe nanoclusters have been prepared facilely and functionalized with L-cysteine through two steps by using safe and low cost substances. They are water-soluble and biocompatible. Especially these functionalized quantum dots can be stably soluble in water more than for 30 days, and the intensity of fluorescence and absorbance was decreased less than 15% of fresh prepared CdSe colloids. These functionalized CdSe QDs exhibited strong specific affinity for mercury (II) through QDs interface functional groups. Based on the quenching of fluorescence signals of functionalized CdSe QDs at 530 nm and no obvious wavelength shift or no new emission band in present of Hg (II) at pH 7.75 of phosphate buffer solution, a simple, rapid and specific array for Hg (II) was proposed. In comparison with conventional organic fluorophores, these nanoparticles are brighter, more stable against photobleaching, and do not suffer from blinking. Under optimum conditions, the response of linearly proportional to the concentration of Hg (II) between 0 and 2.0 x 10 -6 mol L -1 , and the limit of detection is 6.0 x 10 -9 mol L -1 . The relative standard deviation of six replicate measurements is 1.8% for 1.0 x 10 -7 mol L -1 Hg (II). The mechanism of reaction is also discussed. The proposed method was successfully applied for Hg (II) detection in four real samples with a satisfactory result that was obtained by cold vapor atomic fluorescence spectrometry (CV-AFS)

  2. Study of the synthesized plasma resulting from forced neutralization of a mercury ions beam

    International Nuclear Information System (INIS)

    Spiess, G.

    1969-01-01

    When an ionic beam is used (space simulation etc...) it needs a forced space charge neutralization by means of electrons injection when the perturbations resulting from the ionic space charge are not already eliminated by the well known self neutralization of the beam on the back ground gas of the tank. We have shown that it is possible to obtain the forced neutralization of a low energy (a few KeV) Hg + ion beam, 10 cm in diameter, with a neutraliser made of a hot emissive filament located inside the beam close to the ion source. The computed solution of the plane waves dispersion equation has shown that the synthesized plasma, resulting from the neutralised beam, is damping fluctuations with any wave length when the average ions velocity is less than the neutralizing electrons thermal velocity. This last conclusion assumes that no external electromagnetic field is applied. When a longitudinal electric field is applied, by means of a polarized grid into the beam, the plasma stability range is changed. (author) [fr

  3. Removal of mercury ion from aqueous solution by activated carbons obtained from biomass and coals

    Energy Technology Data Exchange (ETDEWEB)

    Ekinci, E.; Yardim, F. [Faculty of Chemical Engineering, Istanbul Technical University, Ayazaga, 80626 Istanbul (Turkey); Budinova, T.; Petrov, N.; Razvigorova, M.; Minkova, V. [Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad.G.Bonchev, str. bl. 9, Sofia (Bulgaria)

    2002-06-20

    The adsorption of Hg(II) from aqueous solution at 293 K by activated carbons obtained from apricot stones, furfural and coals was studied. Adsorption studies were performed under the varying conditions of time of treatment, metal ion concentration and pH. The process of adsorption followed Langmuir isotherm. The removal of Hg(II) increased with the increase of pH of the solution from 2 to 5 and remained constant up to pH 10. Desorption studies were preformed.

  4. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  5. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  6. Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection.

    Science.gov (United States)

    Chao, Mu-Rong; Chang, Yan-Zin; Chen, Jian-Lian

    2013-04-15

    A hydrophilic ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA), was used as a medium for the synthesis of highly luminescent CdTe nanocrystals (NCs) capped with thioglycolic acid (TGA). The synthesis was performed for 8 h at 130 °C, was similar to nanocrystal preparation in an aqueous medium, and used safe, low-cost inorganic salts as precursors. After the reaction, the photoluminescence quantum yield of the CdTe NCs (NC(IL-130)) prepared in EMIDCA was significantly higher than that of the nanocrystals prepared in water (NC(w)) at 100 °C (86% vs. 35%). Moreover, the emission wavelength and particle size of NC(IL-130) were smaller than NC(w) (450 nm vs. 540 nm and 4.0 nm vs. 5.2 nm, respectively). The activation of NC(IL-130) was successful due to the coordinated action of two ligands, EMIDCA and TGA, in the primary steps of the NC formation pathway. An increase or decrease in the synthesis temperature, to 160 °C or 100 °C, respectively, was detrimental to the luminescence quality. However, the quenching effect of Hg²⁺ on the fluorescence signals of the NC(IL-130) was distinctively unique, whereas certain interfering ions, such as Pb²⁺, Fe³⁺, Co²⁺, Ni²⁺, Ag⁺, and Cu²⁺, could also quench the emission of the NC(w). Based on the Perrin model, the quenching signals of NC(w) and NC(IL-130) were well correlated with the Hg²⁺ concentrations in the phosphate buffer (pH 7.5, 50 mM). In comparison with the NC(w), the NC(IL-130) had a high tolerance of the interfering ions coexisting with the Hg²⁺ analyte, high recovery of Hg²⁺ spiked in the BSA- or FBS-containing medium, and high stability of fluorescence quenching signals between trials and days. The NC(IL-130) nanocrystals can potentially be used to develop a probe system for the determination of Hg²⁺ in physiological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.

    Science.gov (United States)

    Burt, Eric A; Diener, William A; Tjoelker, Robert L

    2008-12-01

    The multi-pole linear ion trap frequency standard (LITS) being developed at the Jet Propulsion Laboratory (JPL) has demonstrated excellent short- and long-term stability. The technology has now demonstrated long-term field operation providing a new capability for timekeeping standards. Recently implemented enhancements have resulted in a record line Q of 5 x 10(12) for a room temperature microwave atomic transition and a short-term fractional frequency stability of 5 x 10(-14)/tau(1/2). A scheme for compensating the second order Doppler shift has led to a reduction of the combined sensitivity to the primary LITS systematic effects below 5 x 10(-17) fractional frequency. Initial comparisons to JPL's cesium fountain clock show a systematic floor of less than 2 x 10(-16). The compensated multi-pole LITS at JPL was operated continuously and unattended for a 9-mo period from October 2006 to July 2007. During that time it was used as the frequency reference for the JPL geodetic receiver known as JPLT, enabling comparisons to any clock used as a reference for an International GNSS Service (IGS) site. Comparisons with the laser-cooled primary frequency standards that reported to the Bureau International des Poids et Mesures (BIPM) over this period show a frequency deviation less than 2.7 x 10(-17)/day. In the capacity of a stand-alone ultra-stable flywheel, such a standard could be invaluable for long-term timekeeping applications in metrology labs while its methodology and robustness make it ideal for space applications as well.

  8. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  9. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shuangyou; Li, Kai; Ning, Ping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China); Peng, Jinhui [Faculty of Metallurgical and Energy, Kunming University of Science and Technology, YunNan, KunMing 650500 (China); Jin, Xu [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China); Tang, Lihong, E-mail: luckyman@163.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, YunNan, KunMing, 650500 (China)

    2017-01-30

    Highlights: • Highly effective removal of Hg(II) and Pb(II) ions from wastewater. • This adsorbent had multiple adsorption sites (sulfur and amine sites) on the surface. • This adsorbent had better tolerance to low pH for removal of Hg(II). • This new hybrid material was much cheaper and no secondary pollution. • This adsorbent shows notable advantages including easy separation and recyclability. - Abstract: A novel hybrid material was fabricated using mercaptoamine-functionalised silica-coated magnetic nanoparticles (MAF-SCMNPs) and was effective in the extraction and recovery of mercury and lead ions from wastewater. The properties of this new magnetic material were explored using various characterisation and analysis methods. Adsorbent amounts, pH levels and initial concentrations were optimised to improve removal efficiency. Additionally, kinetics, thermodynamics and adsorption isotherms were investigated to determine the mechanism by which the fabricated MAF-SCMNPs adsorb heavy metal ions. The results revealed that MAF-SCMNPs were acid-resistant. Sorption likely occurred by chelation through the amine group and ion exchange between heavy metal ions and thiol functional groups on the nanoadsorbent surface. The equilibrium was attained within 120 min, and the adsorption kinetics showed pseudo-second-order (R{sup 2} > 0.99). The mercury and lead adsorption isotherms were in agreement with the Freundlich model, displaying maximum adsorption capacities of 355 and 292 mg/g, respectively. The maximum adsorptions took place at pH 5–6 and 6–7 for Hg(II) and Pb(II), respectively. The maximum adsorptions were observed at 10 mg and 12 mg adsorbent quantities for Hg(II) and Pb(II), respectively. The adsorption process was endothermic and spontaneous within the temperature range of 298–318 K. This work demonstrates a unique magnetic nano-adsorbent for the removal of Hg(II) and Pb(II) from wastewater.

  10. Effects of 1,2,4-Trichlorobenzene and Mercury Ion Stress on Ca2+ Fluxion and Protein Phosphorylation in Rice

    Directory of Open Access Journals (Sweden)

    Cai-lin GE

    2007-12-01

    Full Text Available The effects of 5 mg/L 1,2,4-trichlorobenzene (TCB and 0.1 mmol/L mercury ion (Hg2+ stresses on Ca2+ fluxion and protein phosphorylation in rice seedlings were investigated by isotope exchange kinetics and in vitro phosphorylation assay. The Ca2+ absorption in rice leaves and Ca2+ transportation from roots to leaves were promoted significantly in response to Hg2+ and TCB treatments for 4-48 h. The Ca2+ absorption peaks presented in the leaves when the rice seedlings were exposed to Hg2+ for 8-12 h or to TCB for 12-24 h. Several Ca2+ absorption peaks presented in the roots during rice seedlings being exposed to Hg2+ and TCB, and the first Ca2+ absorption peak was at 8 h after being exposed to Hg2+ and TCB. The result of isotope exchange kinetic analysis confirmed that short-term (8 h Hg2+ and TCB stresses caused Ca2+ channels or pumps located on plasmalemma to open transiently. The phosphorylation assay showed that short-term TCB stress enhanced protein phosphorylation in rice roots (TCB treatment for 4-8 h and leaves (TCB treatment for 4-24 h, and short-term (4-8 h Hg2+ stress also enhanced protein phosphorylation in rice leaves. The enhancement of protein phosphorylation in both roots and leaves corresponded with the first Ca2+ absorption peak, which confirmed that the enhancement of protein phosphorylation caused by TCB or Hg2+ stress might be partly triggered by the increases of cytosolic calcium. TCB treatment over 12 h inhibited protein phosphorylation in rice roots, which might be partly due to that TCB stress suppressed the protein kinase activity. Whereas, Hg2+ treatment inhibited protein phosphorylation in rice roots, and Hg2+ treatment over 12 h inhibited protein phosphorylation in rice leaves. This might be attributed to that not only the protein kinase activity, but also the expressions of phosphorylation proteins were restrained by Hg2+ stress.

  11. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  12. Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix-a permeability approach.

    Science.gov (United States)

    Gumpu, Manju Bhargavi; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2017-07-01

    Intake of water contaminated with lead (Pb 2+ ) and mercury (Hg 2+ ) ions leads to various toxic effects and health issues. In this context, an amperometric urease inhibition-based biosensor was developed to detect Pb 2+ and Hg 2+ ions in water matrix. The modified Pt/CeO 2 /urease electrode was fabricated by immobilizing CeO 2 nanoparticles and urease using a semi-permeable adsorption layer of nafion. With urea as a substrate, urease catalytic activity was examined through cyclic voltammetry. Further, maximum amperometric inhibitive response of the modified Pt/CeO 2 /urease electrode was observed in the presence of Pb 2+ and Hg 2+ ions due to the urease inhibition at specific potentials of -0.03 and 0 V, respectively. The developed sensor exhibited a detection limit of 0.019 ± 0.001 μM with a sensitivity of 89.2 × 10 -3  μA μM -1 for Pb 2+ ions. A detection limit of 0.018 ± 0.003 with a sensitivity of 94.1 × 10 -3  μA μM -1 was achieved in detecting Hg 2+ ions. The developed biosensor showed a fast response time (<1 s) with a linear range of 0.5-2.2 and 0.02-0.8 μM for Pb 2+ and Hg 2+ ions, respectively. The modified electrode offered a good stability for 20 days with a good repeatability and reproducibility. The developed sensor was used to detect Pb 2+ and Hg 2+ ions contaminating Cauvery river water and the observed results were in good co-ordination with atomic absorption spectroscopic data.

  13. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  14. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  15. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  16. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  17. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  18. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Experimental determination of the energy levels of the antimony atom (Sb II), ions of the antimony (Sb II, Sb III), mercury (Hg IV) and cesium (Cs X)

    International Nuclear Information System (INIS)

    Arcimowicz, B.

    1993-01-01

    The thesis concerns establishing the energy scheme of the electronic levels, obtained from the analysis of the investigated spectra of antimony atom and ions (Sb I, Sb II, Sb III) and higher ionized mercury (Hg IV) and cesium (Cs X) atoms. The experimental studies were performed with optical spectroscopy methods. The spectra of the elements under study obtained in the spectral range from visible (680 nm) to vacuum UV (40 nm) were analysed. The classification and spectroscopic designation of the experimentally established 169 energy levels were obtained on the basis of the performed calculations and the fine structure analysis. The following configurations were considered: 5s 2 5p 2 ns, 5s 2 5p 2 n'd, 5s5p 4 of the antimony atom, 5s 2 5pns, 5s 2 5pn'd, 5s5p 3 of the ion Sb II, 5s 2 ns, 5s 2 n'd, 5s5p 2 of the on Sb III, 5d 8 6p of the ion Hg IV 4d 9 5s and 4d 9 5p Cs X. A reclassification was performed and some changes were introduced to the existing energy level scheme of the antimony atom, with the use of the information obtained from the absorption spectrum taken in the VUV region by the ''flash pyrolysis'' technique. The measurements of the hyperfine splittings in 19 spectral lines belonging to the antimony atom and ions additionally confirmed the assumed classification of the levels involved in these lines. The energy level scheme, obtained for Sb III, was compared to the other ones in the isoelectronic sequence starting with In I. On the basis of the analysis of the Hg IV spectrum it was proved that ground configuration of the three times ionized mercury atom is 5d 9 not 5d 8 6s as assumed until now. The fine structure, established from the analysis of the spectra of the elements under study was examined in multiconfiguration approximation. As a result of the performed calculations the fine structure parameters and wavefunctions were determined for the levels whose energy values were experimentally established in the thesis. (author). 140 refs, 22 figs, 17

  20. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  1. Determination of mercury (II) ions based on silver-nanoparticles-assisted growth of gold nanostructures: UV-Vis and surface enhanced Raman scattering approaches

    Science.gov (United States)

    Chen, Jun-Liang; Yang, Pei-Chia; Wu, Tsunghsueh; Lin, Yang-Wei

    2018-06-01

    Innovative dual detection methods for mercury(II) ions (Hg(II)) have been developed based on the formation of gold nanostructures (AuNSs) following the addition of mercury-containing solution to a mixture containing an optimized amount of Au(III), H2O2, HCl, and silver nanoparticles (AgNPs). In the absence of Hg(II), the addition of Au(III), H2O2, and HCl to the AgNP solution changes the solution's color from yellow to red, and the absorption peak shifts from 400 to 526 nm, indicating the dissolution of AgNPs and the formation of gold nanoparticles (AuNPs). Because of the spontaneous redox reaction of Hg(II) toward AgNPs, the change in the amount of remaining AgNP seed facilitates the generation of irregular AuNSs, resulting in changes in absorption intensity and shifting the peak within the range from 526 to 562 nm depending on the concentration of Hg(II). Under optimal conditions, the limit of detection (LOD) for Hg(II) at a signal-to-noise ratio (S/N) of 3 was 0.3 μM. We further observed that AgNP-assisted catalytic formation of Au nanomaterials deposited on a surface enhanced Raman scattering active substrate significantly reduced the Raman signal of 4-mercaptobenzoic acid, dependent on the Hg(II) concentration. A linear relationship was observed in the range 0.1 nM-100 μM with a LOD of 0.05 nM (S/N 3.0). As a simple, accurate and precise method, this SERS-based assay has demonstrated its success in determining levels of Hg(II) in real water samples.

  2. Planet Mercury Conference, Tucson, AZ, Aug. 6-9, 1986, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The present conference discusses the mass, gravity field, and ephemeris of the planet Mercury, the vulcanoid hypothesis for the chronology of Mercury's geological and geophysical evolution, the Mercurian crater-filling classes that constrain the intercrater plains material emplacement process, and the wavelength and longitude dependence of Mercury polarization. Also discussed are an analysis of the Mariner 10 color radio map of Mercury, Mercury's magnetosphere, exosphere, and surface, the dynamics of electrons and heavy ions in the Mercury magnetosphere, electron measurements and substorm time scales in the Mercury and earth magnetospheres, Mercury's sodium variations with solar radiation pressure, and appulses and occultations of SAO stars by Mercury in the 1987-1995 period

  3. Process for removing mercury from aqueous solutions

    Science.gov (United States)

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  4. Evaluation of the characteristics of a field emission cathode for use in a Mercury ion trap frequency standard

    Science.gov (United States)

    Christman, J. M.

    1988-01-01

    The performance is reported of a field emission array characterized for the purpose of replacing the filament in a trapped ion frequency standard. This dark electron emitter eliminates the need for the interference filter currently used in the trapped ion standard. While reducing the filament's unwanted light, this filter causes a significant reduction in the signal. The magnetic field associated with the filament is also eliminated, thus potentially improving the present stability of the trapped ion standard. The operation of the filament in the present system is described, as well as the associated concerns. The cathode considered for the filament's replacement is then described along with the experimental system. Experimental results, observations, and conclusions are presented.

  5. New thiamine functionalized silica microparticules as a sorbent for the removal of lead, mercury and cadmium ions in aqueous media

    Directory of Open Access Journals (Sweden)

    Deniz Sabahattin

    2017-01-01

    Full Text Available The existence of heavy metal ions in aqueous media is one of the biggest environmental pollution problems and thus the removal of heavy metals is a very important procedure. In this work, a new adsorbent was synthesized by modifying 3-aminopropyl-functionalized silica gel with thiamine (vitamin B1 and characterized. The influence of the uptake conditions, such as pH, contact time, initial feed concentration and foreign metal ions, on the binding capacity of thiamine-functionalized silica gel sorbent (M3APS were investigated. Maximum obtained adsorption capacities for Pb(II, Hg(II and Cd(II were 39.4±0.2, 30.9±0.5 and 9.54±0.4 mg g-1 M3APS, respectively, at pH 5.0. The observed selectivity of M3APS for these metal ions was the following: Pb(II > Hg(II > Cd(II. Adsorption isotherm models were also applied to the adsorption process. As a result, the Langmuir isotherm model gave the best fit for the adsorption of metal ions on M3APS. The Gibbs energy change (ΔG for the adsorption of Pb(II, Hg(II and Cd(II were calculated to predict the nature of adsorption process. Having such satisfactory adsorption results, M3APS is a potential candidate adsorbent for Pb(II and Hg(II removal from aqueous media.

  6. Electrochemical behavior of phytochelatins and related peptides at the hanging mercury drop electrode in the presence of cobalt(II) ions.

    Science.gov (United States)

    Dorcák, Vlastimil; Sestáková, Ivana

    2006-01-01

    Direct current voltammetry and differential pulse voltammetry have been used to investigate the electrochemical behaviour of two phytochelatins: heptapeptide (gamma-Glu-Cys)3-Gly and pentapeptide (gamma-Glu-Cys)2-Gly, tripeptide glutathione gamma-Glu-Cys-Gly and its fragments: dipeptides Cys-Gly and gamma-Glu-Cys at the hanging mercury drop electrode in the presence of cobalt(II) ions. Most interesting results were obtained with direct current voltammetry in the potential region of -0.80 V up to -1.80 V. Differential pulse voltammetry of the same solutions of Co(II) with peptides gives more complicated voltammograms with overlapping peaks, probably in connection with the influence of adsorption at slow scan rates necessarily used in this method. However, in using Brdicka catalytic currents for analytical purposes, differential pulse voltammograms seem to be more helpful. Presented investigations have shown that particularly the prewave of cobalt(II) allows distinguishing among phytochelatins, glutathione, and its fragments.

  7. Alumina physically loaded by thiosemicarbazide for selective preconcentration of mercury(II) ion from natural water samples

    International Nuclear Information System (INIS)

    Ahmed, Salwa A.

