WorldWideScience

Sample records for mercury flow experiments

  1. Mercury flow experiments. 4th report: Measurements of erosion rate caused by mercury flow

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2002-06-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be weak by thickness decreasing. This report presents experimental results of wall thickness change by erosion using a mercury experimental loop. In the experiments, an erosion test section and coupons were installed in the mercury experimental loop, and their wall thickness was measured with an ultra sonic thickness gage after every 1000 hours. As a result, under 0.7 m/s of mercury velocity condition which is slightly higher than the practical velocity in mercury pipelines, the erosion is about 3 μm in 1000 hours. The wall thickness decrease during facility lifetime of 30 years is estimated to be less than 0.5 mm. According to the experimental result, it is confirmed that the effect of erosion on component strength is extremely small. Moreover, a measurement of residual mercury on the piping surface was carried out. As a result, 19 g/m 2 was obtained as the residual mercury for the piping surface. According to this result, estimated amount of residual mercury for

  2. Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow

    CERN Document Server

    Kinoshita, H; Hino, R; Kaminaga, M

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...

  3. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  4. Water flow experiment using the PIV technique and the thermal hydraulic analysis on the cross-flow type mercury target model with the blade flow distributors

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro

    2000-01-01

    The flow patterns in the mock-up model of the cross-flow type mercury target were measured using the PIV (particle image velocimetry) technique under water flow conditions at room temperature. The experimental results were compared with the analytical results conducted with the thermal hydraulic analysis code, STAR-CD. As a result, it was confirmed experimentally that the cross-flow could be realized in most of the proton beam path area, where the removal of the high density heat is important, with the proper flow rate distribution along the proton beam path. The analytical result showed the good correspondence to the experimental result. Then the mercury flow field and the temperature distribution were analyzed taking the volumetric heat generation by the spallation reaction into consideration. The volumetric heat generation calculated for the proton beam energy and power of 1.5 GeV and 5 MW were assumed in the analysis. The mercury flow analysis showed that the maximum mercury temperature less than the design criteria of 300degC can be attained with the inlet mercury velocity of more than 1.1 m/s and that the recirculation flow seen in the rear of the proton beam path is considered to cause no excessive temperature rise. (author)

  5. Substance Flow Analysis of Mercury in China

    Science.gov (United States)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding

  6. Water flow experiment using the PIV technique and the thermal hydraulic analysis on the cross-flow type mercury target model

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro

    2001-01-01

    In this study the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. The average water flow velocity field in the target mock-up model, which was fabricated with plexiglass, was measured at room temperature using the PIV (Particle Image Velocimetry) technique. The water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in the former part of the proton beam path where the heat load by the spallation reaction is large, and the analytical result of the water flow velocity field showed good correspondence to the experimental result in the case of the Reynolds number of more than 4.83 x 10 5 at the model inlet. With these results, the effectiveness of the cross-flow type mercury target structure and the present analysis code system was demonstrated. Then the mercury flow field and the temperature distribution in the target container were analyzed assuming the proton beam energy and power of 3 GeV and 5 MW. The analytical result showed that the cross-flow field of mercury, which is similar to the water flow field, could also be attained. (author)

  7. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  8. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  9. Method and apparatus for controlling the flow rate of mercury in a flow system

    Science.gov (United States)

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  10. Substance flow analysis for mercury emission in Poland

    Directory of Open Access Journals (Sweden)

    Panasiuk D.

    2013-04-01

    Full Text Available Substance Flow Analysis (SFA is an approach showing main sources of emission and flows of pollution to the environment, which allows to define possible environmental risk. Total identified mercury emission to air, soil and water in Poland for year 2010 from anthropogenic sources was estimated as 18.0 Mg. Annual Hg emission to air from by-product sources was equal 13.5 Mg, with the highest share of emission from brown coal-fired power plants. Mercury contained in combustion residues and removed from flue gases is transferred to waste waters, disposed to landfills and used to a concrete production with unknown amounts. Annual mercury emission to air from the use of mercury-containing products (0.5 Mg was estimated by authors based on model for distribution and emissions for batteries, light sources, other electrical and electronic equipment and also for measuring and control equipment. Emission to air from dental practice (0.3 Mg was estimated for combustion of wastes containing dental amalgam and from bodies cremation. SFA for the use of mercury-containing products and dental practice presents significant load of 10.4 Mg mercury contained in hazardous wastes produced annually. It covers wastes of used products, dental amalgam wastes directly from clinics as well as stream from incineration of infectious dental wastes. In the paper mercury discharges to water from large and medium industrial facilities (2.9 Mg and municipal waste-water treatment plants in large agglomerations (0.4 Mg are presented. Smaller loads are generates by leachate transfer from municipal landfills to WWTPs and further to agriculture and also by releases from dental amalgam in buried bodies. The paper indicates lack of information in SFA which should be regarded, mainly concerning mercury releases from municipal landfills to water and soil and emissions from municipal WWTPs to air.

  11. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  12. 75 FR 42330 - Elemental Mercury Used in Flow Meters, Natural Gas Manometers, and Pyrometers; Significant New...

    Science.gov (United States)

    2010-07-21

    ... Elemental Mercury Used in Flow Meters, Natural Gas Manometers, and Pyrometers; Significant New Use Rule... mercury (CAS No. 7439-97-6) for use in flow meters, natural gas manometers, and pyrometers, except for use... who intend to manufacture (including import) or process elemental mercury for an activity that is...

  13. Water Flow Experiments

    Indian Academy of Sciences (India)

    This is a simple exercise in elementary fluid dynamics for the undergraduate and the secondary school level. Here, we explore the flow of water through an orifice at the bottom of a cylindri- cal bottle/tank, first through a tube attached to the bottom of the bottle/tank and then without the tube. The experiment is easy to perform.

  14. The materials flow of mercury in the economies of the United States and the world

    Science.gov (United States)

    Sznopek, John L.; Goonan, Thomas G.

    2000-01-01

    Although natural sources of mercury exist in the environment, measured data and modeling results indicate that the amount of mercury released into the biosphere has increased since the beginning of the industrial age. Mercury is naturally distributed in the air, water, and soil in minute amounts, and can be mobile within and between these media. Because of these properties and the subsequent impacts on human health, mercury was selected for an initial materials flow study, focusing on the United States in 1990. This study was initiated to provide a current domestic and international analysis. As part of an increased emphasis on materials flow, this report researched changes and identified the associated trends in mercury flows; it also updates statistics through 1996. In addition to domestic flows, the report includes an international section, because all primary mercury-producing mines are currently foreign, 86 percent of the mercury cell sector of the worldwide chlor-alkali industry is outside the United States, there is a large international mercury trade (1,395 t 1 in 1996), and environmental regulations are not uniform or similarly enforced from country to country. Environmental concerns have brought about numerous regulations that have dramatically decreased both the use and the production of mercury since the late 1980?s. Our study indicates that this trend is likely to continue into the future, as the world eliminates the large mercury inventories that have been stockpiled to support prior industrial processes and products.

  15. Gold nanorods for surface Plasmon resonance detection of mercury (II) in flow injection analysis.

    Science.gov (United States)

    Trieu, Khang; Heider, Emily C; Brooks, Scott C; Barbosa, Fernando; Campiglia, Andres D

    2014-10-01

    This article investigates the flow injection analysis of mercury (II) ions in tap water samples via surface Plasmon resonance detection. Quantitative analysis of mercury (II) is based on the chemical interaction of metallic mercury with gold nanorods immobilized on a glass substrate. A new flow cell design is presented with the ability to accommodate the detecting substrate in the sample compartment of commercial spectrometers. Two alternatives are here considered for mercury (II) detection, namely stop-flow and continuous flow injection analysis modes. The best limit of detection (2.4 ng mL(-1)) was obtained with the continuous flow injection analysis approach. The accurate determination of mercury (II) ions in samples of unknown composition is demonstrated with a fortified tap water sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  17. Investigation of flow asymmetry and instability in the liquid mercury target of the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pointer, D.; Ruggles, A.; Wendel, M.; Crye, J.

    2000-01-01

    The Spallation Neutron Source (SNS) will utilize a liquid mercury target placed in the path of a high-energy proton beam to produce neutrons for research activities. As the high-energy protons interact with the mercury target, the majority of the beam energy is converted to thermal energy. The liquid mercury must provide sufficient heat transfer to maintain the temperature of the target structure within the thermal limits of the structural materials. Therefore, the behavior of the liquid mercury flow must be characterized in sufficient detail to ensure accurate evaluation of heat transfer in the mercury target. A combination of experimental and computational methods is utilized to characterize the flow in these preliminary analyses. Preliminary studies of the liquid mercury flow in the SNS target indicate that the flow in the exit channel may exhibit multiple recirculation zones, flow asymmetries, and possibly large-scale flow instabilities. While these studies are not conclusive, they serve to focus the efforts of subsequent CFD modeling and experimental programs to better characterize the flow patterns in the SNS mercury target

  18. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  19. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  20. Mercury

    Science.gov (United States)

    ... build up in fish, shellfish, and animals that eat fish. The nervous system is sensitive to all forms of mercury. Exposure to high levels can damage the brain and kidneys. Pregnant women can pass the mercury in their bodies to their babies. It is important to protect your family from ...

  1. Mercury

    Science.gov (United States)

    ... has set a limit of 2 parts of mercury per billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum permissible level of 1 part of methylmercury in a million ... of 0.1 milligram of organic mercury per cubic meter of workplace air (0.1 ...

  2. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury

  3. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan

    International Nuclear Information System (INIS)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-ichi

    2008-01-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g., televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  4. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asari, Misuzu [Kyoto University, Environment Preservation Center, Kyoto, 606-8501 (Japan)], E-mail: misuzuasari@eprc.kyoto-u.ac.jp; Fukui, Kazuki [Ministry of the Environment Government of Japan, Tokyo 100-8975 (Japan); Sakai, Shin-ichi [Kyoto University, Environment Preservation Center, Kyoto, 606-8501 (Japan)

    2008-04-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g., televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  5. Material Flow for the Intentional Use of Mercury in China.

    Science.gov (United States)

    Lin, Yan; Wang, Shuxiao; Wu, Qingru; Larssen, Thorjørn

    2016-03-01

    Intentional use of mercury (Hg) is an important contributor to the release of Hg into the environment. This study presents the first inventory of material flow for intentional use of Hg in China. The total amount of Hg used in China increased from 803 ± 95 tons in 2005 to its peak level of 1272 ± 110 tons in 2011. Vinyl chloride monomer (VCM) production is the largest user of Hg, accounting for over 60% of the total demand. As regulations on Hg content in products are tightening globally against the background of the Minamata Convention, the total demand will decrease. Medical devices will likely still use a significant amount of Hg and become the second largest user of Hg if no proactive measures are taken. Significant knowledge gaps exist in China for catalyst recycling sector. Although more than half of the Hg used is recycled, this sector has not drawn enough attention. There are also more than 200 tons of Hg that had unknown fates in 2011; very little information exists related to this issue. Among the final environmental fates, landfill is the largest receiver of Hg, followed by air, water, and soil.

  6. Mercury flow through an Asian rice-based food web.

    Science.gov (United States)

    Abeysinghe, Kasun S; Qiu, Guangle; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Evers, David C; Goodale, Morgan W; Hintelmann, Holger; Liu, Shengjie; Mammides, Christos; Quan, Rui-Chang; Wang, Jin; Wu, Pianpian; Xu, Xiao-Hang; Yang, Xiao-Dong; Feng, Xinbin

    2017-10-01

    Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor.

    Science.gov (United States)

    Zhang, Yongsheng; Zhao, Lilin; Guo, Ruitao; Song, Na; Wang, Jiawei; Cao, Yan; Orndorff, William; Pan, Wei-ping

    2015-07-01

    In this study, the mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor were investigated through thermal decomposition methods. The results show that the mercury adsorption performance of the HBr-modified fly ash was enhanced significantly. The mercury species adsorbed by unmodified fly ash were HgCl2, HgS and HgO. The mercury adsorbed by HBr-modified fly ash, in the entrained-flow reactor, existed in two forms, HgBr2 and HgO, and the HBr was the dominant factor promoting oxidation of elemental mercury in the entrained-flow reactor. In the current study, the concentration of HgBr2 and HgO in ash from the fine ash vessel was 4.6 times greater than for ash from the coarse ash vessel. The fine ash had better mercury adsorption performance than coarse ash, which is most likely due to the higher specific surface area and longer residence time. Copyright © 2015. Published by Elsevier B.V.

  8. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  9. Mercury flow tests (first report). Wall friction factor measurement tests and future tests plan

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Kinoshita, Hidetaka; Haga, Katsuhiro; Hino, Ryutaro; Sudo, Yukio

    1999-07-01

    In the neutron science project at JAERI, we plan to inject a pulsed proton beam of a maximum power of 5 MW from a high intense proton accelerator into a mercury target in order to produce high energy neutrons of a magnitude of ten times or more than existing facilities. The neutrons produced by the facility will be utilized for advanced field of science such as the life sciences etc. An urgent issue in order to accomplish this project is the establishment of mercury target technology. With this in mind, a mercury experimental loop with the capacity to circulate mercury up to 15 L/min was constructed to perform thermal hydraulic tests, component tests and erosion characteristic tests. A measurement of the wall friction factor was carried out as a first step of the mercury flow tests, while testing the characteristic of components installed in the mercury loop. This report presents an outline of the mercury loop and experimental results of the wall friction factor measurement. From the wall friction factor measurement, it was made clear that the wettability of the mercury was improved with an increase of the loop operation time and at the same time the wall friction factors were increased. The measured wall friction factors were much lower than the values calculated by the Blasius equation at the beginning of the loop operation because of wall slip caused by a non-wetted condition. They agreed well with the values calculated by the Blasius equation within a deviation of 10% when the sum of the operation time increased more than 11 hours. This report also introduces technical problems with a mercury circulation and future tests plan indispensable for the development of the mercury target. (author)

  10. Theoretical models of mercury dissolution from dental amalgams in neutral and acidic flows

    Science.gov (United States)

    Keanini, Russell G.; Ferracane, Jack L.; Okabe, Toru

    2001-06-01

    This article reports an experimental and theoretical investigation of mercury dissolution from dental amalgams immersed in neutral (noncorrosive) and acidic (corrosive) flows. Atomic absorption spectrophotometric measurements of Hg loss indicate that in neutral flow, surface oxide films formed in air prior to immersion persist and effectively suppress significant mercury release. In acidic (pH 1) flows, by contrast, oxide films are unstable and dissolve; depending on the amalgam’s material composition, particularly its copper content, two distinct mercury release mechanisms are initiated. In low copper amalgam, high initial mercury release rates are observed and appear to reflect preferential mercury dissolution from unstable Sn8Hg ( γ 2) grains within the amalgam matrix. In high copper amalgam, mercury release rates are initially low, but increase with time. Microscopic examination suggests that this feature reflects corrosion of copper from grains of Cu6Sn5 ( η') and consequent exposure of Ag2Hg3 ( γ 1) grains; the latter serve as internal mercury release sites and become more numerous as corrosion proceeds. Three theoretical models are proposed in order to explain observed dissolution characteristics. Model I, applicable to high and low copper amalgams in neutral flow, assumes that mercury dissolution is mediated by solid diffusion within the amalgam, and that a thin oxide film persists on the amalgam’s surface and lumps diffusive in-film transport into an effective convective boundary condition. Model II, applicable to low copper amalgam in acidic flow, assumes that the amalgam’s external oxide film dissolves on a short time scale relative to the experimental observation period; it neglects corrosive suppression of mercury transport. Model III, applicable to high copper amalgam in acidic flow, assumes that internal mercury release sites are created by corrosion of copper in η' grains and that corrosion proceeds via an oxidation-reduction reaction

  11. Mockup experiments to investigate the leak rate correlation between mercury and helium for the mercury target system of J-PARC

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Futakawa, Masatoshi

    2009-01-01

    Checking the seal performance of the mercury piping network is very important for the mercury target system operation of J-PARC, and the test method for leaks using the pressure change measurement is preferable for this purpose because it can be carried out easily and precisely by measuring the pressure change, and it is free from the risk of mercury contamination. The piping network is pressurized by helium gas. Thus, the correlation between the helium leak rate and mercury leak flow rate was investigated experimentally by carrying out leak tests for helium and mercury with an identical mockup flange model. The results showed that the mercury leak flow rates of the experimental data were lower than those of the estimated value by 64% on average. It was also found that the threshold of the helium leak rate at which good seal performance for mercury can be obtained exists between 2.18 x 10 -4 and 1.01 x 10 -2 Pa.m 3 /s. This fact confirmed the sufficient safety margin of the mercury target system against the mercury leak, where 1 x 10 -6 Pa.m 3 /s was adopted as the seal performance criterion. (author)

  12. Rheology of lava flows on Mercury: An analog experimental study

    Science.gov (United States)

    Sehlke, A.; Whittington, A. G.

    2015-11-01

    We experimentally determined the rheological evolution of three basaltic analog compositions appropriate to Mercury's surface, during cooling, and crystallization. Investigated compositions are an enstatite basalt, and two magnesian basalts representing the compositional end-members of the northern volcanic plains with 0.19 wt % (NVP) and 6.26 wt % Na2O (NVP-Na). The viscosity-strain rate dependence of lava was quantified using concentric cylinder viscometry. We measured the viscosities of the crystal-free liquids from 1600°C down to the first detection of crystals. Liquidus temperatures of the three compositions studied are around 1360°C, and all three compositions are more viscous than Hawaiian basalt at the same temperature. The onset of pseudoplastic behavior was observed at crystal fractions ~0.05 to 0.10, which is consistent with previous studies on mafic lavas. We show that all lavas develop detectable yield strengths at crystal fractions around 0.20, beyond which the two-phase suspensions are better described as Herschel-Bulkley fluids. By analogy with the viscosity-strain rate conditions at which the pahoehoe to `a`a transition occurs in Kilauea basalt, this transition is predicted to occur at ~1260 ± 10°C for the enstatite basalt, at ~1285 ± 20°C for the NVP, and at ~1240 ± 40°C for the NVP-Na lavas. Our results indicate that Mercury lavas are broadly similar to terrestrial ones, which suggests that the extensive smooth lava plains of Mercury could be due to large effusion rates (flood basalts) and not to unusually fluid lavas.

  13. Debris flows: Experiments and modelling

    Science.gov (United States)

    Turnbull, Barbara; Bowman, Elisabeth T.; McElwaine, Jim N.

    2015-01-01

    Debris flows and debris avalanches are complex, gravity-driven currents of rock, water and sediments that can be highly mobile. This combination of component materials leads to a rich morphology and unusual dynamics, exhibiting features of both granular materials and viscous gravity currents. Although extreme events such as those at Kolka Karmadon in North Ossetia (2002) [1] and Huascarán (1970) [2] strongly motivate us to understand how such high levels of mobility can occur, smaller events are ubiquitous and capable of endangering infrastructure and life, requiring mitigation. Recent progress in modelling debris flows has seen the development of multiphase models that can start to provide clues of the origins of the unique phenomenology of debris flows. However, the spatial and temporal variations that debris flows exhibit make this task challenging and laboratory experiments, where boundary and initial conditions can be controlled and reproduced, are crucial both to validate models and to inspire new modelling approaches. This paper discusses recent laboratory experiments on debris flows and the state of the art in numerical models.

  14. Method and apparatus for monitoring the flow of mercury in a system

    Science.gov (United States)

    Grossman, M.W.

    1987-12-15

    An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.

  15. Effects of wettability on forced convective and gas-liquid two-phase flow heat transfer of mercury

    International Nuclear Information System (INIS)

    Nakagawa, Yusuke; Kawakita, Keisuke; Takenaka, Nobuyuki

    2003-01-01

    High-energy proton beam is irradiated to a target made of high atomic number materials to initiate nuclear spallation reaction to obtain neutron source. A mercury target is now a candidate of the target for the intense proton beam. It is important to study thermal hydraulics of the mercury target. In this study, mercury was used as a working fluid in a stainless steel tube heated by direct electrical current in similar thermal hydraulic situation to the actual target. The effects of mercury wettability on forced convective heat transfer and gas-liquid two-phase flow heat transfer were verified. (author)

  16. Health and environmental impact of mercury: Past and present experience

    Science.gov (United States)

    Rivera, A. T. F.; Cortes-Maramba, N. P.; Akagi, H.

    2003-05-01

    Mercury exists in various forms including metallic mercury, inorganie and organic mercury compounds. Research studies show that contamination brought about by natural and man-made activities is clearly a growing problem today. In 1956, the first recognized poisoning outbreaks occurred. Minamata Disease is a disorder of the central nervous system caused by the consumption of fish and shellfish contaminated with methylmercury. Clinical manifestation differs from inorganic mercury poisoning in which the kidneys and the renal system are damaged. The toxidrome consists of sensory disorders in the distal portion of the four extremities, cerebral ataxia, bilateral concentric constriction of the visual field. central disorder of ocular movement, central hearing impairment and disequilibrium. Fetal type Minamata Disease bom of mothers being exposed to methylmercury during pregnancy resulted in conditions similar to those associated with “infantile cerebral palsy" were also documented. Measures to control environmental pollution were implemented such as the environmental restoration project, compensation and relief of victims as part of the health and environmental management undertaken by the government. At present, global research studies are focusing on long-term and low-dose inorganic and methyl mercury exposure; and developmental neurobehavioral toxicity including relevant environmental factors influencing mercury transformations, mass balances and partitioning in ecosystems.

  17. Design of Multiphase Flow Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Urkedal, Hege

    1998-12-31

    This thesis proposes an experimental design procedure for multiphase experiments. The two-phase functions can be determined using data from a single experiment, while the three-phase relative permeabilities must be determined using data from multiple experiments. Various three-phase experimental designs have been investigated and the accuracy with which the flow functions may be determined using the corresponding data have been computed. Analytical sensitivity coefficients were developed from two-phase to three-phase flow. Sensitivity coefficients are the derivative of the model output with respect to the model parameters. They are obtained by a direct method that takes advantage of the fact that the model equations are solved using the Newton-Raphson method, and some of the results from this solution can be used directly when solving the sensitivity equation. Numerical derivatives are avoided, which improves accuracy. The thesis uses an inverse methodology for determination of two- and three-phase relative permeability and capillary pressure functions. The main work has been the development of analytical sensitivity coefficients for two-and three-phase flow. This technical contribution has improved the accuracy both in parameter estimation and accuracy assessment of the estimates and reduced the computer time requirements. The proposed experimental design is also dependent on accurate sensitivity coefficients to give the right guidelines for how two- and three-phase experiments should be conducted. Following the proposed experimental design, three-phase relative permeability and capillary pressure functions have been estimated when multiple sets of experimental data have been reconciled by simulations. 74 refs., 69 figs., 18 tabs.

  18. Vaporization of mercury from molten lead droplets doped with mercury: Pb/Hg source term experiment for the APT/SILC target

    International Nuclear Information System (INIS)

    Tutu, N.K.; Greene, G.A.

    1994-09-01

    Experiments were performed to measure the fraction of mercury inventory released when droplets of molten lead, doped with a known concentration of mercury, fall through a controlled environment. The temperature of molten droplets ranged from 335 C to 346 C, and the concentration of mercury in the droplets ranged from 0.2 mass % to 1.0 mass %. The environment consisted of an air stream, at a temperature nominally equal to the melt temperature, and moving vertically upwards at a velocity of 10 cm/s. Direct observations and chemical analysis showed that no mercury was released from the molten droplets. Based upon the experimental results, it is concluded that no mercury vapor is likely to be released from the potentially molten source rod material in the APT-SILC Neutron Source Array to the confinement atmosphere during a postulated Large Break Loss Of Coolant Accident scenario leading to the melting of a fraction of the source rods

  19. Determination of inorganic mercury and total mercury in biological and environmental samples by flow injection-cold vapor-atomic absorption spectrometry using sodium borohydride as the sole reducing agent

    International Nuclear Information System (INIS)

    Rio Segade, Susana; Tyson, Julian F.

    2003-01-01

    A simple, fast, precise and accurate method to determine inorganic mercury and total mercury in biological and environmental samples was developed. The optimized flow-injection mercury system permitted the separate determination of inorganic mercury and total mercury using sodium borohydride as reducing agent. Inorganic mercury was selectively determined after reduction with 10 -4 % w/v sodium borohydride, while total mercury was determined after reduction with 0.75% w/v sodium borohydride. The calibration graphs were linear up to 30 ng ml -1 . The detection limits of the method based on three times the standard deviation of the blank were 24 and 3.9 ng l -1 for total mercury and inorganic mercury determination, respectively. The relative standard deviation was less than 1.5% for a 10 ng ml -1 mercury standard. As a means of checking method performance, deionized water and pond water samples were spiked with methylmercury and inorganic mercury; quantitative recovery for total mercury and inorganic mercury was obtained. The accuracy of the method was verified by analyzing alkaline and acid extracts of five biological and sediment reference materials. Microwave-assisted extraction procedures resulted in higher concentrations of recovered mercury species, lower matrix interference with mercury determination and less time involved in sample treatment than conventional extraction procedures. The standard addition method was only needed for calibration when biological samples were analyzed. The detection limits were in the range of 1.2-19 and 6.6-18 ng g -1 in biological and sediment samples for inorganic mercury and total mercury determination, respectively

  20. Quantitative measurement by artificial vision of small bubbles in flowing mercury

    International Nuclear Information System (INIS)

    Paquit, Vincent C.; Wendel, Mark W.; Felde, David K.; Riemer, Bernie

    2011-01-01

    At the Spallation Neutron Source (SNS), an accelerator-based neutron source located at the Oak Ridge National Laboratory (Tennessee, USA), the production of neutrons is obtained by accelerating protons against a mercury target. This self-cooling target, however, suffers rapid heat deposition by the beam pulse leading to large pressure changes and thus to cavitations that may be damaging to the container. In order to locally compensate for pressure increases, a small-bubble population is added to the mercury flow using gas bubblers. The geometry of the bubblers being unknown, we are testing several bubblers configurations and are using machine vision techniques to characterize their efficiency by quantitative measurement of the created bubble population. In this paper we thoroughly detail the experimental setup and the image processing techniques used to quantitatively assess the bubble population. To support this approach we are comparing our preliminary results for different bubblers and operating modes, and discuss potential improvements.

  1. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  2. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  3. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  4. Fluid Flow Experiment for Undergraduate Laboratory.

    Science.gov (United States)

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  5. Numerical experiments for turbulent flows

    Science.gov (United States)

    Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír

    2013-04-01

    The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.

  6. Numerical experiments for turbulent flows

    Directory of Open Access Journals (Sweden)

    Příhoda Jaromír

    2013-04-01

    Full Text Available The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.

  7. Numerical experiments modelling turbulent flows

    Science.gov (United States)

    Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír

    2014-03-01

    The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k - ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  8. Numerical experiments modelling turbulent flows

    Directory of Open Access Journals (Sweden)

    Trefilík Jiří

    2014-03-01

    Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  9. Experiments were conducted under uniform flow

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Experiments were conducted under uniform flow: Experiments were conducted under uniform flow: Bed slopes: S = 0.13, 0.30, 0.38%. Sediments used: d50 = 0.95, 2.6, 4.1 mm. Experimental conditions were independent of relative submergence: Sh (= d50/h) < 0.1 ...