    2008-01-01

    The multifunctional ligand, thiosemicarbazide, was physically loaded on neutral alumina. The produced alumina-modified solid phase (SP) extractor named, alumina-modified thiosemicarbazide (AM-TSC), experienced high thermal and medium stability. This new phase was identified based on surface coverage determination by thermal desorption method to be 0.437 ± 0.1 mmol g -1 . The selectivity of AM-TSC phase towards the uptake of different nine metal ions was checked using simple, fast and direct batch equilibration technique. AM-TSC was found to have the highest capacity in selective extraction of Hg(II) from aqueous solutions all over the range of pH used (1.0-7.0), compared to the other eight tested metal ions. So, Hg(II) uptake was 1.82 mmol g -1 (distribution coefficient log K d = 5.658) at pH 1.0 or 2.0 and 1.78, 1.73, 1.48, 1.28 and 1.28 mmol g -1 (log K d = 4.607, 4.265, 3.634, 3.372 and 3.372), at pH 3.0, 4.0, 5.0, 6.0 and 7.0, respectively. On the other hand, the metal ions Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) showed low uptake values in range 0.009-0.720 mmol g -1 (log K d < 3.0) at their optimum pH values. A mechanism was suggested to explain the unique uptake of Hg(II) ions based on their binding as neutral and chloroanionic species predominate at pH values ≤3.0 of a medium rich in chloride ions. Application of the new phase for the preconcentration of ultratrace amounts of Hg(II) ions spiked natural water samples: doubly distilled water (DDW), drinking tap water (DTW) and Nile river water (NRW) using cold vapor atomic absorption spectroscopy (CV-AAS) was studied. The high recovery values obtained using AM-TSC (98.5 ± 0.5, 98.0 ± 0.5 and 103.0 ± 1.0) for DDW, DTW and NRW samples, respectively based on excellent enrichment factor 1000, along with a good precision (R.S.D.% 0.51-0.97%, n 3) demonstrate the accuracy and validity of the new modified alumina sorbent for preconcentrating ultratrace amounts of Hg(II) with no

  8. In situ formation of p–n junction: A novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang-Li, E-mail: glwang@jiangnan.edu.cn; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-01

    Graphical abstract: The first example of photoelectrochemial sensing based on the formation of p–n junction. The in situ formation of HgS on the surface of ZnS triggers an obvious enhancement of anodic photocurrent of Cysteine-capped ZnS quantum dots (QDs), which leads to a highly sensitive and selective photoelectrochemical method for the sensing of trace mercuric(II) ions. Highlights: • The first example of photoelectrochemial sensing based on p–n junction formation. • The in situ formation of HgS on ZnS leading to obviously enhanced photocurrent. • The method was highly sensitive and selective. Abstract: The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p–n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p–n junction was confirmed by P–N conductive type discriminator measurements and current–voltage (I–V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6 × 10⁻⁹ mol/L. It is expected that the present study can serve as a foundation to the application of p–n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry.

  9. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Xuefeng, E-mail: zhuxf@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Zhou, Shenghai [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China); Gan, Wei [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yuan, Qunhui, E-mail: yuanqh@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-08-30

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  10. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    International Nuclear Information System (INIS)

    Song, Ting; Zhu, Xuefeng; Zhou, Shenghai; Yang, Guang; Gan, Wei; Yuan, Qunhui

    2015-01-01

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%

  11. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions.

    Science.gov (United States)

    Li, Wei; Chen, Bin; Zhang, Haixiang; Sun, Yanhua; Wang, Jun; Zhang, Jinli; Fu, Yan

    2015-04-15

    Bovine serum albumin (BSA) is chosen as the nucleation templates to synthesize Pt-based peroxidase nanomimetics with the average diameter of 2.0nm. The efficient Pt nanozymes consist of 57% Pt(0) and 43% Pt(2+), which possess highly peroxidase-like activity with the Km values of 0.119mM and 41.8mM toward 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), respectively. Interestingly, Hg(2+) is able to down-regulate the enzymatic activity of Pt nanoparticles, mainly through the interactions between Hg(2+) and Pt(0). It is the first report to explore a colorimetric Hg(2+) sensing system on the basis of peroxidase mimicking activities of Pt nanoparticles. One of our most intriguing results is that BSA-stabilized Pt nanozymes demonstrate the ability to sense Hg(2+) ions in aqueous solution without significant interference from other metal ions. The Hg(2+) detection limit of 7.2nM is achieved with a linear response range of 0-120nM, and the developed sensing system is potentially applicable for quantitative determination of Hg(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Plasma Environment at Mercury

    Science.gov (United States)

    Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos; hide

    2011-01-01

    Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.

  13. A Highly Selective Mercury Ion (Ⅱ) Fluorescent Probe Based on Dansyl Dye%一种基于丹磺酰胺染料的高选择性汞(Ⅱ)离子荧光探针

    Institute of Scientific and Technical Information of China (English)

    胡琳莉; 张宇峰; 张欣; 尹军

    2017-01-01

    对人类健康和社会环境而言,汞离子被认为是毒性最大的金属离子之一.本文设计、合成了一种新型基于丹磺酰胺染料的荧光探针,并研究了其对金属阳离子的识别性质.研究结果表明:该荧光探针在水溶液中,对汞离子具有高度的选择性和良好的灵敏度,且不受其它金属阳离子的干扰.该探针对汞离子的检测限可以达到2.1×10-8 mol/L.该探针极低的检测限和良好的水溶性表明其可用于活细胞中检测汞离子.生物成像实验证实该探针具有良好的细胞膜透性和生物相容性.%Mercury ion (Ⅱ) is known as one of the most toxic metal ions both for humans and the environment.In this work,a new fluorescent probe based on dansyl dye was designed and synthesized,and its determining property towards metal cations was investigated.The result indicated that this dansyl-based fluorescent probe possessed high selectivity and good sensitivity towards mercury ion (Ⅱ])in an aqueous media without any interference from other metal cations.It was worth mentioning that the detection limit of mercury ion (Ⅱ) can reach to 2.1 × 10-8 mol/L.Such low detection limit and good water-solubility supported this probe could be used to visualize the level of mercury ion (Ⅱ) in living cells.Furthermore,the bioimaging experiment confirmed that this probe had good membrane permeability and biocompatibility.

  14. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Li, Baoxin; Qi, Yingying; Jin, Yan [Shaanxi Normal University, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Xi' an (China)

    2009-04-15

    We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg{sup 2+}) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg{sup 2+} aptamer is rich in thymine (T) and readily forms T-Hg{sup 2+}-T configuration in the presence of Hg{sup 2+}. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg{sup 2+}-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg{sup 2+} concentration through a five-decade range of 1 x 10{sup -4} mol L{sup -1} to 1 x 10{sup -9} mol L{sup -1}. Even with the naked eye, we could identify micromolar Hg{sup 2+} concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg{sup 2+} over other metal cations including K{sup +}, Ba{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Al{sup 3+}, and Fe{sup 3+}. The major advantages of this Hg{sup 2+} assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg{sup 2+} detection. (orig.)

  15. Magnetosphere, exosphere, and surface of Mercury

    International Nuclear Information System (INIS)

    Cheng, A.F.; Krimigis, S.M.; Johnson, R.E.; Lanzerotti, L.J.

    1987-01-01

    It is presently suggested in light of the atomic Na exosphere discovered for Mercury that this planet, like the Jupiter moon Io, is capable of maintaining a heavy ion magnetosphere. Na(+) ions from the exosphere are in this scenario accelerated to keV energies en route to making substantial contributions to the mass and energy budgets of the magnetosphere. Since Mercury's Na supply to the exosphere is primarily internal, it would appear that Mercury is losing its semivolatiles and that this process will proceed by way of photosputtering, which maintains an adequate Na-ejection rate from the planet's surface. 39 references

  16. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Karaman, Isa; Soylak, Mustafa

    2009-01-01

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L -1 HCl for methyl mercury and 2 mol L -1 HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g -1 . The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L -1 . Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  17. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa, E-mail: m.tuzen@gmail.com [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluozlu, Ozgur Dogan [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Karaman, Isa [Gaziosmanpasa University, Faculty of Science and Arts, Biology Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)

    2009-09-30

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L{sup -1} HCl for methyl mercury and 2 mol L{sup -1} HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g{sup -1}. The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L{sup -1}. Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  18. Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhen; Li, Yuan [Sichuan University, College of Chemistry, Chengdu (China); Yang, Hong [Soochow University, College of Pharmacy, Suzhou (China); Pschenitza, Michael; Niessner, Reinhard; Knopp, Dietmar [Technical University Munich, Chair for Analytical Chemistry, Institute of Hydrochemistry and Chemical Balneology, Munich (Germany); Deng, Anping [Sichuan University, College of Chemistry, Chengdu (China); Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou (China)

    2012-07-15

    Mercury is one of the most toxic heavy metals present in the environment. In this study, a highly sensitive and specific monoclonal antibody (mAb)-based indirect competitive enzyme-linked immunosorbent assay (ELISA) for the determination of Hg{sup 2+} was developed. A new bifunctional ligand, 6-mercaptonicotinic acid (MNA), which contains a pyridine ring bearing a carboxylic group and a mercapto group, was selected for the preparation of immunogen. After immunization of mice and performing the hybridoma technique, the obtained mAb was characterized for its binding affinity and selectivity for Hg{sup 2+}. Based on this novel mAb, an ELISA was established. At optimal experimental conditions, the standard curve of the ELISA for Hg{sup 2+} was constructed in concentration range of 0.1-100 ng mL{sup -1}. The values of IC{sub 50} and LOD of the assay were found to be 1.12 and 0.08 ng mL{sup -1}. The cross-reactivity was lower than 2 % with MNA, CH{sub 3}Hg, and CH{sub 3}Hg-MNA and was 11.5 % and 4.4 % for Hg{sup +} and Au{sup 3+}, respectively. No cross-reactivity was found with other metal ions such as Cu{sup 2+}, Sn{sup 2+}, Ni{sup 2+}, Mn{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Fe{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, and anions such as Cl{sup -}, NO{sub 3} {sup -}, NO{sub 2} {sup -}, HCO{sub 3} {sup -}, F{sup -}, and SO{sub 4} {sup 2-}, indicating that the assay displays not only high sensitivity but also high selectivity. Different kinds of samples including water, milk, green vegetable, kelp, facial cleanser, and night cream were spiked with Hg{sup 2+} and the extracts were analyzed by ELISA. Acceptable recovery rates of 80.0-113.0 % and coefficients of variation of 1.9-18.6 % were obtained. A linear relationship between ELISA and cold-vapor atomic fluorescence spectroscopy (CV-AFS) as indicated by a correlation coefficient of 0.97 for liquid samples (water samples) and 0.98 for other samples was obtained. The proposed mAb-based ELISA provides a

  19. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  20. Fluorescent sensor for mercury

    Science.gov (United States)

    Wang, Zidong [Urbana, IL; Lee, Jung Heon [Evanston, IL; Lu, Yi [Champaign, IL

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  1. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  2. A label free aptamer-based LPG sensor for detection of mercury in aquatic solutions

    Science.gov (United States)

    Nikbakht, Hamed; Latifi, Hamid; Ziaee, Farzaneh

    2015-09-01

    We demonstrate a label free fiber optic sensor for detection of mercury ions in aquatic solutions. This sensor utilizes aptamers as bio-recognition element which traps mercury ions and cause a refractive index change in the vicinity of the sensor. Refractive index variations lead to a change in the transmission spectrum that can be used to calculate the concentration of mercury ions in that solution. The concentration of 1 nM mercury ions was detected which is below the specific amount determined by the US environmental protection agency as the maximum authorized contaminant level of Hg2+ ions in drinking water.

  3. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    Science.gov (United States)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  4. Ratio of organs to blood of mercury during its uptake by normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Ogata, M.; Aikoh, H.

    1987-01-01

    The brain/blood, liver/blood, and heart/blood ratios of acatalasemic mice after intraperitoneal injection of labelled metallic mercury or after exposure to labelled metallic mercury vapor were significantly higher than those of normal mice. These ratios of normal or acatalasemic mice after injection with metallic mercury or exposure to metallic mercury vapor were significantly higher than those of normal and acatalasemic mice injected with mercuric ion. The amount of metallic mercury exhaled from acatalasemic mice injected with metallic mercury was greater than that from normal mice, indicating that the level of metallic mercury in blood of the former was higher than that of the latter. Actually, metallic mercury in the blood of acatalasemic mice injected with metallic mercury is higher than that in the blood of normal mice, suggesting that metallic mercury is easily transferred from blood to brain, liver, kidney, and heart

  5. MESSENGER observations of the composition of Mercury's ionized exosphere and plasma environment.

    Science.gov (United States)

    Zurbuchen, Thomas H; Raines, Jim M; Gloeckler, George; Krimigis, Stamatios M; Slavin, James A; Koehn, Patrick L; Killen, Rosemary M; Sprague, Ann L; McNutt, Ralph L; Solomon, Sean C

    2008-07-04

    The region around Mercury is filled with ions that originate from interactions of the solar wind with Mercury's space environment and through ionization of its exosphere. The MESSENGER spacecraft's observations of Mercury's ionized exosphere during its first flyby yielded Na+, O+, and K+ abundances, consistent with expectations from observations of neutral species. There are increases in ions at a mass per charge (m/q) = 32 to 35, which we interpret to be S+ and H2S+, with (S+ + H2S+)/(Na+ + Mg+) = 0.67 +/- 0.06, and from water-group ions around m/q = 18, at an abundance of 0.20 +/- 0.03 relative to Na+ plus Mg+. The fluxes of Na+, O+, and heavier ions are largest near the planet, but these Mercury-derived ions fill the magnetosphere. Doubly ionized ions originating from Mercury imply that electrons with energies less than 1 kiloelectron volt are substantially energized in Mercury's magnetosphere.

  6. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    Science.gov (United States)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  7. A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples.

    Science.gov (United States)

    Ziaei, Ehsan; Mehdinia, Ali; Jabbari, Ali

    2014-11-19

    New mercapto-grafted graphene oxide-magnetic chitosan (GO-MC) has been developed as a novel biosorbent for the preconcentration and extraction of mercury ion from water samples. A facile and ecofriendly synthesis procedure was also developed for modification of GO-MC with 3-mercaptopropyltrimethoxysilane. The prepared nanocomposite material (mercapto/GO-MC) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDX). The mercury analysis was performed by continuous-flow cold vapor atomic absorption spectrometry. The parameters affecting the extraction and preconcentration processes were carried out. The optimum conditions were found to be 60mg of sorbent, pH of 6.5, 10min for adsorption time, 3mL of HCl (0.1mol L(-1))/thiourea (2% w/v) as the eluent and 250mL for breakthrough volume. An excellent linearity was achieved in the range of 0.12-80ng mL(-1) (R(2)=0.999) at a preconcentration factor of 80. The limit of detection and quantification were achieved as 0.06ng mL(-1) and 0.12ng mL(-1), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 4.7%. Furthermore, real water samples were analyzed and good recoveries were obtained from 95 to 100%. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  9. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

    International Nuclear Information System (INIS)

    Bondarenko, G G; Fisher, M R; Kristya, V I

    2012-01-01

    Simulation of the electron, ion and metastable excited atom transport in the argon-mercury mixture low-current discharge is fulfilled. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained and it is demonstrated that the principal mechanism of mercury ion generation is the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations show that the mercury and argon ion flow densities near the cathode are of the same order already under the relative mercury content of about 10 −4 corresponding at the argon pressure 10 3 Pa to the mixture temperature 30 C. Therefore, at the room temperature the electrodes of mercury illuminating lamps at the stage of their ignition are sputtered predominantly by mercury ions.

  10. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  11. Removal of mercury by foam fractionation using surfactin, a biosurfactant.

    Science.gov (United States)

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required 10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L(-1) Hg(2+)) resulted in better separation (36.4%), while concentrated solutions (100 mg L(-1)) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  12. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    Directory of Open Access Journals (Sweden)

    Shashi B. Atla

    2011-11-01

    Full Text Available The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin and chemical surfactants (SDS and Tween-80 was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4% by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+ resulted in better separation (36.4%, while concentrated solutions (100 mg L−1 enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  13. Messenger Observations of Mercury's Bow Shock and Magnetopause

    Science.gov (United States)

    Slavin J. A.; Acuna, M. H.; Anderson, B. J.; Benna, M.; Gloeckler, G.; Krimigis, S. M.; Raines, M.; Schriver, D.; Travnicek, P.; Zurbuchen, T. H.

    2008-01-01

    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury.

  14. Biosorption of mercury by capsulated and slime layer- forming Gram ...

    African Journals Online (AJOL)

    ONOS

    2010-09-20

    Sep 20, 2010 ... high negatively charged components, showed more than 1.5 fold increase as compared to capsulated ... Mercury is one of the most toxic heavy metals released in ... ion exchange, activated carbon adsorption and separation.

  15. Developments of the ISOLDE RILIS for radioactive ion beam production and the results of their application in the study of exotic mercury isotopes

    CERN Document Server

    AUTHOR|(CDS)2086245; Marsh, Bruce

    This work centres around development and applications of the Resonance Ionization Laser Ion Source (RILIS) of the ISOLDE radioactive ion beam facility based at CERN. The RILIS applies step-wise resonance photo-ionization, to achieve an unparalleled degree of element selectivity, without compromising on ion source efficiency. Because of this, it has become the most commonly used ion source at ISOLDE, operating for up to 75% of ISOLDE experiments. In addition to its normal application as an ion source, the RILIS can be exploited as a spectroscopic tool for the study of nuclear ground state and isomer properties, by resolving the influence of nuclear parameters on the atomic energy levels of the ionization scheme. There are two avenues of development by which to widen the applicability of the RILIS: laser ionization scheme development, enabling new or more efficient laser ionized ion beams and the development of new laser-atom interaction regions. New ionization schemes for chromium, tellurium, germanium, mercu...

  16. Thiacrown polymers for removal of mercury from waste streams

    Science.gov (United States)

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  17. Global Trends in Mercury Management

    Science.gov (United States)

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  18. Treatment of radioactive laboratory waste for mercury removal

    International Nuclear Information System (INIS)

    Osteen, A.B.; Bibler, J.P.

    1990-01-01

    Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 μg/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite trademark GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal

  19. Basic Information about Mercury

    Science.gov (United States)

    ... or metallic mercury is a shiny, silver-white metal and is liquid at room temperature. It is ... releases can happen naturally. Both volcanoes and forest fires send mercury into the atmosphere. Human activities, however, ...

  20. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  1. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  2. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  3. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  4. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  5. Sputtering of sodium on the planet Mercury

    Science.gov (United States)

    Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.

    1986-01-01

    It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.

  6. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties

  7. Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions

    Science.gov (United States)

    Labeb, Mohmed; Sakr, Abdel-Hamed; Soliman, Moataz; Abdel-Fettah, Tarek M.; Ebrahim, Shaker

    2018-05-01

    Cadmium telluride (CdTe) quantum dots (QDs) were prepared from an aqueous solution containing CdCl2 and Te precursor in the presence of thioglycolic acid (TGA) or L-cysteine as capping agents. Two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar (pM) depending on the type of capping agents and based on photoluminescence (PL) quenching of CdTe QDs. It was observed that low concentrations of Hg2+ ions quench the fluorescence spectra of CdTe QDs and TGA capped CdTe QDs exhibited a linear response to Hg2+ ions in the concentration range from 1.25 to 10 nM. Moreover, it was found that L-cysteine capped CdTe QDs optical sensor with a sensitivity of 6 × 109 M-1, exhibited a linear coefficient of 0.99 and showed a detection limit of 2.7 pM in range from 5 to 25 pM of Hg2+ ions was achieved. In contrast to the significant response that was observed for Hg2+, a weak signal response was noted upon the addition of other metal ions indicating an excellent selectivity of CdTe QDs towards Hg2+.

  8. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica

    International Nuclear Information System (INIS)

    Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J.

    2005-01-01

    Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO 2 ) 1-x (LSiO 1.5 ) x , where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S (le) 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu t ) 2 . At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

  9. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions.

    Science.gov (United States)

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2012-01-15

    An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  11. In vitro oxidation of mercury by the blood

    International Nuclear Information System (INIS)

    Hursh, J.B.; Sichak, S.P.; Clarkson, T.W.

    1988-01-01

    A method is described for studying the in vitro oxidation of mercury vapour by red blood cells at short times and with diminishing mercury vapour concentrations. It is found that for 40% red blood cell suspensions and 37 deg. C at concentrations greater than about 6 ng mercury vapour/ml, the oxidation rate is zero order, and that at lower concentrations the rate changes to first order. The effect of temperature and of added hydrogen peroxide de are studied. Results a considered in terms of the generally accepted belief that the catalase-compound I system is the main path of oxidation. If the results obtained in vitro in these experiments apply in vivo to man, it follows that inhaled mercury is carried in the blood to the brain and organs primarily as dissolved vapour rather than as inorganic mercury ions. (author)

  12. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  13. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... in contact with) to mercury is by eating fish or shellfish that have high levels of mercury. You can also get sick from: Touching it Breathing it in Drinking contaminated water How can mercury ...

  14. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  15. Total- and monomethyl-mercury and major ions in coastal California fog water: Results from two years of sampling on land and at sea

    Directory of Open Access Journals (Sweden)

    Peter Weiss-Penzias

    2016-04-01

    Full Text Available Abstract Marine fog water samples were collected over two summers (2014–2015 with active strand collectors (CASCC at eight coastal sites from Humboldt to Monterey counties in California, USA, and on four ocean cruises along the California coastline in order to investigate mercury (Hg cycling at the ocean-atmosphere-land interface. The mean concentration of monomethylmercury (MMHg in fog water across terrestrial sites for both years was 1.6 ± 1.9 ng L-1 (<0.01–10.4 ng L-1, N = 149, which corresponds to 5.7% (2.0–10.8% of total Hg (HgT in fog. Rain water samples from three sites had mean MMHg concentrations of 0.20 ± 0.12 ng L-1 (N = 5 corresponding to 1.4% of HgT. Fog water samples collected at sea had MMHg concentrations of 0.08 ± 0.15 ng L-1 (N = 14 corresponding to 0.4% of HgT. Significantly higher MMHg concentrations in fog were observed at terrestrial sites next to the ocean relative to a site 40 kilometers inland, and the mean difference was 1.6 ng L-1. Using a rate constant for photo-demethylation of MMHg of -0.022 h-1 based on previous demethylation experiments and a coastal-inland fog transport time of 12 hours, a mean difference of only 0.5 ng L-1 of MMHg was predicted between coastal and inland sites, indicating other unknown source and/or sink pathways are important for MMHg in fog. Fog water deposition to a standard passive 1.00 m2 fog collector at six terrestrial sites averaged 0.10 ± 0.07 L m-2 d-1, which was ∼2% of typical rainwater deposition in this area. Mean air-surface fog water fluxes of MMHg and HgT were then calculated to be 34 ± 40 ng m-2 y-1 and 546 ± 581 ng m-2 y-1, respectively. These correspond to 33% and 13% of the rain fluxes, respectively.

  16. Effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes.

    OpenAIRE

    宮地,芳之

    1987-01-01

    The effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes were examined. Copper ion and organic mercury (EMP; ethylmercury phosphate, and PCMB; sodium p-chloromercuricbenzoate) inhibited glycerol lysis of erythrocytes. The inhibitory effects was dependent on the incubation period. An equimolor solution of copper ion and EMP showed between copper ion and EMP. Similar results were obtained with copper and PCMB.

  17. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  18. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  19. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  20. Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations

    Science.gov (United States)

    Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.

    2017-12-01

    We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.

  1. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  2. A ditopic fluorescence sensor for saccharides and mercury based on a boronic-acid receptor and desulfurisation reaction.

    Science.gov (United States)

    Xing, Zhitao; Wang, Hui-Chen; Cheng, Yixiang; James, Tony D; Zhu, Chengjian

    2011-11-04

    Two boron-contained fluorescent sensors, 1 and 2, based on coumarin have been prepared. The fluorescence response of the two systems was investigated with addition of saccharide and mercury ions. Sensor 2 behaves as a bifunctional fluorescent switch with chemical inputs of D-fructose and mercury ions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Monitoring and abatement of environmental mercury pollution using human hair as absorbant

    International Nuclear Information System (INIS)

    Krishnan, S.S.; Cortes, E.; Cassorla, V.; Munoz, L.; Gras, N.

    1985-01-01

    Mercury pollution in the industrial environment of Chile was studied using hair as monitor. Data from samples representing people living in non-polluted and also from polluted areas show that hair is an effective and convenient indicator of environmental mercury pollution. A major source of mercury pollution and its transport is contaminated water. The method discussed is an inexpensive and convenient alternative to conventional ion-exchange processes which are generally very expensive, particulary for developing countries. (author)

  4. Absolute cross sections for emission of 284.7-nm (Hg II) and 479.7-nm (Hg III) radiation in electron--mercury-ion collisions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Taylor, P.O.; Dunn, G.H.

    1976-01-01

    Crossed beams of electrons and Hg + ions have been used to measure absolute cross sections for emission of 284.7-nm radiation, resulting from excitation of a predominantly ground-state Hg + target to the 7s 2 S 1 / 2 state. Values range from 3 x 10 -17 cm 2 near threshold, where the cross section is strongly peaked, to 1.3 x 10 -18 cm 2 at 280 eV. Also reported are some measurements of emission of 479.7-nm (Hg III) radiation, resulting from electron impact on both Hg + and Hg ++ targets. Cross sections range from approximately 5 x 10 -19 to 5 x 10 -20 cm 2 , and in the case of electron-Hg ++ collisions, are more than an order of magnitude smaller than predicted by an available semiclassical binary-encounter calculation

  5. ICT-Isomerization-Induced Turn-On Fluorescence Probe with a Large Emission Shift for Mercury Ion: Application in Combinational Molecular Logic.

    Science.gov (United States)

    Bhatta, Sushil Ranjan; Mondal, Bijan; Vijaykumar, Gonela; Thakur, Arunabha

    2017-10-02

    A unique turn-on fluorescent device based on a ferrocene-aminonaphtholate derivative specific for Hg 2+ cation was developed. Upon binding with Hg 2+ ion, the probe shows a dramatic fluorescence enhancement (the fluorescence quantum yield increases 58-fold) along with a large red shift of 68 nm in the emission spectrum. The fluorescence enhancement with a red shift may be ascribed to the combinational effect of C═N isomerization and an extended intramolecular charge transfer (ICT) mechanism. The response was instantaneous with a detection limit of 2.7 × 10 -9 M. Upon Hg 2+ recognition, the ferrocene/ferrocenium redox peak was anodically shifted by ΔE 1/2 = 72 mV along with a "naked eye" color change from faint yellow to pale orange for this metal cation. Further, upon protonation of the imine nitrogen, the present probe displays a high fluorescence output due to suppression of the C═N isomerization process. Upon deprotonation using strong base, the fluorescence steadily decreases, which indicates that H + and OH - can be used to regulate the off-on-off fluorescence switching of the present probe. Density functional theory studies revealed that the addition of acid leads to protonation of the imine N (according to natural bond orbital analysis), and the resulting iminium proton forms a strong H-bond (2.307 Å) with one of the triazole N atoms to form a five-membered ring, which makes the molecule rigid; hence, enhancement of the ICT process takes place, thereby leading to a fluorescence enhancement with a red shift. The unprecedented combination of H + , OH - , and Hg 2+ ions has been used to generate a molecular system exhibiting the INHIBIT-OR combinational logic operation.

  6. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    In this case report, intravenous complications, treatment strategies and possible ... Mercury toxicity is commonly associated with vapour inhalation or oral ingestion, for which there exist definite treatment options. Intravenous mercury ... personality, anxiousness, irritability, insomnia, depression and drowsi- ness.[1] However ...

  7. Mercury's shifting, rolling past

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and Mariner 10 images revealed decades ago that lobate scarps are among the youngest features on Mercury. Why don't we find more evidence of older compressive features?

  8. Global Mercury Assessment 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    mercury pollution. This summary report and the accompanying. Technical Background Report for the Global. Mercury Assessment 2013 are developed in response to Decision 25/5, paragraph ... The use of different pollution control technologies in different ...... vegetation, snow, freshwater, and seawater. One of the largest ...

  9. MESSENGER at Mercury: Early Orbital Operations

    Science.gov (United States)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20 deg. S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.

  10. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan

    Science.gov (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi

    2017-07-01

    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  11. Integrity Monitoring of Mercury Discharge Lamps

    Science.gov (United States)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  12. Study of the synthesized plasma resulting from forced neutralization of a mercury ions beam; Etude du plasma de synthese resultant de la neutralisation forcee d'un faisceau d'ions Hg{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Spiess, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    When an ionic beam is used (space simulation etc...) it needs a forced space charge neutralization by means of electrons injection when the perturbations resulting from the ionic space charge are not already eliminated by the well known self neutralization of the beam on the back ground gas of the tank. We have shown that it is possible to obtain the forced neutralization of a low energy (a few KeV) Hg{sup +} ion beam, 10 cm in diameter, with a neutraliser made of a hot emissive filament located inside the beam close to the ion source. The computed solution of the plane waves dispersion equation has shown that the synthesized plasma, resulting from the neutralised beam, is damping fluctuations with any wave length when the average ions velocity is less than the neutralizing electrons thermal velocity. This last conclusion assumes that no external electromagnetic field is applied. When a longitudinal electric field is applied, by means of a polarized grid into the beam, the plasma stability range is changed. (author) [French] Pour toutes les utilisations des faisceaux ioniques (soufleries ioniques etc...), ou les phenomenes perturbateurs dus a la charge d'espace positive des ions ne sont pas elimines par le mecanisme bien connu de l'autoneutralisation sur le gaz residuel de l'enceinte a vide, il faut assurer une neutralisation forcee de la charge d'espace par injection d'electrons dans le faisceau. Nous avons montre qu'il est possible d'assurer la neutralisation forcee d'un faisceau d'ions Hg{sup +}, de grand diametre (10 cm) et d'une energie de quelques KeV, avec un neutraliseur constitue d'un filament chaud emissif immerge dans le faisceau au voisinage de la source d'ions. La resolution numerique de l'equation de dispersion des ondes planes a montre que le plasma de synthese, forme par le faisceau neutralise, amortit les fluctuations de toute longueur d'onde lorsque la vitesse moyenne des ions est inferieure a la vitesse thermique des electrons de neutralisation

  13. Removal of mercury in fixed-bed continuous upflow reactors by mercury-resistant bacteria and effect of sodium chloride on their performance

    Digital Repository Service at National Institute of Oceanography (India)

    De; Leonhauser, J.; Vardanyan, L.

    Urgent need to reduce the amount of toxic mercury compounds in the wastewater of industries and subsequent reuse of metal ions, has led to an increasing interest in microbial bioremediation. Two Pseudomonas aeruginosa strains, namely, isolate CH07...

  14. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decrease of emissions in Europe (Waengberg et al., 2007). For mercury in air (TGM), the geographical pattern is less pronounced indicating the influence of mercury emissions and distribution over a larger geographical area (i.e. hemispherical transport). Comparison of recent (surficial) and historical lake sediments show significantly elevated concentrations of mercury most likely caused by anthropogenic atmospheric deposition over the past century. The highest pollution impact was observed in the coastal areas of southern Norway, in south western Finland and in Sweden from the coastal areas in the southwest across the central parts to the north-east. The general increase in recent versus old sediments was 2-5 fold. Data on mercury in Nordic freshwater fish was assembled and evaluated with respect to geographical variations. The fish data were further compared with temporal and spatial trends in mercury deposition and mercury contamination of lake sediments in order to investigate the coupling between atmospheric transport and deposition of mercury and local mercury

  15. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  16. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    Science.gov (United States)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  17. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    Science.gov (United States)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  18. Low Temperature Irradiation Applied to Neutron Activation Analysis of Mercury In Human Whole Blood

    International Nuclear Information System (INIS)

    Brune, D.

    1966-02-01

    The distribution of mercury in human whole blood has been studied by means of neutron activation analysis. During the irradiation procedure the samples were kept at low temperature by freezing them in a cooling device in order to prevent interferences caused by volatilization and contamination. The mercury activity was separated by means of distillation and ion exchange techniques

  19. Low Temperature Irradiation Applied to Neutron Activation Analysis of Mercury In Human Whole Blood

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1966-02-15

    The distribution of mercury in human whole blood has been studied by means of neutron activation analysis. During the irradiation procedure the samples were kept at low temperature by freezing them in a cooling device in order to prevent interferences caused by volatilization and contamination. The mercury activity was separated by means of distillation and ion exchange techniques.

  20. A fluorescent optical fibre chemosensor for mercury detection

    Science.gov (United States)

    Wren, Stephen P.; Sun, Tong; Grattan, Kenneth T. V.

    2015-09-01

    A proof-of-concept mercury probe was developed based on covalent attachment of a chemical coating to optical fibre. The sensing element comprised a dansyl derivative and crown ether moiety, acting as fluorophore and metal ion chelator respectively. An ON-OFF type fluorescence (quench) occurred upon binding of mercury ions, via an intramolecular charge transfer mechanism, in aqueous solution in the 909nM-90.9μM (247 ppb -24.7 ppm) concentration range. A washing protocol was identified for sensor regeneration allowing the probe to be re-used.

  1. Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water.

    Science.gov (United States)

    Nie, Kaixuan; Dong, Bo; Shi, Huanhuan; Liu, Zhengchun; Liang, Bo

    2017-03-07

    A technique for encapsulating fluorescent organic probes in a micelle system offers an important alternative method to manufacture water-soluble organic nanoparticles (ONPs) for use in sensing Hg 2+ . This article reports on a study of a surfactant-free micelle-like ONPs based on a 3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) amphiphile, (2-(2-(2-methoxyethoxy)ethyl)-3,6-di(2-thiophyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (NDPP) fabricated to monitor Hg 2+ in water. NDPP was synthesized through a simple one-step modification of a commercially available dye TDPP with a flexible and hydrophilic alkoxy. This study reports, for the first time, that TDPP dyes can respond reversibly, sensitively, and selectively to Hg 2+ through TDPP-Hg-TDPP complexation, similar to the well-known thymine(T)-Hg-thymine(T) model and the accompanying molecular aggregation. Interestingly, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed that, in water, NDPP forms loose micelle-like fluorescent ONPs with a hydrohobic TDPP portion encapsulated inside. These micelle-like nanoparticles offer an ideal location for TDPP-Hg complexation with a modest molecular aggregation, thereby providing both clear visual and spectroscopic signals for Hg 2+ sensing. An estimated detection limit of 11 nM for Hg 2+ sensing with this NDPP nanoparticle was obtained. In addition, NDPP ONPs show good water solubility and high selectivity to Hg 2+ in neutral or alkalescent water. It was superior to most micelle-based nanosensors, which require a complicated process in the selection or synthesis of suitable surfactants. The determinations in real samples (river water) were made and satisfactory results were achieved. This study provides a low-cost strategy for fabricating small molecule-based fluorescent nanomaterials for use in sensing Hg 2+ . Moreover, the NDPP nanoparticles show potential ability in Hg 2+ ion adsorption and recognization of cysteine

  2. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    Science.gov (United States)

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.

  3. Total Mercury content of skin toning creams

    African Journals Online (AJOL)

    Administrator

    2008-04-01

    Apr 1, 2008 ... used it for cosmetics (Silberberg, 1995). Mercury- ... Cosmetic preparations containing mercury com- pounds are .... mercury determination by a modified version of an open .... level mercury exposure, which could lead to a.

  4. Development and Applications of Fluorogenic Probes for Mercury(II) Based on Vinyl Ether Oxymercuration

    OpenAIRE

    Ando, Shin; Koide, Kazunori

    2011-01-01

    Mercury is a major threat to the environment and to human health. It is highly desirable to develop a user-friendly kit for on-site mercury detection. Such a method must be able to detect mercury below the threshold levels for drinking water, 1–2 ppb. We developed a fluorescence method based on the oxymercuration of vinyl ethers to detect mercury in dental and environmental samples. Chloride ions interfered with the oxymercuration reaction, but the addition of AgNO3 solved this problem. Fine ...

  5. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; hide

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  6. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  7. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  8. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  9. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  10. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  11. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    Elemental mercury is the well-known silver liquid and usually causes pulmonary, neurological and ... suicidal ideation or features of major depression. Clinically the patient was .... medically at this stage and consider surgical intervention later.

  12. Mercury's Dynamic Magnetosphere

    Science.gov (United States)

    Imber, S. M.

    2018-05-01

    The global dynamics of Mercury's magnetosphere will be discussed, focussing on observed asymmetries in the magnetotail and on the precipitation of particles of magnetospheric origin onto the nightside planetary surface.

  13. Mercury analysis in hair

    DEFF Research Database (Denmark)

    Esteban, Marta; Schindler, Birgit K; Jiménez-Guerrero, José A

    2015-01-01

    Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical...... assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating...... laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0...

  14. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  15. 15 cm mercury multipole thruster

    Science.gov (United States)

    Longhurst, G. R.; Wilbur, P. J.

    1978-01-01

    A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.

  16. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  17. Cutaneous mercury granuloma

    OpenAIRE

    Kalpana A Bothale; Sadhana D Mahore; Sushil Pande; Trupti Dongre

    2013-01-01

    Cutaneous mercury granuloma is rarely encountered. Clinically it may pose difficulty in diagnosis. Here, we report a 23-year-old male presented with erythematous, nodular lesions over the forearm and anterior aspect of chest wall. Metallic mercury in tissue sections appear as dark black, opaque, spherical globules of varying size and number. They are surrounded by granulomatous foreign-body reaction. It is composed of foreign body giant cells and mixed inflammatory infiltrate composed of hist...

  18. Mercury in human hair

    International Nuclear Information System (INIS)

    Kapauan, P.A.; Cruz, C.C.; Verceluz, F.P.

    1980-10-01

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  19. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  20. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    International Nuclear Information System (INIS)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T.

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent

  1. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  2. Project of an ion thruster

    International Nuclear Information System (INIS)

    Perche, G.E.

    1983-07-01

    The mercury bombardment electrostatic ion thruster is the most successful electric thruster available today. This work describes a 5 cm diameter ion thruster with 3.000 s specific impulse and 5 mN thrust. The advantages of electric propulsion and the tests that will be performed are also presented. (Author) [pt

  3. Indirect complexometric determination of mercury(II) using potassium bromide as selective masking agent

    International Nuclear Information System (INIS)

    Sreekumar, N.V.; Nazareth, R.A.; Narayana, B.; Hegde, P.; Manjunatha, B.R.

    2002-01-01

    A complexometric method for the determination of mercury in presence of other metal ions based on the selective masking ability of potassium bromide towards mercury is described. Mercury(II) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against zinc sulfate solution at pH 5-6 using xylenol orange as the indicator. A known excess of 10 % solution of potassium bromide is then added and the EDTA released from Hg-EDTA complex is titrated against standard zinc sulfate solution. Reproducible and accurate results are obtained for 8 mg to 250 mg of mercury(II) with a relative error ±0.28 % and standard deviations /leg 0.5 mg. The interference of various ions is studied. This method was applied to the determination of mercury(II) in its alloys. (author)

  4. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.

    Science.gov (United States)

    Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz

    2017-07-01

    Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mercury pollution in Malaysia.

    Science.gov (United States)

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  6. Mercury's Atmosphere and Magnetosphere: MESSENGER Third Flyby Observations

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Johnson, Catherine L.; Gloeckler, George; Killen, Rosemary M.; Krimigis, Stamatios M.; McClintock, William; McNutt, Ralph L., Jr.; hide

    2009-01-01

    MESSENGER's third flyby of Mercury en route to orbit insertion about the innermost planet took place on 29 September 2009. The earlier 14 January and 6 October 2008 encounters revealed that Mercury's magnetic field is highly dipolar and stable over the 35 years since its discovery by Mariner 10; that a structured, temporally variable exosphere extends to great altitudes on the dayside and forms a long tail in the anti-sunward direction; a cloud of planetary ions encompasses the magnetosphere from the dayside bow shock to the downstream magnetosheath and magnetotail; and that the magnetosphere undergoes extremely intense magnetic reconnect ion in response to variations in the interplanetary magnetic field. Here we report on new results derived from observations from MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS), Magnetometer (MAG), and Energetic Particle and Plasma Spectrometer (EPPS) taken during the third flyby.

  7. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    ... 2012 What are the Health Effects of Mercury Exposure? The health effects that can be caused by breathing mercury depend ... they breathe faster and have smaller lungs. Health effects caused by long-term exposure to mercury vapors • • Anxiety • • Excessive shyness • • Anorexia • • Sleeping ...

  8. Mercury pOIsonIng

    African Journals Online (AJOL)

    A case of mercury poisoning is reported and clinical observations of 6 .... fish ingested and occupational exposure. .... exposed to mercury as a result of inadequate industrial safety standards, and ... WHO Tech Rep Ser 1980; No. 674: 102-115.

  9. Mercury Study Report to Congress

    Science.gov (United States)

    EPA's Report to Congress on Mercury provides an assessment of the magnitude of U.S. mercury emissions by source, the health and environmental implications of those emissions, and the availability and cost of control technologies.

  10. True Polar Wander of Mercury

    Science.gov (United States)

    Keane, J. T.; Matsuyama, I.

    2018-05-01

    We use new MESSENGER gravity data to investigate how impact basins and volcanic provinces alter Mercury's moments of inertia. We find that Mercury has reoriented tens of degrees over its history, affecting tectonics, volatiles, and more.

  11. Mercury Emissions: The Global Context

    Science.gov (United States)

    Mercury emissions are a global problem that knows no national or continental boundaries. Mercury that is emitted to the air can travel thousands of miles in the atmosphere before it is eventually deposited back to the earth.

  12. Genetic engineering to enhance mercury phytoremediation.

    Science.gov (United States)

    Ruiz, Oscar N; Daniell, Henry

    2009-04-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (approximately 400 microM PMA) or inorganic mercury (approximately 500 microM HgCl(2)), accumulating Hg in roots surpassing the concentration in soil (approximately 2000 microg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities.

  13. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping

    Science.gov (United States)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.

    2012-01-01

    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  14. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  15. MERCURY IN MARINE LIFE DATABASE

    Science.gov (United States)

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  16. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  17. Mercury and antibiotic resistance in Enterobacteriaceae: an experimental study on pigs

    Energy Technology Data Exchange (ETDEWEB)

    Laub-Kupersztejn, R; Thomas, J; Pohl, P

    1974-01-01

    Tests on faeces from 5 different groups of pigs, showed that 47.2% of the coliforms present were resistant to mercury ions. None of the 3127 bacteria examined were resistant to cadmium ions. The resistance of these strains to mercury was mainly associated with resistance to one or more antibiotics (98%). Feeding the animals with ampicillin (20 ppm) led to modification of the Escherichia coli in the alimentary tract, with ampicillin and mercury resistant strains emerging in great number. These resistance characters could be wholly, or partially, transferred to a sensitive strain of E. coli, thus suggesting that they were mediated by R-factors. The existence of a plasmid resistant only to mercury ions was demonstrated. 9 references, 4 tables.

  18. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  19. Mercury's Sodium Exosphere: Observations during the MESSENGER Orbital Phase

    Science.gov (United States)

    Killen, Rosemary M.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; McClintock, William E.; Benna, Mehdi; Solomon, Sean C.

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+),

  20. Mercury exposure in Ireland

    DEFF Research Database (Denmark)

    Cullen, Elizabeth; Evans, David S; Davidson, Fred

    2014-01-01

    of a study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES) pilot biomonitoring study. METHODS: Hair mercury concentrations were determined from a convenience sample of 120 mother/child pairs. Mothers also completed a questionnaire. Rigorous quality assurance within DEMOCOPHES...... guaranteed the accuracy and international comparability of results. RESULTS: Mercury was detected in 79.2% of the samples from mothers, and 62.5% of children's samples. Arithmetic mean levels in mothers (0.262 µg/g hair) and children (0.149 µg /g hair) did not exceed the US EPA guidance value. Levels were...