  10. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment

    Science.gov (United States)

    Glenn E. Woerndle; Martin Tsz-Ki Tsui; Stephen D. Sebestyen; Joel D. Blum; Xiangping Nie; Randall K. Kolka

    2018-01-01

    Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a...

  11. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    Science.gov (United States)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  12. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  13. The Merit(nTOF-11) High Intensity Liquid Mercury Target Experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I; Caretta, O; Carroll, A J; Fabich, A; Graves, V B; Grudiev, A; Haug, F; Kirk, H G; Lettry, Jacques; Loveridge, P; McDonald, K T; Mokhov, N; Palm, M; Park, H; Pernegger, H; Spampinato, P T; Steerenberg, R; Striganov, S; Tsang, T

    2008-01-01

    The MERIT(nTOF-11) experiment is a proof-ofprinciple test of a target system for a high power proton beam to be used as front-end for a neutrino factory or a muon collider. The experiment took data in autumn 2007 with the fast-extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of $30 × 10^{12}$ per pulse. The target system, based on a free mercury jet, is capable of intercepting a 4-MW proton beam inside a 15-T magnetic field required to capture the low energy secondary pions as the source for intense muon beams. Partice detectors installed around the target setup measure the secondary particle flux out of the target and can probe cavitation effects in the mercury jet when excited by an intense proton beam.Preliminary results of the data analysis will be presented here.

  14. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions.

    Science.gov (United States)

    Yao, Li; Teng, Jun; Zhu, Mengya; Zheng, Lei; Zhong, Youhao; Liu, Guodong; Xue, Feng; Chen, Wei

    2016-11-15

    Here, we describe a disposable multi-walled carbon nanotubes (MWCNTs) labeled nucleic acid lateral flow strip biosensor for rapid and sensitive detection of aqueous mercury ions (Hg(2+)). Unlike the conventional colloidal gold nanoparticle based strip biosensors, the carboxylated MWCNTs were selected as the labeling substrate because of its high specific surface area for immobilization of recognition probes, improved stability and enhanced detection sensitivity of the strip biosensor. Combining the sandwich-type of T-Hg(2+)-T recognition mechanism with the optical properties of MWCNTs on lateral flow strip, optical black bands were observed on the lateral flow strips. Parameters (such as membrane category, the MWCNTs concentration, the amount of MWCNT-DNA probe, and the volume of the test probe) that govern the sensitivity and reproducibility of the sensor were optimized. The response of the optimized biosensor was highly linear over the range of 0.05-1ppb target Hg(2+), and the detection threshold was estimated at 0.05 ppb within a 15-min assay time. The sensitivity was 10-fold higher than the conventional colloidal gold based strip biosensor. More importantly, the stability of the sensor was also greatly improved with the usage of MWCNTs as the labeling. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  16. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  17. Modeling variability in porescale multiphase flow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  18. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  19. The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve

    Science.gov (United States)

    Jiang, Cong; Chen, Yanhao

    2018-04-01

    Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.

  20. Filamentary ion flow theory and experiments

    CERN Document Server

    Lattarulo, Francesco

    2014-01-01

    Presents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final model for computational elect

  1. MERIT - The high intensity liquid mercury target experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I

    2009-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beams to be used as front-end for a Neutrino Factory complex or a Muon Collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. The target system, based on a free mercury jet, allowed investigation of the interseption of a 4-MW proton beam inside a 15-T magnetic field required to capture the low-energy secondary pions as the source of the required intense muon beams. Particle detectors have been installed around the target setup to measure the secondary particle flux out of the target and probe cavitation effects in the mercury jet when exited with a beam of variable intensity. With the analysis of the data ongoing, results will be presented here that demonstrate the validity of the liquid target concept.

  2. Field controlled experiments of mercury accumulation in crops from air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhenchuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Xiaoshan, E-mail: zhangxsh@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wang Zhangwei, E-mail: wangzhw@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Ci Zhijia [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-10-15

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: > Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. > Hg accumulation in foliages and roots was mainly from air and soil, respectively. > Air Hg had stronger influence than soil Hg on stem Hg accumulation. > Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  3. Testing General Relativity with the Radio Science Experiment of the BepiColombo mission to Mercury

    Directory of Open Access Journals (Sweden)

    Giulia Schettino

    2016-09-01

    Full Text Available The relativity experiment is part of the Mercury Orbiter Radio science Experiment (MORE on-board the ESA/JAXA BepiColombo mission to Mercury. Thanks to very precise radio tracking from the Earth and accelerometer, it will be possible to perform an accurate test of General Relativity, by constraining a number of post-Newtonian and related parameters with an unprecedented level of accuracy. The Celestial Mechanics Group of the University of Pisa developed a new dedicated software, ORBIT14, to perform the simulations and to determine simultaneously all the parameters of interest within a global least squares fit. After highlighting some critical issues, we report on the results of a full set of simulations, carried out in the most up-to-date mission scenario. For each parameter we discuss the achievable accuracy, in terms of a formal analysis through the covariance matrix and, furthermore, by the introduction of an alternative, more representative, estimation of the errors. We show that, for example, an accuracy of some parts in 10 − 6 for the Eddington parameter β and of 10 − 5 for the Nordtvedt parameter η can be attained, while accuracies at the level of 5 × 10 − 7 and 1 × 10 − 7 can be achieved for the preferred frames parameters α 1 and α 2 , respectively.

  4. Field controlled experiments of mercury accumulation in crops from air and soil

    International Nuclear Information System (INIS)

    Niu Zhenchuan; Zhang Xiaoshan; Wang Zhangwei; Ci Zhijia

    2011-01-01

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: → Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. → Hg accumulation in foliages and roots was mainly from air and soil, respectively. → Air Hg had stronger influence than soil Hg on stem Hg accumulation. → Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  5. Modeling reproducibility of porescale multiphase flow experiments

    Science.gov (United States)

    Ling, B.; Tartakovsky, A. M.; Bao, J.; Oostrom, M.; Battiato, I.

    2017-12-01

    Multi-phase flow in porous media is widely encountered in geological systems. Understanding immiscible fluid displacement is crucial for processes including, but not limited to, CO2 sequestration, non-aqueous phase liquid contamination and oil recovery. Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  6. Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples.

    Science.gov (United States)

    Wu, Ze; Shen, Haicong; Hu, Junhui; Fu, Qiangqiang; Yao, Cuize; Yu, Shiting; Xiao, Wei; Tang, Yong

    2017-09-01

    Divalent mercury ion (Hg 2+ ) is one of the most common and stable forms of mercury pollution. In this study, a skillfully designed lateral flow strip (LFS) was developed for sensitive detection of Hg 2+ in river water samples. Aptamer, a specific oligonucleotide probe, was used to selectively identify and target Hg 2+ instead of antibody in traditional immunechromatographic strips; and the fluorescence-quenching system was used to generate positive and low background florescence signals in the competitive-likely LFS. The linear detection range of the LFS for Hg 2+ was 0.13 ng mL -1 to 4 ng mL -1 and the limit of detection (LOD) was 0.13 ng mL -1 . This test provided results in 15 min and demonstrated high specificity. For detection of Hg 2+ in river water, the results were consistent with inductively coupled plasma-mass spectrometry measurements. The aptamer-based fluorescence-quenching LFS was shown to provide a reliable, accurate method for rapid detection of mercury contamination. Graphical Abstract The principle of the aptamer-based fluorescence-quenching LFS.

  7. Exploring Online Game Players' Flow Experiences and Positive Affect

    Science.gov (United States)

    Chiang, Yu-Tzu; Lin, Sunny S. J.; Cheng, Chao-Yang; Liu, Eric Zhi-Feng

    2011-01-01

    The authors conducted two studies to explore online game players' flow experiences and positive affect. Our findings indicated that online game are capable of evoking flow experiences and positive affect, and games of violent or nonviolent type may not arouse players' aggression. The players could be placed into four flow conditions: flow,…

  8. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  9. Density-stratified flow events in Great Salt Lake, Utah, USA: implications for mercury and salinity cycling

    Science.gov (United States)

    Naftz, David L.; Carling, Gregory T.; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Pazmiño, Eddy

    2014-01-01

    Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (total and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.

  10. Redox oscillation affecting mercury mobility from highly contaminated coastal sediments: a mesocosm incubation experiment

    Directory of Open Access Journals (Sweden)

    Emili A.

    2013-04-01

    Full Text Available Mercury (Hg mobility at the sediment-water interface was investigated during a laboratory incubation experiment on highly contaminated sediments (up to 23 μg g−1 of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed, a redox oscillation was simulated in the laboratory at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg and methylmercury (MeHg, O2, NH4+, NO3−+NO2−, PO43−, H2S, dissolved Fe and Mn, dissolved inorganic and organic carbon (DIC and DOC. Benthic fluxes of Hg and MeHg were higher under anoxic conditions while re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn oxyhydroxides and enhanced demethylation. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of dissolved Hg species for the water column. However, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural “defence” from possible interaction between the metal and the aquatic organisms.

  11. Observations at the planet Mercury by the plasma electron experiment, Mariner 10

    International Nuclear Information System (INIS)

    Ogilvie, K.W.; Scudder, J.D.; Vasyliunas, V.M.; Hartle, R.E.; Siscoe, G.L.

    1976-09-01

    Plasma electron observations made onboard Mariner 10 are reported. Three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the Earth but much smaller in relation to the size of the planet. Electron populations similar to those found in the Earth's magnetotail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the Earth. The magnetosphere of Mercury resembles to a marked degree a reduced version of that of the Earth, with no significant differences of structure

  12. Observations at the planet Mercury by the plasma electron experiment, Mariner 10

    Science.gov (United States)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1976-01-01

    Plasma electron observations made onboard Mariner 10 are reported. Three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the Earth but much smaller in relation to the size of the planet. Electron populations similar to those found in the Earth's magnetotail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the Earth. The magnetosphere of Mercury resembles to a marked degree a reduced version of that of the Earth, with no significant differences of structure.

  13. Observation at the planet Mercury by the plasma electron experiment: Mariner Mariner 10

    International Nuclear Information System (INIS)

    Ogilvie, K.W.; Scudder, J.D.; Vasyliunas, V.M.; Hartle, R.E.; Siscoe, G.L.

    1977-01-01

    Plasma electron observations made on board Mariner 10 during its three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the earth but much smaller in relation to the size of the planet. The average distance from the center of Mercury to the subsolar point of the magnetopause is approx.1.4 planetary radii. Electron populations similar to those found in the earth's magneto-tail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the earth. In general, the magnetosphere of Mercury resembles to a marked degree a reduced version of that of the earth, there being no significant differences of structure revealed by the Mariner 10 observations. Quantities in the two magnetospheres are related by simple scaling laws. The size of Mercury relative to its magnetosphere precludes, however, the existence of stably trapped particle belts and of inner magnetosphere (Lapproximately-less-than8 at the earth) phenomena generally

  14. Magnesium-rich Basalts on Mercury

    Science.gov (United States)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  15. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.

    Science.gov (United States)

    Zornoza, Pilar; Millán, Rocío; Sierra, M José; Seco, Almudena; Esteban, Elvira

    2010-01-01

    This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 micromol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 +/- 1.9) mg/kg availability 0.07%, and (28.9 +/- 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.

  16. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  17. Laser transit anemometer experiences in supersonic flow

    Science.gov (United States)

    Hunter, William W., Jr.; Humphreys, William M., Jr.

    1988-01-01

    The purpose of this paper is to present examples of velocity measurements obtained in supersonic flow fields with the laser transit anemometer system. Velocity measurements of a supersonic jet exhausting in a transonic flow field, a cone boundary survey in a Mach 4 flow field, and a determination of the periodic disturbance frequencies of a sonic nozzle flow field are presented. Each of the above three cases also serves to illustrate different modes of laser transit anemometer operation. A brief description of the laser transit anemometer system is also presented.

  18. Therapeutic experiences of community gardens: putting flow in its place.

    Science.gov (United States)

    Pitt, Hannah

    2014-05-01

    This paper develops the concept of therapeutic place experiences by considering the role of activity. Research of community gardening finds that particular tasks are therapeutic and exhibit the characteristics of flow, but those who lack influence over their community gardening are less likely to benefit from flow as their sense of control is reduced. The notion of emplaced flow is proposed to locate individual experiences amongst socio-spatial factors which limit self-determinacy and therefore affect wellbeing. Emplacing flow prompts critical reflection on who is excluded from therapeutic place experiences, and whether sites offering momentary escape have an enduring impact on wellbeing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells

    International Nuclear Information System (INIS)

    Sugiharto; Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi

    2010-01-01

    Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

  20. Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells

    Science.gov (United States)

    Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi

    2010-06-01

    Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

  1. FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor

    2017-06-01

    The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.

  2. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M. [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Mitchell, C.P.J., E-mail: carl.mitchell@utoronto.ca [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Eckley, C.S. [Meteorological Service of Canada, Environment Canada, 4905 Dufferein Street, Toronto, ON M3H 5T4 (Canada); Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D. [Northern Research Station, USDA Forest Service, 1831 Hwy 169 E, Grand Rapids, MN 55744 (United States); Swain, E.B. [Minnesota Pollution Control Agency, St. Paul, MN 55155 (United States)

    2014-10-15

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m{sup −2} d{sup −1}) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m{sup −2} d{sup −1}) and the un-harvested reference plot (− 180 ± 115 ng m{sup −2} d{sup −1}) during July. This difference was likely a result of enhanced Hg{sup 2+} photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest

  3. Experiments on bedforms created by gravity flows

    Science.gov (United States)

    Fedele, Juan; Hoyal, David; Barnaal, Zachary; Awalt, Shane

    2014-05-01

    We report experimental results that show a rich variety of equilibrium bedforms developed under dilute density and turbidity currents. More than 500 gravity flows were run aimed at testing the stability regions of bedforms using saline density currents or diluted sediment-laden currents running over low-density plastic sediment (SG~1.5), confined in a 7-m long and 15-cm wide flume submerged in a large fresh-water tank. Experimental currents spanned a wide range of conditions with water discharges ranging 0.2-1.2 l/s (3-18 gpm) and initial slopes ranging 1o-10o, producing subcritical, critical, and supercritical flows (Fr=0.67-2.3). Results confirm some similarities between subaerial and gravity flow bedforms both in process and product, but also reveal some interesting differences. For example, ripples and dunes form under both sub and supercritical density currents while supercritical currents yield both small and long wavelength antidunes (when wavelength is scaled with current thickness), where the latter may transition to cyclic steps. Ripples developed in flows with low bed shear stress, and therefore minimal bedload transport, and small sediment sizes. Like their subaerial counterparts, gravity flow ripples were insensitive to any length scale related to the flow, e.g., current thickness, and scale solely with sediment size. Supercritical, downstream-migrating dunes were observed to form in medium-to-coarse sediment sizes, for moderate to relatively large values of bed shear stress and bedload transport (relatively high Froude). A detailed description of the flow fields by PIV measurements indicated that supercritical dunes were not the result of instabilities of the flow interface, and did not interact with it in their final stages. Rather, these dunes scaled closely with the thickness of the inner region, i.e., the portion of the current between the bed and the velocity maximum, where vertical velocity gradients are positive, which is mechanistically

  4. Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO

    Czech Academy of Sciences Publication Activity Database

    Saito, Y.; Sauvaud, J. A.; Hirahara, M.; Němeček, Z.; Trávníček, Pavel M.; BepiColombo, MMO/MPPE team.

    2010-01-01

    Roč. 58, 1-2 (2010), s. 182-200 ISSN 0032-0633 Institutional research plan: CEZ:AV0Z30420517 Keywords : Mercury * Magnetosphere * Instrumentation * Plasma * Charged particles Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.344, year: 2010 http://www.sciencedirect.com/science/article/pii/S0032063308001529

  5. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    Danet, Bernard.

    1974-01-01

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131 I or sup(99m)Tc, 113 In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers ( 133 Xe, 85 Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed [fr

  6. Observations at the planet Mercury by the plasma electron experiment - Mariner 10

    Science.gov (United States)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1977-01-01

    Two nightside encounters with Mercury's magnetosphere by Mariner 10 revealed bow shock and magnetosheath signatures in the plasma electron data that are entirely consistent with the geometry expected for an interaction between a planet-centered magnetic dipole and the solar wind. The geometrically determined distance between the planet's center and the solar wind stagnation point is 1.4 plus or minus 0.1 R sub M. Both diffuse and sharp shock crossings were observed on the two magnetosphere encounters.

  7. Microgravity Multi-Phase Flow Experiment for Suborbital Testing (MFEST)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to conduct a pathfinder, suborbital flight experiment for two-phase fluid flow and separator operations.The primary purpose of this test...

  8. Parametric analyses of planned flowing uranium hexafluoride critical experiments

    Science.gov (United States)

    Rodgers, R. J.; Latham, T. S.

    1976-01-01

    Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.

  9. Analysis of CHF enhancement in Subcooled Flow Boiling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Jae; Kam, Dong Hoon; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The key factor of CHF improvement is the increase of surface wettability enhancement. Nanoparticles are deposited on the heater surface during the nucleate boiling experiment. H. S. Ahn et al. conducted an internal flow boiling CHF experiment using a micro-structured Zirlo surface. The authors concluded that the flow boiling CHF in the annular flow regime increases with mass flux because of the stability of the liquid film and the liquid replenishment. T. S. Lee et al. conducted the flow boiling CHF experiments using Fe{sub 3}O{sub 4} nanofluids. As exit quality increased from 0.07 to 0.74, CHF enhancement gradually decreased and approached zero. The effect of the wettability improvement on the CHF can be minimized in relatively low void fraction in slug flow regime. The purpose of our experiment is to investigate the CHF enhancement trend according to exit quality. Existing theoretical CHF model and mechanism were investigated according to the flow regime. CHF experiment in DI water and nanoparticle deposited surface was investigated in mass flux of 1,000 - 5,000 kg/m{sup 2} s and inlet temperature of 40, 60 and 80 .deg. C. To make the similar nanoparticle coating on surface, nanoparticle deposition process was conducted. The experimental results show that CHF enhancement ratio decreased as exit quality decreased and approached to zero.

  10. Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience.

    Science.gov (United States)

    Colzato, Lorenza S; Wolters, Gina; Peifer, Corinna

    2018-01-01

    Flow has been defined as a pleasant psychological state that people experience when completely absorbed in an activity. Previous correlative evidence showed that the vagal tone (as indexed by heart rate variability) is a reliable marker of flow. So far, it has not yet been demonstrated that the vagus nerve plays a causal role in flow. To explore this we used transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that increases activation of the locus coeruleus (LC) and norepinephrine release. A sham/placebo-controlled, randomized cross-over within-subject design was employed to infer a causal relation between the stimulated vagus nerve and flow as measured using the Flow Short-Scale in 32 healthy young volunteers. In both sessions, while being stimulated, participants had to rate their flow experience after having performed a task for 30 min. Active tVNS, compared to sham stimulation, decreased flow (as indexed by absorption scores). The results can be explained by the network reset theory, which assumes that high-phasic LC activity promotes a global reset of attention over exploitation of the current focus of attention, allowing rapid behavioral adaptation and resulting in decreased absorption scores. Furthermore, our findings corroborate the hypothesis that the vagus nerve and noradrenergic system are causally involved in flow.

  11. Thermal-hydraulic design of cross-flow type mercury target for JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Terada, Atsuhiko; Haga, Katsuhiro; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility. In the facility, 1 MW pulsed proton beam from a high-intensity proton accelerator will be injected into a mercury target in order to produce high-intensity neutrons for use in the fields of life and material sciences. In the spallation mercury target system design, an integrated structure of target vessel with a safety hull was proposed to ensure the safety and to collect mercury in case of mercury leakage caused by the target beam window failure. The inner structure arrangement of the mercury target vessel was determined based on the thermal hydraulic analytical results of 3 GeV, 1 MW proton beam injection. The safety hull consists of vessels for helium and heavy water. The vessels for mercury target, helium and heavy water will be connected each other by reinforcement ribs mounted on the surface of each vessel. From the structural analyses, the structural integrity of the safety hull would be maintained under the static pressure of 0.5 MPa. (author)

  12. Flow Experience in Design Thinking and Practical Synergies with Lego Serious Play

    Science.gov (United States)

    Primus, Dirk J.; Sonnenburg, Stephan

    2018-01-01

    The flow experience can be an important precursor to high levels of creativity and innovation. Prior work has identified and conceptualized the key elements of the flow experience in cocreative activities as individual flow corridor, individual flow feeling, and group flow. Surprisingly, the flow experience is underrepresented in theory and…

  13. Flow experience in teams: The role of shared leadership.

    Science.gov (United States)

    Aubé, Caroline; Rousseau, Vincent; Brunelle, Eric

    2018-04-01

    The present study tests a multilevel mediation model concerning the effect of shared leadership on team members' flow experience. Specifically, we investigate the mediating role of teamwork behaviors in the relationships between 2 complementary indicators of shared leadership (i.e., density and centralization) and flow. Based on a multisource approach, we collected data through observation and survey of 111 project teams (521 individuals) made up of university students participating in a project management simulation. The results show that density and centralization have both an additive effect and an interaction effect on teamwork behaviors, such that the relationship between density and teamwork behaviors is stronger when centralization is low. In addition, teamwork behaviors play a mediating role in the relationship between shared leadership and flow. Overall, the findings highlight the importance of promoting team-based shared leadership in organizations to favor the flow experience. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Scaling and design of landslide and debris-flow experiments

    Science.gov (United States)

    Iverson, Richard M.

    2015-01-01

    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  15. Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve

    Science.gov (United States)

    Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu

    2017-12-01

    Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.

  16. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  17. Neural contributions to flow experience during video game playing.

    Science.gov (United States)

    Klasen, Martin; Weber, René; Kircher, Tilo T J; Mathiak, Krystyna A; Mathiak, Klaus

    2012-04-01

    Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed-at least partially-by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment.

  18. Heterogeneity of water flow in grassland soil during irrigation experiment

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Dušek, J.; Tesař, Miroslav; Czachor, H.; Mészároš, I.

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1555-1561 ISSN 0006-3088 R&D Projects: GA TA ČR(CZ) TA0201451 Grant - others:ERDF ITMS26240120004 Institutional support: RVO:67985874 Keywords : degree of preferential flow * effective cross section * infiltration experiment * radioactive tracer technique * sandy soil Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  19. Water Flow Experiments: Single and Double Bottle Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. Water Flow Experiments: Single and Double Bottle Systems ... Jain International Residential School, Jakkasandra Post, Kanakapura Road, Ramanagara Dist., Karnataka 562 112, India. Room No 425, SH-3 Ashoka University, Near Rai Police ...

  20. Flow Genres: The Varieties of Video Game Experience

    Czech Academy of Sciences Publication Activity Database

    Hrabec, O.; Chrz, Vladimír

    2015-01-01

    Roč. 7, č. 1 (2015), s. 1-19 ISSN 1942-3888 R&D Projects: GA ČR(CZ) GAP407/12/2432 Institutional support: RVO:68081740 Keywords : flow * optimal experience * genre * video game Subject RIV: AN - Psychology

  1. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    Science.gov (United States)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  2. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  3. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    International Nuclear Information System (INIS)

    Jaminet, J.F.; Kendall, J.S.

    1976-01-01

    Accomplishment of the UF 6 critical cavity experiments, currently in progress, and planned confined flowing UF 6 initial experiments requires development of reliable techniques for handling heated UF 6 throughout extended ranges of temperature, pressure, and flow rate. The development of three laboratory-scale flow systems for handling gaseous UF 6 at temperatures up to 500 K, pressures up to approximately 40 atm, and continuous flow rates up to approximately 50 g/s is presented. A UF 6 handling system fabricated for static critical tests currently being conducted at Los Alamos Scientific Laboratory (LASL) is described. The system was designed to supply UF 6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressures up to 4 atm. A second UF 6 handling system designed to provide a circulating flow of up to 50 g/s of gaseous UF 6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described

  4. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes. 25 refs, 17 tabs, 43 figs.

  5. Scaling up debris-flow experiments on a centrifuge

    Science.gov (United States)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  6. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  7. Basic Information about Mercury

    Science.gov (United States)

    ... Your Environment Contact Us Share Basic Information about Mercury On this page: What is mercury? Emissions of ... Consumer products that traditionally contain mercury What is Mercury? Mercury is a naturally-occurring chemical element found ...

  8. Rheology of dense granular chute flow: simulations to experiments

    Directory of Open Access Journals (Sweden)

    Bharathraj S

    2017-01-01

    Full Text Available Granular chute flow simulations reveal an interesting transition from a random disordered structure to an ordered one with hexagonally ordered sheets of spherical particles, when the base roughness is modulated. Two types of base roughness are considered. The first is a fixed base, where glued spherical particles form the base, and the base roughness is varied by changing the ratio of diameters of the base and flowing particles. In the second sinusoidal base, a smooth wall with sinusoidal height variation is used; the amplitude and wavelength of the base modulation determine the base roughness. The transition is studied as a function of these roughness parameters. For the fixed base, there is a critical base particle diameter below which ordered states are observed. For the sinusoidal base, the critical amplitude increases linearly with the wavelength at lower wavelengths, reaches a maximum depending on the height of the flowing layer, and then decreases as the wavelength is further increased. There is flow for angles of inclination from 15 ° ≤ θ ≤ 25 ° for the ordered state and 20 ° ≤ θ ≤ 25 ° for the disordered state. Flow confinement by sidewalls also influences the rheology of the system and we see that the ordering is induced by the sidewalls as well. Experiments on chute flow at low angles indicate the presence of two types of rheology depending on the system height. A transition is observed from an erodible base configuration, where a dead zone at the bottom supports a free surface reposing at the top, to a Bagnold rheology with considerable slip at the bottom.

  9. Reactive flow calibration for diaminoazoxyfurazan (DAAF) and comparison with experiment

    Science.gov (United States)

    Johnson, Carl; Francois, Elizabeth Green; Morris, John

    2012-03-01

    Diaminoazoxyfurazan (DAAF) has a number of desirable properties; it is sensitive to shock while being insensitive to initiation by low level impact or friction, it has a small failure diameter, and its manufacturing process is inexpensive with minimal environmental impact. In light of its unique properties, DAAF based materials have gained interest for possible applications in insensitive munitions. In order to facilitate hydrocode modeling of DAAF and DAAF based formulations, we have developed a set of reactive flow parameters which were calibrated using published experimental data as well as recent experiments at LANL. Hydrocode calculations using the DAAF reactive flow parameters developed in the course of this work were compared to rate stick experiments, small scale gap tests, as well as the Onionskin experiment. Hydrocode calculations were compared directly to streak image results using numerous tracer points in conjunction with an external algorithm to match the data sets. The calculations display a reasonable agreement with experiment with the exception of effects related to shock desensitization of explosive.

  10. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  11. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  12. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  13. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection.