  1. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  2. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  3. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  4. The threshold photoelectron spectrum of mercury

    International Nuclear Information System (INIS)

    Rojas, H; Dawber, G; Gulley, N; King, G C; Bowring, N; Ward, R

    2013-01-01

    The threshold photoelectron spectrum of mercury has been recorded over the energy range (10–40 eV) which covers the region from the lowest state of the singly charged ion, 5d 10 6s( 2 S 1/2 ), to the double charged ionic state, 5d 9 ( 2 D 3/2 )6s( 1 D 2 ). Synchrotron radiation has been used in conjunction with the penetrating-field threshold-electron technique to obtain the spectrum with high resolution. The spectrum shows many more features than observed in previous photoemission measurements with many of these assigned to satellite states converging to the double ionization limit. (paper)

  5. Enzymatic Mercury Detoxification: The Regulatory Protein MerR

    CERN Multimedia

    Ctortecka, B; Walsh, C T; Comess, K M

    2002-01-01

    Mercury ions and organomercurial reagents are extremely toxic due to their affinity for thiol groups. Many bacteria contain an elaborate detoxification system for a metabolic conversion of toxic Hg$^{2+}$ or organomercurials to less toxic elemental Hg$^0$. The main components of the enzymatic mercury detoxification (see Fig. 1) are the regulatory protein MerR (mercury responsive genetic switch), the organomercurial lyase MerB (cleavage of carbon mercury bonds), and the mercuric ion reductase MerA (reduction of mercuric ions). In these proteins Hg$^{2+}$ is usually coordinated by the thiol groups of cysteines. We utilize the nuclear quadrupole interaction (NQI) of ${\\rm^{199m}}$Hg detected by time differential perturbed angular correlation (TDPAC) to identify the Hg metal site geometries in these proteins in order to elucidate the molecular origin of the ultrasensitivity, selectivity and reaction mechanism of this detoxification system. The short lived TDPAC probe ${\\rm^{199m}}$Hg ($\\tau_{1/2} =$ 43 min) is su...

  6. Mercury Information Clearinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  7. Removal of mercury from water using pottery

    International Nuclear Information System (INIS)

    Helal, A.A.A.

    2006-01-01

    In a previous study, the sorption of radiocobalt by powdered pottery materials was investigated. The use of these materials as immobilization matrix for liquid radioactive waste requires the employment of pottery vessels. Therefore, the present study aims to give detailed investigations of the decontamination of radionuclides and toxic elements using pottery containers. These investigations are equally useful to elucidate how far these vessels can be utilized for water purification through decontamination of toxic and heavy metals. The radionuclide or heavy metal removal capability using pottery pots, as low cost sorbents, has been investigated for both radioactive ( 203 Hg) and stable mercury. The results indicated that Hg 2+ is better removed by pottery from neutral to alkaline solutions. The capacity of the used pottery container (100 ml in volume) for complete removal of mercury was found to reach 3 x 10 -4 mol/l, and the time needed was 8 hours. The sorption process was suggested to occur via adsorption and ion exchange. The effect of presence of humic or fulvic acid, as ligands abundant in water, is also investigated. The results imply that, in absence of humic or fulvic acid the sorption follows the expected behaviour, i.e. sorption sites with similar affinity for mercury. In presence of humic or fulvic acid, additional sorption sites are available by the organic molecule when it is associated to the pottery. (orig.)

  8. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.

    Science.gov (United States)

    Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi

    2015-01-01

    A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas.

  9. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  10. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  11. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  12. Mercury Exposure and Heart Diseases

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  13. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  14. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  15. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Science.gov (United States)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  16. MERCURY USAGE AND ALTERNATIVES IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    Science.gov (United States)

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. However, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. This study was i...

  17. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles.

    Science.gov (United States)

    Park, Minsung; Seo, Sungmin; Lee, In Su; Jung, Jong Hwa

    2010-07-07

    A new fluorogenic based aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles 1 has been prepared, and its abilities to sense and separate metal ions were evaluated by fluorophotometry. The nanoparticles 1 exhibited a high affinity and selectivity for Hg(2+) and CH(3)Hg(+) ions over competing metal ions.

  18. Selective extraction of trace mercury and cadmium from drinking water sources.

    Science.gov (United States)

    Zhao, Xuan; Zhao, Gang; Wang, Jianlong; Yun, Guichun

    2005-01-01

    In this paper, a new alternative method, i.e., selective extraction by weakly basic anion exchange resin, has been developed for the removal of trace cadmium and mercury ions from drinking water sources. The mechanism of heavy metal removal is based on selective extraction as the results of LEWIS-base-acid interactions. Transfer of trace mercury species from liquid to resin phase coincides well with the performance of film diffusion. The results demonstrated that the presence of chlorine has a negligible influence on the removal of mercury. However, humic acids can strongly bind mercury by the formation of complex compounds and therefore become the obstacle in the diffusion progress. At neutral or base pH, the resin material exhibits the favorable uptake of heavy metals. In filter experiments, the studied resin material offers favorable properties in the selective extraction of trace mercury and cadmium.

  19. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  20. Recovery of mercury from acid waste residues

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  1. Health Effects of Exposures to Mercury

    Science.gov (United States)

    ... IRIS database Top of Page Elemental (Metallic) Mercury Effects Exposures to metallic mercury most often occur when metallic ... poor performance on tests of mental function Higher exposures may also cause kidney effects, respiratory failure and death. Note that metallic mercury ...

  2. Mercury Poisoning Linked to Skin Products

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Mercury Poisoning Linked to Skin Products Share Tweet Linkedin ... and, in some situations, criminal prosecution. Dangers of Mercury Exposure to mercury can have serious health consequences. ...

  3. RILIS-ionized mercury and tellurium beams at ISOLDE CERN

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN (Switzerland); Billowes, J. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Chrysalidis, K. [CERN (Switzerland); Fedorov, D. V. [Petersburg Nuclear Physics Institute (Russian Federation); Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Molkanov, P. L. [Petersburg Nuclear Physics Institute (Russian Federation); Rossel, R. E.; Rothe, S.; Seiffert, C. [CERN (Switzerland); Wendt, K. D. A. [Johannes Gutenberg Universität, Institut für Physik (Germany)

    2017-11-15

    This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.

  4. Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mann, E.A. [Department of Environmental Science, Acadia University, Wolfville, NS (Canada); Environmental Science Programme, Memorial University of Newfoundland, St. John' s, NL (Canada); Mallory, M.L. [Department of Biology, Acadia University, Wolfville, NS (Canada); Ziegler, S.E. [Environmental Science Programme, Memorial University of Newfoundland, St. John' s, NL (Canada); Tordon, R. [Environment Canada, Dartmouth, NS (Canada); O' Driscoll, N.J., E-mail: nelson.odriscoll@acadiau.ca [Department of Environmental Science, Acadia University, Wolfville, NS (Canada)

    2015-03-15

    Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (− 10 °C) and melted (4 °C) snow samples from three Arctic sites were exposed to UV (280–400 nm) radiation (1.26–5.78 W · m{sup −2}), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt. - Highlights: • Mercury photochemical kinetics were studied in frozen and melted Arctic snow. • UV-induced photoreduction and photooxidation rate constants were quantified. • Chloride ion, iron, and DOC influence mercury photoreactions in snow. • Frozen and melted snow have different mercury photoreduction characteristics. • Kinetic information provided can be used to model mercury fate in the Arctic.

  5. Sampling problems and the determination of mercury in surface water, seawater, and air

    International Nuclear Information System (INIS)

    Das, H.A.; van der Sloot, H.A.

    1976-01-01

    Analysis of surface water for mercury comprises the determination of both ionic and organically bound mercury in solution and that of the total mercury content of the suspended matter. Eventually, metallic mercury has to be determined too. Requirements for the sampling procedure are given. A method for the routine determination of mercury in surface water and seawater was developed and applied to Dutch surface waters. The total sample volume is 2500 ml. About 500 ml is used for the determination of the content of suspended matter and the total amount of mercury in the water. The sample is filtered through a bed of previously purified active charcoal at a low flow-rate. The main portion ca. 2000 ml) passes a flow-through centrifuge to separate the solid fraction. One liter is used to separate ''inorganic'' mercury by reduction, volatilization in an airstream and adsorption on active charcoal. The other liter is led through a column of active charcoal to collect all mercury. The procedures were checked with 197 Hg radiotracer both as an ion and incorporated in organic compounds. The mercury is determined by thermal neutron activation, followed by volatilization in a tube furnace and adsorption on a fresh carbon bed. The limit of determination is approximately equal to 1 ng 1 -1 . The rate of desorption from and adsorption on suspended material has been measured as a function of a pH of the solution for Hg +2 and various other ions. It can be concluded that only the procedure mentioned above does not disturb the equilibrium. The separation of mercury from air is obtained by suction of 1 m 3 through a 0.22 μm filter and a charcoal bed. The determination is then performed as in the case of the water samples

  6. Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction

    International Nuclear Information System (INIS)

    Mann, E.A.; Mallory, M.L.; Ziegler, S.E.; Tordon, R.; O'Driscoll, N.J.

    2015-01-01

    Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (− 10 °C) and melted (4 °C) snow samples from three Arctic sites were exposed to UV (280–400 nm) radiation (1.26–5.78 W · m −2 ), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt. - Highlights: • Mercury photochemical kinetics were studied in frozen and melted Arctic snow. • UV-induced photoreduction and photooxidation rate constants were quantified. • Chloride ion, iron, and DOC influence mercury photoreactions in snow. • Frozen and melted snow have different mercury photoreduction characteristics. • Kinetic information provided can be used to model mercury fate in the Arctic

  7. Interior Volatile Reservoirs in Mercury

    Science.gov (United States)

    Anzures, B. A.; Parman, S. W.; Milliken, R. E.; Head, J. W.

    2018-05-01

    More measurements of 1) surface volatiles, and 2) pyroclastic deposits paired with experimental volatile analyses in silicate minerals can constrain conditions of melting and subsequent eruption on Mercury.

  8. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  9. Mercury in bryophytes (moss)

    Energy Technology Data Exchange (ETDEWEB)

    Yeaple, D S

    1972-01-28

    Recent reports in the literature, concerning the ability of certain mosses and lichens to concentrate heavy metals, have led to an investigation of the potential application of mosses as indicators of the transport of mercury through the atmosphere. A number of moss samples were collected to provide information regarding the level of mercury in moss around several types of populated areas. The results reported are from moss collected within an 80 mile radius of Boston, Massachusetts, along the Maine coast, near the tops of Mount Katahdin in Maine and Mount Washington in New Hampshire, and from Walden, New York, a small town located about 60 miles north of New York City. The data are admittedly limited, but provide sufficient insight into the usefulness of moss as an indicator to warrant the pursuit of a more detailed investigation. 6 references, 1 table.

  10. Integrated criteria document mercury

    International Nuclear Information System (INIS)

    Sloof, W.; Beelan, P. van; Annema, J.A.; Janus, J.A.

    1995-01-01

    The document contains a systematic review and a critical evaluation of the most relevant data on the priority substance mercury for the purpose of effect-oriented environmental policy. Chapter headings are: properties and existing standards; production, application, sources and emissions (natural sources, industry, energy, households, agriculture, dental use, waste); distribution and transformation (cinnabar; Hg 2+ , Hg 2 2+ , elemental mercury, methylmercury, behavior in soil, water, air, biota); concentrations and fluxes in the environment and exposure levels (sampling and measuring methods, occurrence in soil, water, air etc.); effects (toxicity to humans and aquatic and terrestrial systems); emissions reduction (from industrial sources, energy, waste processing etc.); and evaluation (risks, standards, emission reduction objectives, measuring strategies). 395 refs

  11. Electrochemical determination of inorganic mercury and arsenic--A review.

    Science.gov (United States)

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Method for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  13. Apparatus for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  14. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  15. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  16. Method for scavenging mercury

    Science.gov (United States)

    Chang, Shih-ger [El Cerrito, CA; Liu, Shou-heng [Kaohsiung, TW; Liu, Zhao-rong [Beijing, CN; Yan, Naiqiang [Berkeley, CA

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  17. Apparatus for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  18. Method for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  19. Observations of Metallic Species in Mercury's Exosphere

    Science.gov (United States)

    Killen, Rosemary M.; Potter, Andrew E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Anderson, Carrie M.; Burger, Matthew H.

    2010-01-01

    From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.

  20. Mercury Concentration Reduction In Waste Water By Using Liquid Surfactant Membrane Technique

    International Nuclear Information System (INIS)

    Prayitno; Sardjono, Joko

    2000-01-01

    The objective of this research is ti know effectiveness of liquid surfactant membrane in diminishing mercury found in waste water. This process can be regarded as transferring process of solved mercury from the external phase functioning as a moving phase to continue to the membrane internal one. The existence of the convection rotation results in the change of the surface pressure on the whole interface parts, so the solved mercury disperses on every interface part. Because of this rotation, the solved mercury will fulfil every space with particles from dispersion phase in accordance with its volume. Therefore, the change of the surface pressure on the whole interface parts can be kept stable to adsorb mercury. The mercury adsorbed in the internal phase moves to dispersed particles through molecule diffusion process. The liquid surfactant membrane technique in which the membrane phase is realized into emulsion contains os kerosene as solvent, sorbitan monoleat (span-80) 5 % (v/v) as surfactant, threbuthyl phosphate (TBP) 10 % (v/v) as extractant, and solved mercury as the internal phase. All of those things are mixed and stirred with 8000 rpm speed for 20 minutes. After the stability of emulsion is formed, the solved mercury is extracted by applying extraction process. The effective condition required to achieve mercury ion recovery utilizing this technique is obtained through extraction and re-extraction process. This process was conducted in 30 minutes with membrane and mercury in scale 1 : 1 on 100 ppm concentration. The results of the processes was 99,6 % efficiency. This high efficiency shows that the liquid surfactant membrane technique is very effective to reduce waste water contamined by mercury

  1. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  2. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  3. Some like it cold: microbial transformations of mercury in polar regions

    Directory of Open Access Journals (Sweden)

    Niels Kroer

    2011-12-01

    Full Text Available The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terrestrial environments, little is known about the responsible transformations and transport pathways and the processes that control them. We posit that as in temperate environments, microbial transformations play a key role in mercury geochemical cycling in polar regions by: (1 methylating mercury by one of four proposed pathways, some not previously described; (2 degrading MeHg by activities of mercury resistant and other bacteria; and (3 carrying out redox transformations that control the supply of the mercuric ion, the substrate of methylation reactions. Recent analyses have identified a high potential for mercury-resistant microbes that express the enzyme mercuric reductase to affect the production of gaseous elemental mercury when and where daylight is limited. The integration of microbially mediated processes in the paradigms that describe mercury geochemical cycling is therefore of high priority especially in light of concerns regarding the effect of global warming and permafrost thawing on input of MeHg to polar regions.

  4. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  5. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  6. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  7. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  8. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  9. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  10. Mercury: Exploration of a Planet

    Science.gov (United States)

    1976-01-01

    The flight of the Mariner 10 spacecraft to Venus and Mercury is detailed in animation and photography. Views of Mercury are featured. Also included is animation on the origin of the solar system. Dr. Bruce C. Murray, director of the Jet Propulsion Laboratory, comments on the mission.

  11. Investigation of mercury-free potentiometric stripping analysis and the influence of mercury in the analysis of trace-elements lead and zinc

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Andersen, Laust

    1997-01-01

    in an electrolyte containing 0.1 M HCl and 2 mg/g Zn2+ and electrolysis at -1400 mV(SCE). It is suggested that the concentration range of linear response occur where the electrode is not fully covered by metal clusters during the electrolysis step. The influence of mercury is investigated and a model is proposed...... which explains the co-deposition of mercury and test metals in the electrolysis step in terms of a charge-distribution parameter. The model explains that the decrease of stripping peak area, as a function of concentration, is entirely due to mercury ions being simultaneously reduced together......Application of Potentiometric Stripping Analysis (PSA), without any mercury, to determination of trace-elements lead and zinc, results in linear responses between stripping-peak areas and concentrations within the range 0-2000 ng/g. The best response, as determined by the size of stripping areas...

  12. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Science.gov (United States)

    2010-10-01

    ... ounces) of mercury per package; (iv) Tubes which are completely jacketed in sealed leakproof metal cases... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For...

  13. Bromine based mercury abatement in waste and coal combustion. Mercury retention in the catalyst bed of a tail-end-SCR

    Energy Technology Data Exchange (ETDEWEB)

    Vosteen, Bernhard W. [Vosteen Consulting GmbH, Koeln (Germany); Kanefke, Rico; Beyer, Joachim; Bonkhofer, Theodor Gerhard [CURRENTA GmbH und Co. OHG, Leverkusen (Germany); Ullrich, Rick [WastePro Engineering Inc., Kennett Square, PA (United States)

    2008-07-01

    Observations and testing at a CURRENTA waste incineration plant and several coal fired power plants has derived the following aspects of mercury behavior in the plant's waste heat boiler and its gas cleaning train: - Hg{sub met} is oxidized to Hg{sub ion} most readily by bromine, and also by chlorine, - sulfur (SO{sub 2}) inhibit the Hg{sub met} chlorination but not the Hg{sub met} bromination, - Hg{sub met} passes through scrubbers and is adsorbed onto the catalyst bed of a tail-end SCR, slowly oxidized and finally elutes off as Hg{sub ion}, - sulfur (SO{sub 2}) impacts the reduction of molecular halogens in different ways; SO{sub 2} reduces Cl{sub 2} at elevated temperatures (boiler range), but reduces Br{sub 2} only at low temperatures (scrubber range) The operational tests and studies performed in the spring and summer of 2000 at this plant led to some specific knowledge about Hg{sub met} adsorption and also Hg{sub ion} desorption at the catalyst bed of a tail-end SCR. This knowledge, which was at that time in many respects novel, has provided more insight into the mercury oxidation behaviour. Today, process options derived from this knowledge could be implemented in hazardous waste incineration plants and also municipal solid waste incineration plants, to achieve complete mercury halogenation in the boiler flue gas, ahead of the scrubber system, at any time. This might prevent penetration of metallic mercury to the tail-end SCR and avoid the corresponding long time mercury elution. For effective prevention to be achieved in practice, it is strongly recommended to also install a continuously measuring (possibly uncalibrated) AAS mercury monitor for immediate detection of any unexpected Hg{sub met} breakthrough, for example caused by ''hidden mercury'' in the waste feed, and to initiate the rapid (preferably automized) injection of some bromine compound before even more mercury is transferred into the tail-end SCR, stored there as Hg

  14. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    Science.gov (United States)

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base

  15. Methyl mercury in terrestrial compartments

    International Nuclear Information System (INIS)

    Stoeppler, M.; Burow, M.; Padberg, S.; May, K.

    1993-09-01

    On the basis of the analytical methodology available at present the state of the art for the determination of total mercury and of various organometallic compounds of mercury in air, precipitation, limnic systems, soils, plants and biota is reviewed. This is followed by the presentation and discussion of examples for the data obtained hitherto for trace and ultratrace levels of total mercury and mainly methyl mercury in terrestrial and limnic environments as well as in biota. The data discussed stem predominantly from the past decade in which, due to significant methodological progress, many new aspects were elucidated. They include the most important results in this area achieved by the Research Centre (KFA) Juelich within the project 'Origin and Fate of Methyl Mercury' (contracts EV4V-0138-D and STEP-CT90-0057) supported by the Commission of the European Communities, Brussels. (orig.) [de

  16. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  17. Methods for dispensing mercury into devices

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  18. Determination of mercury in plant material

    Energy Technology Data Exchange (ETDEWEB)

    Pickard, J A; Martin, J T

    1960-07-01

    An analytical procedure used for the determination of traces of mercury in plant material is described. The conditions of combustion of organic matter are controlled to avoid loss of mercury and EDTA is used to reduce the values for apparent mercury on uncontaminated samples. Satisfactory recoveries of mercury added to apples, tomatoes and coffee are obtained. 10 references, 1 table.

  19. Mercury's Lithospheric Magnetization

    Science.gov (United States)

    Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.

    2017-12-01

    Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (source depths less than O(10 km) are unlikely in most regions

  20. Enabling Ring-Cusp Ion Thruster Technology for NASA Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — ESA is flying T6 Kaufman ion thrusters on the BepiColombo Mission to Mercury in 2018. They are planning to develop a longer life, higher performing, 30-cm ring-cusp...

  1. Indirect determination of potassium, rubidium and caesium with mercury chloranilate

    International Nuclear Information System (INIS)

    Huber, H.; Raber, H.; Dvorak, K.; Kalcher, K.

    1982-01-01

    In the reaction of alkali-tetraphenylborates with mercury(II)-chloranilate, four moles of chloranilic acid are released per g ion of alkali metal. The chloranilic acid was determined photometrically at 332 or at 540 nm. With a molar extinction coefficient of 10 6 , this technique is one of the most sensitive wet chemical alkali determinations. In this way, ammonium and organic bases can be detected photometrically as tetraphenylborates provided that there is a stoichiometrically perfect composition. (author)

  2. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    Science.gov (United States)

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Radar observations of Mercury

    International Nuclear Information System (INIS)

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  4. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    International Nuclear Information System (INIS)

    Dietrich, Grzegorz J.; Dietrich, Mariola; Kowalski, R.K.; Dobosz, Stefan; Karol, Halina; Demianowicz, Wieslaw; Glogowski, Jan

    2010-01-01

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg 2+ /l and 10 mg Cd 2+ /l and hatching rates at 10 mg Hg 2+ /l and 10 mg Cd 2+ /l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  5. Mercury kinetics in marine zooplankton

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    Mercury, like many other heavy metals, is potentially available to marine animals by uptake directly from water and/or through the organisms food. Furthermore, bioavailability, assimilation and subsequent retention in biota may be affected by the chemical species of the element in sea water. While mercury is known to exist in the inorganic form in sea water, recent work has indicated that, in certain coastal areas, a good portion of the total mercury appears to be organically bound; however, the exact chemical nature of the organic fraction has yet to be determined. Methyl mercury may be one constituent of the natural organically bound fraction since microbial mechanisms for in situ methylation of mercury have been demonstrated in the aquatic environment. Despite the fact that naturally produced methyl mercury probably comprises only a small fraction of an aquatic ecosystem, the well-documented toxic effects of this organo-mercurial, caused by man-made introductions into marine food chains, make it an important compound to study

  6. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  7. Atmospheric mercury footprints of nations.

    Science.gov (United States)

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  8. Volcanic mercury in Pinus canariensis.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  9. Method for removal and stabilization of mercury in mercury-containing gas streams

    Science.gov (United States)

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  10. Exploring Mercury: The Iron Planet

    OpenAIRE

    Stevenson, David J.

    2004-01-01

    Planet Mercury is both difficult to observe and difficult to reach by spacecraft. Just one spacecraft, Mariner 10, flew by the planet 30 years ago. An upcoming NASA mission, MESSENGER, will be launched this year and will go into orbit around Mercury at the end of this decade. A European mission is planned for the following decade. It's worth going there because Mercury is a strange body and the history of planetary exploration has taught us that strangeness gives us insight into planetary ori...

  11. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  12. MESSENGER'S First Flyby of Mercury

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. An overview of the MESSENGER mission and its January 14th close flyby of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER'S first flyby on January 14th, 2008 will be discussed with an emphasis on the magnetic field and charged particle measurements.

  13. Distribution and retention of organic and inorganic mercury in methyl mercury-treated neonatal rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Hall, L.L.; Mushak, P.

    1988-01-01

    Seven-day-old Long Evans rats received one mumol of 203 Hg-labeled methyl mercury/kg sc and whole body retention and tissue distribution of organic and inorganic mercury were examined for 32 days postdosing. Neonates cleared mercury slowly until 10 days postdosing when the clearance rate abruptly increased. During the interval when whole body clearance of mercury was extremely slow, methyl mercury was metabolized to inorganic mercury. Peak concentration of mercury in kidney occurred at 2 days postdosing. At 32 days postdosing, 8% of mercury in kidney was in an organic from. Liver mercury concentration peaked at 2 days postdosing and organic mercury accounted for 38% at 32 days postdosing. Brain concentrations of mercury peaked at 2 days postdosing. At 10 days postdosing, organic mercury accounted for 86% of the brain mercury burden, and, at 32 days postdosing, for 60%. The percentage of mercury body burden in pelt rose from 30 to 70% between 1 and 10 days postdosing. At 32 days postdosing pelt contained 85% of the body burden of mercury. At all time points, about 95% of mercury in pelt was in an organic form. Compartmental analysis of these data permitted development of a model to describe the distribution and excretion of organic and inorganic mercury in methyl mercury-treated neonatal rats

  14. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  15. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    Science.gov (United States)

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  16. A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids.

    Science.gov (United States)

    Tay, Pei Kun R; Nguyen, Peter Q; Joshi, Neel S

    2017-10-20

    Synthetic biology approaches to bioremediation are a key sustainable strategy to leverage the self-replicating and programmable aspects of biology for environmental stewardship. The increasing spread of anthropogenic mercury pollution into our habitats and food chains is a pressing concern. Here, we explore the use of programmed bacterial biofilms to aid in the sequestration of mercury. We demonstrate that by integrating a mercury-responsive promoter and an operon encoding a mercury-absorbing self-assembling extracellular protein nanofiber, we can engineer bacteria that can detect and sequester toxic Hg 2+ ions from the environment. This work paves the way for the development of on-demand biofilm living materials that can operate autonomously as heavy-metal absorbents.

  17. Elimination of mercury in health care facilities.

    Science.gov (United States)

    2000-03-01

    Mercury is a persistent, bioaccumulative toxin that has been linked to numerous health effects in humans and wildlife. It is a potent neurotoxin that may also harm the brain, kidneys, and lungs. Unborn children and young infants are at particular risk for brain damage from mercury exposure. Hospitals' use of mercury in chemical solutions, thermometers, blood pressure gauges, batteries, and fluorescent lamps makes these facilities large contributors to the overall emission of mercury into the environment. Most hospitals recognize the dangers of mercury. In a recent survey, four out of five hospitals stated that they have policies in place to eliminate the use of mercury-containing products. Sixty-two percent of them require vendors to disclose the presence of mercury in chemicals that the hospitals purchase. Only 12 percent distribute mercury-containing thermometers to new parents. Ninety-two percent teach their employees about the health and environmental effects of mercury, and 46 percent teach all employees how to clean up mercury spills. However, the same study showed that many hospitals have not implemented their policies. Forty-two percent were not aware whether they still purchased items containing mercury. In addition, 49 percent still purchase mercury thermometers, 44 percent purchase mercury gastrointestinal diagnostic equipment, and 64 percent still purchase mercury lab thermometers.

  18. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    Science.gov (United States)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  19. Constraints on particle density evolution within a CME at Mercury

    Science.gov (United States)

    Exner, W.; Liuzzo, L.; Heyner, D.; Feyerabend, M.; Motschmann, U. M.; Glassmeier, K. H.; Shiota, D.; Kusano, K.

    2017-12-01

    Mercury (RM=2440) is the closest orbiting planet around the Sun and is embedded in an intensive and highly varying solar wind.Mercury's intrinsic dipole with a southward magnetic moment is aligned with the rotation axis and has a northward offset of 0.2 RM.In-situ data from the MESSENGER spacecraft of the magnetic environment near Mercury indicate that a coronal mass ejection (CME) passed the planet on 8 May 2012. The data constrain the direction and magnitude of the CME magnetic field but no information on its particle density could be determined.We apply the hybrid (kinetic ions, electron fluid) code A.I.K.E.F. to study the interaction of Mercury's magnetosphere with the CME.We use MESSENGER magnetic field observations as well as simulation results to constrain the evolution of the particle density inside the CME.We show that within a 24-hour period the particle density within the CME had to vary between 1-100 cm-3 in order to explain MESSENGER magnetic field observations.

  20. Mercury pollution: a transdisciplinary treatment

    National Research Council Canada - National Science Library

    Zuber, Sharon L; Newman, Michael C

    2012-01-01

    .... Also included are smaller case studies, such as the Minamata tragedy, fish consumption, and international treaties"-- "Mercury is the gravest chemical pollutant problem of our time, and this is...

  1. Mercury contamination in the Amazon

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nancy Minogue

    contamination is mainly caused by deforestation upstream. ... The team expected to find that the mercury levels in the water, sediment, and soil decreased as they ... Methylmercury poisoning — known as Minamata Disease after the Japanese ...

  2. Mercury absorption in aqueous hypochlorite

    International Nuclear Information System (INIS)

    Zhao, L.L.; Rochelle, G.T.

    1999-01-01

    The absorption of elemental Hg vapor into aqueous hypochlorite was measured in a stirred tank reactor at 25 and 55C. NaOCl strongly absorbs Hg even at high pH. Low pH, high Cl - and high-temperature favor mercury absorption. Aqueous free Cl 2 was the active species that reacted with mercury. However, chlorine desorption was evident at high Cl - and pH 15 M -1 s -1 at 25C and 1.4x10 17 M -1 s -1 at 55C. Gas-phase reaction was observed between Hg and Cl 2 on apparatus surfaces. Strong mercury absorption in water was also detected with Cl 2 present. Results indicate that the chlorine concentration, moisture, and surface area contribute positively to mercury removal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Origin and composition of Mercury

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The predictions of the expected range of composition of Mercury at the time of its formation made on the basis of a suite of condensation-accretion models of Mercury spanning a range of condensation temperature and accretion sampling functions appropriate to Mercury are examined. It is concluded that these compositonal models can, if modified to take into account the nonselective loss of most of the silicate component of the planet during accretion, provide compositional predictions for the Weidenschilling (1978, 1980) mechanism for the accretion of a metal-rich Mercury. The silicate portion would, in this case, contain 3.6 to 4.5 percent alumina, roughly 1 percent of alkali oxides, and between 0.5 and 6 percent FeO

  4. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  5. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  6. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  7. Plant mediated detoxification of mercury and lead

    Directory of Open Access Journals (Sweden)

    Brajesh Kumar

    2017-05-01

    Full Text Available In recent years, the development of efficient green chemistry methods for detoxification of metal poisoning has become a major focus of researchers. They have investigated in order to find an eco-friendly and recyclable technique for the removal of heavy metal (Pb2+, Hg2+ contamination from the natural resources. One of the most considered methods is the removal of Pb2+, Hg2+ metal using green plants and their wastes. Among these plant wastes seem to be the best candidates and they are suitable for detoxification of heavy metals. Biosorption by plants involve complex mechanisms, mainly ion exchange, chelation, adsorption by physical forces and ion entrapment in inter and intra fibrillar capillaries and spaces of the structural polysaccharide cell wall network. The advantages of using green plants and their wastes for detoxification of heavy metal have interested researchers to investigate mechanisms of metal ion uptake, and to understand the possible utilization. In this review, we discuss the role of plants and their wastes for minimizing mercury and lead pollution with their toxic effect on both human beings and plants.

  8. Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.

    Science.gov (United States)

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.

  9. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  10. Survey of mercury, cadmium and lead content of household batteries

    Energy Technology Data Exchange (ETDEWEB)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  11. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  12. Mercury removal from liquid and solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Klasson, K.T.; Corder, S.L.; Cameron, P.A.; Perona, J.J.

    1995-01-01

    Based on bench-scale laboratory experiments, the following conclusions were reached: Sulfur-impregnated, activated, carbon pellets (Mersorb) can be used to remove mercury (Hg 2+ ) to below EPA's toxic characteristic level (0.2 mg/L). Mersorb works under acid conditions (pH 2) but its capacity is reduced by approximately 50% compared with neutral conditions. Competing ions present in the target waste stream reduced the Mersorb capacity by 50%. Mersorb appears to be economical compared with leading ion exchange resin. KI/I 2 leaching solution can be used to remove up to 99% of Hg in contaminated soil and glass. KI/I 2 leaching solution worked well with several mercury species, including Hg 0 , HgO, HgS, and HgCl 2 . KI/I 2 leaching solution worked well with a wide variety of initial mercury concentrations. Radionuclide surrogate studies suggested that uranium will not partition into KI/I 2 leaching solutions. Cesium may partition into the KI/I 2 leaching solution because of the high solubility of cesium salts

  13. Autometallographic tracing of mercury in frog liver

    International Nuclear Information System (INIS)

    Loumbourdis, N.S.; Danscher, G.

    2004-01-01

    The distribution of mercury in the liver of the frog Rana ridibunda with the autometallographic method was investigated. The mercury specific autometallographic (HgS/Se AMG ) technique is a sensitive histochemical approach for tracing mercury in tissues from mercury-exposed organisms. Mercury accumulates in vivo as mercury sulphur/mercury selenium nanocrystals that can be silver-enhanced. Thus, only a fraction of the Hg can be visualized. Six animals were exposed for one day and another group of six animals for 6 days in 1 ppm mercury (as HgCI 2 ) dissolved in fresh water. A third group of six animals, served as controls, were sacrificed the day of arrival at the laboratory. First, mercury appears in the blood plasma and erythrocytes. Next, mercury moves to hepatocytes and in the apical part of the cells, that facing bile canaliculi. In a next step, mercury appears in the endothelial and Kupffer cells. It seems likely that, the mercury of hepatocytes moves through bile canaliculi to the gut, most probably bound to glutathione and/or other similar ligands. Most probably, the endothelial and Kupffer cells comprise the first line of defense against metal toxicity. - Frogs can be good bioindicators of mercury

  14. Morphological Changes of Yeast Cells due to Oxidative Stress by Mercury and Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hyoun; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The yeast Saccharomyces cerevisiae is one of the most important microorganisms employed in industry. Growth rate, mutation, and environmental conditions affect yeast size and shape distributions but, in general, the influence of spatial variations in large-scale bioreactors is not considered. Ionizing radiation induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm, and nucleus. Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. As a metal ion, it induces an oxidative stress or predisposes cells to an oxidative stress, with considerable damage to proteins, lipids and DNA. In this work, we investigated to effect of ionizing radiation (IR) and mercury chloride (II) on cell morphology.

  15. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  16. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Science.gov (United States)

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...-5] RIN 2060-AN99 National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants AGENCY: Environmental Protection Agency (EPA). ACTION: Supplemental...

  17. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    Science.gov (United States)

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  18. Selective and “turn-off” fluorimetric detection of mercury(II) based on coumarinyldithiolane and coumarinyldithiane in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuan, E-mail: guoyuan@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127 (China); Institut de Chimie Organique et Analytique, Université d’Orléans, 45067 Orléans Cedex 2 (France); An, Jing [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127 (China); Tang, Haoyang [School of Automation, Xi’an University of Posts and Telecommunications, Xi’an 710121 (China); Peng, Mengjiao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127 (China); Suzenet, Franck [Institut de Chimie Organique et Analytique, Université d’Orléans, 45067 Orléans Cedex 2 (France)

    2015-03-15

    Graphical abstract: Visual fluorescence emission of probe 3a. - Highlights: • Five novel coumarin-based fluorescent probes were developed. • A reasonable reaction mechanism was proposed and verified. • All the probes showed excellent optical properties. - Abstract: In this work, five novel coumarin-based fluorescent probes for mercury ions were developed. The recognition of mercury ions was performed via the mercury(II)-promoted desulfurization of the probes and a reasonable reaction mechanism was proposed and verified by thin layer chromatography (TLC), {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and fluorescence intensity measurements. All the probes showed excellent optical properties and exclusively distinguish mercury ions from various metal ions in aqueous solutions at pH 7.4. The linear response of the fluorescence emission intensity for all the probes to the concentration of mercury ions was obtained over a wide range of 0.06–1.5 μM (0.06–0.9 μM for probe 3e). In addition, the biological toxicity and the confocal fluorescence images of probe 3a were also tested on MCF-7 cells.

  19. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  20. Mercury in dated Greenland marine sediments

    DEFF Research Database (Denmark)

    Asmund, G.; Nielsen, S.P.

    2000-01-01

    Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age of the sedi......Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age...... indicating that the mercury mainly originates from atmospheric washout. But the large variability indicates that other processes also influence the mercury flux to Arctic marine sediments. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  2. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Studies on the genetic and developmental effects of organic mercury compounds on lilies, drosophila, and ice were carried out. It was found that chromosomal and developmental abnormalities were correlated with the administration of mercury compounds.

  3. Mercury-Containing Devices and Demolition

    Science.gov (United States)

    Some items inside residential buildings contain mercury, which poses a persistent and toxic human health and environmental threat. These materials should be carefully salvaged for proper recycling to prevent mercury contamination prior to demolition.

  4. EPA Leadership in the Global Mercury Partnership

    Science.gov (United States)

    The Global Mercury Partnership is a voluntary multi-stakeholder partnership initiated in 2005 to take immediate actions to protect human health and the environment from the releases of mercury and its compounds to the environment.

  5. Mercury in Thana creek, Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    weight) with marked increased from harbour to the creek region suggests substantial mercury input in the head region. Chemical extraction by hydrogen peroxide indicated that more than 70% of mercury was leachable and probably organically bound...

  6. Mercury Lander Mission Concept Study Summary

    Science.gov (United States)

    Eng, D. A.

    2018-05-01

    Provides a summary of the Mercury Lander Mission Concept Study performed as part of the last Planetary Decadal Survey. The presentation will focus on engineering trades and the challenges of developing a Mercury lander mission.

  7. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Science.gov (United States)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  8. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    Science.gov (United States)

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future.

  9. In situ reduction and functionalization of graphene oxide with l-cysteine for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii), and mercury(ii) ions

    KAUST Repository

    Muralikrishna, S. N.; Sureshkumar, K.; Varley, Thomas Stephen; Nagaraju, Doddahalli H.; Ramakrishnappa, Thippeswamy

    2014-01-01

    One pot reduction and functionalization of graphene oxide (GO) with l-cysteine (l-cys-rGO) at the edges and basal planes of the carbon layers are presented. The l-cys-rGO was characterized by X-ray diffraction studies (XRD), X-ray photoelectron spectroscopy (XPS), attenuated infrared spectroscopy (ATIR), and Raman spectroscopy. The surface morphology was studied by scanning electron microscopy (SEM) and transmittance electron microscopy (TEM). The l-cys-rGO was further utilized for the simultaneous electrochemical quantification of environmentally harmful metal ions such as, Cd2+, Pb2+, Cu2+ and Hg2+. Detection limits obtained for these metal ions were 0.366, 0.416, 0.261 and 1.113 μg L-1 respectively. The linear range obtained for Cd2+, Cu2+ and Hg2+ was 0.4 to 2.0 μM and for Pb2+ was 0.4 to 1.2 μM. The detection limits were found to be less than the World Health Organization (WHO) limits. The developed protocol was applied for the determination of the above metal ions in various environmental samples and the results obtained were validated by atomic absorption spectroscopy (AAS). This journal is

  10. Method of preparing mercury with an arbitrary isotopic distribution

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  11. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  12. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  13. Study of the environmental cycling of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frades, J P; Hildebrand, S G; Huckabee, J W; Murias, B; Diaz, F S; Wilson, R H

    1977-01-01

    A study of mercury in the environment is under way near the mercury mine at Almaden, Spain. The main aspects of the project are: ecology; atmospheric monitoring; and human studies. The mercury deposit at Almaden is described. The liquid effluent from the mine and smelter contains high concentrations of mercury that pollute nearby rivers. Sample collection and analytical methods used in the ecological survey are reviewed. Ecological experiments are considered. Air monitoring studies and human studies currently being performed are assessed. (1 map)

  14. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  15. A kinetic study of mercury(II transport through a membrane assisted by new transport reagent

    Directory of Open Access Journals (Sweden)

    Görgülü Ahmet

    2011-07-01

    Full Text Available Abstract Background A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. Results The compound 1 was characterized by elemental analysis, IR, 1H and 31P NMR spectroscopies. The transport of mercury(II ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II ions. Conclusion A kinetic study of mercury(II transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl-4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II ion from water or other solution.

  16. Fate of soluble uranium in the I{sub 2}/KI leaching process for mercury removal

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Davis, W.H.; Jarabek, R.J. [East Tennessee Technology Park, Oak Ridge, TN (United States). Materials and Chemistry Lab.

    1997-09-01

    General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of {approximately} 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake.

  17. Fate of soluble uranium in the I2/KI leaching process for mercury removal

    International Nuclear Information System (INIS)

    Bostick, W.D.; Davis, W.H.; Jarabek, R.J.

    1997-09-01

    General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of ∼ 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake

  18. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  19. Biogeochemical cycle of mercury species in the marine environment

    International Nuclear Information System (INIS)

    Branica, M.

    1987-10-01

    Mercury contamination of the coastal marine environment is an important concern as highly toxic methyl-mercury may be formed biogenically in sediments rich in organic matter. The present study was conducted using a highly sensitive adaptation of Cold Vapour Atomic Absorption Spectrophotometry (CVAAS) in which mercury was re-mineralised from a variety of marine matrices (water, sediments and organisms), separated and concentrated by ion-exchange chromatography, trapped as an amalgam in gold wool and subsequently re-released by heating to 900 deg. C. Total and organomercury forms were detected respectively by measuring, in the case of seawater, sample extracts treated and untreated with uv light and, in the case of solid matrices, by ''total digestion'' and 6M HCl extractions. Detection limits were 0.1 ng/1 from a 200 ml water sample and 0.2 μg/kg for a lg solid sample. Water, sediments and organisms were collected by scuba diving from the unpolluted Sibenik aquatorium (including the Krka river estuary), Yugoslavia, and the polluted Kastela Bay, which receives discharge from a chlor-alkali plant. Mercury levels were low in the Sibenik aquatorium (0.34-2.4 ng/dm 3 water, 78-1522 μg/kg sediments and 24-39 μg/kg w.w. in mussels). Organo-mercury was generally below detection limits in water and represented below 0.5% of the total Hg in sediments but 13-88% of the mercury in mussels and fish. In the Kastela Bay, up to 90 ng/dm 3 (water), 11870 μg/kg w.w. (mussels) and 48600 μg kg w.w. (oysters) of Hg was detected. Fortunately methyl-mercury was below 0.5% of this total in all matrices. Hg levels in mussels decreased to 41.3 μg/kg w.w. at 600 m from the source. Further research will now be conducted on the biogeochemical cycle of Hg in estuarine and marine environments, with special attention being paid to the fresh/saline water interface. 9 refs, 2 figs, 5 tabs

  20. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    Science.gov (United States)

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  1. Plain formation on Mercury: tectonic implications

    International Nuclear Information System (INIS)

    Thomas, P.

    1980-01-01

    Four major plain units, plus intermediates, are distinguished on Mercury. The chronologic relationships between these plains indicate that plains formation was a permanent process on Mercury. Their location and morphology seem to indicate a possible volcanic origin for these plains. The relationships between tectonism and volcanism seems to indicate the global contraction is not the only tectonic process on Mercury. (Auth.)

  2. 21 CFR 872.3700 - Dental mercury.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental mercury. 872.3700 Section 872.3700 Food and... DENTAL DEVICES Prosthetic Devices § 872.3700 Dental mercury. (a) Identification. Dental mercury is a... dental cavity or a broken tooth. (b) Classification. Class I. ...

  3. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  4. 40 CFR 721.10068 - Elemental mercury.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Elemental mercury. 721.10068 Section... Substances § 721.10068 Elemental mercury. (a) Definitions. The definitions in § 721.3 apply to this section... elemental mercury (CAS. No. 7439-97-6) is subject to reporting under this section for the significant new...