    Science.gov (United States)

    Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y

    1999-04-01

    An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.

  14. Relationships between flow experience, IKIGAI, and sense of coherence in Tai chi practitioners.

    Science.gov (United States)

    Iida, Kenji; Oguma, Yuko

    2013-01-01

    The purpose of this study was to examine the mental health effects of Tai chi on regular practitioners by investigating the relationships between flow experience, IKIGAI (Japanese: "Life worth living"), and sense of coherence. The results indicated that flow experience may influence IKIGAI and IKIGAI may influence sense of coherence; this suggests that IKIGAI may act as an intermediary between flow experience and sense of coherence. The results also indicated that the longer the Tai chi experience, the higher was the flow experience.

  15. The role of flow experience in cyber-game addiction.

    Science.gov (United States)

    Chou, Ting-Jui; Ting, Chih-Chen

    2003-12-01

    Consumer habit, an important key to repetitive consumption, is an interesting yet puzzling phenomenon. Sometimes this consumption becomes obsessive--consumers will continue to act a certain way even when they feel it is not in their best interests. However, not all consumers develop such addictions. This study uses cyber-game addiction syndrome as an analogue to trace the possible causes of consumer addiction. Results from structure equation modeling show that repetition of favorite activities has a moderate effect upon addiction, which is in line with the assertion of rational addiction theory. However, flow experience--the emotional state embracing perceptional distortion and enjoyment--shows a much stronger impact on addiction. This suggests that consumers who have experienced flow are more likely to be addicted.

  16. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  17. The Conditions of Flow in Reading: Two Studies of Optimal Experience.

    Science.gov (United States)

    McQuillan, Jeff; Conde, Gisela

    1996-01-01

    Examines conditions under which readers experience intense engagement in a text, termed "optimal experience" or "flow." Reports on two studies examining flow during reading. Concludes that (1) texts for pleasure reading or interest reading provided more flow; (2) fiction was more likely to produce flow than nonfiction; and (3)…

  18. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.

    Science.gov (United States)

    Velicu, Magdalena; Fu, Hongxiang; Suri, Rominder P S; Woods, Kevin

    2007-09-30

    Carbon adsorption process is tested for removal of high concentration of organic mercury (thimerosal) from industrial process wastewater, in batch and continuously flow through column systems. The organic mercury concentration in the process wastewater is about 1123 mg/L due to the thimerosal compound. Four commercially available adsorbents are tested for mercury removal and they are: Calgon F-400 granular activated carbon (GAC), CB II GAC, Mersorb GAC and an ion-exchange resin Amberlite GT73. The adsorption capacity of each adsorbent is described by the Freundlich isotherm model at pH 3.0, 9.5 and 11.0 in batch isotherm experiments. Acidic pH was favorable for thimerosal adsorption onto the GACs. Columns-in-series experiments are conducted with 30-180 min empty bed contact times (EBCTs). Mercury breakthrough of 30 mg/L occurred after about 47 h (96 Bed Volume Fed (BVF)) of operation, and 97 h (197 BVF) with 120 min EBCT and 180 min EBCT, respectively. Most of the mercury removal is attributed to the 1st adsorbent column. Increase in contact time by additional adsorbent columns did not lower the effluent mercury concentration below 30 mg/L. However, at a lower influent wastewater pH 3, the mercury effluent concentration decreased to less than 7 mg/L for up to 90 h of column operation (183 BVF).

  19. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  20. Vaporization of elemental mercury from pools of molten lead at low concentrations

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    Should coolant accidentally be lost to the APT (Accelerator Production of Tritium) blanket and target, and the decay heat in the target be deposited in the surrounding blanket by thermal radiation, temperatures in the blanket modules could exceed structural limits and cause a physical collapse of the blanket modules into a non-coolable geometry. Such a sequence of unmitigated events could result in some melting of the APT blanket and create the potential for the release of mercury into the target-blanket cavity air space. Experiments were conducted which simulate such hypothetical accident conditions in order to measure the rate of vaporization of elemental mercury from pools of molten lead to quantify the possible severe accident source term for the APT blanket region. Molten pools of from 0.01% to 0.10% mercury in lead were prepared under inert conditions. Experiments were conducted, which varied in duration from several hours to as long as a month, to measure the mercury vaporization from the lead pools. The melt pools and gas atmospheres were held fixed at 340 C during the tests. Parameters which were varied in the tests included the mercury concentration, gas flow rate over the melt and agitation of the melt, gas atmosphere composition and the addition of aluminum to the melt. The vaporization of mercury was found to scale roughly linearly with the concentration of mercury in the pool. Variations in the gas flow rates were not found to have any effect on the mass transfer, however agitation of the melt by a submerged stirrer did enhance the mercury vaporization rate. The rate of mercury vaporization with an argon (inert) atmosphere was found to exceed that for an air (oxidizing) atmosphere by as much as a factor of from ten to 20; the causal factor in this variation was the formation of an oxide layer over the melt pool with the air atmosphere which served to retard mass transfer across the melt-atmosphere interface. Aluminum was introduced into the melt to

  1. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    Science.gov (United States)

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hutsel, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stoltzfus, Brian S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fowler, William E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LeChien, Keith R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mazarakis, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, James K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mulville, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Savage, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stygar, William A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McKenney, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacRunnels, Diego J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Finis W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Porter, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.

  3. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    Science.gov (United States)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  4. Mercury and Pregnancy

    Science.gov (United States)

    ... Home > Pregnancy > Is it safe? > Mercury and pregnancy Mercury and pregnancy E-mail to a friend Please ... vision problems. How can you be exposed to mercury? Mercury has several forms: It can be a ...

  5. Effects of sudden stress due to heavy metal mercury on benthic foraminifer Rosalina leei: Laboratory culture experiment

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Linshy, V.N.; Kurtarkar, S.R.; Saraswat, R.

    change in morphology during the initial 40 days. However, later on, out of all the specimens subjected to mercury concentrations up to 150 ng/l, 75% developed deformities, whereas all the specimens subjected to 150–275 ng/l Hg concentrations, had deformed...

  6. Controlling Mercury Release from Source Zones to Surface Water: Initial Results of Pilot Tests at the Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, George R [ORNL; Brooks, Scott C [ORNL; Peterson, Mark J [ORNL; Bogle, Mary Anna [ORNL; Miller, Carrie L [ORNL; Liang, Liyuan [ORNL; Elliott, Mike [Y-12 National Security Complex

    2009-01-01

    This report presents initial results obtained during year 2008 and satisfies a deliverable listed in the work breakdown structure (WBS) element OR081301. Broad objectives of the multi-year project are: (1) evaluation of remediation technologies for waterborne mercury, (2) development of treatment methods for soil mercury, and (3) source identification, characterization and analyses to improve mass balance on mercury estimates. This report presents the results of pilot tests, conducted in summer and fall 2008, which focused on remediation of waterborne mercury. The goal of this task is to develop strategies and treatment technologies that reduce the concentration and loading of waterborne mercury discharges to the UEFPC, thus minimizing mercury uptake by fish. The two specific studies are: (1) reducing flow augmentation in UEFPC to lessen mercury mobilization from contaminated stream sediments, and (2) treatment of contaminated source waters with a chemical reductant to convert dissolved mercury to a volatile form that can be removed by air stripping or natural evasion. Diversion of 50% of the flow currently added to UEFPC by the flow management system appeared to reduce mercury inputs from a localized, highly contaminated streambed by 0.6-1.5 grams per day (g/d). A reduction of 0.6 g/d represents {approx} 7-10% decrease in mercury input to UEFPC. Mercury concentrations within UEFPC did not rise proportionately with the loss of dilution, in part because of the reduction in input from the streambed source and in part because of reduced flow from the Y-12 NSC storm drain system. A longer-term test that includes seasonal variability will be the next step to validate these initial field observations of the flow diversion experiment. Preliminary laboratory experiments show that a large fraction ({approx} 90%) of the mercury can be chemically reduced to Hg(0) by addition of low concentrations of tin, Sn(II). Conversion of mercury to volatile Hg(0) in UEFPC was also

  7. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    Science.gov (United States)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; hide

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  8. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles

    Science.gov (United States)

    Wilson, L.; Head, J. W., III

    2008-09-01

    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we

  9. Simpler and More Accurate: Weighing the Mercury in Electrolytic Cells by Radiotracer Dilution Method

    International Nuclear Information System (INIS)

    Sugiharto; Santoso, S.B.; Santoso, G.B.

    2010-01-01

    Weight of mercury in electrolytic cell of soda industry is usually measured gravimetrically, which is typical labor work in character. Error sources of the gravimetric method might have come from the fact that some mercury's are usually trapped in the cell due to complicated structure of electrolytic cell. This cause unknown errors. In addition, formation of amalgam at the cathode may cause a further uncertainty in the measurement. Total error from gravimetric method is 4% on average. Radiotracer dilution method provides advantages either for simplification of procedure and reduction of measurement error. In this experiment radioisotope mercury 203 Hg, which was prepared in nuclear reactor was used to examine 13 of 14 electrolytic cells of soda plant. Each electrolytic cell was designed containing approximately 700 kg inactive mercury. Before injection, the radioisotope mercury was mixed with non radioisotope mercury in a bath to obtain a suitable injection aliquots and standard references. Calibration curve, which was derived from two stage dilution processes taken from standard references, was used to examine degree of mixing between radioisotope and non radioisotope mercury and it was also used in weight calculation of non radioisotope mercury in electrolytic cell. Injection was carried out simply by pouring the injection aliquots into the flowing mercury at the inlet side of the cell. Mercury samples from the cells were extracted at regular time intervals and filled into vials for counting. This was done for the primary conformation of the completeness of mixing of the tracer with the non radioisotope mercury in each cell. When complete mixing is achieved, the unknown quantity of mercury in each cell was calculated based on mass balance principle. From the calculation the weight of mercury in each electrolytic cell was not the same and maximum error of measurement obtained from this method is 2.48 %. Compared to gravimetrically error mentioned above, it was

  10. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    Science.gov (United States)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  11. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    Science.gov (United States)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  12. Measuring Flow Experience in an Immersive Virtual Environment for Collaborative Learning

    Science.gov (United States)

    van Schaik, P.; Martin, S.; Vallance, M.

    2012-01-01

    In contexts other than immersive virtual environments, theoretical and empirical work has identified flow experience as a major factor in learning and human-computer interaction. Flow is defined as a "holistic sensation that people feel when they act with total involvement". We applied the concept of flow to modeling the experience of…

  13. "Just Clicks": An Interpretive Phenomenological Analysis of Professional Dancers' Experience of Flow

    Science.gov (United States)

    Hefferon, Kate M.; Ollis, Stewart

    2006-01-01

    The subjective experience of flow in professional dancers was analyzed using interpretive phenomenological analysis (IPA). Flow is believed to be a psychological state in which the mind and body "just click", creating optimal performance. Unfortunately, sport and performance research have severely neglected reviewing the flow experience in…

  14. Creating a Context for Flow: The Importance of Personal Insight and Experience

    Science.gov (United States)

    Rathunde, Kevin

    2015-01-01

    Kevin Rathunde reflects on his early studies of flow in Montessori adolescents and surmises that adults need to experience their own flow in order to guide young people to peak levels. He recounts his early music experiences as having "peaked" and that he needed to come back to his flow of the past to fully enter into his work with flow…

  15. Field experiences in the prevention of toxic effects for cyanide and mercury in the Mining District of Vetas-California, Santander

    International Nuclear Information System (INIS)

    Chaparro Garnica, Helkin Claudio Martin

    2004-01-01

    human body for inhalation, ingestion, and for contact; in the area in mention, it is particularly possible the intoxication for vapors of mercury or quicksilver due to the absolute familiarity with the toxic on the part of the almost the population's entirety, from very early age, and for ancestral practical it is inadequate as they are by hand the manipulation of the amalgams clean and it burns it of the fluffs (amalgamates of gold and mercury) in the own vent of the homelike kitchen, or in fathoms inside of or outside of the house but in any event with direct exhibition of the whole family nucleus to the vapors of the quicksilver, situation that is increased by the fact that, contrary to the cyanide that produces the death almost immediately, the mercury in general causes an insidious square of chronic intoxication that those directly affected, attribute to all less ones to the toxic, although the sharp and chronic squares are grateful as professional illness for the Work ministry and of the social protection. It is calculated that around 2500 people of the Mining District Vetas-California has direct relationship or insinuation with the indexed pollutants and therefore it became necessary to approach the problem like part of the technological re-conversion promoted by the Project Surata that is developed by the auspice of the German BGR and in agreement with the aqueduct enterprise of Bucaramanga, the CDMB and the government of the department. The experiences related this report, pick up the activities developed by a compound team by 2 doctors, a driver and 3 field coordinators, including a sociologist, by means of which was looked for to inform to the most representative focal groups in the district, that is, the own miners, students, housewives, community mothers and municipal authorities on the risks of sharp intoxication and chronicle for the inadequate manipulation of mercury and cyanide, by means of technical of high impact as the presentation of clinical cases

  16. The transport behaviour of elemental mercury DNAPL in saturated porous media: Analysis of field observations and two-phase flow modelling

    NARCIS (Netherlands)

    Sweijen, T.; Hartog, Niels; Marsman, A.; Keijzer, T.J.S.

    2014-01-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental

  17. Mercury emission from crematories in Japan

    Directory of Open Access Journals (Sweden)

    M. Takaoka

    2010-04-01

    Full Text Available Anthropogenic sources of mercury emissions have a significant impact on global pollution. Therefore, finding uncharacterised sources and assessing the emissions from these sources are important. However, limited data are available worldwide on mercury emissions from crematories. In Japan, 99.9% of dead bodies are cremated, which is the highest percentage in the world, and more than 1600 crematories are in operation. We thus focused on emissions from crematories in Japan. The number of targeted facilities was seven, and we used continuous emission monitoring to measure the mercury concentrations and investigate mercury behaviour. The total mercury concentrations in stack gases were a few μg/Nm3 (normal cubic meters. Considering the time profile of mercury and its species in cremations, the findings confirmed that the mercury in stack gas originated from dental amalgam. The amount of mercury emissions was calculated using the total concentration and gas flow rate. Furthermore, the annual amount of mercury emission from crematories in Japan was estimated by using the total number of corpses. The emission amount was considerably lower than that estimated in the United Kingdom. From statistical analyses on population demographics and measurements, future total emissions from crematories were also predicted. As a result, the amount of mercury emitted by crematories will likely increase by 2.6-fold from 2007 to 2037.

  18. Simpler and More Accurate: Weighing the Mercury in Electrolytic Cells by Radiotracer Dilution Method

    Directory of Open Access Journals (Sweden)

    Sugiharto

    2010-08-01

    Full Text Available Weight of mercury in electrolytic cell of soda industry is usually measured gravimetrically, which is typical labor work in character. Error sources of the gravimetric method might have come from the fact that some mercury’s are usually trapped in the cell due to complicated structure of electrolytic cell. This cause unknown errors. In addition, formation of amalgam at the cathode may cause a further uncertainty in the measurement. Total error from gravimetric method is 4% on average. Radiotracer dilution method provides advantages either for simplification of procedure and reduction of measurement error. In this experiment radioisotope mercury 203Hg, which was prepared in nuclear reactor was used to examine 13 of 14 electrolytic cells of soda plant. Each electrolytic cell was designed containing approximately 700 kg inactive mercury. Before injection, the radioisotope mercury was mixed with non radioisotope mercury in a bath to obtain a suitable injection aliquots and standard references. Calibration curve, which was derived from two stage dilution processes taken from standard references, was used to examine degree of mixing between radioisotope and non radioisotope mercury and it was also used in weight calculation of non radioisotope mercury in electrolytic cell. Injection was carried out simply by pouring the injection aliquots into the flowing mercury at the inlet side of the cell. Mercury samples from the cells were extracted at regular time intervals and filled into vials for counting. This was done for the primary conformation of the completeness of mixing of the tracer with the non radioisotope mercury in each cell. When complete mixing is achieved, the unknown quantity of mercury in each cell was calculated based on mass balance principle. From the calculation the weight of mercury in each electrolytic cell was not the same and maximum error of measurement obtained from this method is 2.48 %. Compared to gravimetrically error

  19. Risk assessment of mercury contaminated sites

    International Nuclear Information System (INIS)

    Hempel, M.

    1993-01-01

    At two sites, highly contaminated with mercury, risk assessment was executed. Methods were developed to determine organomercury compounds in water, air and soil. Toxicity tests demonstrated the high toxicity of organomercury compounds compared to inorganic mercury. Besides highly toxic methylmercury, ethylmercury was found in soils close to a chemical plant in Marktredwitz. In ultrafiltration-experiments mercury showed great affinity to high molecular substances in water. Lysimeter-experiments proved, that organomercury compounds are adsorbed and transformed to inorganic and elemental mercury. (orig.) [de

  20. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  1. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    International Nuclear Information System (INIS)

    Vierow, Karen

    2008-01-01

    This project is investigating countercurrent flow and 'flooding' phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the 'surge line' and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008

  2. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  3. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  4. Flow Monitoring Experiences at the Ethernet-Layer

    NARCIS (Netherlands)

    Hofstede, Rick; Hofstede, R.J.; Drago, Idilio; Sperotto, Anna; Pras, Aiko; Lehnert, Ralf

    2011-01-01

    Flow monitoring is a scalable technology for providing summaries of network activity. Being deployed at the IP-layer, it uses fixed flow definitions, based on fields of the IP-layer and higher layers. Since several backbone network operators are considering the deployment of (Carrier) Ethernet in

  5. Clearance gap flow: Simulations by discontinuous Galerkin method and experiments

    Czech Academy of Sciences Publication Activity Database

    Hála, Jindřich; Luxa, Martin; Bublík, O.; Prausová, H.; Vimmr, J.

    2016-01-01

    Roč. 92, May (2016), 02073-02073 ISSN 2100-014X. [EFM14 – Experimental Fluid Mechanics 2014. Český Krumlov, 18.11.2014-21.11.2014] Institutional support: RVO:61388998 Keywords : compressible fluid flow * narrow channel flow * discontinuous Galerkin finite element method Subject RIV: BK - Fluid Dynamics

  6. Soil pipe flow tracer experiments: 1. Connectivity and transport characteristics

    Science.gov (United States)

    Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distributio...

  7. Flow among Musicians: Measuring Peak Experiences of Student Performers

    Science.gov (United States)

    Sinnamon, Sarah; Moran, Aidan; O'Connell, Michael

    2012-01-01

    "Flow" is a highly coveted yet elusive state of mind that is characterized by complete absorption in the task at hand as well as by enhanced skilled performance. Unfortunately, because most measures of this construct have been developed in physical activity and sport settings, little is known about the applicability of flow scales to the…

  8. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  9. In-step Two-phase Flow (TPF) Thermal Control Experiment

    Science.gov (United States)

    1992-01-01

    The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.

  10. Study on parallel-channel asymmetry in supercritical flow instability experiment

    International Nuclear Information System (INIS)

    Xiong Ting; Yu Junchong; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang

    2013-01-01

    Due to the urgent need for experimental study on supercritical water flow instability, the parallel-channel asymmetry which determines the feasibility of such experiments was studied with the experimental and numerical results in parallel dual channel. The evolution of flow rates in the experiments was analyzed, and the steady-state characteristics as well as transient characteristics of the system were obtained by self-developed numerical code. The results show that the asymmetry of the parallel dual channel would reduce the feasibility of experiments. The asymmetry of flow rates is aroused by geometrical asymmetry. Due to the property variation characteristics of supercritical water, the flow rate asymmetry is enlarged while rising beyond the pseudo critical point. The extent of flow rate asymmetry is affected by the bulk temperature and total flow rate; therefore the experimental feasibility can be enhanced by reducing the total flow rate. (authors)

  11. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  12. Flow Mode Dependent Partitioning Processes of Preferential Flow Dynamics in Unsaturated Fractures - Findings From Analogue Percolation Experiments

    Science.gov (United States)

    Kordilla, J.; Noffz, T.; Dentz, M.; Sauter, M.

    2017-12-01

    To assess the vulnerability of an aquifer system it is of utmost importance to recognize the high potential for a rapid mass transport offered by ow through unsaturated fracture networks. Numerical models have to reproduce complex effects of gravity-driven flow dynamics to generate accurate predictions of flow and transport. However, the non-linear characteristics of free surface flow dynamics and partitioning behaviour at unsaturated fracture intersections often exceed the capacity of classical volume-effective modelling approaches. Laboratory experiments that manage to isolate single aspects of the mass partitioning process can enhance the understanding of underlying dynamics, which ultimately influence travel time distributions on multiple scales. Our analogue fracture network consists of synthetic cubes with dimensions of 20 x 20 x 20 cm creating simple geometries of a single or a cascade of consecutive horizontal fractures. Gravity-driven free surface flow (droplets; rivulets) is established via a high precision multichannel dispenser at flow rates ranging from 1.5 to 4.5 ml/min. Single-inlet experiments show the influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes and allow to delineate a droplet and rivulet regime. The transition between these regimes exhibits mixed flow characteristics. In addition, multi-inlet setups with constant total infow rates decrease the variance induced by erratic free-surface flow dynamics. We investigate the impacts of variable aperture widths, horizontal offsets of vertical fracture surfaces, and alternating injection methods for both flow regimes. Normalized fracture inflow rates allow to demonstrate and compare the effects of variable geometric features. Firstly, the fracture filling can be described by plug flow. At later stages it transitions into a Washburn-type flow, which we compare to an analytical solution for the case of rivulet flow. Observations show a considerably

  13. Flow excursion experiments with a production reactor assembly mockup

    International Nuclear Information System (INIS)

    Rush, G.C.; Blake, J.E.; Nash, C.A.

    1990-01-01

    A series of power ramp and loss-of-coolant accidents were simulated with an electrically heated mockup of a Savannah River Site production reactor assembly. The one-to-one scale mockup had full multichannel annular geometry in its heated section in addition to prototypical inlet and outlet endfitting hardware. Power levels causing void generation and flow instability in the water coolant flowing through the mockup were found under different transient and quasi-steady state test conditions. A reasonably sharp boundary between initial operating powers leading to or not leading to flow instability were found: that being 0.2 MW or less on power levels of 4 to 6.3 MW. Void generation occurred before, but close to, the point of flow instability. The data were taken in support of the Savannah River reactor limits program and will be used in continuing code benchmarking efforts. 6 refs., 12 figs., 2 tabs

  14. An Examination of Game-Based Learning from Theories of Flow Experience and Cognitive Load

    Science.gov (United States)

    Lai, Chih-Hung; Chu, Chih-Ming; Liu, Hsiang-Hsuan; Yang, Shun-Bo; Chen, Wei-Hsuan

    2013-01-01

    This study aims to discuss whether game-based learning with the integration of games and digital learning could enhance not only the flow experience in learning but achieve the same flow experience in pure games. In addition, the authors discovered that whether the game-based learning could make learners to reveal higher cognitive load. The…

  15. The Role of Flow Experience and CAD Tools in Facilitating Creative Behaviours for Architecture Design Students

    Science.gov (United States)

    Dawoud, Husameddin M.; Al-Samarraie, Hosam; Zaqout, Fahed

    2015-01-01

    This study examined the role of flow experience in intellectual activity with an emphasis on the relationship between flow experience and creative behaviour in design using CAD. The study used confluence and psychometric approaches because of their unique abilities to depict a clear image of creative behaviour. A cross-sectional study…

  16. Flow Experiences in Everyday Classes of Spanish College Students: The Fit between Challenge and Skill

    Science.gov (United States)

    Escartín Solanelles, Jordi; Ceja Barba, Lucia; Celdrán Castro, Montserrat; Martín Peña, Javier

    2014-01-01

    This study is concerned with the flow state as a high intrinsic motivation experience. Following Csikszentmihalyi's theoretical model (1990), we analyze in which contents within the social psychology subject, students experience more flow. Participants were Spanish college students from a general course on Social Psychology. They completed a diary…

  17. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  18. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Robin M. Stewart

    1999-09-29

    magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

  19. Environmental mercury problem

    Energy Technology Data Exchange (ETDEWEB)

    D' Itri, F.M.

    1972-01-01

    The urgent need to eliminate or greatly reduce the discharge of mercury into the environment is paramount to the health and well being of man. That all forms of mercury are hazardous is widely recognized, but what is more devastating to our society is that all forms of mercury appear to have the potential to be converted in to highly toxic monomethylmercury, or dimethylmercury. This paper examined the historical uses of mercury, the background concentrations of mercury, the analytical methods for the determination of mercury, the contamination of the food chain by mercury, the biological methylation of mercury, the decontamination and restoration of mercury polluted areas, the epidemiology and toxicology of mercury, and the chronology of the world's mercury poisoning problem.

  20. HIV/ AIDS information flow and access: experiences from Babati ...

    African Journals Online (AJOL)

    This paper is based on an empirical study of the flow and access to HIV/AIDS information in the Babati District of Manyara region in Tanzania. The study integrated both qualitative and quantitative research designs. A sample of 131 respondents comprising of 50 male and 81 female was conveniently selected from three ...

  1. Exploring Students' Flow Experiences in Business Simulation Games

    Science.gov (United States)

    Buil, I.; Catalán, S.; Martínez, E.

    2018-01-01

    Business simulation games are a motivational and engaging tool for teaching business management. However, relatively little is known about what factors contribute to their success. This study explores the role of flow experienced while using business simulation games. Specifically, this research investigates the influence of challenge, skills,…

  2. Accuracy of tracer stimulus response experiments in laminar flows

    Czech Academy of Sciences Publication Activity Database

    Chlup, Hynek; Novotný, Pavel; Žitný, R.

    2012-01-01

    Roč. 55, 23-24 (2012), s. 6458-6462 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z20760514 Keywords : residence time distribution * tracer injection * laminar convective dominated flow Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.315, year: 2012 http://www.sciencedirect.com/science/article/pii/S001793101200470X

  3. The relationship of motivation and flow experience to academic procrastination in university students.

    Science.gov (United States)

    Lee, Eunju

    2005-03-01

    In this article, the author examined the relationships of motivation and flow experience to academic procrastination in 262 Korean undergraduate students who completed a questionnaire on procrastination, flow, and motivation. The results indicated that high procrastination was associated with lack of self-determined motivation and low incidence of flow state. The results also indicated that, although amotivation and intrinsic motivation showed significant unique effects on procrastination, they did not contribute significantly to the variance in procrastination when the effects caused by flow experiences were considered. The author discusses implications for practice and gives suggestions for further research.