  5. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  6. Control of mercury emissions: policies, technologies, and future trends

    OpenAIRE

    Rhee, Seung-Whee

    2015-01-01

    Seung-Whee Rhee Department of Environmental Engineering, Kyonggi University, Suwon, Republic of Korea Abstract: Owing to the Minamata Convention on Mercury and the Global Mercury Partnership, policies and regulations on mercury management in advanced countries were intensified by a mercury phaseout program in the mercury control strategy. In developing countries, the legislative or regulatory frameworks on mercury emissions are not established specifically, but mercury management is designed...

  7. Modelling Mercury's magnetosphere and plasma entry through the dayside magnetopause

    Science.gov (United States)

    Massetti, S.; Orsini, S.; Milillo, A.; Mura, A.

    2007-09-01

    Owing to the next space mission Messenger (NASA) and BepiColombo (ESA/JAXA), there is a renewed interest in modelling the Mercury's environment. The geometry of the Mercury's magnetosphere, as well as its response to the solar wind conditions, is one of the major issues. The weak magnetic field of the planet and the increasing weight of the IMF BX component at Mercury's orbit, introduce critical differences with respect to the Earth's case, such as a strong north-south asymmetry and a significant solar wind precipitation into the dayside magnetosphere even for non-negative IMF BZ. With the aim of analysing the interaction between the solar wind and Mercury's magnetosphere, we have developed an empirical-analytical magnetospheric model starting from the Toffoletto-Hill TH93 code. Our model has been tuned to reproduce the key features of the Mariner 10 magnetic data, and to mimic the magnetic field topology obtained by the self-consistent hybrid simulation developed by Kallio and Janhunen [Solar wind and magnetospheric ion impact on Mercury's magnetosphere. Geophys. Res. Lett. 30, 1877, doi: 10.1029/2003GL017842]. The new model has then been used to study the effect of the magnetic reconnection on the magnetosheath plasma entry through the open areas of the dayside magnetosphere (cusps), which are expected to be one of the main sources of charged particles circulating inside the magnetosphere. We show that, depending on the Alfvén speeds on both sides of the magnetopause discontinuity, the reconnection process would be able to accelerate solar wind protons up to few tens of keV: part of these ions can hit the surface and then trigger, via ion-sputtering, the refilling of the planetary exosphere. Finally, we show that non-adiabatic effects are expected to develop in the cusp regions as the energy gained by injected particles increases. The extent of these non-adiabatic regions is shown to be also modulated by upstream IMF condition.

  8. Adsorption of mercury from aqueous solutions using palm oil fuel ash as an adsorbent - batch studies

    Science.gov (United States)

    Imla Syafiqah, M. S.; Yussof, H. W.

    2018-03-01

    Palm oil fuel ash (POFA) is one of the most abundantly produced waste materials. POFA is widely used by the oil palm industry which was collected as ash from the burning of empty fruit bunches fiber (EFB) and palm oil kernel shells (POKS) in the boiler as fuel to generate electricity. Mercury adsorption was conducted in a batch process to study the effects of contact time, initial Hg(II) ion concentration, and temperature. In this study, POFA was prepared and used for the removal of mercury(II) ion from the aqueous phase. The effects of various parameters such as contact time (0- 360 min), temperature (15 – 45 °C) and initial Hg(II) ion concentration (1 – 5 mg/L) for the removal of Hg(II) ion were studied in a batch process. The surface characterization was examined by scanning electron microscopy (SEM) and particle size distribution analysis. From this study, it was found that the highest Hg(II) ion removal was 99.60 % at pH 7, contact time of 4 h, initial Hg(II) ion concentration of 1 mg/L, adsorbent dosage 0.25 g and agitation speed of 100 rpm. The results implied that POFA has the potential as a low-cost and environmental friendly adsorbent for the removal of mercury from aqueous solution.

  9. Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    International Nuclear Information System (INIS)

    Thiesen, B.P.

    1993-01-01

    The mercury-contaminated rinse solution (INEL waste ID number-sign 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 μ to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solut

  10. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  11. Intake of mercury through fish consumption

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Kiprawi, A.Z.; Ismail, R.B.; Hassan, R.B.; Wood, A.K.; Rahman, S.A.

    1995-01-01

    Fish has been known as a source of non-occupational mercury exposure to fish consuming population groups, and this is shown by the high hair mercury levels. In this study, hair samples collected from fishermen and their families, and commercial marine fishes were analyzed for mercury and methylmercury by neutron activation and gas chromatography. The results showed a correlation between hair mercury levels and fish consumption patterns. The levels of mercury found in this study were similar to those reported by other workers for fish consuming population groups worldwide. (author)

  12. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  13. Apparatus for control of mercury

    Science.gov (United States)

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  14. Marine biogeochemistry of mercury

    International Nuclear Information System (INIS)

    Gill, G.A.

    1986-01-01

    Noncontaminating sample collection and handling procedures and accurate and sensitive analysis methods were developed to measure sub-picomolar Hg concentrations in seawater. Reliable and diagnostic oceanographic Hg distributions were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. Mercury concentrations in the northwest Atlantic, central Pacific, southeast Pacific, and Tasman Sea ranged from 0.5 to 12 pM. Vertical Hg distributions often exhibited a maximum within or near the main thermocline. At similar depths, Hg concentrations in the northwest Atlantic Ocean were elevated compared to the N. Pacific Ocean. This pattern appears to result from a combination of enhanced supply of Hg to the northwest Atlantic by rainfall and scavenging removal along deep water circulation pathways. These observations are supported by geochemical steady-state box modelling which predicts a relatively short mean residence time for Hg in the oceans; demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recyclic. Evidence for the rapid removal of Hg from seawater was obtained at two locations. Surface seawater Hg measurements along 160 0 W (20 0 N to 20 0 S) showed a depression in the equatorial upwelling area which correlated well with the transect region exhibiting low 234 Th/ 238 U activity ratios. This relationship implies that Hg will be scavenged and removed from surface seawater in biologically productive oceanic zones. Further, a broad minimum in the vertical distribution of Hg was observed to coincide with the intense oxygen minimum zone in the water column in coastal waters off Peru

  15. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    Science.gov (United States)

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Global Mercury Pathways in the Arctic Ecosystem

    Science.gov (United States)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  17. Non-thermal Processes in the Formation of Mercury's Tenuous Exosphere

    Science.gov (United States)

    Schaible, M. J.; Bennett, C.; Jones, B. M.; Orlando, T. M.

    2017-12-01

    Recent observations from the MESSENGER spacecraft orbiting Mercury have established that a quasi-trapped population of ions and electrons with 1-10 keV energy exists at a distance of about 1.5 RM (RM is Mercury's radius) around much of the planet. Recent observations from the Fast Imaging Plasma Spectrometer (FIPS), taken groups). The sources of these ions are not clear. A newly developed global kinetic transport model suggests that electron-stimulated desorption (ESD), and possibly light ion stimulated desorption (ISD), can directly yield ions that can be transported and dynamically accelerated to the plasma cusp regions observed by FIPS. Neutrals desorbed from the surface by ESD, ISD, photon-stimulated desorption (PSD) and meteorite impact may also be photoionized and transported/injected into the cusp region. Though the relative importance of these mechanisms in the formation of Mercury's tenuous atmosphere and the subsequent effects on the exosphere/magnetosphere dynamics are not known, it is likely that all of these contribute significantly. The goals of this work are to measure desorption cross-sections and ejection velocities for Na+, O+, and water group ions under relevant electron and ion bombardment energies. This program utilizes state-of-the art surface science capabilities to probe the role of ESD and ISD as a source of ions and neutrals present in the exosphere of Mercury. The experimental chamber is equipped with a dosing system, a cryogenic cooled temperature controlled sample holder, as well as pulsed ion and electron sources. The ESD and ISD ion yields and velocity measurements are obtained directly by sampling with a time-of-flight mass spectrometer. The measured ESD ion yields from adsorbate covered Mercury surface analogs such as the sulfur bearing minerals MgS, Na2S and K2S are low. Additionally, ISD experiments using incident protons also yielded low ion signals. These results implicate PSD and neutral desorption as dominant processes. The

  18. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  19. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Organic mercury compounds have a c-mitotic effect on plant cells that cause polyploidi. Studies were performed on Allium root cells. These investigations involved methyl mercury dicyandiamide, methyl mercury hydroxide, and phenyl mercury hydroxide. The lowest concentration necessary for a cytologically observable effect was about 0.05 ppM Hg for the methyl compounds. For the phenyl compound, the value was lower. Experiments were performed on Drosophila melanogaster. The question was whether the mercury would reach the gonads. Experimental data with mercury treated larvae indicated a chromosome disjunction. Data indicated a preferential segregation at the meiotic division might be involved. Experiments are being performed on mice inbred (CBA) in order to investigate teratogenic effects and dominant lethality caused by organic mercury compounds. The mutagenic effects of these compounds are studied on Neurospora Drosophila. No conclusive data is now available.

  20. Mercury risk in poultry in the Wanshan Mercury Mine, China

    International Nuclear Information System (INIS)

    Yin, Runsheng; Zhang, Wei; Sun, Guangyi; Feng, Zhaohui; Hurley, James P.; Yang, Liyuan; Shang, Lihai; Feng, Xinbin

    2017-01-01

    In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4–62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2–3917.1 ng/g; MeHg: 7.1–62.8 ng/g) and blood (THg: 12.3–338.0 ng/g; MeHg: 1.4–17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3–238.1 μg; MeHg: 2.2–15.6 μg), ducks (THg: 15.3–238.1 μg; MeHg: 3.5–14.7 μg) and geese (THg: 83.8–93.4 μg; MeHg: 15.4–29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively. - Highlights: • Elevated mercury levels were observed in poultry from Wanshan Mercury Mine, China. • Ducks and geese showed higher mercury levels than chickens. • Liver and blood showed the highest mercury levels. • Poultry can be an important dietary Hg exposure source for local residents. - High levels of Hg associated with poultry surrounding the Wanshan Mercury Mine pose a great risk of Hg exposure to

  1. Behaviour of mercury compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Booer, J R

    1944-01-01

    The uses of inorganic compounds of mercury for the control of plant pests is reviewed, and a summary of the relevant chemical and physical properties of the compounds concerned is given. On chemical evidence a working hypothesis is propounded showing that all compounds may be expected to decompose into metallic mercury. A pot technique is described by means of which a correlation can be obtained between the effective mercury content of a given soil sample and the rate of growth of wheat seedlings. The mathematical treatment of the results is described, and the validity of the pot technique is verified by statistical analysis of results. Using the pot technqiue it is shown that volatilization losses are insignificant but that mercury is slowly rendered ineffective by the formation of mercuric sulphide. The effect of sulphur-reducing bacteria is considered and the influence of Vibrio desulphuricans on mercury is studied in detail. Experimental evidence obtained by the pot technique is produced to show that mercurous chloride slowly decomposes in the soil giving mercury and mercuric chloride, mercuric chloride rapidly decomposes into mercury and mercurous chloride, and other inorganic compounds decompose directly into mercury. The working hypothesis is substantiated in all major aspects. The uses and properties of the organo-mercury compounds are then discussed. Type compounds selected are ethyl mercury phosphate, phenyl mercury acetate and methoxyethyl mercury acetate. Using the pot technique it is shown that the formation of organo-mercury clays takes place and that these clays decompose giving metallic mercury. A mechanism is suggested.

  2. Mercury in the environment : a review

    International Nuclear Information System (INIS)

    Goodarzi, F.

    2000-01-01

    Both geogenic and anthropogenic sources are responsible for the input of mercury into the environment. However, mercury comes mostly from geogenic sources and is found naturally in air, water and soil. Crustal degassing results in emission of mercury into the atmosphere. Mercury in water and soil is due mostly to input from sedimentary rocks. Mercury in lake sediments is related mainly to input by country rock and anthropogenic activities such as agriculture. The mercury content of coal is similar to or less than the amount found in the earths crust. Natural charcoal is also able to capture mercury at low temperature combustion. The amount of mercury emitted from the stack of coal-fired power plants is related to the nature of the milled coal and its mineralogical and elemental content. Mercury emissions originating from the combustion of coal from electric utility power plants are considered to be among the greatest contributors to global mercury air emissions. In order to quantify the impact the electric power industry has on the environment, information regarding mercury concentrations in coal and their speciation is needed. For this reason the author examined the behaviour of mercury in three coal samples ashed at increasing temperatures. Mercury removal from coal-fired power plants ranges from 10 to 50 per cent by fabric filters and 20 to 95 per cent by FGD systems. This data will help in regulating emissions of hazardous air pollutants from electric utility steam generating units and will potentially provide insight into the industry's contribution to the global mercury burden. 50 refs

  3. Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.

    Science.gov (United States)

    Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João

    2017-12-15

    Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  5. 76 FR 75446 - Amendment of Class E Airspace; Mercury, NV

    Science.gov (United States)

    2011-12-02

    ...-0894; Airspace Docket No. 11-AWP-14] Amendment of Class E Airspace; Mercury, NV AGENCY: Federal... Mercury, Desert Rock Airport, Mercury, NV. Decommissioning of the Mercury Non-Directional Beacon (NDB) at Mercury, Desert Rock Airport has made this action necessary for the safety and management of Instrument...

  6. Touchstones and mercury at Hedeby

    Czech Academy of Sciences Publication Activity Database

    Ježek, Martin; Holub, M.

    2014-01-01

    Roč. 89, č. 1 (2014), s. 193-204 ISSN 0079-4848 Institutional support: RVO:67985912 Keywords : Hedeby * Viking Age * grave goods * touchstone * precious metal * mercury * chemical microanalysis * archaeometallurgy Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 0.278, year: 2014

  7. Venus and Mercury as Planets

    Science.gov (United States)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  8. PERCEPTION OF MERCURY RISK INFORMATION

    Science.gov (United States)

    Approximately 8% of American women have blood Mercury levels exceeding the EPA reference dose (a dose below which symptoms would be unlikely). The children of these women are at risk of neurological deficits (lower IQ scores) primarily because of the mother's consumption of conta...

  9. Venus and Mercury as planets

    International Nuclear Information System (INIS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described

  10. A downstream voyage with mercury

    Science.gov (United States)

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  11. Extraction chromatography of trace concentrations of mercury(II)

    International Nuclear Information System (INIS)

    Smejkal, Z.; Zepla, Z.; Tauferova, J.

    1984-01-01

    The separation of trace amounts of mercury(II) from aqueous solutions has been studied in mixtures of other metal ions (concentration Hg(II) 10 μg/100 ml). The Hg(II) separation was carried out in glass columns filled with Synachrom E-5 carrier impregnanted with a solution of bis(diethyldithiocarbamate)-copper(II) in a mixture of 1.2-dichlorbenzene and cyclohexane (1:1). Trapped Hg(II) was eluted by HCl. The course of the chromatographic process was followed by gamma spectroscopy. Separation yields of Hg(II) were about 90%. (author)

  12. Theoretical prediction the removal of mercury from flue gas by MOFs

    KAUST Repository

    Liu, Yang; Li, Hailong; Liu, Jing

    2016-01-01

    Removal of mercury from flue gas has been considered as one of the hot topics in both the scientific and industrial world. Adsorption of elemental mercury (Hg) and oxidized mercury species (HgCl, HgO, and HgS) on a novel metal organic framework (MOF) material, named Mg/DOBDC, with unsaturated metal centers was investigated using density functional theory (DFT) calculations. The results show that Hg stably physi-sorbed on the unsaturated metal center (magnesium ion) of Mg/DOBDC with a binding energy (BE) of −27.5 kJ/mol. A direct interaction between Hg and magnesium ion was revealed by the partial density of state (PDOS) analysis. HgCl multi-interacts with two neighboring magnesium ions simultaneously by its Cl endings and thus resulted in strong adsorption strength (−89.0 kJ/mol). The adsorption energies of HgO and HgS on the Mg/DOBDC were as high as −117.0 kJ/mol and −169.7 kJ/mol, respectively, indicating a strong chemisorption. Theoretical calculations in this study reveal that Mg/DOBDC has the potential to serve as an efficient material for removal of mercury from flue gas.

  13. Theoretical prediction the removal of mercury from flue gas by MOFs

    KAUST Repository

    Liu, Yang

    2016-07-19

    Removal of mercury from flue gas has been considered as one of the hot topics in both the scientific and industrial world. Adsorption of elemental mercury (Hg) and oxidized mercury species (HgCl, HgO, and HgS) on a novel metal organic framework (MOF) material, named Mg/DOBDC, with unsaturated metal centers was investigated using density functional theory (DFT) calculations. The results show that Hg stably physi-sorbed on the unsaturated metal center (magnesium ion) of Mg/DOBDC with a binding energy (BE) of −27.5 kJ/mol. A direct interaction between Hg and magnesium ion was revealed by the partial density of state (PDOS) analysis. HgCl multi-interacts with two neighboring magnesium ions simultaneously by its Cl endings and thus resulted in strong adsorption strength (−89.0 kJ/mol). The adsorption energies of HgO and HgS on the Mg/DOBDC were as high as −117.0 kJ/mol and −169.7 kJ/mol, respectively, indicating a strong chemisorption. Theoretical calculations in this study reveal that Mg/DOBDC has the potential to serve as an efficient material for removal of mercury from flue gas.

  14. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    Science.gov (United States)

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  15. Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction

    International Nuclear Information System (INIS)

    Yuan, C.-G.; Wang, J.; Jin, Y.

    2012-01-01

    We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified micro drop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection is 2.5 ng L -1 . The relative standard deviation for seven replicate determinations at 0.1 ng mL -1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4 ng mL -1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings. (author)

  16. A search for quarks produced in heavy-ion interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about $10^{5}$. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per $2 \\times 10^{8}$ beam particles.

  17. Determination of total and inorganic mercury in fish samples with on-line oxidation coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Shao Lijun; Gan Wuer; Su Qingde

    2006-01-01

    An atomic fluorescence spectrometry system for determination of total and inorganic mercury with electromagnetic induction-assisted heating on-line oxidation has been developed. Potassium peroxodisulphate was used as the oxidizing agent to decompose organomercury compounds. Depending on the temperature selected, inorganic or total mercury could be determined with the same manifold. Special accent was put on the study of the parameters influencing the on-line digestion efficiency. The tolerance to the interference of coexisting ions was carefully examined in this system. Under optimal conditions, the detection limits (3σ) were evaluated to be 2.9 ng l -1 for inorganic mercury and 2.6 ng l -1 for total mercury, respectively. The relative standard deviations for 10 replicate determinations of 1.0 μg l -1 Hg were 2.4 and 3.2% for inorganic mercury and total mercury, respectively. The proposed method was successfully applied to the determination of total and inorganic mercury in fish samples

  18. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  19. Immobilization of mercury and zinc in an alkali-activated slag matrix.

    Science.gov (United States)

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2003-07-04

    The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.

  20. Monte Carlo Modeling of Sodium in Mercury's Exosphere During the First Two MESSENGER Flybys

    Science.gov (United States)

    Burger, Matthew H.; Killen, Rosemary M.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Sarantos, Menelaos; Benna, Mehdi; Mouawad, Nelly

    2010-01-01

    We present a Monte Carlo model of the distribution of neutral sodium in Mercury's exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to approximately 10(exp 6) - 10(exp 7) per square centimeter per second, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER f1yby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.

  1. Templated in-situ synthesis of gold nanoclusters conjugated to drug target bacterial enoyl-ACP reductase, and their application to the detection of mercury ions using a test stripe

    International Nuclear Information System (INIS)

    Ding, Han; Li, Hongwei; Liu, Pengchang; Wu, Yuqing; Shen, Jiacong; Hiltunen, J. Kalervo; Chen, Zhijun

    2014-01-01

    Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The physical and chemical properties of the AuNCs were studied by UV-vis absorption, fluorescence, X-ray photoelectron spectroscopy and TEM. The AuNCs-FabI conjugate was prepared by in situ reduction of tetrachloroaurate in the presence of FabI. The conjugated particles were loaded onto nylon membranes by taking advantage of the electrostatic interaction between the negatively charged AuNCs-FabI and the nylon film which is positively charged at pH 7.4. This results in the formation of a test stripe with sensor spots that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp. (author)

  2. Mercury emission from crematories in Japan

    Directory of Open Access Journals (Sweden)

    M. Takaoka

    2010-04-01

    Full Text Available Anthropogenic sources of mercury emissions have a significant impact on global pollution. Therefore, finding uncharacterised sources and assessing the emissions from these sources are important. However, limited data are available worldwide on mercury emissions from crematories. In Japan, 99.9% of dead bodies are cremated, which is the highest percentage in the world, and more than 1600 crematories are in operation. We thus focused on emissions from crematories in Japan. The number of targeted facilities was seven, and we used continuous emission monitoring to measure the mercury concentrations and investigate mercury behaviour. The total mercury concentrations in stack gases were a few μg/Nm3 (normal cubic meters. Considering the time profile of mercury and its species in cremations, the findings confirmed that the mercury in stack gas originated from dental amalgam. The amount of mercury emissions was calculated using the total concentration and gas flow rate. Furthermore, the annual amount of mercury emission from crematories in Japan was estimated by using the total number of corpses. The emission amount was considerably lower than that estimated in the United Kingdom. From statistical analyses on population demographics and measurements, future total emissions from crematories were also predicted. As a result, the amount of mercury emitted by crematories will likely increase by 2.6-fold from 2007 to 2037.

  3. Environmental Mercury and Its Toxic Effects

    Directory of Open Access Journals (Sweden)

    Kevin M. Rice

    2014-03-01

    Full Text Available Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.