  4. Association of cognitive judgment and shyness with frequency and quality of flow experience

    Directory of Open Access Journals (Sweden)

    Hirao K

    2012-11-01

    Full Text Available Kazuki Hirao, Ryuji Kobayashi, Kenji YabuwakiDepartment of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi City, Okayama, JapanObjective: To determine the association of cognitive judgment and shyness with frequency and quality of flow experience.Design and methods: This was a cross-sectional survey of the relationship between psychological tendency and frequency and quality of flow experience in 68 college students, undertaken in Hiroshima, Japan. The predictors were Shyness Scale scores, measure of ambiguity tolerance scores, and Life Orientation Test scores, and the outcome was the frequency and quality of flow experience.Results: The results of the binary logistic regression analysis indicated that only the measure of ambiguity tolerance (P = 0.02, odds ratio = 1.06, and 95% confidence interval = 1.01–1.11 was a predictor of the quality of flow experience, and only the Shyness Scale (P = 0.007, odds ratio = 0.95, and 95% confidence interval = 0.91–0.98 was a predictor of the frequency of flow experience.Conclusion: The findings suggest that ambiguity tolerance and shyness are associated with the frequency and quality of the flow experience.Keywords: Flow experience, positive psychology, shyness, ambiguity tolerance, life orientation

  5. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  6. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  7. Fluid mechanics experiments in oscillatory flow. Volume 1

    International Nuclear Information System (INIS)

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re max , Re W , and A R , embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation)

  8. Research on the flow field of undershot cross-flow water turbines using experiments and numerical analysis

    International Nuclear Information System (INIS)

    Nishi, Y; Inagaki, T; Li, Y; Omiya, R; Hatano, K

    2014-01-01

    The purpose of this research is to develop a water turbine appropriate for low-head open channels in order to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of the cross-flow runner to open channels as an undershot water turbine has come under consideration and, to this end, a significant simplification was attained by removing the casings. However, the flow field of undershot cross-flow water turbines possesses free surfaces. This means that with the variation in the rotational speed, the water depth around the runner will change and flow field itself is significantly altered. Thus it is necessary to clearly understand the flow fields with free surfaces in order to improve the performance of this turbine. In this research, the performance of this turbine and the flow field were studied through experiments and numerical analysis. The experimental results on the performance of this turbine and the flow field were consistent with the numerical analysis. In addition, the inlet and outlet regions at the first and second stages of this water turbine were clarified

  9. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  10. LABORATORY EXPERIMENTS ON HEAT-DRIVEN TWO-PHASE FLOWS IN NATURAL AND ARTIFICIAL ROCK FRACTURES

    International Nuclear Information System (INIS)

    TIMOTHY J. KNEAFSEY AND KARSTEN PRUESS

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed, but not when liquid-vapor counterflow was hindered by very narrow apertures, and when inadequate working fluid volume was used

  11. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  12. 3-D High-Lift Flow-Physics Experiment - Transition Measurements

    Science.gov (United States)

    McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild

    2005-01-01

    An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.

  13. Simulation of Boiling Flow Experiments Close to CHF with the NeptuneCFD Code

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2008-01-01

    A three-dimensional two-fluid code Neptune C FD has been validated against the Arizona State University (ASU) and DEBORA boiling flow experiments. Two-phase flow processes in the subcooled flow boiling regime have been studied on ASU experiments. Within this scope a new wall function has been implemented in the Neptune C FD code aiming to improve the prediction of flow parameters in the near-wall region. The capability of the code to predict the boiling flow regime close to critical heat flux (CHF) conditions has been verified on selected DEBORA experiments. To predict the onset of CHF regime, a simplified model based on the near-wall values of gas volume fraction was used. The results have shown that the code is able to predict the wall temperature increase and the sharp void fraction peak near the heated wall, which are characteristic phenomena for CHF conditions

  14. Thermal experiments with LMFBR subassembly models in sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1982-01-01

    Within the framework of the Fast Breeder Project research work has been undertaken at the Karlsruhe Nuclear Research Center on the thermal and fluid dynamics of nominal and distorted core subassemblies. In 19-rod bundle models (P/D=1.30, W/R=1.38) three-dimensional temperature distributions were measured in the cladding tubes exposed to sodium flow. Results of measurements of the azimuthal temperature profiles of rotated rods in the duct wall zone are indicated for different operating conditions 80 2 , evenly distributed load and oblique load; different axial positions of the spacer grids; and different positions of one bowed rod

  15. Flow structure interaction around an axial-flow hydrokinetic turbine: Experiments and CFD simulations

    International Nuclear Information System (INIS)

    Kang, S; Chamorro, L; Hill, C; Arndt, R; Sotiropoulos, F

    2014-01-01

    We carry out large-eddy simulation of turbulent flow past a complete hydrokinetic turbine mounted on the bed of a straight rectangular open channel. The complex turbine geometry, including the rotor and all stationary components, is handled by employing the curvilinear immersed boundary (CURVIB) method [1], and velocity boundary conditions near all solid surfaces are reconstructed using a wall model based on solving the simplified boundary layer equations [2]. In this study we attempt to directly resolve flow-blade interactions without introducing turbine parameterization methods. The computed wake profiles of velocities and turbulent stresses agree well with the experimentally measured values

  16. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  17. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  18. The Relationship of Motivation and Flow Experience to Academic Procrastination in University Students

    Science.gov (United States)

    Lee, Eunju

    2005-01-01

    In this article, the author examined the relationships of motivation and flow experience to academic procrastination in 262 Korean undergraduate students who completed a questionnaire on procrastination, flow, and motivation. The results indicated that high procrastination was associated with lack of self-determined motivation and low incidence of…

  19. Investigating Flow Experience and Scientific Practices during a Mobile Serious Educational Game

    Science.gov (United States)

    Bressler, Denise M.; Bodzin, Alec M.

    2016-01-01

    Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game (n = 59) were…

  20. Fingering in unsaturated zone flow: a qualitative review with laboratory experiments on heterogeneous systems

    CSIR Research Space (South Africa)

    Sililo, OTN

    2000-11-01

    Full Text Available Unstable unsaturated zone flow (fingering) is a potentially important process in recharge, pollution, and surface water/ground water body interactions. Extending previous workers ' studies on homogeneous systems, sand tank experiments have been...

  1. Turbulence Models: Data from Other Experiments: Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...

  2. Multichannel readout ASIC design flow for high energy physics and cosmic rays experiments

    International Nuclear Information System (INIS)

    Voronin, A; Malankin, E

    2016-01-01

    In the large-scale high energy physics and astrophysics experiments multi-channel readout application specific integrated circuits (ASICs) are widely used. The ASICs for such experiments are complicated systems, which usually include both analog and digital building blocks. The complexity and large number of channels in such ASICs require the proper methodological approach to their design. The paper represents the mixed-signal design flow of the ASICs for high energy physics and cosmic rays experiments. This flow was successfully embedded to the development of the read-out ASIC prototype for the muon chambers of the CBM experiment. The approach was approved in UMC CMOS MMRF 180 nm process. The design flow enable to analyse the mixed-signal system operation on the different levels: functional, behavioural, schematic and post layout including parasitic elements. The proposed design flow allows reducing the simulation period and eliminating the functionality mismatches on the very early stage of the design. (paper)

  3. Turbulence Models: Data from Other Experiments: FAITH Hill 3-D Separated Flow

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: FAITH Hill 3-D Separated Flow. This web page provides data from experiments that may be useful for the validation of turbulence models. This resource is...

  4. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  5. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  6. Experiments and network model of flow of oil-water emulsion in porous media.

    Science.gov (United States)

    Romero, Mao Illich; Carvalho, Marcio S; Alvarado, Vladimir

    2011-10-01

    Transport of emulsions in porous media is relevant to several subsurface applications. Many enhanced oil recovery (EOR) processes lead to emulsion formation and as a result conformance originating in the flow of a dispersed phase may arise. In some EOR processes, emulsion is injected directly as a mobility control agent. Modeling the flow of emulsion in porous media is extremely challenging due to the complex nature of the associated flows and numerous interfaces. The descriptions based on effective viscosity are not valid when the drop size is of the same order of magnitude as the pore-throat characteristic length scale. An accurate model of emulsion flow through porous media should describe this local change in mobility. The available filtration models do not take into account the variation of the straining and capturing rates with the local capillary number. In this work, we present experiments of emulsion flow through sandstone cores of different permeability and a first step on a capillary network model that uses experimentally determined pore-level constitutive relationships between flow rate and pressure drop in constricted capillaries to obtain representative macroscopic flow behavior emerging from microscopic emulsion flow at the pore level. A parametric analysis is conducted to study the effect of the permeability and dispersed phase droplet size on the flow response to emulsion flooding in porous media. The network model predictions qualitatively describe the oil-water emulsion flow behavior observed in the experiments.

  7. Flow experience in game based learning – a systematic literature review

    Directory of Open Access Journals (Sweden)

    Arttu Perttula

    2017-03-01

    Full Text Available The entertaining elements implemented in a serious game are key factors in determining whether a player will be engaged in a play-learn process and able to achieve the desired learning outcomes. Thus, optimization of subjective playing experience is a crucial part of a game design process. Flow theory can be adopted for measuring user experience and analyzing the quality of serious game designs. In addition, flow seems to have a positive influence on performance enhancement, learning and engagement. The focus of this review is especially on examining the meaning of flow in the context of serious games as well as exploring the relationship between flow and learning, factors that influence occurrence of flow and how flow is operationalized. The review revealed that there are mainly conceptual considerations about flow in serious games, but no robust empirical evidence about the meaning of flow. This is in line with other studies. We argue that research on flow should focus on the specific aspects related to the very nature of serious games that combine enjoyment and learning. Furthermore, new methods to measure flow and analyse the data need to be developed and studied.

  8. Preferential flow paths and heat pipes: Results from laboratory experiments on heat-driven flow in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, T.J.; Pruess, K.

    1997-06-01

    Water flow in fractures under the conditions of partial saturation and thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. Water flowing in fast pathways may ultimately contact waste packages at Yucca Mountain and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize liquid flow in glass fracture models, a transparent epoxy fracture replica, and a rock/replica fracture assembly. Spatially resolved thermal monitoring was performed in seven of these experiments to evaluate heat-pipe formation. Depending on the fracture apertures and flow conditions, various flow regimes were observed including continuous rivulet flow for high flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for low flow rates and wide apertures. These flow regimes were present in both fracture models and in the replica of a natural fracture. Heat-pipe conditions indicated by low thermal gradients were observed in five experiments. Conditions conducive to heat-pipe formation include an evaporation zone, condensation zone, adequate space for vapor and liquid to travel, and appropriate fluid driving forces. In one of the two experiments where heat pipe conditions were not observed, adequate space for liquid-vapor counterflow was not provided. Heat pipe conditions were not established in the other, because liquid flow was inadequate to compensate for imbibition and the quantity of heat contained within the rock

  9. First Experiments with the Simulation of Particulate Flows

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, M.

    2003-07-01

    Several variants of a Eulerian-Lagrangian method for the simulation of particulate flows are implemented in a finite-difference framework. All methods have in common that they represent the presence of the solid fraction by means of artificial volume forces in the momentum equation of the fluid phase. Thereby, explicit griddling of the moving particles is avoided and a fixed grid can be used. The computations show that the direct forcing method (Kin et a/., 2001) is not adequate for a our purposes due to large oscillations in the hydro-dynamical forces. The immersed method of Pekin (2002) does provide accurate predictions of particle motion,however at the cost of a small time step. (Author) 33 refs.

  10. Flow induced orientation in carbon nanotube suspensions: Modeling and experiments

    Science.gov (United States)

    Natale, Giovanniantonio

    Due to their unique properties, carbon nanotubes (CNTs) hold remarkable promise for the next generation of materials, with potential applications in organic electronics, reinforced and electrically conducting plastic composites, new alloys, and even new types of biological sensors and devices. Despite these promises and potentialities, carbon nanotube composites and suspensions are inherently difficult to process, and efficient processing schemes are only just starting to be formulated. The success of CNTs, in all potential applications, depends on the understanding and ability to control the microstructure evolution during processing. During flow, CNTs dispersed in a polymeric matrix orient and interact, inducing spatial and orientation correlations. Agglomerates can also break if the hydrodynamic forces are sufficient, increasing the probability of contact between different nanotubes and improving the interactions with the matrix and the flowability of the composite. At rest, the microstructure of the CNT suspension keeps changing due to Brownian motion and van der Waals attractive forces, and the CNTs diffuse in the suspending fluid and eventually form a network of particles. To analyze such a complex system, a low viscosity epoxy was used as the matrix to disperse the multiwall carbon nanotubes (MWCNTs). Nearly Newtonian polymers are particularly useful because they can impart significant shear stress to break the CNT agglomerates and facilitate their dispersion, while their Newtonian behavior does not mask the viscoelastic properties of the overall system. From dilute to concentrated regimes, CNT suspensions were rheologically probed to obtain information ranging from the orientation and transport of individual carbon nanotubes to the viscoelastic properties of dense and isotropic network of rods. Rheology was used to understand the microstructure evolution under flow and in static conditions. The effects of flow history, shearing velocity, rest time and

  11. Concentration of mercury in wheat samples stored with mercury tablets as preservative

    International Nuclear Information System (INIS)

    Lalit, B.Y.; Ramachandran, T.V.

    1977-01-01

    Tablets consisting of mercury in the form of a dull grey powder made by triturating mercury with chalk and sugar are used in Indian household for storing food-grains. The contamination of wheat samples by mercury, when stored with mercury tablets for period of upto four years has been assessed by using non-destructive neutron activation analysis. The details of the analytical procedure used have also been briefly described. The concentration of mercury in wheat increases with storage period. Loss of weight of mercury tablet is proportional to the storage period to a first approximation. In the present experiment, the average weight loss at the and end of first year was 0.009716 g corresponding to 6 ppm in wheat. (T.G.)

  12. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    Mercury Quick Facts Health Effects of Mercury Exposure What is Elemental Mercury? Elemental (metallic) mercury is the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other ...

  13. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  14. Relationships between Flow Experience, Life Meaningfulness and Subjective Well-being in Music Students

    Directory of Open Access Journals (Sweden)

    Martin Sedlár

    2014-07-01

    Full Text Available The study examines relationships between flow experience in musical activities, life meaningfulness and subjective well-being. Life meaningfulness belongs to eudaimonic good life, subjective well-being belongs to hedonic good life and flow seems to be combination of both approaches. It is supposed that flow experience in musical activity and life meaningfulness should have positive impact on subjective well-being. The research sample consisted of 96 university music students (37 males, 59 females from the Music and Dance Faculty, Academy of Performing Arts in Bratislava, Slovakia. Dispositional Flow Scale-2, which measures nine dimension of flow, was used for measuring frequency of flow experience. Life Meaningfulness Scale, which measures three dimensions of life meaningfulness, was used for measuring meaningfulness of life. Positive and Negative Affect Schedule measured affective components of subjective well-being, and Satisfaction with Life Scale measured cognitive component of subjective well-being. Categorization revealed that the most favourite performing musical activities are creative musical activities, such as reproduction and production, during which music students relatively often experience flow. The results of correlation analysis showed that total scores of flow experience, life meaningfulness and components of subjective well-being, significantly correlate each other. Aspects of flow, clear goals and autotelic experience are positively related to cognitive and motivational dimension of life meaningfulness and also to positive affectivity. Loss of self-consciousness and autotelic experience are positively related to emotional dimension of life meaningfulness. Challenge-skill balance, action-awareness merging, clear goals, concentration on task at hand, sense of control and autotelic experience are negatively related to negative affectivity. Challenge-skill balance and autotelic experience are related to satisfaction with life

  15. Relationships between Flow Experience, Life Meaningfulness and Subjective Well-being in Music Students

    Directory of Open Access Journals (Sweden)

    Martin Sedlár

    2014-01-01

    Full Text Available The study examines relationships between flow experience in musical activities, life meaningfulness and subjective well – being. Life meaningfulness belongs to eudaimonic good life, subjective well–being belongs to hedonic good life and flow seems to be combination of both approaches. It is supposed that flow experience in musical activity and life meaningfulness should have positive impact on subjective well –being. The research sample consisted of 96 university music students (37 males, 59 females from the Music and Dance Faculty, Academy of Performing Arts in Bratislava, Slovakia. Dispositional Flow Scale–2, which measures nine dimension of flow, was used for measuring frequency o f flow experience. Life Meaningfulness Scale, which measures three dimensions of life meaningfulness, was used for measuring meaningfulness of life. Positive and Negative Affect Schedule measured affective components of subjective well–being, and Satisfaction with Life Scale measured cognitive component of subjective well–being. Categorization revealed that the most favourite performing musical activities are creative musical activities, such as reproduction and production, during which music students relatively often experience flow. The results of correlation analysis showed that total scores of flow experience, life meaningfulness and components of subjective well–being, significantly correlate each other. Aspects of flow, clear goals and autotelic experience are positively related to cognitive and motivational dimension of life meaningfulness and also to positive affectivity. Loss of self–consciousness and autotelic experience are positively related to emotional dimension of life meaningfulness. Challenge–skill balance, action–awareness merging, clear goals, concentration on task at hand, sense of control and autotelic experience are negatively related to negative affectivity. Challenge–skill balance and autotelic experience are related to

  16. Effect of mercury on algal growth rates

    Energy Technology Data Exchange (ETDEWEB)

    Hannan, P.J.; Patouillet, C.

    1972-01-01

    In experiments with one freshwater (Chlorella pyrenoidosa) and three marine organisms (Phaeodactylum tricornutum, Cyclotella nana, and Chaetoceras gavestonensis), mercury was more toxic than the other metals tested (silver, cadmium, lead, and copper); and its toxicity is comparatively irreversible. Growth was monitored by changes in fluorescence of the cultures over a 3-day test period. The toxicity of the mercury varied inversely with the concentrations of nutrients present. Preliminary experiments indicate that mercury in the form of mercuric chloride is more toxic than as dimethylmercury. 12 references, 3 figures, 1 table.

  17. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  18. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  19. Bacterial Mercury Methylation At The Sediment-Water Interface Of Mercury Contaminated Sediments

    Science.gov (United States)

    Bench scale experiments were conducted to improve our understanding of bacterial mediation of mercury transformation (methylation), specifically those factors which govern the production of methyl mercury (MeHg) at the sediment-water interface. The greatest cause for concern re...

  20. The fluid mechanics of channel fracturing flows: experiment

    Science.gov (United States)

    Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).

  1. Further development of drag bodies for the measurement of mass flow rates during blowdown experiments

    International Nuclear Information System (INIS)

    Brockmann, E.; John, H.; Reimann, J.

    1983-01-01

    Drag bodies have already been used for sometime for the measurement of mass flow rates in blowdown experiments. Former research concerning the drag body behaviour in non-homogeneous two-phase flows frequently dealt with special effects by means of theoretical models only. For pipe flows most investigations were conducted for ratios of drag plate area to pipe cross section smaller 0.02. The present paper gives the results of experiments with drag bodies in a horizontal, non-homogeneous two-phase pipe flow with slip, which were carried through under the sponsorship of the German Ministry for Research and Technology (BMFT). Special interest was layed on the behaviour of the drag coefficient in stationary flows and at various cross sectional ratios. Both design and response of various drag bodies, which were developed at the Battelle-Institut, were tested in stationary and instationary two-phase flows. The influences of density and velocity profiles as well as the drag body position were studied. The results demonstrate, that the drag body is capable of measuring mass flow rates in connection with a gamma densitometer also in non-homogeneous two-phase flows. Satisfying results could be obtained, using simply the drag coefficient which was determined from single-phase flow calibrations

  2. Flow experiences in everyday classes of Spanish college students: the fit between challenge and skill

    Directory of Open Access Journals (Sweden)

    Jordi Escartin

    2014-07-01

    Full Text Available This study is concerned with the flow state as a high intrinsic motivation experience. Following Csikszenmihalyi´s theoretical model (1990, we analyze in which contents within the social psychology subject, students experience more flow. Participants were Spanish college students from a general course on Social Psychology. They completed a diary study during 12 master classes through the academic semester. The results showed that students experienced different states of consciousness in different sessions: relaxation, apathy, flow and anxiety, respectively. These findings provide new insight into the relationship between an academic subject and students, facilitating the creation of new and innovative strategies for learning. The ultimate goal is to modify and improve the dynamics and learning activities for the teaching course, increasing the experience of flow in class (and reducing the levels of anxiety, apathy or relaxation.

  3. Simulation of boiling flow experiments close to CHF with the NEPTUNE-CFD code

    International Nuclear Information System (INIS)

    Koncar, B.; Mramor, K.

    2007-01-01

    A three-dimensional two-fluid code NEPTUNE C FD has been validated against the ASU (Arizona State University) [1] and DEBORA [2, 3] boiling flow experiments. Nucleate boiling processes in the subcooled flow boiling regime have been studied on ASU experiments. Within this scope a new wall function is implemented in the NEPTUNE C FD V1.0.6 code to improve the prediction of flow parameters in the boiling boundary layer. The capability of the code to predict boiling flow regime close to critical heat flux (CHF) conditions has been assessed on selected DEBORA experiments. It was shown that the code is able to predict wall temperature excursion and a sharp void fraction increase near the heated wall, which are characteristic phenomena for CHF conditions. (author)

  4. Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity

    Directory of Open Access Journals (Sweden)

    Marino Bonaiuto

    2016-11-01

    Full Text Available This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory which prioritizes self-defining activities as important ones for an individual’s identification of his/her goals, values, beliefs, and interests corresponding to one’s own identity development or enhancement. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one's own preferred place is widely reported as resulting from a range of self-defining activities irrespective of gender or age, and it is positively and significantly associated with one's own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-definining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for eudaimonistic identity theory's understanding and enriching, especially by its generalization from the traditional personal identity level up to the place identity one. More generally, this study has implications for maintaining or enhancing one’s own place identity, and therefore people-place relations, by means of facilitating a person's flow experience within psychologically meaningful places.

  5. Investigating lava-substrate interactions through flow experiments with syrup, wax, and molten basalt

    Science.gov (United States)

    Rumpf, M. E.; Lev, E.

    2015-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat

  6. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  7. Mercury emissions control technologies for mixed waste thermal treatment

    International Nuclear Information System (INIS)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.

    1997-01-01

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates

  8. The influence of floodplains on mercury availability

    Energy Technology Data Exchange (ETDEWEB)

    Wallschlaeger, D.; Wilken, R.D. [GKSS Research Center, Geesthacht (Germany). Inst. of Physical and Chemical Analytics

    1997-09-01

    The floodplains of the German river Elbe affect the mercury distribution in the river system in two different ways: they act both as a medium-term sink and as a long-term source. The large amounts of mercury deposited onto the floodplains during annual floodings are first effectively fixed in the soils, rendering them basically unavailable. Sequential extraction experiments reveal that only a small fraction of the mercury (< 3%) is present in available forms, whereas the vast majority is associated with humic substances or present in sulfidic binding forms. After deposition, a small fraction of the total mercury is gradually remobilized into the aqueous phase bound passively to water-soluble humic acids. The availability of mercury in these complexes is still low, since environmental influences such as changes in pH or redox potential and competition with other cations do not cause any mercury liberation. In the next step, reactions in the aqueous phase lead to the formation of the highly available volatile species Hg{sup 0} and dimethylmercury (DMM). Their evaporation gives rise to a strong mercury flux from the floodplains into the atmosphere. Preliminary mass balances indicate that the majority of the deposited mercury stays bound in the floodplain soils, while small amounts are emitted back into the river`s ecosystem. Atmospheric emission is more important as a remobilization pathway than aquatic export.

  9. Mercury Sorption onto Malt Spent Rootlets

    Science.gov (United States)

    Manariotis, I. D.; Anagnostopoulos, V.; Karapanagioti, H. K.; Chrysikopoulos, C.

    2011-12-01

    Mercury is a metal of particular concern due to its toxicity even at relatively low concentrations. The maximum permissible level for mercury in drinking water set by the European Union is 0.001 mg/L. Mercury is released into the environment via four principal pathways: (1) natural processes; i.e. a volcanic eruption, (2) incidental to some other activity; i.e. coal burning power plants, (3) accidentally during the manufacture, breakage or disposal of products that have mercury put into them deliberately, and (4) direct use in industrial settings. The present study focuses on the removal of mercury (II) from aqueous solutions via sorption onto Malt Spent Rootlets (MSR). Batch experiments were conducted employing MSR with size ranging from 0.18 to 1 mm. The effects of pH, mercury concentration, contact time, and solid to liquid ratio on mercury sorption onto MSR were investigated. The highest mercury removal from the aqueous phase, of 41%, was observed at pH of 5.

  10. Determination of Kinetic Parameters within a Single Nonisothermal On-Flow Experiment by Nanoliter NMR Spectroscopy

    NARCIS (Netherlands)

    Gomez, M.V.; Rodriguez, A.M.; Hoz, de la A.; Jimenez-Marquez, F.; Fratila, R.M.; Barneveld, P.A.; Velders, A.H.

    2015-01-01

    Conventional methods to determine the kinetic parameters for a certain reaction require multiple, separate isothermal experiments, resulting in time- and material-consuming processes. Here, an approach to determine the kinetic information within a single nonisothermal on-flow experiment is

  11. Flow Experience as a Quality Measure in Evaluating Physically Activating Collaborative Serious Games

    Directory of Open Access Journals (Sweden)

    Kristian J. M. Kiili

    2014-09-01

    Full Text Available The measurement of the subjective playing experience is important part of the game development process. The enjoyment level that a serious game offers is a key factor in determining whether a player will be engaged in the gameplay and achieve the objectives of the game. In this paper we report the results of a game design process in which two prototypes of a collaborative exergame were studied. The main aim of the paper is to explore to what extend the measurement of flow experience can facilitate the game evaluation and design process. Alltogether 102 junior high school students participated in two user experience studies and played collaborative exergames designed to teach soft skills. Playing experience was measured with a flow questionnaire, playing behavior was observed and some of the players were interviewed. The results showed that flow experience can be used to evaluate the overall quality of the gameplay and it provides a structured approach to consider the quality of the game. However, flow does not provide detailed information about the shortages of the game and thus complementary methods is needed to identify the causes. The results also indicated that flow experience was independent of gender that supports its use in quality measurement.

  12. Procrastination, Flow, and Academic Performance in Real Time Using the Experience Sampling Method.

    Science.gov (United States)

    Sumaya, Isabel C; Darling, Emily

    2018-01-01

    The authors' aim was to first provide an alternative methodology in the assessment of procrastination and flow that would not reply on retrospective or prospective self-reports. Using real-time assessment of both procrastination and flow, the authors investigated how these factors impact academic performance by using the Experience Sampling Method. They assessed flow by measuring student self-reported skill versus challenge, and procrastination by measuring the days to completion of an assignment. Procrastination and flow were measured for six days before a writing assignment due date while students (n = 14) were enrolled in a research methods course. Regardless of status of flow, both the nonflow and flow groups showed high levels of procrastination. Students who experienced flow as they worked on their paper, in real time, earned significantly higher grades (M = 3.05 ± 0.30: an average grade of B) as compared with the nonflow group (M = 1.16 ± 0.33: an average grade of D; p = .007). Additionally, students experiencing flow were more accurate in predicting their grade (difference scores, flow M = 0.12 ± 0.33 vs. nonflow M = 1.39 ± 0.29; p = .015). Students in the nonflow group were nearly a grade and a half off in their prediction of their grade on the paper. To the authors' knowledge, the study is the first to provide experimental evidence showing differences in academic performance between students experiencing flow and nonflow students.