  4. New Mechanisms of Mercury Binding to Peat

    Science.gov (United States)

    Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.

    2007-12-01

    Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.

  5. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  6. Recent Studies on the Speciation and Determination of Mercury in Different Environmental Matrices Using Various Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayana Suvarapu

    2017-01-01

    Full Text Available This paper reviews the current research on the speciation and determination of mercury by various analytical techniques, including the atomic absorption spectrometry (AAS, voltammetry, inductively coupled plasma optical emission spectrometry (ICP-OES, ICP-mass spectrometry (MS, atomic fluorescence spectrometry (AFS, spectrophotometry, spectrofluorometry, and high performance liquid chromatography (HPLC. Approximately 96 research papers on the speciation and determination of mercury by various analytical instruments published in international journals since 2015 were reviewed. All analytical parameters, including the limits of detection, linearity range, quality assurance and control, applicability, and interfering ions, evaluated in the reviewed articles were tabulated. In this review, we found a lack of information in speciation studies of mercury in recent years. Another important conclusion from this review was that there were few studies regarding the concentration of mercury in the atmosphere.

  7. Neutron activation analysis of biological materials for sub PPM amount of mercury without determining the chemical yield

    International Nuclear Information System (INIS)

    Foldzinska, A.; Dybczynski, R.

    1976-01-01

    A simple method for the determination of sub ppm amounts of mercury in various biological materials by neutron activation analysis is described. Irradiated samples were decomposed with H 2 SO 4 - fuming HNO 3 mixture and mercury selectively isolated by ion exchange chromatography using Dowex 50X2(H + ) and Dowex 1X4(Br - ) columns in HBr medium. Finally the activity of 197 Hg fixed on an anion exchange resin was measured either with a Ge(Li) or a NaI (Tl) detector. Both the high radiochemical purity of mercury and the practically quantitative recovery were achieved thus eliminating the necessity of determining the chemical yield. The method was used for the determination of mercury in flour, milk, butter, margarine, fish, etc. Total time of analysis (including counting) amounted to 6-7 hrs and several samples could be simultaneously analysed by one technician. (T.G.)

  8. Mercury and tritium removal from DOE waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, E.T. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  9. Overview of Mercury Magnetospheric Orbiter (MMO) for BepiColombo

    Science.gov (United States)

    Murakami, G.; Hayakawa, H.; Fujimoto, M.; BepiColombo Project Team

    2018-05-01

    The next Mercury exploration mission BepiColombo will be launched in October 2018 and will arrive at Mercury in December 2025. We present the current status, science goals, and observation plans of JAXA's Mercury Magnetospheric Orbiter (MMO).

  10. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry.

    Science.gov (United States)

    Hou, Xiaoling; Ai, Xi; Jiang, Xiaoming; Deng, Pengchi; Zheng, Chengbin; Lv, Yi

    2012-02-07

    A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.

  11. The effect of contaminants on the mercury consumption of fluorescent lamps

    International Nuclear Information System (INIS)

    Bakk, I P; Nyulaszi, L; Benkoe, N

    2009-01-01

    In order to study the effect of water adsorbed on the alumina coating of fluorescent lamps 35 W tubes were prepared by so setting the manufacturing process as not to fully remove contaminants. The light intensity has been measured along the tubes, showing a fast drop after the initial illumination at switching on. The minimum intensity was followed by a recovery of the light output, the brightening extending gradually from the liquid mercury reservoir of the tube. To explain the observations the reaction between mercury ions and water and its decomposition products (OH and H radicals) were considered, which decreases the free mercury concentration and thus the light output. Density functional calculations indeed indicate a strong binding between these species.

  12. The effect of contaminants on the mercury consumption of fluorescent lamps

    Science.gov (United States)

    Bakk, I. P.; Benkö, N.; Nyulászi, L.

    2009-05-01

    In order to study the effect of water adsorbed on the alumina coating of fluorescent lamps 35 W tubes were prepared by so setting the manufacturing process as not to fully remove contaminants. The light intensity has been measured along the tubes, showing a fast drop after the initial illumination at switching on. The minimum intensity was followed by a recovery of the light output, the brightening extending gradually from the liquid mercury reservoir of the tube. To explain the observations the reaction between mercury ions and water and its decomposition products (OH and H radicals) were considered, which decreases the free mercury concentration and thus the light output. Density functional calculations indeed indicate a strong binding between these species.

  13. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    Science.gov (United States)

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric

  14. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    Science.gov (United States)

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  15. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  16. Use of sulfide-containing liquors for removing mercury from flue gases

    Science.gov (United States)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  17. Human accumulation of mercury in Greenland

    DEFF Research Database (Denmark)

    Johansen, Poul; Mulvad, Gert; Pedersen, Henning Sloth

    2007-01-01

    In the Arctic, the traditional diet exposes its people to a high intake of mercury especially from marine mammals. To determine whether the mercury is accumulated in humans, we analyzed autopsy samples of liver, kidney and spleen from adult ethnic Greenlanders who died between 1990 and 1994 from...... a wide range of causes, natural and violent. Liver, kidney and spleen samples from between 33 and 71 case subjects were analyzed for total mercury and methylmercury, and liver samples also for selenium. Metal levels in men and women did not differ and were not related to age except in one case, i.......e. for total mercury in liver, where a significant declining concentration with age was observed. The highest total mercury levels were found in kidney followed by liver and spleen. Methylmercury followed the same pattern, but levels were much lower, constituting only 19% of the total mercury concentration...

  18. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R; Rasmussen, Lasse D; Øregaard, Gunnar

    2008-01-01

    of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential......We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  19. Action of mercury as a soil fungicide

    Energy Technology Data Exchange (ETDEWEB)

    Booer, J R

    1951-01-01

    Metallic mercury and mercury compounds in the soil retard the growth of plants. The development of mosses and lichens is inhibited, and experimental evidence shows that the growth of toadstools on turf and the activity of ascomycetes is retarded by mercury. In vitro, mercury has no fungicidal action but the rate of growth of hyphae is reduced by mercury vapour. The lack of fungicial properties of mercury and its good performance in controlling certain soil-borne diseases are reconciled by assuming that a differential retardation disturbs the relationships necessary for infection. This assumption is supported by diagrams which treat the rates of growth of the parasite and the host as population characteristics normally distributed. 21 references, 10 figures, 5 tables.

  20. Human accumulation of mercury in Greenland

    DEFF Research Database (Denmark)

    Johansen, P.; Mulvad, G.; Pedersen, H. S.

    2007-01-01

    a wide range of causes, natural and violent. Liver, kidney and spleen samples from between 33 and 71 case subjects were analyzed for total mercury and methylmercury, and liver samples also for selenium. Metal levels in men and women did not differ and were not related to age except in one case, i......In the Arctic, the traditional diet exposes its people to a high intake of mercury especially from marine mammals. To determine whether the mercury is accumulated in humans, we analyzed autopsy samples of liver, kidney and spleen from adult ethnic Greenlanders who died between 1990 and 1994 from.......e. for total mercury in liver, where a significant declining concentration with age was observed. The highest total mercury levels were found in kidney followed by liver and spleen. Methylmercury followed the same pattern, but levels were much lower, constituting only 19% of the total mercury concentration...

  1. Thiosulphate assisted phytoextraction of mercury contaminated soils at the Wanshan Mercury Mining District, Southwest China

    Directory of Open Access Journals (Sweden)

    J. Wang

    2013-10-01

    Full Text Available Wanshan, known as the “Mercury Capital” of China, is located in the Southwest of China. Due to the extensive mining and smelting works in the Wanshan area, the local ecosystem has been serious contaminated with mercury. In the present study, a number of soil samples were taken from the Wanshan mercury mining area and the mercury fractionations in soils were analyzed using sequential extraction procedure technique. The obtained results showed that the dominate mercury fractions (represent 95% of total mercury were residual and organic bound mercury. A field trial was conducted in a mercury polluted farmland at the Wanshan mercury mine. Four plant species Brassica juncea Czern. et Coss.var. ASKYC (ASKYC, Brassica juncea Czern. et Coss.var.DPDH (DPDH, Brassica juncea Czern. et Coss.var.CHBD(CHBD, Brassica juncea Czern. et Coss.var.LDZY (LDZY were tested their ability to extract mercury from soil with thiosulphate amendment. The results indicated that the mercury concentration in the roots and shoots of the four plants were significantly increased with thiosulphate treatment. The mercury phytoextraction yield of ASKYC, DPDH, CHBD and LDZY were 92, 526, 294 and 129 g/ha, respectively

  2. Thiosulphate assisted phytoextraction of mercury contaminated soils at the Wanshan Mercury Mining District, Southwest China

    Directory of Open Access Journals (Sweden)

    J Wang

    2013-10-01

    Full Text Available Wanshan, known as the “Mercury Capital” of China, is located in the Southwest of China. Due to the extensive mining and smelting works in the Wanshan area, the local ecosystem has been serious contaminated with mercury. In the present study, a number of soil samples were taken from the Wanshan mercury mining area and the mercury fractionations in soils were analyzed using sequential extraction procedure technique. The obtained results showed that the dominate mercury fractions (represent 95% of total mercury were residual and organic bound mercury. A field trial was conducted in a mercury polluted farmland at the Wanshan mercury mine. Four plant species Brassica juncea Czern. et Coss.var. ASKYC (ASKYC, Brassica juncea Czern. et Coss.var.DPDH (DPDH, Brassica juncea Czern. et Coss.var.CHBD(CHBD, Brassica juncea Czern. et Coss.var.LDZY (LDZY were tested their ability to extract mercury from soil with thiosulphate amendment. The results indicated that the mercury concentration in the roots and shoots of the four plants were significantly increased with thiosulphate treatment. The mercury phytoextraction yield of ASKYC, DPDH, CHBD and LDZY were 92, 526, 294 and 129 g/ha, respectively.

  3. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor

    International Nuclear Information System (INIS)

    Cherian, M.G.; Hursh, J.B.; Clarkson, T.W.; Allen, J.

    1978-01-01

    The distribution of mercury in red blood cells (RBCs) and plasma, and its excretion in urine and feces are described in five human subjects during the first 7 days following inhalation of radioactive mercury vapor. A major portion (98%) of radioactive mercury in whole blood is initially accumulated in the RBCs and is transferred partly to the plasma compartment until the ratio of mercury in RBCs to plasma is about 2 within 20 h. The cumulative urinary and fecal excretion of mercury for 7 days is about 11.6% of the retained dose, and is closely related to the percent decline in body burden of mercury. There is little correlation between either the urinary excretion and plasma radioactivity of mercury, or the specific activities of urine and plasma mercury, suggesting a mechanism other than a direct glomerular filtration involved in the urinary excretion of recently exposed mercury. These studies suggest that blood mercury levels can be used as an index of recent exposure, while urinary levels may be an index of renal concentration of mercury. However, there is no reliable index for mercury concentration in the brain

  4. Surface composition of Mercury from reflectance spectrophotometry

    Science.gov (United States)

    Vilas, Faith

    1988-01-01

    The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.

  5. Mercury concentration in coal - Unraveling the puzzle

    Science.gov (United States)

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  6. Mercury and halogens in coal: Chapter 2

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  7. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  8. Apparatus for isotopic alteration of mercury vapor

    International Nuclear Information System (INIS)

    Grossman, M.W.; George, W.A.; Marcucci, R.V.

    1988-01-01

    This patent describes an apparatus for enriching the isotopic content of mercury. It comprises: a low pressure electric discharge lamp, the lamp comprising an envelope transparent to ultraviolet radiation and containing a fill comprising mercury and an inert gas; a filter concentrically arranged around the low pressure electric discharge lamp, the filter being transparent to ultraviolet radiation and containing mercury including 196 Hg isotope; means for controlling mercury pressure in the filter; and a reactor arranged around the filter such that radiation passes from the low pressure electric discharge lamp through the filter and into Said reactor, the reactor being transparent to ultraviolet light

  9. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. Apparatus for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  11. Identification of elemental mercury in the subsurface

    Science.gov (United States)

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  12. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  13. Observations of Mercury in 1988 and 1989

    International Nuclear Information System (INIS)

    Schmude, R.W. Jr.

    1990-01-01

    A visual study of the planet Mercury was carried out in May 1988 and in April and May 1989. Most of the observations were made with the 35.5-cm telescope at the Texas A ampersand M University Observatory. This report presents drawings and a map of Mercury that covers the longitude range of 195-285 deg. One important finding was that a polarizing filter combined with color filters gives a sharper view of the planet. It is also concluded that high-resolution images of Mercury's terminator, either as seen from the earth or with the Hubble Space Telescope, can provide information about Mercury's topography. 10 refs

  14. Fate of mercury in the Arctic (FOMA)

    DEFF Research Database (Denmark)

    Skov, H.; Christensen, J.; Asmund, G.

    This report is the final reporting of the project FONA, funded by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The aim of the project is to study the intercompartment mercury transport chain in the arctic area. From...... in the Arctic. The report focus on the surface exchange of mercury, the uptake of abiotic mercury into the biological system, and the bioaccumulation in the first steps of the food web, and the resulting distribution and time trend of mercury in selected animals feeding on various trophic levels...

  15. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  16. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  17. Risk assessment of mercury contaminated sites

    International Nuclear Information System (INIS)

    Hempel, M.

    1993-01-01

    At two sites, highly contaminated with mercury, risk assessment was executed. Methods were developed to determine organomercury compounds in water, air and soil. Toxicity tests demonstrated the high toxicity of organomercury compounds compared to inorganic mercury. Besides highly toxic methylmercury, ethylmercury was found in soils close to a chemical plant in Marktredwitz. In ultrafiltration-experiments mercury showed great affinity to high molecular substances in water. Lysimeter-experiments proved, that organomercury compounds are adsorbed and transformed to inorganic and elemental mercury. (orig.) [de

  18. EDITORIAL: Mercury-free discharges for lighting

    Science.gov (United States)

    Haverlag, M.

    2007-07-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this

  19. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  20. Augustus as Mercury at last

    Directory of Open Access Journals (Sweden)

    Paulo Martins

    2017-07-01

    Full Text Available My purpose in this paper is to investigate and to analyse the representation of Augustus as Mercury, and what this association may suggest and mean to the Romans from both the urbs and the prouinciae, focusing the epigraphy, the numismatic, and the literature. Furthermore, I review three researches that someway work this problem: Bandinelli, Zanker and Martins. Even though the associations between divinities and rulers were very common – Augustus represented as Apollo, Jupiter or Neptune; Tiberius as Apollo; Claudius as Jupiter; or Commodus as Hercules –, the discussion on the relationship between Augustus and Mercury is very rare in recent bibliography. The latest relevant research on this subject dates back to the first half of the twentieth century. Chittenden’s work on numismatic and Grether’s article on epigraphy are both very important. Thus, new evidences must be considered, so that we can further investigate these representations in the Roman world.

  1. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  2. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Ashworth

    2000-02-27

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  3. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  4. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calciner Facility

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    2000-01-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended

  5. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  6. Multiscale geomorphometric modeling of Mercury

    Science.gov (United States)

    Florinsky, I. V.

    2018-02-01

    Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.

  7. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  8. Molecular Mechanisms of Bacterial Mercury Transformation

    Energy Technology Data Exchange (ETDEWEB)

    smith, jeremy

    2014-04-15

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we used quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. The results show that, whereas in the gas phase the binding affinity of two identical anionic ligands (forming HgL2) increases with ligand (L–) hardness, in contrast, in the aqueous phase the affinity increases with ligand softness. This switch in affinity upon hydration is shown to result mostly from interactions with only a small number (e.g. one or two) of water molecules. The results yield a clear, robust periodic trend within the chalcogenide and halide groups and are in agreement with the well-known experimentally observed preference of Hg2+ for soft ligands. By comparing the Hg2+ binding of one with two anions, the gas phase preferences are found to arise from the enhancement of reactivity of the cationic complex (HgL+) with the hardness of L–. The approach establishes a theoretical basis for understanding Hg speciation in the biosphere.

  9. Use of selenium to detect mercury in water and cells: an enhancement of the sensitivity and specificity of a seleno fluorescent probe.

    Science.gov (United States)

    Tang, Bo; Ding, Baiyu; Xu, Kehua; Tong, Lili

    2009-01-01

    Seleno fluorescent probe: An organoselenium fluorescent probe (FSe-1) for mercury was designed based on the irreversible deselenation mechanism. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites, due the strong affinity between Se and Hg. Furthermore, the new probe has been successfully used for imaging mercury ions in RAW 264.7 cells (a mouse macrophage cell line; see figure).Inspired by the antitoxic function of selenium towards heavy-metal ions, we designed an organoselenium fluorescent probe (FSe-1) for mercury. The reaction of FSe-1 and Hg(2+) is an irreversible deselenation mechanism based on the selenophilic character of mercury. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites due to the strong affinity between Se and Hg. The experimental results proved that FSe-1 was selective for Hg(2+) ions over other relevant metal ions and bioanalytes, and also showed an enhancement in sensitivity of up to 1.0 nM, which is lower than the current Environmental Protection Agency standard for drinking water. Furthermore, the new probe has been successfully applied to the imaging of mercury ions in RAW 264.7 cells (a mouse macrophage cell line) with high sensitivity and selectivity.

  10. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  11. Global Simulations of the Asymmetry in Forming Kelvin-Helmholtz Instability at Mercury

    Science.gov (United States)

    Paral, J.; Rankin, R.

    2013-12-01

    MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) is the first spacecraft to provide data from the orbit of Mercury. After the probe's insertion into the orbit on March 2011, the in situ measurements revealed a dawn-dusk asymmetry in the observations of Kelvin-Helmholtz (KH) instability. This instability forms at the magnetopause boundary due to the high shear of the plasma flows. The asymmetry in the observations is unexpected and largely unexplained, although it has been speculated that finite ion gyroradius effect plays an important role. The large gyroradius implies that kinetic effects are important and thus must be taken into account. We employ global ion hybrid-kinetic simulations to obtain a 2D model of Mercury's magnetosphere. This code treats ions as particles and follows the full trajectory while electrons act as a charge neutralizing fluid. The planet is treated as the perfect conductor placed in the streaming solar wind to form a quasi steady state of the magnetosphere. By placing a virtual probe in the simulation domain we obtain time series of the plasma parameters which can be compared to the observations by the MESSENGER spacecraft. The comparison of the KH instability is remarkably close to the observations of MESSENGER; to within a factor of two. The model also confirms the asymmetry in the observations. The ion density obtained from the computer model is shown together with velocity vectors (represented by arrows). The solid line represents the trajectory of the third flyby of MESSENGER on September 29, 2009.

  12. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    Science.gov (United States)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  13. Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury

    Science.gov (United States)

    Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.

    2011-01-01

    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.

  14. Maternal transfer of mercury to songbird eggs.

    Science.gov (United States)

    Ackerman, Joshua T; Hartman, C Alex; Herzog, Mark P

    2017-11-01

    We evaluated the maternal transfer of mercury to eggs in songbirds, determined whether this relationship differed between songbird species, and developed equations for predicting mercury concentrations in eggs from maternal blood. We sampled blood and feathers from 44 house wren (Troglodytes aedon) and 34 tree swallow (Tachycineta bicolor) mothers and collected their full clutches (n = 476 eggs) within 3 days of clutch completion. Additionally, we sampled blood and feathers from 53 tree swallow mothers and randomly collected one egg from their clutches (n = 53 eggs) during mid to late incubation (6-10 days incubated) to evaluate whether the relationship varied with the timing of sampling the mother's blood. Mercury concentrations in eggs were positively correlated with mercury concentrations in maternal blood sampled at (1) the time of clutch completion for both house wrens (R 2  = 0.97) and tree swallows (R 2  = 0.97) and (2) during mid to late incubation for tree swallows (R 2  = 0.71). The relationship between mercury concentrations in eggs and maternal blood did not differ with the stage of incubation when maternal blood was sampled. Importantly, the proportion of mercury transferred from mothers to their eggs decreased substantially with increasing blood mercury concentrations in tree swallows, but increased slightly with increasing blood mercury concentrations in house wrens. Additionally, the proportion of mercury transferred to eggs at the same maternal blood mercury concentration differed between species. Specifically, tree swallow mothers transferred 17%-107% more mercury to their eggs than house wren mothers over the observed mercury concentrations in maternal blood (0.15-1.92 μg/g ww). In contrast, mercury concentrations in eggs were not correlated with those in maternal feathers and, likewise, mercury concentrations in maternal blood were not correlated with those in feathers (all R 2  mercury concentrations from maternal blood to eggs

  15. Worldwide trend of atmospheric mercury since 1995

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2011-05-01

    Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentrations have decreased by about 20 to 38 % since 1996 as indicated by long-term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 years is unusually large among most atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant anthropogenic emissions over this period. This suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Acidification of oceans, climate change, excess nutrient input and pollution may also contribute by their impact on the biogeochemistry of ocean and soils. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.

  16. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  17. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    Science.gov (United States)

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  18. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    Directory of Open Access Journals (Sweden)

    Akira Yasutake

    2011-01-01

    Full Text Available A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0. Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys.

  19. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  20. Dry deposition of gaseous oxidized mercury in Western Maryland.

    Science.gov (United States)

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Mushak, P.; Hall, L.L.