  13. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  14. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    /mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

  15. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    Science.gov (United States)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  16. Thought Experiments in Teaching Free-Fall Weightlessness: A Critical Review and an Exploration of Mercury's Behavior in "Falling Elevator"

    Science.gov (United States)

    Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona

    2017-01-01

    Different "thought experiments" dominate teaching approaches to weightlessness, reducing students' opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report…

  17. The tropical African mercury anomaly: lower than expected mercury concentrations in fish and human hair.

    Science.gov (United States)

    Black, Frank J; Bokhutlo, Thethela; Somoxa, Aaron; Maethamako, Mothusi; Modisaemang, Ontlogetse; Kemosedile, Thebe; Cobb-Adams, Cristina; Mosepele, Ketlhatlogile; Chimbari, Moses

    2011-04-15

    Mercury is a neurotoxin and global pollutant, and wetlands and newly flooded areas are known to be sites of enhanced production of monomethylmercury, the form of mercury that is readily biomagnified in aquatic food chains to potentially toxic levels. The Okavango Delta in Botswana, Southern Africa, is the largest inland delta in the world and a wetland ecosystem that experiences dramatic annual flooding of large tracts of seasonal floodplains. The Delta was, therefore, expected to be home to high mercury levels in fish and to be an area where local subsistence fishing communities would be at substantial risk of mercury toxicity from fish consumption. Total mercury concentrations measured in 27 species of fish from the Okavango Delta averaged (mean±s.d., wet weight) 19±19ng g(-1) in non-piscivorous fish, and 59±53ng g(-1) in piscivorous fish. These mercury concentrations are similar to those reported for fish from lakes in other areas of tropical Africa, demonstrating that not all wetlands are sites of elevated mercury concentrations in biota. Even more intriguing is that concentrations of mercury in fish from across tropical Africa are systematically and substantially lower than those typically reported for fish from freshwater ecosystems elsewhere globally. The reasons for this apparent "African mercury anomaly" are unclear, but this finding poses a unique opportunity to improve our understanding of mercury's biogeochemical cycling in the environment. Mercury concentrations measured in human hair collected in subsistence fishing communities in the Okavango Delta were similarly low (0.21±0.22μg g(-1) dry weight) despite high levels of fish consumption, and reflect the low mercury concentrations in the fish here. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments

    Science.gov (United States)

    Cartigny, Matthieu; Ventra, Dario; Postma, George; Van den Berg, Jan H.

    2014-05-01

    Supercritical-flow phenomena are fairly common in modern sedimentary environments, yet their recognition remains subordinate in the rock record. This is commonly ascribed to the poor preservation potential of deposits from supercritical flows. However, the number of documented flume datasets on supercritical-flow dynamics and sedimentary structures is very limited in comparison with available data from subcritical-flow experiments, and our inability to identify and interpret such deposits might also be due to insufficient knowledge. This article describes the results of systematic experiments spanning the full range of supercritical-flow bedforms (antidunes, chutes-and-pools, cyclic steps) developed over mobile sand beds of variable grain sizes. Flow character and related bedform patterns are constrained through time-series measurements of the bed configuration, flow depth, flow velocity and Froude number. The results allow the refinement and extension of current bedform stability diagrams in the supercritical-flow domain. The experimental dataset and the stability diagram clarify morphodynamic relationships between antidune and cyclic steps. The onset of antidunes is controlled by the flow passing a threshold value of the Froude parameter. The transition from antidunes to cyclic steps instead is completed at a threshold value of the mobility parameter, and this transition spans a wider range of values for the mobility parameter as grain size increases. Sedimentary structures associated with the development of supercritical bedforms under variable aggradation rates are revealed by means of a synthetic aggradation technique and compared with examples from field and flume studies. Aggradation rate bears an important influence on the geometry of supercritical structures, and it should be held in consideration for the identification and mutual distinction of supercritical-flow bedforms in the stratigraphic record.

  19. The relationship between self-disgust, guilt, and flow experience among Japanese undergraduates

    Directory of Open Access Journals (Sweden)

    Hirao K

    2013-07-01

    Full Text Available Kazuki Hirao, Ryuji Kobayashi Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Okayama, Japan Purpose: To determine the relationship between self-disgust, guilt, and flow experience. Methods: A cross-sectional survey was conducted in a convenience sample of 142 Kibi International University students (mean age, 20.09 ± 1.24 years; 85 males and 57 females. Each participant was evaluated using the Flow Experience Checklist, Self-Disgust Scale, and Situational Guilt Inventory. Correlation analysis was used to describe the strength and direction of the relationship between variables. We employed Pearson's partial correlations, adjusted for age and sex, using dummy variables (female = 0, male = 1. Results: Analysis of the relationship between the frequency of flow experience and the Self-Disgust Scale scores showed a statistically significant negative correlation, whereas the duration of the activity and the Situational Guilt Inventory score showed a significant positive correlation. The quality of flow experience and the Situational Guilt Inventory score showed a significant positive correlation. Conclusion: These findings suggest that flow experience could be helpful for those who need treatment to reduce negative emotions. Keywords: negative emotion, mental health, positive psychology

  20. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment

    Science.gov (United States)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2011-03-01

    Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.

  1. Flow structure formation in an ion-unmagnetized plasma: The HYPER-II experiments

    Science.gov (United States)

    Terasaka, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.; Sakamoto, Y.; Kawazu, F.; Furuta, K.; Takatsuka, N.; Masuda, M.; Nakano, R.

    2015-01-01

    The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.

  2. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  3. The experience of flow and subjective well-being of music students:

    OpenAIRE

    Avsec, Andreja; Smolej-Fritz, Barbara

    2007-01-01

    In the present study we were interested in the concept of flow – an optimal psychical state which is connected with high achievement and positive experiences. It was supposed that experiencing flow during different musical activities (e. g., rehearsals, solo performance, performance with the orchestra) should be related to subjective well being, common in life. Eighty-four students of the Academy ofMusic (28 male and 56 female) completed the Positive Affect Negative Affect Schedule (PAN...

  4. Unmanned Aerial Vehicle for Flow Control Experiments with Dielectric Barrier Discharge Plasma Actuators

    OpenAIRE

    Friedrichs, Wilm

    2014-01-01

    Dielectric Barrier Discharge (DBD) plasma actuators are a relatively novel type of actuators for active flow control. They offer several benefits, such as fast reaction times due to the absence of mechanical parts. On the other hand there are several difficulties which must be overcome before they reach a stage of maturity suitable for application on aircraft. In the present study the design, construction and commissioning of an Unmanned Aerial Vehicle (UAV) for flow control experiments w...

  5. Flowing gas, non-nuclear experiments on the gas core reactor

    Science.gov (United States)

    Kunze, J. F.; Cooper, C. G.; Macbeth, P. J.

    1973-01-01

    Variations in cavity wall and injection configurations of the gas core reactor were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or Freon to simulate the central nuclear fuel gas. Tests were run both in the down-firing and upfiring directions. Results showed that acceptable flow patterns with volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity long the cavity wall, using louvered injection schemes. Recirculation patterns were needed to stabilize the heavy central gas when different gases are used.

  6. Experiments on vertical gas-liquid pipe flows using ultrafast X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Banowski, M.; Beyer, M.; Lucas, D.; Hoppe, D.; Barthel, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung

    2016-12-15

    For the qualification and validation of two-phase CFD-models for medium and large-scale industrial applications dedicated experiments providing data with high temporal and spatial resolution are required. Fluid dynamic parameter like gas volume fraction, bubble size distribution, velocity or turbulent kinetic energy should be measured locally. Considering the fact, that the used measurement techniques should not affect the flow characteristics, radiation based tomographic methods are the favourite candidate for such measurements. Here the recently developed ultrafast X-ray tomography, is applied to measure the local and temporal gas volume fraction distribution in a vertical pipe. To obtain the required frame rate a rotating X-ray source by a massless electron beam and a static detector ring are used. Experiments on a vertical pipe are well suited for development and validation of closure models for two-phase flows. While vertical pipe flows are axially symmetrically, the boundary conditions are well defined. The evolution of the flow along the pipe can be investigated as well. This report documents the experiments done for co-current upwards and downwards air-water and steam-water flows as well as for counter-current air-water flows. The details of the setup, measuring technique and data evaluation are given. The report also includes a discussion on selected results obtained and on uncertainties.

  7. The experience of flow and subjective well-being of music students

    Directory of Open Access Journals (Sweden)

    Barbara Smolej Fritz

    2007-07-01

    Full Text Available In the present study we were interested in the concept of flow – an optimal psychical state which is connected with high achievement and positive experiences. It was supposed that experiencing flow during different musical activities (e. g., rehearsals, solo performance, performance with the orchestra should be related to subjective well being, common in life. Eighty-four students of the Academy ofMusic (28 male and 56 female completed the Positive Affect Negative Affect Schedule (PANAS, the Satisfaction with Life Scale (SWLS and the Dispositional Flow Scale (DFS-2, which measures nine dimensions of flow. Results confirmed that several aspects of flow are positively related to measures of subjective well being. Clear goals, challenge-skill balance, concentration on the task, and autotelicexperience are important predictors of positive affect, explaining 36% of its variance, challenge-skill balance is an important predictor for negative affect, explaining 26% of its variance, and clear goals is an important predictor for satisfaction with life, explaining 8% of its variance. We conclude that experiencing flow is more related to emotional than cognitive aspects of subjective well being, which is not surprising, since flow is an extremely emotional experience.

  8. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    Science.gov (United States)

    Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2016-01-01

    An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.

  9. Erosion by sliding wear in granular flows: Experiments with realistic contact forces

    Science.gov (United States)

    Stark, C. P.; Hung, C. Y.; Smith, B.; Li, L.; Grinspun, E.; Capart, H.

    2015-12-01

    Debris flow erosion is a powerful and sometimes dominant process in steep channels. Despite its importance, this phenomenon is relatively little studied in the lab. The large drum experiments of Hsu are a notable exception, in which almost-field-scale impact forces were generated at the head of a synthetic debris flow whose properties (grain size, proportion of fines, etc) were varied widely.A key challenge in these and similar experiments is to explore how erosion rate varies as a function of the scale of the flow (thereby varying inertial stresses, impact forces, etc). The geometrical limitations of most lab experiments, and their short run time, severely limit the scope of such explorations.We achieve this scale exploration in a set of drum erosion experiments by varying effective gravity across several orders of magnitude (1g, 10g, 100g) in a geotechnical centrifuge. By half-filling our 40cm-diameter drum with dry 2.3mm grains, placing a synthetic rock plate at the back and a glass plate at the front 3cm apart, and rotating the drum at 1-50rpm, we simulate wear in a channelized dry granular flow. In contrast to Hsu's experiments, we focus on sliding wear erosion at the flow boundary rather than impact/frictional wear at the flow head. By varying effective gravity from 1g-100g we can tune the pressure exerted by the grains at the boundary without having to change the scale of our apparatus. Using a recently developed depth-averaged, kinetic-energy closure theory for granular flow, we can simultaneously tune the drum rotation rate such that the flow dynamics remain invariant. We can thereby explore how changing the scale of a granular flow, and thus the contact forces of grains on the boundary, controls the rate of rock erosion. Using a small apparatus we can simulate the erosion generated by debris flows several meters deep involving grains up to 10cm in diameter.Our results suggest that sliding wear is the main erosion process, and are consistent with Archard

  10. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Science.gov (United States)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  11. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  12. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    Three forms of mercury exist: elemental, inorganic and organic, all of which may be toxic with clinical consequences, depending on the type of exposure. Elemental mercury poisoning usually occurs via vapour inhalation, as mercury is well absorbed through the lungs. The central nervous system is then the major site of ...

  13. Mercury in mussels of Bellingham Bay, Washington, (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Drum, A.S.; Bridge, J.R.

    1978-11-01

    Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

  14. Experiments on one-phase thermally stratified flows in nuclear reactor pipe lines

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Navarro, Moyses Alberto; Jordao, Elizabete; Santos, Andre Augusto Campagnole dos

    2009-01-01

    The phenomenon of thermal stratified flows occurs when two different layers of the same liquid at different temperatures flow separately in horizontal pipes without appreciable mixing. This phenomenon was not considered in the design stage of most of the operating nuclear power plants, but in last two decades it has become apparent due to the temperature monitoring of piping systems. The occurrence of temperature differences of about 200 deg C have been found in a narrow band around the hot and cold water interface in components under stratified flows. Loadings due to thermal stratification affected the integrity of safety related piping systems. This paper presents the results of a range of experiments performed to simulate one phase thermally stratified flows in geometry and flow condition representing a nuclear reactor steam generator injection nozzle. They have the objective of studying the flow configurations and understanding the evolution of the thermal stratification process. The driving parameter considered to characterize flow under stratified regime due to difference in specific masses is the Froude number. Different Froude numbers, from 0.018 to 0.22, were obtained in different testes by setting injection cold water flow rates and hot water initial temperatures as planned in the test matrix. Results are presented showing the influence of Froude number on the hot and cold water interface position, temperature gradients and striping phenomenon. (author)

  15. Identifying the contribution of capillary, film and vapour flow by inverse simulation of transient evaporation experiments

    Science.gov (United States)

    Iden, Sascha; Diamantopoulos, Efstathios; Durner, Wolfgang

    2017-04-01

    Evaporation from bare soil is an important component of the water cycle and the surface energy balance in arid and semi-arid regions. Modeling soil water movement in dry soil and predicting the evaporation fluxes to the atmosphere still face considerable challenges. Flow simulations rely on a proper conceptual model for water flow and an adequate parameterization of soil hydraulic properties. While the inclusion of vapor flow into variably-saturated flow models has become more widespread recently, the parametrization of the unsaturated hydraulic conductivity function in dry soil is often still based on sparse literature data from the past which do not extend into the dry range. Another shortcoming is that standard models of hydraulic conductivity do not account for water flow in incompletely-filled pores, i.e. film and corner flow. The objective of this study was to identify soil hydraulic properties by inverse modeling, with a particular focus on the medium to dry moisture range. We conducted evaporation experiments on large soil columns under laboratory conditions and used an extended instrumentation, consisting of minitensiometers and relative humidity sensors, to measure the pressure head over a wide range from saturation to -100 MPa. Evaporation rate and column-averaged water content were measured gravimetrically. The resulting data were evaluated by inverse modeling using the isothermal Richards equation as process model. Our results clearly demonstrate that classic models of soil hydraulic conductivity which are based on the assumption that water flows exclusively in water-filled capillaries, cannot describe the observed time series of pressure head and relative humidity. An adequate description of the observations was only possible by accounting for isothermal vapor flow and an additional flow of liquid water. The physical cause of the latter could be film and corner flow as proposed before based on a theoretical analysis of water flow in angular porous

  16. How Tiny Collisions Shape Mercury

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the

  17. The fate and management of high mercury-containing lamps from high technology industry.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Kong, H W

    2007-03-22

    This study investigated the fate and management of high mercury-contained lamps, such as cold cathode fluorescent lamps (CCFLs), ultraviolet lamps (UV lamps), and super high pressure mercury lamps (SHPs), from high technology industries in Taiwan, using material flow analysis (MFA) method. Several organizations, such as Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, the light sources manufactories, mercury-containing lamps importer, high technology industrial user, and waste mercury-containing lamps treatment facilities were interviewed in this study. According to this survey, the total mercury contained in CCFLs, UV lamps, and SHPs produced in Taiwan or imported from other countries was 886kg in year 2004. Among the various lamps containing mercury, 57kg mercury was exported as primary CCFLs, 7kg mercury was wasted as defective CCFLs, and 820kg mercury was used in the high technology industries, including 463kg mercury contained in exported industrial products using CCFLs as components. On the contrary, only 59kg of mercury was exported, including 57kg in CCFLs and 2kg in UV lamps. It reveals that 364kg mercury was consumed in Taiwan during year 2004. In addition, 140kg of the 364kg mercury contained in lamps used by high technology industry was well treated through industrial waste treatment system. Among the waste mercury from high technology industry, 80kg (57%), 53kg (38%), and 7kg (5%) of mercury were through domestic treatment, offshore treatment, and emission in air, respectively. Unfortunately, 224kg waste mercury was not suitable treated, including 199kg mercury contained in CCFL, which is a component of monitor for personal computer and liquid crystal display television, and 25kg non-treated mercury. Thus, how to recover the mercury from the waste monitors is an important challenge of zero wastage policy in Taiwan.

  18. Optimal Experience and Personal Growth: Flow and the Consolidation of Place Identity

    Science.gov (United States)

    Bonaiuto, Marino; Mao, Yanhui; Roberts, Scott; Psalti, Anastasia; Ariccio, Silvia; Ganucci Cancellieri, Uberta; Csikszentmihalyi, Mihaly

    2016-01-01

    This study examined the relationship between flow experience and place identity, based on eudaimonistic identity theory (EIT) which prioritizes self-defining activities as important for an individual’s identification of his/her goals, values, beliefs, and interests corresponding to one’s own identity development or enhancement. This study focuses on place identity, the identity’s features relating to a person’s relation with her/his place. The study is also based on flow theory, according to which some salient features of an activity experience are important for happiness and well-being. Questionnaire surveys on Italian and Greek residents focused on their perceived flow and place identity in relation to their own specific local place experiences. The overall findings revealed that flow experience occurring in one’s own preferred place is widely reported as resulting from a range of self-defining activities, irrespective of gender or age, and it is positively and significantly associated with one’s own place identity. Such findings provide the first quantitative evidence about the link between flow experienced during meaningfully located self-defining activities and identity experienced at the place level, similarly to the corresponding personal and social levels that had been previously already empirically tested. Results are also discussed in terms of their implications for EIT’s understanding and enrichment, especially by its generalization from the traditional, personal identity level up to that of place identity. More generally, this study has implications for maintaining or enhancing one’s own place identity, and therefore people–place relations, by means of facilitating a person’s flow experience within psychologically meaningful places. PMID:27872600

  19. Biomat flow: fluorescent dye field experiments, pore-scale modeling of flow and transport properties, and field-scale flow models

    Science.gov (United States)

    Gerke, K.; Sidle, R. C.; Mallants, D.; Vasilyev, R.; Karsanina, M.; Skvortsova, E. B.; Korost, D. V.

    2013-12-01

    Recent studies highlight the important role that the upper litter layer in forest soils (biomat) plays in hillslope and catchment runoff generation. This biomat layer is a very loose material with high porosity and organic content. Direct sampling is usually problematic due to limited layer thickness. Conventional laboratory measurements can mobilize solids or even cause structure failure of the sample thus making measurements unreliable. It is also difficult to assess local variation in soil properties and transition zones using these methods; thus, they may not be applicable to biomat studies. However, if the physics of flow through this layer needs to be quantified and incorporated into a model, a detailed study of hydraulic properties is necessary. Herein we show the significance of biomat flow by staining experiments in the field, study its structure and transition to mineral soil layer using X-ray micro-tomography, assess hydraulic properties and structure differences using a pore-scale modeling approach, and, finally, use conventional variably-saturated flow modeling based on Richards equation to simulate flow in the hillslope. Using staining tracers we show that biomat flow in forested hillslopes can extend long distances (lateral displacement was about 1.2 times larger than for subsurface lateral flow) before infiltration occurs into deeper layers. The three-dimensional structure of an undisturbed sample (4 x 3 x 2.5 cm) of both biomat and deeper consolidated soil was obtained using an X-ray micro-tomography device with a resolution of 15 um. Local hydraulic properties (e.g., permeability and water retention curve) for numerous layers (e.g., transition zones, biomat, mineral soil) were calculated using Stokes flow FDM solution and pore-network modeling. Anisotropy, structure differences, and property fluctuations of different layers were quantified using local porosity analysis and correlation functions. Current results support the hypothesis that small

  20. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    International Nuclear Information System (INIS)

    McBride, J.F.; Graham, D.N.

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs

  1. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

  2. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  3. Velocity profile variations in granular flows with changing boundary conditions: insights from experiments

    Science.gov (United States)

    Schaefer, Marius; Bugnion, Louis

    2013-06-01

    We present results of detailed velocity profile measurements in a large series of granular flow experiments in a dam-break setup. The inclination angle, bead size, and roughness of the running surface were varied. In all experiments, the downstream velocity profiles changed continuously from the head to the tail of the avalanches. On rough running surfaces, an inflection point developed in the velocity profiles. These velocity profiles cannot be modeled by the large class of constitutive laws which relate the shear stress to a power law of the strain rate. The velocity profile shape factor increased from the head to the tail of the avalanches. Its maximum value grew with increasing roughness of the running surface. We conclude that flow features such as velocity profiles are strongly influenced by the boundary condition at the running surface, which depends on the ratio of bead size to the typical roughness length of the surface. Furthermore, we show that varying velocity profile shape factors inside gravitationally driven finite-mass flows give rise to an additional term in the depth-averaged momentum equation, which is normally solved in the simulation software of hazardous geophysical flows. We therefore encourage time dependent velocity profile measurements inside hazardous geophysical flows, to learn about the importance of this "new" term in the mathematical modeling of these flows.

  4. Generation of high voltages in plasma flow switch experiments at ten megamperes

    International Nuclear Information System (INIS)

    Alme, M.L.; Bird, G.; Boyer, C.; Coffey, S.K.; Conte, D.; Davis, J.F.; Seiler, S.W.; Turchi, P.J.; Baker, W.L.; Degnan, J.H.

    1988-01-01

    The Plasma Flow Switch utilizes the dynamics of a plasma discharge in vacuum to accumulate magnetic energy in several microseconds and then release this energy to a load region of a new hundred nanoseconds. Experiments have previously been performed using the plasma flow switch on the Shiva Star capacitor bank to drive imploding plasma loads at multimegajoule, multimegampere levels. Recently, experiments have been conducted in which a portion of the switch plasma is used as the current carrying load. These experiments employed the Shiva Star capacitor bank, charged initially to 84 kV (4.6 MJ) to achieve currents in excess of 10 megamperes at the switch region. Comparisons of voltage measurements in the bank transmission line with numerical simulations (MACH2 computer code) indicate that the low density, very high speed flow in the switch supports voltages in excess of 0.5 megavolts at the coaxial gun muzzle. Measurements of hard X-radiation (> 10-100 keV) imply the existence of high energy electrons and are consistent with the generation of high voltages in the plasma flow switch. The relationship of the high voltage pulse and hard X-ray output to the dynamics of the magnetized plasma flow will be discussed

  5. Design and construction of an experiment for two-phase flow in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  6. Flow-induced decentering and tube support interaction for steam generator tubes: experiment and physical interpretation

    International Nuclear Information System (INIS)

    Gay, N.; Granger, S.

    1992-11-01

    Maintaining PWR components under reliable operating conditions requires a complex design to prevent various damaging processes including flow-induced vibration and wear mechanisms. To improve the prediction of tube/support interaction and wear in PWR components, EDF has undertaken a comprehensive program oriented to both experimental and computational studies. The present paper illustrates one aspect of this program, related to the determination of contact forces between steam generator tubes and anti-vibration bars (AVBs). The dynamic, nonlinear behavior of a U-tube excited by an air cross-flow is investigated on the CLAVECIN experiment. Interesting and rather unexpected results have been obtained, by varying clearances and flow velocities. The paper is focused on four main points: (i) the originality of the experiment with a force measurement device located in flow; (ii) the importance of a refined data processing for accurately measuring contact forces; (iii) the presentation of the unexpected phenomena revealed in the CLAVECIN experiment, i.e. a flow-induced decentering of the tube which changed the initial tube/AVB clearance, and the consequences on tube/support interaction; (iv) the influence of the actual tube/support clearance in flow on wear mechanisms. The work, presented in the second part of this paper, concentrates exclusively on the physical interpretation of the flow-induced decentering phenomenon and on the theoretical analysis of its consequences on dynamic tube/support interaction. We show that the flow-induced decentering phenomenon can be generated by an unstable quasi-static coupling between the flexible tube and the confined flow, in the vicinity of the support system. This phenomenon is not specific to the CLAVECIN tests and it can be expected every time that a movable obstacle is subjected to confined flow. Moreover, in single-sided impacting conditions, the theoretical analysis confirms the linear relation, found in the CLAVECIN tests

  7. Investigating Flow Experience and Scientific Practices During a Mobile Serious Educational Game

    Science.gov (United States)

    Bressler, Denise M.; Bodzin, Alec M.

    2016-10-01

    Mobile serious educational games (SEGs) show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. This study investigated whether a mobile SEG promotes flow experience and scientific practices with eighth-grade urban students. Students playing the game ( n = 59) were compared with students in a business-as-usual control activity ( n = 120). In both scenarios, students worked in small teams. Data measures included an open-ended instrument designed to measure scientific practices, a self-report flow survey, and classroom observations. The game players had significantly higher levels of flow and scientific practices compared to the control group. Observations revealed that game teams received less whole-class instruction and review compared to the control teams. Game teachers had primarily a guide-on-the-side role when facilitating the game, while control teachers predominantly used didactic instruction when facilitating the control activity. Implications for these findings are discussed.

  8. Emergence of a Barchan Belt in a Unidirectional Flow: Experiment and Numerical Simulation

    OpenAIRE

    Katsuki, Atsunari; Kikuchi, Macoto; Endo, Noritaka

    2004-01-01

    We observed time evolution of dune fields in a water tank experiment and simulated it by using a simple model without taking complex fluid dynamics into account. The initial sand bed changed its form into transverse ripples, that is, dunes with straight crest lines perpendicular to the flow direction. Then the crescentic shaped dunes called barchans emerged from transverse ripples.

  9. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  10. Model design and instrumentation experiences with continuous-flow cryogenic tunnels

    Science.gov (United States)

    Kilgore, R. A.

    1980-01-01

    The development of wind tunnels that can be operated at cryogenic temperatures has placed several new demands on the ability to build and instrument wind tunnel models. The experiences at the NASA Langley Research Center relative to the design and instrumentation of models for continuous flow cryogenic wind tunnels are reviewed.

  11. Power and Flow Experience in Time-Intensive Business Simulation Game

    Science.gov (United States)

    Kiili, Kristian; Lainema, Timo

    2010-01-01

    Power is an influential component of social interaction and there are reasons for thinking that it may have important effects both on decision-making and psychological and interpersonal processes. The aim of this paper was to study the relations between the feeling of power, decision-making and flow experience in a collaborative business…

  12. Empirical study on flow experience in China tourism e-commerce market

    Directory of Open Access Journals (Sweden)

    Jianling Wang

    2015-04-01

    Full Text Available Purpose: While tourism e-commerce develops rapidly in China, these channels are truly new to both web providers and web consumers, understanding the nature of these media attaches greater importance. This study investigates the mediation effects of flow experience on the relationship between motivation and behavior intention in tourism e-commerce.Design/methodology/approach: Based on the technology acceptance model, an empirical study is designed to test this relationship.we estimated the measurement model with 13 manifest indicators and 4 latent constructs by CFA to assess the reliability and validity of the construct measures, then tested hypotheses by OLS regression and a formal three-step mediation procedure.Findings: Overall, the results reveal that trust is incorporated in motivation and play it’s role together with other motivations; telepresence and concentration are confirmed in flow experience, and both partially mediated the relationship.Research limitations/implications: This study demonstrates that to improve consumers’ usage adoption, marketers should pay much attention to not only consumers’ motivation but also the areas such as flow experience.Originality/value: This study takes flow experience as a new perspective to explore china tourism e-commerce, estimates its measurement and tests its roles between motivation and behavior intention.

  13. Observable Flow Experience in a Two-Year-Old Japanese Child's Violin Playing

    Science.gov (United States)

    Akutsu, Taichi

    2018-01-01

    This study investigated the flow experience of Jiro, a 2-year-old Japanese boy, regarding his violin playing in a social context. In this study, Jiro's violin playing was videotaped at home and during musical sessions for young children and families, guided by the author as a violinist-teacher-researcher. The method adopted a single case study…

  14. Embedded-LES and experiment of turbulent boundary layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    An Embedded LES approach is used to numerically simulate fluctuating surface pressures on a floor-mounted cube in a turbulent boundary layer flow and compared to wind tunnel experiments. The computation were performed with the CFD software ANSYS FLUENT at a Reynolds number at cube height of Reh = 1...

  15. High School Physical Education: What Contributes to the Experience of Flow?

    Science.gov (United States)

    Stormoen, Sidsel; Urke, Helga Bjørnøy; Tjomsland, Hege Eikeland; Wold, Bente; Diseth, Åge

    2016-01-01

    This study seeks to identify factors that promote positive experiences in high school physical education (PE). The study combines elements of Self-determination Theory (SDT) with the theory of "flow". Special attention is given to gender differences. The study sample consisted of 167 Norwegian senior high school students (78 females and…

  16. Mercury Induces the Externalization of Phosphatidyl-Serine in Human Renal Proximal Tubule (HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2007-06-01

    Full Text Available The underlying mechanism for the biological activity of inorganic mercury is believed to be the high affinity binding of divalent mercuric cations to thiols of sulfhydryl groups of proteins. A comprehensive analysis of published data indicates that inorganic mercury is one of the most environmentally abundant toxic metals, is a potent and selective nephrotoxicant that preferentially accumulates in the kidneys, and is known to produce cellular injury in the kidneys. Binding sites are present in the proximal tubules, and it is in the epithelial cells of these tubules that toxicants such as inorganic mercury are reabsorbed. This can affect the enzymatic activity and the structure of various proteins. Mercury may alter protein and membrane structure and function in the epithelial cells and this alteration may result in long term residual effects. This research was therefore designed to evaluate the dose-response relationship in human renal proximal tubule (HK-2 cells following exposure to inorganic mercury. Cytotoxicity was evaluated using the MTT assay for cell viability. The Annexin-V assay was performed by flow cytometry to determine the extent of phosphatidylserine externalization. Cells were exposed to mercury for 24 hours at doses of 0, 1, 2, 3, 4, 5, and 6 μg/mL. Cytotoxicity experiments yielded a LD50 value of 4.65 ± 0.6 μg/mL indicating that mercury is highly toxic. The percentages of cells undergoing early apoptosis were 0.70 ± 0.03%, 10.0 ± 0.02%, 11.70 ± 0.03%, 15.20 ± 0.02%, 16.70 ± 0.03%, 24.20 ±0.02%, and 25.60 ± 0.04% at treatments of 0, 1, 2, 3, 4, 5, and 6 μg/mL of mercury respectively. This indicates a dose-response relationship with regard to mercury-induced cytotoxicity and the externalization of phosphatidylserine in HK-2 cells.

  17. Controlling mercury spills in laboratories with a thermometer exchange program

    Energy Technology Data Exchange (ETDEWEB)

    McLouth, Lawrence D.

    2002-03-25

    This paper presents a case for replacing mercury thermometers with their organic-liquid-filled counterparts. A review of liquid-in glass-thermometers is given. In addition, a brief summary of mercury's health effects and exposure limits is presented. Spill cleanup methods and some lessons learned from our experience are offered as well. Finally, an overview of the mercury thermometer exchange program developed at Lawrence Berkeley National Laboratory is presented.

  18. Characterizing soil preferential flow using iodine--starch staining experiments and the active region model

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Feng; Wang, Kang; Zhang, Renduo; Liu, Hui-Hai

    2009-03-01

    Thirteen iodine-starch staining experiments with different boundary conditions and measurement scales were conducted at two sites to study preferential flow processes in natural unsaturated soils. Digital imaging analyses were implemented to obtain the corresponding preferential flow patterns. The test results are used to evaluate a recently proposed active region model in terms of its usefulness and robustness for characterizing unsaturated flow processes at field scale. Test results provide useful insights into flow patterns in unsaturated soils. They show that flow pattern depends on the top boundary condition. As the total infiltrating-water depth increased form 20 mm to 80 mm for the 100 x 100 cm{sup 2} plots, the corresponding flow pattern changed from few preferential flow paths associated with a relatively small degree of stained coverage and a small infiltration depth, to a pattern characterized by a higher stained coverage and a larger infiltration depth, and to (finally) a relatively homogeneous flow pattern with few unstained area and a much larger infiltration depth. Test results also show that the preferential flow pattern became generally more heterogeneous and complex for a larger measurement scale (or size of infiltration plot). These observations support the general idea behind the active region model that preferential flow pattern in unsaturated soils are dynamic and depend on water flow conditions. Further analyses of the test results indicate that the active-region model is able to capture the major features of the observed flow pattern at the scale of interest, and the determined parameter values do not significantly depend on the test conditions (initial water content and total amount of infiltrating water) for a given test site. This supports the validity of the active region model that considers that parameter to be a property of the corresponding unsaturated soil. Results also show that some intrinsic relation seems to exist between active

  19. Mercury evaporation from amalgams with varied mercury contents.

    Science.gov (United States)

    Ohmoto, K; Nakajima, H; Ferracane, J L; Shintani, H; Okabe, T

    2000-09-01

    This study examined the relationship between mercury content and mercury evaporation from amalgams during setting. Two different types of commercial high-copper amalgams (single composition and admixed types) were used. Cylindrical specimens of each amalgam were prepared with five different mercury contents according to ADA Specification No.1. Specimens were also prepared by hand condensation. Mercury evaporation from amalgam specimens maintained at 37 degrees C was measured using a gold film mercury analyzer from 10 min after the end of trituration until the mercury concentration in air reached an undetectable level. The mercury content more clearly influenced the mercury evaporation from the admixed type amalgam specimens when the mercury content decreased below the manufacturers' recommended trituration conditions. Triturating with less mercury than the manufacturers' recommended amount cannot lower the evaporation of mercury from freshly made amalgam. Proper condensing procedures can minimize the mercury evaporation from the amalgam surface.

  20. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  1. DEVELOPING AND PROPOSING A CONCEPTUAL MODEL OF THE FLOW EXPERIENCE DURING ONLINE INFORMATION SEARCH

    Directory of Open Access Journals (Sweden)

    Lazoc Alina

    2012-07-01

    Full Text Available Information search is an essential part of the consumer`s decision making process. The online medium offers new opportunities and challenges for information search activities (in and outside the marketing context. We are interested in the way human information experiences and behaviors are affected by this. Very often online games and social web activities are perceived as challenging, engaging and enjoyable, while online information search is far below this evaluation. Our research proposal implies that using the online medium for information search may provoke enjoyable experiences through the flow state, which may in turn positively influence an individual`s exploratory information behavior and encourage his/her pro-active market behavior. The present study sets out to improve the understanding of the online medium`s impact on human`s exploratory behavior. We hypothesize that the inclusion of the online flow experience in our research model will better explain exploratory information search behaviors. A 11-component conceptual framework is proposed to explain the manifestations of flow, its personal and technological determinants and its behavioral consequence in the context of online information search. Our research has the primary purpose to present an integrated online flow model. Its secondary objective is to stimulate extended research in the area of informational behaviors in the digital age. The paper is organized in three sections. In the first section we briefly report the analysis results of the most relevant online flow theory literature and, drawing on it, we are trying to identify variables and relationships among these. In the second part we propose a research model and use prior flow models to specify a range of testable hypothesis. Drawing on the conceptual model developed, the last section of our study presents the final conclusions and proposes further steps in evaluating the model`s validity. Future research directions

  2. ELABORATING A MEASUREMENT INSTRUMENT FOR THE FLOW EXPERIENCE DURING ONLINE INFORMATION SEARCH

    Directory of Open Access Journals (Sweden)

    Caraivan Luiza

    2012-12-01

    Full Text Available Flow is a construct imported in marketing research from social sciences in order to examine consumer behavior in the online medium. The construct describes a state of deep involvement in a challenging activity, most frequently characterized by high levels of enjoyment, control and concentration. Researchers found that the degree to which online experience is challenging can be defined, measured, and related well to important marketing variables. As shown by our extensive literature review, flow measurements include antecedents, dimensions and consequences of flow. The present paper represents a detailed description of the construct`s operationalization in the context of online information search. In this respect, our main goal is to produce a basic instrument to evaluate the flow experience of online search, in order to capitalize on the premises of an interactive, complex informational medium – the World Wide Web – and on the consequence of an exploratory informational behavior of users. The instrument is conceived to offer a primal possibility to collect data. The composition, source and significance of the 11 scales used to measure the multiple factors of the flow experience during online search are detailed in this study with the aim to ensure the compliance with scientific rigors and to facilitate correct reports of data related to the reliability and validity of measurements. For further research, we propose factor analysis to test the resulted instrument and to ensure that the measures employed are psychometrically sound. Factor analysis refers to a wide range of statistic techniques used to represent a set of variables in concordance with a reduced number of hypothetical variables called factors. Factorial analysis is used to solve two types of problems: reducing the number of variables to increase data processing speed and identifying hidden patterns in the existent data relations. However, we expect our scales to perform

  3. Design of a high-lift experiment in water including active flow control

    International Nuclear Information System (INIS)

    Beutel, T; Schwerter, M; Büttgenbach, S; Leester-Schädel, M; Sattler, S; El Sayed, Y; Radespiel, R; Zander, M; Sinapius, M; Wierach, P

    2014-01-01

    This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development. (technical note)

  4. Collective Flow and Azimuthally Differential Pion Femtoscopy with the ALICE Experiment at the LHC

    CERN Document Server

    Loggins, Vera

    2014-04-15

    Since 2009, the Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN) has been conducting experiments in $pp$, Pb-Pb, as well as $p$-Pb collisions with the center of mass energy ranging $\\sqrt{{s}_{NN}}=0.9-5.05$~TeV. In this thesis, both, estimates of background correlations in anisotropic flow, $v_1-v_5$, measurements in Pb-Pb collisions at $\\sqrt{{s}_{NN}}=2.76$~TeV, and azimuthally differential pion femtoscopy of Pb-Pb collisions are reported. Two particle azimuthal correlations are statistically the most precise method of measuring anisotropic flow. The main drawback of this method is its sensitivity to the non-flow correlations, which unlike real flow, do not have geometrical origin. Non-flow contribution can be estimated from two particle azimuthal correlations using $pp$ data. Measurements of the non-flow contribution using the uQ method and Scalar Product (SP) method are reported for $pp$ collisions at $\\sqrt{{s}_{NN}}=2.76$~TeV and $\\sqrt{{s}_{NN}}=7$~TeV for the first ...

  5. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haiyan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chinese Academy of Sciences (CAS), Beijing (China); Lin, Hui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zheng, Wang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tomanicek, Stephen J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johs, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Xinbin [Chinese Academy of Sciences (CAS), Beijing (China); Elias, Dwayne A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liang, Liyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  6. The influence of cooling on the advance of lava flows: insights from analogue experiments on the feedbacks between flow dynamics and thermal structure

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2012-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and the eruptive mass flux. These two parameters are not known a priori during an eruption and a key question is how to evaluate them in near real-time (rather than afterwards.) There is no generic macroscopic model for the rheology of an advancing lava flow, and analogue modelling is a precious tool to empirically estimate the rheology of a complex flow. We investigate through laboratory experiments the simultaneous spreading and cooling of horizontal currents fed at constant rate from a point source. The materials used are silicone oil (isoviscous), and poly-ethylene glycol (PEG) wax injected in liquid state and solidiying during its advance. In the isoviscous case, the temperature field is a passive tracer of the flow dynamics, whereas in the PEG experiments there is a feedback between the cooling of the flow and its effective rheology. We focus on the evolution of the current area and of the surface thermal structure, imaged with an infrared camera, to assess how the thermal structure can be related to the flow rate. The flow advance is continuous in the viscous case, and follows the predictions of Huppert (1982); in that case the surface temperature become steady after a transient time and the radiated heat flux is shown to be proportional to the input rate. For the PEG experiments, the spreading occurs through an alternation of stagnation and overflow phases, with a mean spreading rate decreasing as the experiment goes on. As in the case of lava flows, these experiments can exhibit a compound flow field, solid levees, thermal erosion, liquid overflows and channelization. A key observation is that the effective rheology of the solifying PEG material depends on the input flow rate, with high input rates yielding a rheology closer to the

  7. Impact of intense rains and flooding on mercury riverine input to the coastal zone.

    Science.gov (United States)

    Dominika, Saniewska; Magdalena, Bełdowska; Jacek, Bełdowski; Michał, Saniewski; Karolina, Gębka; Marta, Szubska; Agnieszka, Wochna

    2018-02-01

    The aim of the present research was to determine the impact of intense rains and flooding on mercury riverine input to the coastal zone. This study focused on four small rivers (Reda, Zagórska Struga, Płutnica, Gizdepka), typical of the Southern Baltic region, with no significant mercury sources. Samples were collected for 16months during average flow conditions and during selected meteorological events: floods, downpours, thaws and droughts. Results showed decreased retention of mercury during intense rainfalls, thus demonstrating mercury elution from the catchment. Floods and melting snow also have a tremendous impact on the outflow of mercury from the catchment. Development of urban infrastructure and farmlands increases the outflow of mercury from the catchment too, making such areas a significant source of mercury in the river. On the other hand, areas with natural character, predominated by forests, stimulate retention of mercury that reaches them through dry and wet atmospheric deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  9. Flow Experience During Attentional Training Improves Cognitive Functions in Patients with Traumatic Brain Injury: An Exploratory Case Study

    Directory of Open Access Journals (Sweden)

    Kazuki Yoshida

    2014-12-01

    Conclusion: The results for Patient A suggested that the flow task was more effective than general OT for improving attention deficits. Moreover, the results for Patient B suggested that the flow task was more effective than the control task. Attention training inducing flow experience may thus facilitate improvement of attention.

  10. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  11. RECOVERY OF MERCURY FROM CONTAMINATED PRIMARY AND SECONDARY WASTES

    International Nuclear Information System (INIS)

    A. Faucette; J. Bognar; T. Broderick; T. Battaglia

    2000-01-01

    industrial waters, including Hg 21 , elemental mercury, methyl mercury, and colloidal mercury. The process is also showing very fast kinetics, which allows for higher flow rates and smaller treatment units

  12. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    Science.gov (United States)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  13. Are large-scale flow experiments informing the science and management of freshwater ecosystems?

    Science.gov (United States)

    Olden, Julian D.; Konrad, Christopher P.; Melis, Theodore S.; Kennard, Mark J.; Freeman, Mary C.; Mims, Meryl C.; Bray, Erin N.; Gido, Keith B.; Hemphill, Nina P.; Lytle, David A.; McMullen, Laura E.; Pyron, Mark; Robinson, Christopher T.; Schmidt, John C.; Williams, John G.

    2013-01-01

    Greater scientific knowledge, changing societal values, and legislative mandates have emphasized the importance of implementing large-scale flow experiments (FEs) downstream of dams. We provide the first global assessment of FEs to evaluate their success in advancing science and informing management decisions. Systematic review of 113 FEs across 20 countries revealed that clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam-operating policies. Furthermore, changes to dam operations were three times less likely when FEs were conducted primarily for scientific purposes. Despite the recognized importance of riverine flow regimes, four-fifths of FEs involved only discrete flow events. Over three-quarters of FEs documented both abiotic and biotic outcomes, but only one-third examined multiple taxonomic responses, thus limiting how FE results can inform holistic dam management. Future FEs will present new opportunities to advance scientifically credible water policies.

  14. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  15. Long-Lasting Science Returns from the Apollo Heat Flow Experiments

    Science.gov (United States)

    Nagihara, S.; Taylor, P. T.; Williams, D. R.; Zacny, K.; Hedlund, M.; Nakamura, Y.

    2012-01-01

    The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of reanalyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, approx 0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow

  16. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    Energy Technology Data Exchange (ETDEWEB)

    John Kramlich; Linda Castiglone

    2007-06-30

    mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

  17. The method of determination of mercury adsorption from flue gases

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2017-01-01

    Full Text Available For several recent years Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow conduct intensive studies on the occurrence of mercury contained in thermal and coking coals, as well as on the possible reduction of fossil-fuel mercury emissions. This research focuses, among others, on application of sorbents for removal of mercury from flue gases. In this paper we present the methodology for testing mercury adsorption using various types of sorbents, in laboratory conditions. Our model assumes burning a coal sample, with a specific mercury content, in a strictly determined time period and temperature conditions, oxygen or air flow rates, and the flow of flue gases through sorbent in a specific temperature. It was developed for particular projects concerning the possibilities of applying different sorbents to remove mercury from flue gases. Test stand itself is composed of a vertical pipe furnace inside which a quartz tube was mounted for sample burning purposes. At the furnace outlet, there is a heated glass vessel with a sorbent sample through which flue gases are passing. Furnace allows burning at a defined temperature. The exhaust gas flow path is heated to prevent condensation of the mercury vapor prior to contact with a sorbent. The sorbent container is positioned in the heating element, with controlled and stabilized temperature, which allows for testing mercury sorption in various temperatures. Determination of mercury content is determined before (coal and sorbent, as well as after the process (sorbent and ash. The mercury balance is calculated based on the Hg content determination results. This testing method allows to study sorbent efficiency, depending on sorption temperature, sorbent grain size, and flue-gas rates.

  18. Peru Mercury Inventory 2006

    Science.gov (United States)

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  19. A flume experiment on the lateral distribution of driftwood according to piece characteristics and flow patterns

    Science.gov (United States)

    Ghaffarian, Hossein; Lopez, Diego; Piegay, Hervé; Riviere, Nicolas; Ruiz-Villanueva, Virginia

    2017-04-01

    The presence of driftwood is one of the influential components in river dynamics, especially in forested catchments and fluvial corridors. As they are transported by the flow, driftwoods can be trapped in critical sections of river (e.g. bridges, weirs or floodplain edges) and may increase the destructive effects of floods. Whereas many recent studies provided significant results on wood transport and jam formation, limited knowledge is available on the lateral distribution of wood in the river section during transport according to flow pattern. In this work we investigate the influence of flow and wood characteristics on the lateral distribution of wood pieces in a controlled laboratory experiment. The experiments are carried out in a straight rectangular (6 m long and 0.80 m wide) glass-walled flume, where different surface velocity profiles and flow conditions can be generated. Natural stems and rootstocks of different sizes (5 to 15 cm long and 0.5 to 1.5 cm in diameter) are dropped at the flume entrance and tracked with a camera as they are carried away by the flow. In addition to the flow characteristics, a special attention is given to the wood properties, in order to identify the influence of buoyancy (that can vary due to the immersed time as well as the type of wood) and geometry (e.g. stems, rootstocks or both) on the lateral distribution. An estimation of driftwood preferential paths and stream lines could provide useful insights into driftwood management and the prevention of the associated risks.

  20. Supersonic plasma jets in experiments for radiophysical testing of bodies flow

    Science.gov (United States)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Lashkov, V. A.; Mashek, I. Ch; Pashchina, A. S.; Petrovskiy, V. P.; Khoronzhuk, R. S.; Dobrovolskaya, A. S.

    2018-01-01

    The action of differently oriented magnetic fields on the parameters of bow shock created in the vicinity of aerodynamic bodies placed into the supersonic gas-plasma flows is studied. For these experiments two types of the high speed plasma jet sources are used—magneto-plasma compressor (MPC) and powerful pulse capillary type discharge. MPC allows to create the plasma jets with gas flow velocity of 10 ± 2 km/s, lifetime 30–50 μs, temperature Te ≈ 3 ± 0.5 eV, electron density about ne ∼ 1016cm‑3 and temperature Te ≈ 3 ± 0.5 eV. The jet source based on powerful capillary discharge creates the flows with lifetime 1–20 ms, Mach numbers 3–8, plasma flow velocity 3–10 km/s, vibration and rotation temperatures 9000–14000 and 3800–6000 K respectively. The results of our first experiments show the possibility of using gas-plasma sources based on MPC and powerful capillary discharge for aerodynamic and radiophysical experiments. Comparatively small magnetic field B = 0.23–0.5 T, applied to the obtained bow shocks, essentially modify them. This can lead to a change in shape and an increase in the distance between the detached shock wave and the streamlined body surface if B is parallel to the jet velocity or to decrease this parameter if B is orthogonal to the oncoming flow. Probably, the first case can be useful for reducing the thermal load and aerodynamic drug of streamlined body and the second case can be used to control the radio-transparency of the plasma layer and solving the blackout problem.

  1. Field and laboratory experiments on high dissolution rates of limestone in stream flow

    Science.gov (United States)

    Hattanji, Tsuyoshi; Ueda, Mariko; Song, Wonsuh; Ishii, Nobuyuki; Hayakawa, Yuichi S.; Takaya, Yasuhiko; Matsukura, Yukinori

    2014-01-01

    Field and laboratory experiments were performed to examine dissolution rates of limestone in stream flow. Field experiments were conducted in three stream sites (A-C) with different lithological or hydrological settings around a limestone plateau in the Abukuma Mts., Japan. Sites A and B are allogenic streams, which flow from non-limestone sources into dolines, and site C has a karst spring source. Tablets made of limestone from the same plateau with a diameter of 3.5 cm and a thickness of 1 cm were placed in the streams for 3 years (2008-2011) where alkalinity, pH and major cation concentrations were measured periodically. The saturation indices of calcite (SIc) of stream water were - 2.8 ± 0.4 at site A, - 2.5 ± 0.4 at site B and - 0.5 ± 0.4 at site C. Annual weight loss ratios for tablets were extremely high at site A (0.11-0.14 mg cm- 2 d- 1), high at site B (0.05 mg cm- 2 d- 1), and low at site C (0.005 mg cm- 2 d- 1). The contrasting rates of weight loss are mainly explained by chemical conditions of stream water. In addition, laboratory experiments for dissolution of limestone tablets using a flow-through apparatus revealed that flow conditions around the limestone tablet is another important factor for dissolution in the stream environment. These results revealed that limestone dissolves at a rapid rate where water unsaturated to calcite continuously flows, such as in an allogenic stream.

  2. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.

    1985-01-01

    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  3. Theory of current-driven instability experiments in magnetic Taylor-Couette flows.

    Science.gov (United States)

    Rüdiger, Günther; Schultz, Manfred; Shalybkov, Dima; Hollerbach, Rainer

    2007-11-01

    We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.

  4. FLOW AND OPTIMAL EXPERIENCE: METHODOLOGICAL IMPLICATIONS FOR INTERNATIONALIZINGAND CONTEXTUALIZING A POSITIVE PSYCHOLOGY CONCEPT. PART 1

    Directory of Open Access Journals (Sweden)

    Grant Rich

    2016-12-01

    Full Text Available This article represents the first part of a two part series of articles focusing upon one core positive psychology concept - the peak experience termed flow developed by psychologist Mihaly Csikszentmihalyi - as a test case for examining some of the issues involved when positive psychology is internationalized and made indigenous. In particular, methodological, measurement, and theoretical issues regarding flow research will be discussed. Quantitative, qualitative and mixed methods approaches to flow, including interviews, surveys, and the experience sampling method among others will be described. Evidence is examined from a range of existing research projects on flow from around the globe, raising questions concerning the positive psychology enterprise, including the value of psychological assessment tools and the debate over cross-cultural universals/comparisons. Rather than viewing qualitative and quantitative approaches (or anthropological and psychological perspectives as rival factions, this project seeks to develop constructive dialogue that acknowledges both strengths and limitations of each approach to facilitate engagement with the topics of mixed methods and human strengths, subjects often neglected in cross-cultural research. The first part of the article series examines methodological implications of this positive psychology concept, and the second part of the article series focuses upon the cross-cultural implications.

  5. FLOW AND OPTIMAL EXPERIENCE: METHODOLOGICAL IMPLICATIONS FOR INTERNATIONALIZING AND CONTEXTUALIZING A POSITIVE PSYCHOLOGY CONCEPT. PART 2

    Directory of Open Access Journals (Sweden)

    Grant Rich

    2016-12-01

    Full Text Available This article represents the second part of a two part series of articles focusing upon one core positive psychology concept - the peak experience termed flow developed by psychologist Mihaly Csikszentmihalyi - as a test case for examining some of the issues involved when positive psychology is internationalized and made indigenous. In particular, methodological, measurement, and theoretical issues regarding flow research will be discussed. Quantitative, qualitative and mixed methods approaches to flow, including interviews, surveys, and the experience sampling method among others will be described. Evidence is examined from a range of existing research projects on flow from around the globe, raising questions concerning the positive psychology enterprise, including the value of psychological assessment tools and the debate over cross-cultural universals/comparisons. Rather than viewing qualitative and quantitative approaches (or anthropological and psychological perspectives as rival factions, this project seeks to develop constructive dialogue that acknowledges both strengths and limitations of each approach to facilitate engagement with the topics of mixed methods and human strengths, subjects often neglected in cross-cultural research. The first part of the article series examined methodological implications of this positive psychology concept, and this second part of the article series focuses upon the cross-cultural implications.

  6. The Relationship Between Personality Traits, Flow-Experience, and Different Aspects of Practice Behavior of Amateur Vocal Students.

    Science.gov (United States)

    Heller, Katharina; Bullerjahn, Claudia; von Georgi, Richard

    2015-01-01

    Most of the existing studies on musical practice are concerned with instrumentalists only. Since singers are seldom considered in research, the present study is based on an online-sample of amateur vocal students (N = 120; 92 female, 28 male). The study investigated the correlations between personality traits, flow-experience and several aspects of practice characteristics. Personality was represented by the three personality dimensions extraversion, neuroticism and psychoticism, assessed by Eysenck's Personality Profiler as well as the trait form of the Positive and Negative Affect Schedule. 'Flow-experience,' 'self-congruence' and 'fear of losing control over concentration,' assessed by the Practice Flow Inventory, served as variables for flow-experience. The practice motivation was measured by the Practice Motivation Questionnaire in four categories ('self,' 'group,' 'audience,' 'teacher'). In addition, the Practice Behavior Questionnaire was used to provide an insight into the practice situation and behavior of singing students. The results show significant correlations: participants with high extraversion-scores experience significantly more flow than less extraverted persons, whereas lesser flow-experience seems to be related to high neuroticism-scores. Nevertheless, there is no influence in flow-experience concerning singing style ('classical' or 'popular'). The longer the practicing time, the more likely students are to achieve flow-experience. However, older singers tend to have less flow-experience. Consequently, singers seem to differ in their personality and practice behavior compared to other musicians. Most of the findings show that having control over one's instrument is decisive for achieving a performance of high quality, especially for singers. On the other hand, certainty in handling an instrument is essential to arouse a flow-feeling. However, flow-experience seems to be common mainly with amateur singers. In conclusion, this offers a starting

  7. Is it all in the game? Flow experience and scientific practices during an INPLACE mobile game

    Science.gov (United States)

    Bressler, Denise M.

    Mobile science learning games show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. Using an embedded mixed methods design, this study investigated whether an INPLACE mobile game promotes flow experience, scientific practices, and effective team collaboration. Students playing the game (n=59) were compared with students in a business-as-usual control activity (n=120). Using an open-ended instrument designed to measure scientific practices and a self-report flow survey, this study empirically assessed flow and learner's scientific practices. The game players had significantly higher levels of flow and scientific practices. Using a multiple case study approach, collaboration among game teams (n=3 teams) were qualitatively compared with control teams (n=3 teams). Game teams revealed not only higher levels of scientific practices but also higher levels of engaged responses and communal language. Control teams revealed lower levels of scientific practice along with higher levels of rejecting responses and command language. Implications for these findings are discussed.

  8. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity

    Science.gov (United States)

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995

  9. Flow-assisted basophil activation tests in immediate drug hypersensitivity: two decades of Antwerp experience.

    Science.gov (United States)

    Mangodt, E A; Van Gasse, A L; Bastiaensen, A; Decuyper, I I; Uyttebroek, A; Faber, M; Sabato, V; Bridts, C H; Hagendorens, M M; De Clerck, L S; Ebo, D G

    2016-02-01

    The last two decades have witnessed that flow-assisted analysis of in vitro-activated basophils can constitute a valuable adjunct in the in vitro diagnostic approach of immediate drug hypersensitivity reactions (IDHR). This article summarises the current experience with the basophil activation test in the diagnosis of IDHR, with particular focus on allergy to curarising neuromuscular blocking agents, antibiotics (β-lactams and fluoroquinolones), iodinated radiocontrast media and opiates.

  10. Determination of Unsaturated Soil Hydraulic Properties by Transient Flow Experiments and Parameter Estimation

    OpenAIRE

    Kohno, Iichiro; Nishigaki, Makoto; Takeshita, Yuji

    1989-01-01

    The numerical feasibility of determining soil water retention and hydraulic conductivity functions simultaneously from one-dimensional transient flow experiments in the laboratory by parameter estimation method is evaluated. Soil hydraulic properties are assumed to be represented by van Genuchten's closed-form expressions involving two unknown parameters: coefficients α and n . These parameters are evaluated by nonlinear least-squares fitting of predicted and observed pressure head with...

  11. Experiment on effect of water flow velocity on migration of strontium

    International Nuclear Information System (INIS)

    Wang Zhiming; Guo Qian; Li Shushen; Jiao Zhilan; Meng Liping; Guo Zhiming

    2003-01-01

    Tracer migration experiment of stable elements, strontium, is conducted in both unsaturated and saturated columns with undisturbed loess. It is found from the experiment that retardation coefficient, R d , of Sr can be joined up very well. It can be seen that retardation coefficient, R d , of Sr in loess is not constant and increases with water flow velocity either in unsaturated columns or in saturated columns, as well as migration velocity of Sr at unit sprinkling rate decreases with sprinkling rate according to positions of either peaks or mass centers. It is shown that to use equilibrium adsorption model is not proper for describing migration of Sr in loess

  12. Possible interferences of mercury sulfur compounds with ethylated and methylated mercury species using HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Wilken, R.D.; Nitschke, F.; Falter, R.

    2003-01-01

    The HPLC-ICP-MS coupling technique is able to separate and detect methyl, ethyl and inorganic mercury isotopes specifically. An identification of ethyl mercury(+) is not possible when the widely used sodium tetraethylborate derivatisation method in combination with GC-AFS/AAS or ICP-MS techniques is performed because it contains ethyl groups. An unidentified compound with the same retention time as ethyl mercury was found in the HPLC chromatograms of industrial sewage samples and humic-rich soils of microcosm experiments after applying water vapour distillation. We also observed such unidentified peaks in samples of heavily contaminated sites in Eastern Germany, separated by HPLC fractionation only. In the experiments described, different mercury sulfur adducts were synthesised and tested for their retention times in the HPLC-ICP-MS system. It was found that the compound CH 3 -S-Hg + showed the same retention time as the ethyl mercury standard. It is therefore possible that ethyl mercury detected in chromatography by comparison of the retention time could also be due to an adduct of a sulfur compound and a mercury species. CH 3 -S-Hg + should be tested in other chromatographic mercury speciation methods for this effect. This work can also be regarded as a contribution to the discussion of artificially occurring methyl mercury in sediments during sample preparation. (orig.)

  13. Potential effects of elevated base flow and midsummer spike flow experiments on riparian vegetation along the Green River

    Science.gov (United States)

    Friedman, Jonathan M.

    2018-01-01

    The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow

  14. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian

    2017-10-01

    This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation

  15. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    Science.gov (United States)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  16. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  17. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  18. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  19. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    In this case report, intravenous complications, treatment strategies and possible ... Mercury toxicity is commonly associated with vapour inhalation or oral ingestion, for which there exist definite treatment options. Intravenous mercury ... personality, anxiousness, irritability, insomnia, depression and drowsi- ness.[1] However ...

  20. International mercury conference

    CSIR Research Space (South Africa)

    Leaner, J

    2006-10-01

    Full Text Available Mercury (Hg) affects human health and the environment, it calls for immediate action. Action is needed at local, regional and international level to reduce the risk associated with mercury, which is a global international problem, as it is a...

  1. Mercury's shifting, rolling past

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and Mariner 10 images revealed decades ago that lobate scarps are among the youngest features on Mercury. Why don't we find more evidence of older compressive features?

  2. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  3. Global Mercury Assessment 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    mercury pollution. This summary report and the accompanying. Technical Background Report for the Global. Mercury Assessment 2013 are developed in response to Decision 25/5, paragraph ... The use of different pollution control technologies in different ...... vegetation, snow, freshwater, and seawater. One of the largest ...

  4. Experiments on the flow field physics of confluent boundary layers for high-lift systems

    Science.gov (United States)

    Nelson, Robert C.; Thomas, F. O.; Chu, H. C.

    1994-01-01

    The use of sub-scale wind tunnel test data to predict the behavior of commercial transport high lift systems at in-flight Reynolds number is limited by the so-called 'inverse Reynolds number effect'. This involves an actual deterioration in the performance of a high lift device with increasing Reynolds number. A lack of understanding of the relevant flow field physics associated with numerous complicated viscous flow interactions that characterize flow over high-lift devices prohibits computational fluid dynamics from addressing Reynolds number effects. Clearly there is a need for research that has as its objective the clarification of the fundamental flow field physics associated with viscous effects in high lift systems. In this investigation, a detailed experimental investigation is being performed to study the interaction between the slat wake and the boundary layer on the primary airfoil which is known as a confluent boundary layer. This little-studied aspect of the multi-element airfoil problem deserves special attention due to its importance in the lift augmentation process. The goal of this research is is to provide an improved understanding of the flow physics associated with high lift generation. This process report will discuss the status of the research being conducted at the Hessert Center for Aerospace Research at the University of Notre Dame. The research is sponsored by NASA Ames Research Center under NASA grant NAG2-905. The report will include a discussion of the models that have been built or that are under construction, a description of the planned experiments, a description of a flow visualization apparatus that has been developed for generating colored smoke for confluent boundary layer studies and some preliminary measurements made using our new 3-component fiber optic LDV system.

  5. Prefrontal hemodynamic responses and the degree of flow experience among occupational therapy students during their performance of a cognitive task

    Directory of Open Access Journals (Sweden)

    Kazuki Hirao

    2014-09-01

    Full Text Available Purpose: Although flow experience is positively associated with motivation to learn, the biological basis of flow experience is poorly understood. Accumulation of evidence on the underlying brain mechanisms related to flow is necessary for a deeper understanding of the motivation to learn. The purpose of this study is to investigate the relationship between flow experience and brain function using near-infrared spectroscopy (NIRS during the performance of a cognitive task. Methods: Sixty right-handed occupational therapy (OT students participated in this study. These students performed a verbal fluency test (VFT while 2-channel NIRS was used to assess changes in oxygenated hemoglobin concentration (oxygenated hemoglobin [oxy-Hb] in the prefrontal cortex. Soon after that, the OT students answered the flow questionnaire (FQ to assess the degree of flow experience during the VFT. Results: Average oxy-Hb in the prefrontal cortex had a significant negative correlation with the satisfaction scores on the FQ. Conclusion: Satisfaction during the flow experience correlated with prefrontal hemodynamic suppression. This finding may assist in understanding motivation to learn and related flow experience.

  6. Evidence of Mercurial Contamination and Denundation Downstream of New Idria Mercury Mine, San Benito County, California

    Science.gov (United States)

    Letsinger, H. E.; Sharma, R. K.; Weinman, B.

    2014-12-01

    California's Central Valley water quality and soils are essential to the survival of the valley's communities and agriculture. Therefore, detection of possible contaminants within the valley streams and soils are paramount to the protection of this land and the people that depend upon it. Here we explore the impact of the contaminated stream beds near the New Idria Mercury Mine site, San Benito County, California. Previous work by Ganguli et al. (2000) has been done in this area to determine the mercury levels associated with the water that flows near the ghost town of New Idria. We performed geochemical analyses on the finer bed sediments from channels draining the area, as well as the coarser sediments taken from along the channel banks, to determine mercury transport downriver from the source. Using a novel application of tau, a mass transfer coefficient typically used in critical zone studies or soil production and weathering rates, we determine downstream weathering, accumulation, and transport of mercury. Our initial geochemical data showed higher tau values upstream as well as within the banks of the contaminated streambed and a greater accumulation of mercury near the pollution source (i.e., mine tailings, (τ ~ 103)). Tau results also show elevated mercurial levels existing downstream, with accumulations in mid- (τ ~ 102) and down-stream (τ ~ 10) reaches. Combining tau results with more traditional indices of chemical weathering (CIA) support consistent overall Hg-weathering processes with low levels of chemical weathering and higher dominance of coupled physical-anthropogenic weathering.

  7. Making Mercury's Core with Light Elements

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.

  8. Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation.

    Science.gov (United States)

    Sinha, Santanu; Bender, Andrew T; Danczyk, Matthew; Keepseagle, Kayla; Prather, Cody A; Bray, Joshua M; Thrane, Linn W; Seymour, Joseph D; Codd, Sarah L; Hansen, Alex

    2017-01-01

    We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate ( Q ) and the total pressure difference ([Formula: see text]) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold ([Formula: see text]), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop ([Formula: see text]). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.

  9. Simulation experiments for hot-leg U-bend two-phase flow phenomena

    International Nuclear Information System (INIS)

    Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.

    1986-01-01

    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions

  10. A feeling of flow: exploring junior scientists' experiences with dictation of scientific articles.

    Science.gov (United States)

    Spanager, Lene; Danielsen, Anne Kjaergaard; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2013-08-10

    Science involves publishing results, but many scientists do not master this. We introduced dictation as a method of producing a manuscript draft, participating in writing teams and attending a writing retreat to junior scientists in our department. This study aimed to explore the scientists' experiences with this process. Four focus group interviews were conducted and comprised all participating scientists (n = 14). Each transcript was transcribed verbatim and coded independently by two interviewers. The coding structure was discussed until consensus and from this the emergent themes were identified. Participants were 7 PhD students, 5 scholarship students and 2 clinical research nurses. Three main themes were identified: 'Preparing and then letting go' indicated that dictating worked best when properly prepared. 'The big dictation machine' described benefits of writing teams when junior scientists got feedback on both content and structure of their papers. 'Barriers to and drivers for participation' described flow-like states that participants experienced during the dictation. Motivation and a high level of preparation were pivotal to be able to dictate a full article in one day. The descriptions of flow-like states seemed analogous to the theoretical model of flow which is interesting, as flow is usually deemed a state reserved to skilled experts. Our findings suggest that other academic groups might benefit from using the concept including dictation of manuscripts to encourage participants' confidence in their writing skills.

  11. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n -hexane

    Science.gov (United States)

    Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2016-01-01

    We experimentally explore pressure-driven flow of water and n -hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n -hexane permeability in the hydrophobic compared to the hydrophilic nanopores.

  12. Comparisons of LES and RANS Computations with PIV Experiments on a Cylindrical Cavity Flow

    Directory of Open Access Journals (Sweden)

    Wen-Tao Su

    2013-01-01

    Full Text Available A comparison study on the numerical computations by large eddy simulation (LES and Reynolds-averaged Navier-Stokes (RANS methods with experiment on a cylindrical cavity flow was conducted in this paper. Numerical simulations and particle image velocimetry (PIV measurement were performed for two Reynolds numbers of the flow at a constant aspect ratio of H/R = 2.4 (R is the radius of the cylindrical cavity, and H is liquid level. The three components of velocity were extracted from 100 sequential PIV measured velocity frames with averaging, in order to illustrate the axial jet flow evolution and circulation distribution in the radial direction. The results show that LES can reproduce well the fine structure inside the swirling motions in both the meridional and the horizontal planes, as well as the distributions of velocity components and the circulation, in good agreement with experimental results, while the RANS method only provided a rough trend of inside vortex structure. Based on the analysis of velocity profiles at various locations, it indicates that LES is more suitable for predicting the complex flow characteristics inside complicated three-dimensional geometries.

  13. Recent experience with testing of parallel disc gate valves under accident flow conditions

    International Nuclear Information System (INIS)

    LaPointe, P.A.; Clayton, J.K.

    1992-01-01

    This paper presents the nuclear valve industry's latest and most extensive valve qualification test program experience. The test program includes a variety of 25 different gate and globe valves. All the test valves are power operated using either air, electric, or gas/hydraulic operators. The valves are categorized in size and pressure class so as to form a group of appropriate parent valve assemblies. Parent valve assembly qualification is used as the basis for qualification of candidate valve assemblies. The parent and candidate valve assemblies are representative of a nuclear plant's safety-related valve applications. The test program was performed in accordance with ANSI B16.41-1983 'Functional Qualification Requirements for Power Operated Active Valve Assemblies for Nuclear Power Plants.' The focus of this paper is on functional valve qualification test experience and specifically flow interruption testing to Annex G of the aforementioned test standard. Results of the flow test are summarized, including the coefficient of friction for each of the gate type valves reported. Information on valve size, pressure class, and actuator are given for all valves in the program. Although all valves performed extremely well, only selected test data are presented. The effects of the speed of operation and the effects of different fluid flow rates as they relate to the coefficient of friction between the valve disc and seat are discussed. The variation in the coefficient of friction based on other variables in the thrust equation, namely, differential pressure area is cited

  14. Validation of two-phase flow code THYC on VATICAN experiment

    International Nuclear Information System (INIS)

    Maurel, F.; Portesse, A.; Rimbert, P.; Thomas, B.

    1997-01-01

    As part of a comprehensive program for THYC validation (THYC is a 3-dimensional two-phase flow computer code for PWR core configuration), an experimental project > has been initiated by the Direction des Etudes et Recherches of Electricite de France. Two mock-ups tested in Refrigerant-114, VATICAN-1 (with simple space grids) and VATICAN-2 (with mixing grids) were set up to investigate void fraction distributions using a single beam gamma densitometer. First, experiments were conducted with the VATICAN-1 mock-up. A set of constitutive laws to be used in rod bundles was determined but some doubts still remain for friction losses closure laws for oblique flow over tubes. From VATICAN-2 tests, calculations were performed using the standard set of correlations. Comparison with the experimental data shows an underprediction of void fraction by THYC in disturbed regions. Analyses highlight the poor treatment of axial relative velocity in these regions. A fitting of the radial and axial relative velocity values in the disturbed region improves the prediction of void fraction by the code but without any physical explanation. More analytical experiments should be carried out to validate friction losses closure laws for oblique flows and relative velocity downstream of a mixing grid. (author)

  15. Validation of two-phase flow code THYC on VATICAN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maurel, F.; Portesse, A.; Rimbert, P.; Thomas, B. [EDF/DER, Dept. TTA, 78 - Chatou (France)

    1997-12-31

    As part of a comprehensive program for THYC validation (THYC is a 3-dimensional two-phase flow computer code for PWR core configuration), an experimental project <> has been initiated by the Direction des Etudes et Recherches of Electricite de France. Two mock-ups tested in Refrigerant-114, VATICAN-1 (with simple space grids) and VATICAN-2 (with mixing grids) were set up to investigate void fraction distributions using a single beam gamma densitometer. First, experiments were conducted with the VATICAN-1 mock-up. A set of constitutive laws to be used in rod bundles was determined but some doubts still remain for friction losses closure laws for oblique flow over tubes. From VATICAN-2 tests, calculations were performed using the standard set of correlations. Comparison with the experimental data shows an underprediction of void fraction by THYC in disturbed regions. Analyses highlight the poor treatment of axial relative velocity in these regions. A fitting of the radial and axial relative velocity values in the disturbed region improves the prediction of void fraction by the code but without any physical explanation. More analytical experiments should be carried out to validate friction losses closure laws for oblique flows and relative velocity downstream of a mixing grid. (author)

  16. Municipal actions to reduce mercury

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    This paper presented proper management practices for products containing mercury. The measures can help reduce mercury releases, occupational exposure and mercury spills, thereby preventing impacts on human health and the environment. Despite mercury's toxic nature, many common products that contain mercury are commercially available. These include thermostats, thermometers, fluorescent lamps, pressure measuring devices, electrical switches and relays, and dental amalgam. Mercury emissions are also associated with base metal smelting, waste incineration and coal-fired power generation. Mercury in the environment is a global issue, because it can travel in the atmosphere on wind currents. The actions taken by municipalities to address the issue include reducing or eliminating mercury releases from internal municipal operations and sources within the community. This document provided guidance on how to develop a Municipal Mercury Elimination Policy and Plan that will help reduce mercury releases. It presented information and case studies that will help municipalities manage mercury-containing products found in municipal buildings and street lighting. Information on sources of mercury from within the community was presented along with case studies that can help municipalities determine where community action is needed to reduce mercury releases. The 5 modules of this document were intended to help municipalities identify priorities, timelines and budget requirements for mercury initiatives. It was emphasized that municipalities that adopt a Municipal Mercury Elimination Policy and Plan formally commit to reducing and eliminating mercury from the environment. tabs., figs.

  17. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  18. The Effects of Autonomy-Supportive and Controlling Teaching Behaviour in Biology Lessons with Primary and Secondary Experiences on Students' Intrinsic Motivation and Flow-Experience

    Science.gov (United States)

    Hofferber, Natalia; Basten, Melanie; Großmann, Nadine; Wilde, Matthias

    2016-01-01

    Self-Determination Theory and Flow Theory propose that perceived autonomy fosters the positive qualities of motivation and flow-experience. Autonomy-support can help to maintain students' motivation in very interesting learning activities and may lead to an increase in the positive qualities of motivation in less interesting learning activities.…

  19. Removal of mercury from sludge using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.

    1984-01-01

    Laboratory scale batch tests and fluidized bed column tests show that ES-465 cation exchange resin removes >90% of the mercury from formated simulated sludge and formated high-level radioactive sludge. Similar experiments using formated simulated sludge which has been steam stripped indicated that the resin is capable of removing about 75% of the mercury from that system in the same time 90% could be removed from sludge which has not been steam stripped. The percent removed can be improved by operating at higher temperatures. Early batch experiments showed that abrasion from vigorous stirring of the sludge/ES-465 mixture caused the resin to degrade into particles too small to separate from the slurry after reaction. To protect the resin from abrasion, a resin-in-sludge mode of operation was designed wherein the sludge slurry contacts the resin by flowing through a bed retained between two screens in a column. The process has been demonstrated using both a 0.5 in. internal 0.5 in. diameter upflow column containing two milliliters of resin and a 6.4 in. internal diameter stirred bed downflow column containing one liter of resin

  20. Flow and transport at the Las Cruces trench site: Experiment IIb

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, J.; Hills, R.G. [New Mexico State Univ., Las Cruces, NM (United States); Wierenga, P.J.; Young, M.H. [Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science

    1997-07-01

    The US Nuclear Regulatory Commission (NRC) has been directed by Congress in the Low Level Waste Policy Act of 1980 to develop regulatory guidance and assist the individual states and compacts in siting and assessing future low level radioactive waste (LLW) disposal facilities. Three water flow and solute transport experiments were performed as part of a comprehensive field trench study near Las Cruces, New Mexico to test deterministic and stochastic models of vadose zone flow and transport. This report presents partial results from the third experiment (experiment IIb). Experiments IIa and b were conducted on the North side of the trench, on a plot 1.22 m wide by 12 m long, perpendicular to the trench. The area was drip irrigated during two time periods with water containing a variety of tracers. The advance of the water front during the two irrigation episodes was measured with tensiometers and neutron probes. Solute front positions were determined from soil solution sampling through suction samplers and from disturbed sampling. The results from experiment IIb show predominantly downward water movement through the layered unsaturated soil, as evidenced from neutron probe data and gravimetric sampling. Tritium plumes were only half as deep and half as wide as the water plumes at 310 days after the beginning of experiment IIb. Chromium, applied as Cr(VI), moved a readily as, and similar to tritium, but there was a loss of mass due to reduction of Cr(VI) to Cr(III). Chloride and nitrate, initially present at high concentrations in the soil solution, were displaced by the low concentration irrigation water, resulting in chloride and nitrate concentration distributions that looked like negative images of the tritium distributions. The extensive data presented should serve well as a data base for model testing.

  1. Flow and transport at the Las Cruces trench site: Experiment IIb

    International Nuclear Information System (INIS)

    Vinson, J.; Hills, R.G.; Wierenga, P.J.; Young, M.H.

    1997-07-01

    The US Nuclear Regulatory Commission (NRC) has been directed by Congress in the Low Level Waste Policy Act of 1980 to develop regulatory guidance and assist the individual states and compacts in siting and assessing future low level radioactive waste (LLW) disposal facilities. Three water flow and solute transport experiments were performed as part of a comprehensive field trench study near Las Cruces, New Mexico to test deterministic and stochastic models of vadose zone flow and transport. This report presents partial results from the third experiment (experiment IIb). Experiments IIa and b were conducted on the North side of the trench, on a plot 1.22 m wide by 12 m long, perpendicular to the trench. The area was drip irrigated during two time periods with water containing a variety of tracers. The advance of the water front during the two irrigation episodes was measured with tensiometers and neutron probes. Solute front positions were determined from soil solution sampling through suction samplers and from disturbed sampling. The results from experiment IIb show predominantly downward water movement through the layered unsaturated soil, as evidenced from neutron probe data and gravimetric sampling. Tritium plumes were only half as deep and half as wide as the water plumes at 310 days after the beginning of experiment IIb. Chromium, applied as Cr(VI), moved a readily as, and similar to tritium, but there was a loss of mass due to reduction of Cr(VI) to Cr(III). Chloride and nitrate, initially present at high concentrations in the soil solution, were displaced by the low concentration irrigation water, resulting in chloride and nitrate concentration distributions that looked like negative images of the tritium distributions. The extensive data presented should serve well as a data base for model testing

  2. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharges: Part I. Experimental

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Mullen, Joost J A M van der

    2004-01-01

    Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally, axial luminance distributions have been measured which are converted into axial mercury vapour pressure distributions by an appropriate calibration method. The mercury segregation has been investigated for variations in lamp tube radius (3.6-4.8 mm), argon buffer gas pressure (200-600 Pa) and lamp current (100-250 mA) at mercury vapour pressures set at the anode in the range from 0.2 to 9.0 Pa. From the experiments it has been concluded that the mercury vapour pressure gradient at any axial position for a certain lamp tube diameter, argon pressure and lamp current depends on the local mercury vapour pressure. This observation is in contrast to assumptions made in earlier modelling publications in which one mercury vapour pressure gradient is used for all axial positions. By applying a full factorial design, an empirical relation of the mercury segregation is found for any set of parameters inside the investigated parameter ranges

  3. Accumulation of mercury in Typha domingensis under field conditions.

    Science.gov (United States)

    Lominchar, M A; Sierra, M J; Millán, R

    2015-01-01

    Typha species is a common wetland plant used in the treatment of urban and industrial effluents. But, despite their widespread implementation, there are not many studies based on the behaviour of this plant growing in an areas affected by mercury. The present work investigates the ability of Typha domingensis to accumulate mercury under field conditions. The study area was along the Valdeazogues river which flows through the Almadén mining district (Ciudad Real, Spain) that is considered the largest mercury reservoir in the world. The mercury concentration in different plant fractions was measured as well as the available and total concentration in the bottom sediments. The results showed that the highest mercury concentrations were found in the belowground organs. T. domingensis had a high efficiency to accumulate mercury in their organs although available metal concentrations in the environment did not exceed 0.16 mg kg(-1). Bioaccumulation factors (BAF) ranged between 121 and 3168 in roots. Furthermore, significant correlations were found between mercury concentration in all plant organs and Hg in sediments (both total and available). These results demonstrated that T. domingensis could be used as a biomonitor as well as in phytoextraction technology in areas affected by mercury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Studies of Flow in Ionized Gas: Historical Perspective, Contemporary Experiments, and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2007-01-01

    Since the first observations that a very small ionized fraction (order of 1 ppm) could strongly affect the gas flow, numerous experiments with partially or fully wall-free discharges have demonstrated the dispersion of shock waves, the enhancement of lateral forces in the flow, the prospects of levitation, and other aerodynamic effects with vast potential of application. A review of physical effects and observations are given along with current status of their interpretation. Special attention will be given to the physical problems of energy efficiency in generating wall-free discharges and the phenomenology of filamentary discharges. Comments and case examples are given on the current status of availability of necessary data for modelling and simulation of the aerodynamic phenomena in weakly ionized gas

  5. Flow-through column experiments to determine the geochemical behavior of common hydrological tracers

    Science.gov (United States)

    Moola, P. S. N.; Sigfússon, B.; Stefansson, A.

    2015-12-01

    Tracer testing is one of the most effective methods used to study groundwater flow, reservoir characteristics and subsurface properties in geohydrology. Hydrological tracer tests were conducted with the basic assumption that the tracer is chemically inert and non-reactive. However, not all tracers behave non-reactive at different pH conditions, the particular tracer may interact with mineral surfaces in the reservoir. In order to study the geochemical behavior of some common hydrological tracers flow-through column experiments were conducted at 25°C. Six common hydrological tracers were investigated, amino G acid, fluorescein, napthionic acid, pyranine, rhodamine B and rhodamine G in porous rocks consisting of basaltic glass, quartz or rhyolite at pH 3, 6.5 and 9. Homogenous porous material of fixed grain size 45-125μm were dry packed in the column to conduct flow through column experiments. Tracers were pumped at fixed flow rates for 20 minutes and switched back to experimental blank solution and the tracer concentration monitored at the outlet. The measured break-through tracer curves were compared to theoretical 1-D reactive transport simulations calculated using the PHREEQC program (Parkhurst and Appelo, 1999). The data obtained from the breakthrough curves suggest that the tracers may be reactive, non-reactive and partially reactive depending on the rock type and solution pH. The tracers that were observed to be reactive showed the influence of adsorption and desorption. The results suggest that some tracers commonly used in ground water hydrology are not suitable under all conditions as they may react with the rocks of the groundwater system.

  6. Intermittent burst dynamics in porous media: experiments on slow drainage flows

    Science.gov (United States)

    Moura, Marcel; Jørgen Måløy, Knut; Toussaint, Renaud

    2017-04-01

    The intermittent burst dynamics during the slow drainage of an artificial quasi-2D porous medium is studied experimentally. We have verified a theoretically predicted scaling for the burst size distribution which was previously accessible only via numerical simulations. We show that this system satisfies a set of conditions known to be true for critical systems, such as intermittent activity with bursts extending over several time and length scales, self-similar macroscopic fractal structure and a scaling behavior for the power spectrum associated with pressure fluctuations during the flow. The observation of a 1/f scaling region in the power spectra is new for porous media flows and, for specific boundary conditions, we notice the occurrence of a transition from 1/f to 1/f2 scaling. An analytically integrable mathematical framework was employed to explain this behavior. References: [1] M. Moura, K. J. Måløy and R. Toussaint, Critical behavior in porous media flow, arXiv preprint (2016). [2] M. Moura, E.-A. Fiorentino, K. J. Måløy, G. Schäfer and R. Toussaint, Impact of sample geometry on the measurement of pressure-saturation curves: Experiments and simulations, Water Resour. Res., 51, 8900 (2015). [3] M. Cieplak and M. O. Robbins, Influence of contact angle on quasistatic fluid invasion of porous media, Phys. Rev. B, 41, 11508 (1990). [4] M. Moura, Burst dynamics in quasi-2D disordered systems: experiments on porous media two-phase flows, PhD thesis, University of Oslo (2016).

  7. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  8. Interactive effects of visuomotor perturbation and an afternoon nap on performance and the flow experience.

    Science.gov (United States)

    Kaida, Kosuke; Itaguchi, Yoshihiro; Iwaki, Sunao

    2017-01-01

    The present study was designed (1) to clarify the relationship between the flow experience and improvements in visuomotor skills, (2) to examine the effects of rotating the axis of a computer mouse on visuomotor skills, and (3) to investigate the effects of sleep for improving visuomotor skills. Participants (N = 18) responded to Perturbation and nap (PER+Nap), No-perturbation and nap (NoPER+Nap) and Perturbation and rest (PER+Rest) conditions. In the PER+Nap condition, participants conducted a visuomotor tracking task using a computer mouse, which was accompanied by perturbation caused by rotating the axis of their mouse. After the task, they took a 90 min nap. In NoPER+Nap condition, they conducted the same visuomotor task without any perturbation and took a nap. In the PER+Rest condition, participants conducted the task with the perturbation and took a 90 min break spent reading magazines instead of taking a nap. Results indicated (1) the flow experience did not occur when participants' skills and the degree of the visuomotor challenge were matching, (2) improvements of visuomotor skills occurred regardless of the perturbation, (3) improvements of visuomotor skills occurred unrelated to the flow experience, or to mood states, and (4) improvements of visuomotor performance occurred regardless of sleep. These findings suggest that improvements of visuomotor skills occur regardless of mood status and occur independently of perturbations by axis rotation. The study also suggests that the acquisition of skills is related to merely the time elapsed since learning, rather than to sleep.

  9. CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION

    Science.gov (United States)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2014-01-01

    The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful

  10. Interactive effects of visuomotor perturbation and an afternoon nap on performance and the flow experience.

    Directory of Open Access Journals (Sweden)

    Kosuke Kaida

    Full Text Available The present study was designed (1 to clarify the relationship between the flow experience and improvements in visuomotor skills, (2 to examine the effects of rotating the axis of a computer mouse on visuomotor skills, and (3 to investigate the effects of sleep for improving visuomotor skills. Participants (N = 18 responded to Perturbation and nap (PER+Nap, No-perturbation and nap (NoPER+Nap and Perturbation and rest (PER+Rest conditions. In the PER+Nap condition, participants conducted a visuomotor tracking task using a computer mouse, which was accompanied by perturbation caused by rotating the axis of their mouse. After the task, they took a 90 min nap. In NoPER+Nap condition, they conducted the same visuomotor task without any perturbation and took a nap. In the PER+Rest condition, participants conducted the task with the perturbation and took a 90 min break spent reading magazines instead of taking a nap. Results indicated (1 the flow experience did not occur when participants' skills and the degree of the visuomotor challenge were matching, (2 improvements of visuomotor skills occurred regardless of the perturbation, (3 improvements of visuomotor skills occurred unrelated to the flow experience, or to mood states, and (4 improvements of visuomotor performance occurred regardless of sleep. These findings suggest that improvements of visuomotor skills occur regardless of mood status and occur independently of perturbations by axis rotation. The study also suggests that the acquisition of skills is related to merely the time elapsed since learning, rather than to sleep.

  11. MESSENGER at Mercury: Early Orbital Operations

    Science.gov (United States)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  12. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  13. Experiments and Simulations of Fluid Flow in Heterogeneous Reservoir Models - Emphasis on Impacts from Crossbeds and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Boerresen, Knut Arne

    1996-12-31

    Hydrocarbon recovery from subsurface reservoirs has become increasingly dependent on advanced recovery techniques that require improved understanding of the physics of fluid flow within and across geological units including small-scale heterogeneities and fractures. In this thesis, impacts from heterogeneities on local fluid flow are studied experimentally by means of imaging techniques to visualize fluid flow in two dimensions during flooding of larger reservoir models. Part 1 reflects the multi-disciplinary collaboration, by briefly introducing the relevant geology, the literature on experiments on fluid flow in bedded structures, and outlining the applied numerical simulator and imaging techniques applied to visualize fluid flow. The second part contains a synopsis of displacement experiments in naturally laminated sandstones and in crossbed laboratory models, and of the impact from incipient shear fractures on oil recovery. The detailed results obtained from the experiments and simulations are described in six papers, all included. 215 refs., 108 figs., 16 tabs.

  14. Observations of flow path interactions with surface structures during initial soil development stage using irrigation experiments

    Science.gov (United States)

    Bartl, Steffen; Biemelt, Detlef; Badorreck, Annika; Gerke, Horst H.

    2010-05-01

    Structures and processes are dynamically linked especially during initial stages of soil and ecosystem development. Here we assume that soil pore structures and micro topography determine the flow paths and water fluxes as well as further structure changes. Reports about flow path developments at the soil surface are still limited because of an insufficient knowledge of the changing micro topography at the surface. The objective of this presentation is to evaluate methods for parameterisation of surface micro topography for analysing interactions between infiltration and surface runoff. Complex irrigation experiments were carried out at an experimental site in the neighbourhood of the artificially created water catchment "Chicken Creek". The irrigation rates between 160 mm/h and 250 mm/h were held constant over a time period of 20 minutes. The incoming intensities were measured as well as the raindrop-velocity and -size distributions. The surface runoff was continuously registered, soil samples were taken, and soil water potential heads were monitored using tensiometers. Surface and subsurface flow paths were identified using different tracers. The soil surface structures were recorded using a high resolution digital camera before, during, and after irrigation. Micro topography was surveyed using close-range photogrammetry. With this experimental design both, flow paths on the surface and in the soil as well as structure and texture changes could be observed simultaneously. In 2D vertical cross-sections, the effect of initial sediment deposition structure on infiltration and runoff was observed. Image analysis of surface pictures allowed identifying structural and soil textural changes during the runoff process. Similar structural changes related to surface flow paths were found with the photogrammetric surface analysis. We found evidence for the importance of the initial structures on the flow paths as well as a significant influence of the system development

  15. Permeable barrier materials for strontium immobilization: Unsaturated flow apparatus determination of hydraulic conductivity -- Column sorption experiments

    International Nuclear Information System (INIS)

    Moody, T.E.; Conca, J.

    1996-09-01

    Selected materials were tested to emulate a permeable barrier and to examine the (1) capture efficiency of these materials relating to the immobilization of strontium-90 and hexavalent chromium (Cr 6+ ) in Hanford Site groundwater; and (2) hydraulic conductivity of the barrier material relative to the surrounding area. The emplacement method investigated was a permeable reactive barrier to treat contaminated groundwater as it passes through the barrier. The hydraulic conductivity function was measured for each material, and retardation column experiments were performed for each material. Measurements determining the hydraulic conductivity at unsaturated through saturated water content were executed using the Unsaturated Flow Apparatus

  16. Inorganic: the other mercury.

    Science.gov (United States)

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.

  17. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  18. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H. [Pacific Northwest Lab., Richland, WA (United States); Randall, P.R. [Three Rivers Scientific, Richland, WA (United States); Wegener, W.H. [Hoquiam High School, Hoquiam, WA (United States)

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  19. Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: simulation by coupling Eulerian, Lagrangian and 3D random walks models

    Science.gov (United States)

    Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos

    2012-08-01

    Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the

  20. Hydraulic experiment on flow and topography change in harbor due to tsunami and its numerical simulation

    International Nuclear Information System (INIS)

    Fujii, Naoki; Ikeno, Masaaki; Sakakiyama, Tsutomu; Matsuyama, Masafumi; Takao, Makoto; Mukohara, Takeshi

    2009-01-01

    Numerical model of topography change is important to examine collapse of the harbor facilities by sand transport due to tsunami. Problems for evaluation of sand transport due to tsunami with topography change model are in precision of the numerical model and topography change data. Therefore, we installed the harbor in large-scaled wave tank and carried out experiment about tsunami flow and topography change to get those detailed data. For results provided by experimental test, we applied the topography change model of Ikeno et al. (2009a) and evaluated it about the reproduction characteristics. As a result, it was confirmed that reproduction of an experiment improved by using new pickup rate formula proposed by Ikeno et al. (2009a). (author)

  1. Development of an experiment for measuring film cooling performance in supersonic flows

    Science.gov (United States)

    Maqbool, Daanish

    This thesis describes the development of an experiment for acquiring supersonic film cooling performance data in canonical configurations suitable for code validation. A methodology for selecting appropriate experimental conditions is developed and used to select test conditions in the UMD atmospheric pressure wind tunnel that are relevant to film cooling conditions encountered in the J-2X rocket engine. A new technique for inferring wall heat flux with 10% uncertainty from temperature-time histories of embedded sensors is developed and implemented. Preliminary heat flux measurements on the uncooled upper wall and on the lower wall with the film cooling flow turned off suggest that RANS solvers using Menter's SST model are able to predict heat flux within 15% in the far-field (> 10 injection slot heights) but are very inaccurate in the near-field. However, more experiments are needed to confirm this finding. Preliminary Schlieren images showing the shear layer growth rate are also presented.

  2. Numerical simulation and comparison with experiment for self-excited oscillations in a diffuser flow

    Science.gov (United States)

    Hsieh, T.; Bogar, T. J.; Coakley, T. J.

    1985-01-01

    This paper describes numerical simulations of self-excited oscillations in a two-dimensional transonic diffuser flow obtained by solving the Navier-Stokes equations with a two-equation turbulence model. Comparisons were made between the computational results and experimental data. For the mean flowfields, the agreement between computation and experiment is good for the wall pressures, shock location, and the separation and reattachment points. However, the thickness of the computed recirculation zone is about 50 percent of the measured thickness. For the fluctuating flowfields, a great deal of qualitative similarity exists between the computation and experiment; however, the predicted oscillation frequency is about 50 percent higher than the measured value. The formation of a succession of downstream-traveling counter-rotating vortices, as seen experimentally, is also vividly displayed in the numerical results.

  3. The Experience at Russian Nuclear Sites of Modeling Groundwater Flow on Different Scales

    Science.gov (United States)

    Zinin, A.; Zinina, G.; Samsanova, L.; Vasilkova, N.; Alexandrova, L.; Drozhko, E.

    2001-12-01

    The experience of developing models of different scales to predict contaminant plume migration in ground waters is analyzed. The method of developing a three-dimensional transient model is demonstrated to estimate high-density solutions migrating from the surface storage of liquid radioactive waste, using a two-dimensional regional model for setting boundary conditions (Lake Karachay, PA "Mayak", Russia). The model is used to calculate three-dimensional transient distribution of pressure, density and concentrations of the dissolved admixtures in the non-confined aquifers. Interpolation is also specified to calculate boundary conditions parameters of the inserted models. The method of constructing a local filtration model is described to predict the contaminant plume spreading from the operating ground of deep burial of liquid radioactive wastes (The Siberian Chemical Plant, Seversk). The local model uses smaller grid gaps over time and space and a more detailed stratiographic division of the section as compared to the regional model intended to be used for estimating groundwater resourses. The flow distribution within the local model boundaries is described as the products of an average annual flow and periodical time function (function of monthly fluctuations) and the function of spatial variables. The parameters of the distribution function, represented on the local model grid by the values, were determined by solving the inverse problem. The sensivity analysis of the target function of the inverse problem to the small variations of the average annual flows is described.

  4. Cometary ion flow variations at comet P/Halley as observed by the Giotto IMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kettmann, G.; Ip, W.H.; Rosenbauer, H.; Schwenn, R. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (DE)); Balsiger, H.; Meier, A. (Bern Univ. (CH). Physikalisches Inst.); Goldstein, B.E. (California Inst. of Techn., Pasadena CA (US). Jet Propulsion Lab.); Shelley, E.G. (Lockheed Palo Alto Research Lab., CA (US))

    1990-03-01

    Using the combined data sets from the angle analyzer (AA) and the mass analyser (MA) of the Giotto IMS-HIS experiment, we have derived the three-dimensional plasma flow properties of cometary ions for masses {ge} 12 AMU. At cometocentric distances larger than 1.3 x 10{sup 5} km, the cometary ion temperature is very high (kT >{approx} 100 eV), and derivations of the flow parameters are uncertain. After crossing the magnetic pile-up boundary (MPB) at 23 : 30 SCET (Spacecraft Event Time), the ion temperature becomes lower (kT >{approx} 50 eV), and the flow speed can be evaluated to decrease gradually from {approx} 20-25 km s{sup -1} to {approx} 17 km s{sup -1} until 23 : 41 SCET (9 x 10{sup 4} km) at which point an abrupt drop to a value of {approx} 13 km s{sup -1} occurs. This velocity discontinuity coincides with the appearance of a cold ion population (kT {approx} 10 eV) mostly in the ram direction of the spacecraft. Around 23 : 49 SCET (5.5 x 10{sup 4} km), another velocity decrease occurs simultaneously with the disappearance of the hot ion component and an intensification of the colder one. These features are in agreement with the theoretical model of charge exchange loss of the hot cometary ions.

  5. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  6. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    Science.gov (United States)

    Mannheimer, R. J.; Grimley, T. A.; Park, J. T.; Morrow, T. B.

    1987-04-01

    The structure of non-Newtonian slurries in laminar, transitional, and turbulent flow regimes in pipes is studied. Experiments are conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm. Flow measurements including turbulence quantities such as Reynolds stress are taken with a two-component laser-Doppler velocimeter in a transparent test section with a transparent model slurry. Two transparent model slurries have been developed with non-Newtonian rheological properties. Silica gel particles with diameters on the order of one micron are suspended in two different hydrocarbon liquid mixtures with viscosities of 1.19 and 6.39 cS. In rheological measurements with a concentric cylinder viscometer, slurries from both liquid mixtures exhibited slip. From a linear regression analysis with a power-law model, slurries with the higher viscosity fluid had yield values of 80 and 30 dyn/sq cm for silica gel concentrations of 5.6 and 4.0% by weight, respectively, and the exponents were 0.584 and 0.763. The measured refractive index for the transparent slurries is 1.454 where the difference in refractive index between the fluid and silica gel is estimated to be less than 0.001. Bench scale tests with large diameter silica gel particles on the order of 100 microns have produced slurries with excessive turbidity. A silica gel manufactured by a different process which may form a less turbid slurry is currently under investigation.

  7. MESSENGER E/V/H MERCURY LASER ALTIMETER 2 EDR RAW DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Mercury Laser Altimeter (MLA) uncalibrated observations, also known as Experiment Data Records, or EDRs....

  8. Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow

    Directory of Open Access Journals (Sweden)

    Martin Ulrich

    2016-09-01

    Full Text Available Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus, and relative activation decreases of the medial prefrontal cortex and of the amygdala. In the present study, Dynamic Causal Modeling (DCM was used to explore effective connectivity between those brain regions. To test our hypothesis that the dorsal raphe nucleus causally down-regulates activity of the medial prefrontal cortex and/or of the amygdala, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A flow condition, with task demands automatically balanced with participants’ skill level, was compared with conditions of boredom and overload. DCM models were constructed modeling full reciprocal endogenous connections between the dorsal raphe nucleus, the medial prefrontal cortex, the amygdala, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the dorsal raphe nucleus, the medial prefrontal cortex, and the amygdala, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection was applied to identify a possible winning family (and model. Although Bayesian Model Selection revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the dorsal raphe nucleus on the medial prefrontal cortex when

  9. Challenges in modeling unstable two-phase flow experiments in porous micromodels

    Science.gov (United States)

    Meheust, Y.; Ferrari, A.; Jimenez-Martinez, J.; Le Borgne, T.; Lunati, I.

    2014-12-01

    The simulation of unstable invasion patterns in porous media flow is challenging since small perturbations tend to grow in time, so that slight differences in geometry or initial conditions potentially give rise to significantly different solutions. Here we present a detailed comparison of pore scale simulations and experiments of unstable primary drainage in porous micromodels. The porous medium consists of a Hele-Shaw cell containing cylindrical obstacles. Two experimental flow cells have been constructed by soft lithography, with different degrees of heterogeneity in the grain size distribution. To model two-phase flow at the pore scale, we solve Navier-Stokes equations for mass and momentum conservation in the discretized pore space and employ the Volume of Fluid (VOF) method to track the evolution of the interface. During drainage, if the defending fluid is the most viscous, viscous forces destabilize the interface, giving rise to the formation of preferential flow paths, in the form of a branched fingering structure. We test different numerical models (a 2D vertical integrated model and a full 3D model) and different initial conditions, studying their impact on the simulated spatial distributions of the fluid phases. Although due to the unstable nature of the invasion, small discrepancies between the experimental setup and the numerical model can result in different fluids patterns (see figure), simulations show a satisfactory agreement with the structures observed experimentally. To estimate the ability of the numerical approach to reproduce unstable displacement, we compare several quantities in both the statistical and deterministic sense. We demonstrate the impact of three main sources of uncertainty : i) the uncertainty on the pore space geometry, ii) the interface initialization and ii) three dimensional effects [1]. Simulations in weakly heterogeneous geometries are found to be more challenging because uncertainties on pore neck widths are on the same

  10. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    Science.gov (United States)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95-1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0

  11. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  12. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  13. Shale Micromodel Experiments: Fluid Flow and Mobilization using Supercritical CO2

    Science.gov (United States)

    Porter, M. L.; Carey, J. W.; Viswanathan, H.

    2014-12-01

    In recent years, use of engineered micromodels to investigate pore-scale fluid flow and transport phenomena to better understand and model field-scale observables has steadily increased. Micromodels are thin porous structures in which flow is restricted to two-dimensions and have become common since they are effective, relatively inexpensive tools for visualizing and quantifying complex flow phenomena. We describe a unique micromodel experimental system recently developed at Los Alamos National Laboratory (LANL). The system consists of a pressure chamber, which allows us to conduct experiments at geologic conditions. The maximum working pressure and temperature is 1500 psig and 80° C, respectively, allowing for supercritical carbon dioxide (scCO2) to be used as a working fluid. Additionally, we have developed micromodels fabricated in geomaterials (e.g., shale and Portland cement), whereas typical micromodels are fabricated in engineered materials such as glass or silicon. The use of geomaterial micromodels allows us to better represent the fluid-rock interactions including wetting angles and chemical reactivity at conditions representative of natural subsurface environments. In this work, we present experimental results in simple fracture systems (e.g., straight channels, pore doublets) with applications to hydrocarbon mobility in hydraulically fractured shale. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in different materials. In the straight channel micromodels, we investigate interfacial velocities and compare the results with theoretical models. In the pore doublet micromodels, we investigate mobilization of oil blobs and contrast the effectiveness of water and scCO2 in the extraction of hydrocarbon from fracture networks. Next, we present experimental results in complex fracture network patterns derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We discuss

  14. Long-term animal experiments with an intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H

    1997-01-01

    A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.

  15. In vitro oxidation of mercury by the blood

    International Nuclear Information System (INIS)

    Hursh, J.B.; Sichak, S.P.; Clarkson, T.W.

    1988-01-01

    A method is described for studying the in vitro oxidation of mercury vapour by red blood cells at short times and with diminishing mercury vapour concentrations. It is found that for 40% red blood cell suspensions and 37 deg. C at concentrations greater than about 6 ng mercury vapour/ml, the oxidation rate is zero order, and that at lower concentrations the rate changes to first order. The effect of temperature and of added hydrogen peroxide de are studied. Results a considered in terms of the generally accepted belief that the catalase-compound I system is the main path of oxidation. If the results obtained in vitro in these experiments apply in vivo to man, it follows that inhaled mercury is carried in the blood to the brain and organs primarily as dissolved vapour rather than as inorganic mercury ions. (author)

  16. In vitro oxidation of mercury by the blood

    Energy Technology Data Exchange (ETDEWEB)

    Hursh, J.B.; Sichak, S.P.; Clarkson, T.W.

    1988-01-01

    A method is described for studying the in vitro oxidation of mercury vapour by red blood cells at short times and with diminishing mercury vapour concentrations. It is found that for 40% red blood cell suspensions and 37 deg. C at concentrations greater than about 6 ng mercury vapour/ml, the oxidation rate is zero order, and that at lower concentrations the rate changes to first order. The effect of temperature and of added hydrogen peroxide de are studied. Results a considered in terms of the generally accepted belief that the catalase-compound I system is the main path of oxidation. If the results obtained in vitro in these experiments apply in vivo to man, it follows that inhaled mercury is carried in the blood to the brain and organs primarily as dissolved vapour rather than as inorganic mercury ions.

  17. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  18. Biographical ruptures and flows in the family experience and trajectory of children with cystic fibrosis.

    Science.gov (United States)

    Castellanos, Marcelo Eduardo Pfeiffer; Barros, Nelson Filice de; Coelho, Sandra Straccialano

    2018-02-01

    Biographical disruption (BD) became a core concept of sociological studies on the chronic illness experience by showing how this event can be strongly affected by ruptures in the ways of living and organizing the biographical trajectory through narratives. Critical reviews have pointed out that the widespread use of this concept was not sufficiently attentive to its analytical limits, e.g. addressing experiences of children with genetic diseases, when biographic flows (BF) rather than BD would be probably found. In this paper, we employed the concepts of BD and BF to analyze the relationships between the illness trajectories of children with cystic fibrosis (CF) and the experiences of their parents, taking into account the narratives about their histories and family contexts, drawn from semi-structured interviews with 10 children with CF and 14 family members. The results pointed to potentialities and limits of the concepts of BD and BF for the analysis undertaken in this study. We conclude that both concepts can be applied to the analysis of family experience involving child genetic diseases, provided that this occurs in a critical and sensitive way to subjects and contexts investigated, keeping in mind the more broader theoretical concerns.

  19. Mercury extraction by the TRUEX process solvent. II. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.; Todd, T.A.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 , from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . Because experiments described here show that mercury can be extracted from SBW and stripped from the solvent, a process has been developed to partition mercury from the actinides in SBW. 10 refs., 3 figs., 10 tabs

  20. Geochemical, Genetic, and Community Controls on Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  1. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

    International Nuclear Information System (INIS)

    Bondarenko, G G; Fisher, M R; Kristya, V I

    2012-01-01

    Simulation of the electron, ion and metastable excited atom transport in the argon-mercury mixture low-current discharge is fulfilled. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained and it is demonstrated that the principal mechanism of mercury ion generation is the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations show that the mercury and argon ion flow densities near the cathode are of the same order already under the relative mercury content of about 10 −4 corresponding at the argon pressure 10 3 Pa to the mixture temperature 30 C. Therefore, at the room temperature the electrodes of mercury illuminating lamps at the stage of their ignition are sputtered predominantly by mercury ions.

  2. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  3. Mercury in human hair

    International Nuclear Information System (INIS)

    Kapauan, P.A.; Cruz, C.C.; Verceluz, F.P.

    1980-10-01

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  4. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  5. Spontaneous and artificial generation of sheared flow in oblate FRCs in TS-3 and 4 FRC experiments

    International Nuclear Information System (INIS)

    Matsuyama, T.; Kawamori, E.; Ono, Y.; Tsuruda, M.; Sato, K.; Yamanoue, T.; Arimoto, K.; Itagaki, T.; Katsurai, M.

    2003-01-01

    Spontaneous formation of toroidal flow was measured for the first time in oblate FRCs produced in TS-3 and 4 experiments. The toroidal ion flow (V i ∼10km/sec) was found to peak around the magnetic axis, indicating formation of high flow shear inside the separatrix. The toroidal flow was observed to deform the magnetic field lines of the FRC, producing bipolar toroidal field profile. In high-s FRC (averaged number of ion gyro-radius 's'=4.5) with slow flow, its n=1 mode kept growing, causing collapse of the whole configuration. However, in low-s FRC (s=3) with fast flow, the rotating n=2 mode (saturated) became dominant after n=1 mode saturation. The spontaneous formation of flow shear possibly transformed the n=1 mode into the n=2 mode, suggesting a new sheared flow stabilization of n=1 mode. The flow shear was also generated artificially using the 'sling shot' effect of the counter helicity reconnection. The n=1 and 2 mode amplitudes were reduced down to 1/5-1/10 due to the generated flow shear. A new method for continuous sheared-flow generation was proposed for stabilization and heating of FRC by use of intermittent merging of spheromaks with opposing B t . (author)

  6. Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury

    Science.gov (United States)

    Aizawa, Sae; Delcourt, Dominique; Terada, Naoki

    2018-01-01

    We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they E × B drift across large-scale rolled up vortices. This energization is controlled by the characteristics of the electric field burst encountered along the particle path, the net energy change realized corresponding to the maximum E × B drift energy. This nonadiabatic energization also is responsible for prominent scattering of the particles toward the direction perpendicular to the magnetic field.

  7. Investigation of mixing enhancement in porous media under helical flow conditions: 3-D bench-scale experiments

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Ye, Yu; Cirpka, Olaf A.

    2017-01-01

    Lateral mass exchange at the fringe of solute plumes is a fundamental process leading to plume dilution and reactive mixing. Mass transfer between the plume and ambient water can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media [1-3]. We...... performed steady-state conservative tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution [4]. Helical flow was created by packing the porous medium in angled stripes of materials...... with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity. The hydraulic conductivity of the blocks was varied in different experiments. Solute concentrations and flow rates were