    1987-01-01

    Adult male and female Long Evans rats received 1 mumole of methyl ( 203 Hg) mercuric chloride per kilogram sc. Whole-body retention of mercury and excretion of organic and inorganic mercury in urine and feces were monitored for 98 days after dosing. Females cleared mercury from the body more rapidly than did males. The major route of mercury excretion was feces. By 98 days after dosing, cumulative mercury excretion in feces accounted for about 51% of the dose in males and about 54% of the dose in females. For both sexes, about 33% of the dose was excreted in feces as inorganic mercury. Cumulative excretion of organic mercury in feces accounted for about 18 and 21% of the dose in males and females, respectively. Urinary excretion of mercury was quantitatively a smaller route for mercury clearance but important sexual differences in loss by this route were found. Over the 98-day experimental period, males excreted in urine about 3.2% of the dose and females excreted 7.5%. Cumulative organic Hg excretion in urine accounted for 1.8% of the dose in males and 5.3% of the dose in females. These sexual differences in urinary and fecal excretion of organic and inorganic mercury following methyl mercury treatment were consistent with previous reports of sexual differences in mercury distribution and retention in methyl mercury-treated rats, particularly sexual differences in organic mercury uptake and retention in the kidney. Relationships between body burdens of organic or inorganic Hg and output of these forms of Hg in urine and feces were also found to be influenced by the interval after MeHg treatment and by sex. Relationship between concentration of Hg in liver and feces and in kidney and urine differed for organic and inorganic Hg and depended upon sexual status and interval after MeHg treatment

  2. A Challenging Case of Acute Mercury Toxicity

    Directory of Open Access Journals (Sweden)

    Ali Nayfeh

    2018-01-01

    Full Text Available Background. Mercury exists in multiple forms: elemental, organic, and inorganic. Its toxic manifestations depend on the type and magnitude of exposure. The role of colonoscopic decompression in acute mercury toxicity is still unclear. We present a case of acute elemental mercury toxicity secondary to mercury ingestion, which markedly improved with colonoscopic decompression. Clinical Case. A 54-year-old male presented to the ED five days after ingesting five ounces (148 cubic centimeters of elemental mercury. Examination was only significant for a distended abdomen. Labs showed elevated serum and urine mercury levels. An abdominal radiograph showed radiopaque material throughout the colon. Succimer and laxatives were initiated. The patient had recurrent bowel movements, and serial radiographs showed interval decrease of mercury in the descending colon with interval increase in the cecum and ascending colon. Colonoscopic decompression was done successfully. The colon was evacuated, and a repeat radiograph showed decreased hyperdense material in the colon. Three months later, a repeat radiograph showed no hyperdense material in the colon. Conclusion. Ingested elemental mercury can be retained in the colon. Although there are no established guidelines for colonoscopic decompression, our patient showed significant improvement. We believe further studies on this subject are needed to guide management practices.

  3. Mercury in tropical and subtropical coastal environments

    Science.gov (United States)

    Costa, Monica F.; Landing, William M.; Kehrig, Helena A.; Barletta, Mário; Holmes, Christopher D.; Barrocas, Paulo R. G.; Evers, David C.; Buck, David G.; Vasconcellos, Ana Claudia; Hacon, Sandra S.; Moreira, Josino C.; Malm, Olaf

    2012-01-01

    Anthropogenic activities influence the biogeochemical cycles of mercury, both qualitatively and quantitatively, on a global scale from sources to sinks. Anthropogenic processes that alter the temporal and spatial patterns of sources and cycling processes are changing the impacts of mercury contamination on aquatic biota and humans. Human exposure to mercury is dominated by the consumption of fish and products from aquaculture operations. The risk to society and to ecosystems from mercury contamination is growing, and it is important to monitor these expanding risks. However, the extent and manner to which anthropogenic activities will alter mercury sources and biogeochemical cycling in tropical and sub-tropical coastal environments is poorly understood. Factors as (1) lack of reliable local/regional data; (2) rapidly changing environmental conditions; (3) governmental priorities and; (4) technical actions from supra-national institutions, are some of the obstacles to overcome in mercury cycling research and policy formulation. In the tropics and sub-tropics, research on mercury in the environment is moving from an exploratory “inventory” phase towards more process-oriented studies. Addressing biodiversity conservation and human health issues related to mercury contamination of river basins and tropical coastal environments are an integral part of paragraph 221 paragraph of the United Nations document “The Future We Want” issued in Rio de Janeiro in June 2012. PMID:22901765

  4. Mercury Sorption onto Malt Spent Rootlets

    Science.gov (United States)

    Manariotis, I. D.; Anagnostopoulos, V.; Karapanagioti, H. K.; Chrysikopoulos, C.

    2011-12-01

    Mercury is a metal of particular concern due to its toxicity even at relatively low concentrations. The maximum permissible level for mercury in drinking water set by the European Union is 0.001 mg/L. Mercury is released into the environment via four principal pathways: (1) natural processes; i.e. a volcanic eruption, (2) incidental to some other activity; i.e. coal burning power plants, (3) accidentally during the manufacture, breakage or disposal of products that have mercury put into them deliberately, and (4) direct use in industrial settings. The present study focuses on the removal of mercury (II) from aqueous solutions via sorption onto Malt Spent Rootlets (MSR). Batch experiments were conducted employing MSR with size ranging from 0.18 to 1 mm. The effects of pH, mercury concentration, contact time, and solid to liquid ratio on mercury sorption onto MSR were investigated. The highest mercury removal from the aqueous phase, of 41%, was observed at pH of 5.

  5. Recent Advances in Atmospheric Chemistry of Mercury

    Directory of Open Access Journals (Sweden)

    Lin Si

    2018-02-01

    Full Text Available Mercury is one of the most toxic metals and has global importance due to the biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical and chemical transformations of various mercury species in the atmosphere strongly influence their composition, phase, transport characteristics and deposition rate back to the ground. Modeling efforts to assess global cycling of mercury require an accurate understanding of atmospheric mercury chemistry. Yet, there are several key uncertainties precluding accurate modeling of physical and chemical transformations. We focus this article on recent studies (since 2015 on improving our understanding of the atmospheric chemistry of mercury. We discuss recent advances in determining the dominant atmospheric oxidant of elemental mercury (Hg0 and understanding the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3—in the aqueous reduction of oxidized mercury compounds (HgII as well as in the heterogeneous reactions of Hg on atmospheric-relevant surfaces. The need for future research to improve understanding of the fate and transformation of mercury in the atmosphere is also discussed.

  6. Episodic bioavailability of environmental mercury: implications for ...

    African Journals Online (AJOL)

    Perennial wildfires in Africa and other continents contribute an estimated 8 x 105 kg of mercury to the global atmosphere with a residence time of approximately one year. This phenomenon changes the flux of biologically available mercury in natural microbial communities where enzymatic actions, including mercuric ...

  7. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-09-15

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

  8. Intentional intravenous mercury injection | Yudelowitz | South African ...

    African Journals Online (AJOL)

    Intravenous mercury injection is rarely seen, with few documented cases. Treatment strategies are not clearly defined for such cases, although a few options do show benefit. This case report describes a 29-year-old man suffering from bipolar disorder, who presented following self-inflicted intravenous injection of mercury.

  9. Mercury soil surveys: a good reconnaissance tool

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01

    Three examples of mercury soil surveys are discussed, along with the gravity data. An excellent correlation was found in southern Arizona between buried structures revealed by gravity and mercury soil surveys. The advantages of the latter over the former as a reconnaissance tool are listed. (MHR)

  10. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    International Nuclear Information System (INIS)

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-01-01

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish

  11. Anthropogenic mercury deposition to arctic lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, M.H. [Westchester University, Westchester, PA (United States). Dept. of Health

    1998-01-01

    The history of atmospheric mercury inputs to remote arctic regions can be measured in lake sediment cores using lead-210 chronology. In the investigation, total mercury deposition is measured in sediments from Imitavik and Annak Lakes on the Belcher Islands in southeastern Hudson Bay, an area in the southern Canadian Arctic with no history of local industrial or agricultural sources of contamination. Both lakes received background and atmospheric inputs of mercury while Annak also received mercury from raw domestic sewage from the Hamlet of Sanikiluaq, a growing Inuit community of about 550 established in the late 1960s. Results from Imitavik show that anthropogenic mercury inputs, apparently transported through the atmosphere, began to appear in the mid-eighteenth century, and continued to the 1990s. Annak had a similar mercury history until the late 1960s when disposal of domestic sewage led to increased sediment and contaminant accumulation. The high input of mercury to Annak confirms that Sanikiluaq residents are exposed to mercury through native food sources. 39 refs., 7 figs., 3 tabs.

  12. Mercury-free discharges for lighting - editorial

    NARCIS (Netherlands)

    Haverlag, M.

    2007-01-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from

  13. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  14. Mercury distribution in Douro estuary (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Ramalhosa, E. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Pereira, E. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)]. E-mail: eduper@dq.ua.pt; Vale, C. [National Institute for Agronomy and Fishery Research, IPIMAR, Avenida Brasilia, 1449-006 Lisboa (Portugal); Valega, M. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Monterroso, P. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Duarte, A.C. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2005-11-15

    Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm{sup -3}, and concentrations of DOC in the range <1.0-1.8 mg dm{sup -3}. The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm{sup -3}, whereas for the more saline bottom waters it was about 65 ng dm{sup -3}. The surface waters had maximum concentrations of total suspended particulate mercury of {approx}7 {mu}g g{sup -1} and the bottom waters were always <1 {mu}g g{sup -1}. Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 {mu}g g{sup -1}. The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.

  15. Mercury cycling in peatland watersheds. Chapter 11.

    Science.gov (United States)

    Randall K. Kolka; Carl P.J. Mitchell; Jeffrey D. Jeremiason; Neal A. Hines; David F. Grigal; Daniel R. Engstrom; Jill K. Coleman-Wasik; Edward A. Nater; Edward B. Swain; Bruce A. Monson; Jacob A. Fleck; Brian Johnson; James E. Almendinger; Brian A. Branfireun; Patrick L. Brezonik; James B. Cotner

    2011-01-01

    Mercury (Hg) is of great environmental concern due to its transformation into the toxic methylmercury (MeHg) form that bioaccumulates within the food chain and causes health concerns for both humans and wildlife (U.S. Environmental Protection Agency 2002). Mercury can affect neurological development in fetuses and young children. In adults, exposure to Hg can lead to...

  16. EURISOL MERCURY TARGET EXPERIMENT: CERN SAFETY REPORT

    CERN Document Server

    J. Gulley (CERN SC/GS)

    Report on a visit to the mercury-handling lab at IPUL. The aim was to provide recommendations to IPUL on general health and safety issues relatring to the handling of mercury, the objective being to reduce exposure to acceptable levels, so far as is reasonably practical.

  17. Pneumonitis after Inhalation of Mercury Vapours

    Directory of Open Access Journals (Sweden)

    JD Glezos

    2006-01-01

    Full Text Available A 43-year-old man presented to hospital with pneumonia but only after discharge from hospital did he admit to deliberate prior inhalation of mercury. His pulmonary involvement appeared to resolve almost completely with antibiotics and supportive care. Nevertheless, persisting elevated urinary excretion of mercury required two courses of chelation therapy. No serious systemic sequelae were observed.

  18. Mercury poisoning | Shamley | South African Medical Journal

    African Journals Online (AJOL)

    The diagnosis of mercury poisoning requires a high index of suspicion. Mercury poisoning in a patient involved in illicit gold extraction is reported and 6 other cases considered. Some of the clinical features and treatment of this condition are discussed. S Afr Med J 1989; 76: 114-116 ...

  19. Sensitive determination of trace mercury by UV-visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment.

    Science.gov (United States)

    Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping

    2012-09-30

    A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Cork stoppers as an effective sorbent for water treatment: the removal of mercury at environmentally relevant concentrations and conditions.

    Science.gov (United States)

    Lopes, Cláudia B; Oliveira, Joana R; Rocha, Luciana S; Tavares, Daniela S; Silva, Carlos M; Silva, Susana P; Hartog, Niels; Duarte, Armando C; Pereira, E

    2014-02-01

    The technical feasibility of using stopper-derived cork as an effective biosorbent towards bivalent mercury at environmentally relevant concentrations and conditions was evaluated in this study. Only 25 mg/L of cork powder was able to achieve 94 % of mercury removal for an initial mercury concentration of 500 μg/L. It was found that under the conditions tested, the efficiency of mercury removal expressed as equilibrium removal percentage does not depend on the amount of cork or its particle size, but is very sensitive to initial metal concentration, with higher removal efficiencies at higher initial concentrations. Ion exchange was identified as one of the mechanisms involved in the sorption of Hg onto cork in the absence of ionic competition. Under ionic competition, stopper-derived cork showed to be extremely effective and selective for mercury in binary mixtures, while in complex matrices like seawater, moderate inhibition of the sorption process was observed, attributed to a change in mercury speciation. The loadings achieved are similar to the majority of literature values found for other biosorbents and for other metals, suggesting that cork stoppers can be recycled as an effective biosorbent for water treatment. However, the most interesting result is that equilibrium data show a very rare behaviour, with the isotherm presenting an almost square convex shape to the concentration axis, with an infinite slope for an Hg concentration in solution around 25 μg/L.

  1. Mercury in a coastal marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J D; Leatherland, T M

    1971-06-18

    The problem of mercury pollution was investigated in Southampton Water and the English Channel. Mercury was determined in five specimens of the mollusk, Mercenaria mercenaria. The concentrations in whole organisms, without shell, ranged from 0.18 to 0.57 p.p.m. The amounts of mercury in the river and estuarine waters were found to be low. Yet, samples from the surface of the bottom mud in different parts of the estuary had mercury contents ranging from 0.19 to 0.64 p.p.m. The role of sediments in the transport of mercury in food chains could be significant, particularly for bottom living, suspension feeding animals. 14 references, 1 table.

  2. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  3. Release of volatile mercury from vascular plants

    Science.gov (United States)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  4. Mercury removal from solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-01-01

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I 2 leaching processes to determine the applicability of this process to mercury containing solid mixed waste

  5. Removal of mercury by adsorption: a review.

    Science.gov (United States)

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.

  6. Indirect complexometric determination of mercury(II in synthetic alloys and complexes using ethanethiol as a selective masking agent

    Directory of Open Access Journals (Sweden)

    J. KARTHIKEYAN

    2006-03-01

    Full Text Available Acomplexometric method for the determination of mercury(II in presence of other metal ions, based on the selective masking action of ethanethiol towards mercury(II is described. Mercury(II present in a given sample solution is first complexed with an excess of EDTAand the unreacted EDTAis titrated against zinc sulphate solution at pH 5–6 (hexamine buffer using xylenol orange as the indicator. An excess of a 0.3 % solution of ethanethiol is then added to displace EDTA from the Hg(II–EDTA complex. The released EDTAis titrated with a standard zinc sulphate solution. Reproducible and accurate results are obtained for 4–85 mg of mercury(II with a relative error of less than ± 0.46 % and coefficient of variation of not more than 0.47 %. The effects of the presence of various ions were studied. The method can be used for the analysis of mercury in its synthetic alloy mixtures and also in complexes.

  7. 21 CFR 880.2920 - Clinical mercury thermometer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...

  8. Mercury content of shark from south-western Australian waters

    Energy Technology Data Exchange (ETDEWEB)

    Caputi, N.; Edmonds, J.S.; Heald, D.I.

    1979-11-01

    Muscle samples from four species of commercially sought sharks off the Western Australia coast were analyzed for total mercury. While substantial amounts of mercury were accumulated by sharks, as by other marine fish, the lack of polluting industry on the coast indicates that such mercury levels probably are natural. Mercury concentrations generally increased with fish size. (4 graphs, 1 map, 8 references, 2 tables)

  9. 21 CFR 862.3600 - Mercury test system.

    Science.gov (United States)

    2010-04-01

    ....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury test system. 862.3600 Section 862.3600...

  10. Distribution and excretion of inhaled mercury vapour

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1961-01-01

    Rats have been exposed for varying periods to an atmosphere containing 1 mg/cu.m. mercury vapor. The toxic effects produced showed resemblances to signs of mercurialism in man. An attempt has been made to study the kinetics of absorption and excretion of mercury from measurements of the amounts excreted and stored in the tissues. The efficiency of absorption of mercury by the rat lung is about 50%. A small proportion is excreted into the gut. After about 10 days of continuous exposure a steady state is reached in which excretion balances absorption. During short exposures the turnover of mercury in all tissues except brain is fairly rapid and most of the mercury is cleared from the body within a week after exposure. The urinary excretion of mercury, during the initial stage of storage in the tissues and the final stage of clearance, shows divergencies from the simple exponential pattern; there appears to be a delay mechanism in the kidney which, in intermittent exposures, may result in the occurrence of peak excretion during periods of non-exposure. After more prolonged exposures the mercury in the kidney appears to be converted to a form which is only very slowly excreted. The significance of the urinary excretion of mercury by man after industrial exposure to mercury vapour is discussed. The rat experiments suggest that single measurements will give only limited information concerning industrial conditions, but that an approximate assessment of the total absorbed during a working week would be obtained if it were possible to make a seven-day collection of urine. Repeated measurements after exposure would yield information on the duration of exposure and would have some diagnostic value.

  11. Mercury flow experiments. 4th report: Measurements of erosion rate caused by mercury flow

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2002-06-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be weak by thickness decreasing. This report presents experimental results of wall thickness change by erosion using a mercury experimental loop. In the experiments, an erosion test section and coupons were installed in the mercury experimental loop, and their wall thickness was measured with an ultra sonic thickness gage after every 1000 hours. As a result, under 0.7 m/s of mercury velocity condition which is slightly higher than the practical velocity in mercury pipelines, the erosion is about 3 μm in 1000 hours. The wall thickness decrease during facility lifetime of 30 years is estimated to be less than 0.5 mm. According to the experimental result, it is confirmed that the effect of erosion on component strength is extremely small. Moreover, a measurement of residual mercury on the piping surface was carried out. As a result, 19 g/m 2 was obtained as the residual mercury for the piping surface. According to this result, estimated amount of residual mercury for

  12. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies

    International Nuclear Information System (INIS)

    Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, Conrad K.; Hao, J.M.

    2010-01-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t -1 of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting. - Modern scale production equipped with acid plant and Hg reclaiming tower will significantly reduce Hg emissions from zinc smelters in China.

  13. Mercury migration into ground water, a literature study

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Carden, J.L.; Kury, R.; Eichholz, G.G.

    1994-11-01

    This report presents a broad review of the technical literature dealing with mercury migration in the soil. The approach followed was to identify relevant articles by searching bibliographic data bases, obtaining the promising articles and searching these articles for any additional relevant citations. Eight catagories were used to organize the literature, with a review and summary of each paper. Catagories used were the following: chemical states of mercury under environmental conditions; diffusion of mercury vapor through soil; solubility and stability of mercury in environmental waters; transport of mercury on colloids; models for mercury migration through the environment; analytical techniques; retention of mercury by soil components; formation of organomecurials.

  14. Structure of Mercury's magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schriver, D.

    2007-01-01

    Roč. 34, č. 5 (2007), L05104/1-L05104/5 ISSN 0094-8276 R&D Projects: GA ČR GA205/05/1011 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global simulations * Mercury's magnetosphere * solar wind * hybrid simulations * ion drift driven rings Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  15. Study of high levels indoor air mercury contamination from mercury amalgam use in dentistry

    International Nuclear Information System (INIS)

    Khwaja, M.A.; Abbasi, M.S.; Mehmood, F.; Jahangir, S.

    2014-01-01

    In 2005, United Nations Environment Programme (UNEP) estimated that 362 tonnes of dental mercury are consumed annually worldwide. Dental mercury amalgams also called silver fillings and amalgam fillings are widely done. These fillings gave off mercury vapours. Estimated average absorbed concentrations of mercury vapours from dental fillings vary from 3,000 to 17,000 ng Hg. Mercury (Hg) also known as quick silver is an essential constituent of dental amalgam. It is a toxic substance of global concern. A persistent pollutant, mercury is not limited to its source but it travels, on time thousands of kilometers away from the source. Scientific evidence, including, UNEP Global Mercury report, establishes mercury as an extremely toxic substance, which is a major threat to wildlife, ecosystem and human health, at a global scale. Children are more at risk from mercury poisoning which affects their neurological development and brain. Mercury poisoning diminishes memory, attention, thinking and sight. In the past, a number of studies at dental sites in many countries have been carried out and reported which have been reviewed and briefly described. This paper describes and discusses the recent investigations, regarding mercury vapours level in air, carried out at 18 dental sites in Pakistan and other countries. It is evident from the data of 42 dental sites in 17 countries, including, selected dental sites in five main cities of Pakistan, described and discussed in this paper that at most dental sites in many countries including Pakistan, the indoor mercury vapours levels exceed far above the permissible limit, recommended for safe physical and mental health. At these sites, public, in general, and the medical, paramedical staff and vulnerable population, in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. (author)

  16. Mercuri tutuksi Y-sukupolvelle

    OpenAIRE

    Kyyhkynen, Toni; Kaisla, Noora

    2016-01-01

    Opinnäytetyö on tuotettu toimeksiantona Mercuri International Oy:lle. Opinnäytetyön tavoitteena oli tehdä Mercurille markkinointisuunnitelma, joka lisäisi yrityksen tunnettuutta Y-sukupolven silmissä kohderyhmälle sopivien markkinointitoimenpiteiden avulla. Toinen tavoite oli luoda keskustelua ja kiinnostusta Metropolian Liiketalouden opiskelijoiden keskuudessa B2B-myynnin alaa kohtaan. Teoreettinen osuus antaa viitekehyksen opinnäytetyön tutkimustehtävän sekä toimeksiannon kannalta oleel...

  17. Treatment of mercury containing waste

    Science.gov (United States)

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  18. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  19. Geodesy at Mercury with MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of

  20. Analysis of mercury diffusion pumps

    International Nuclear Information System (INIS)

    Dunn, K.A.

    1991-01-01

    Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs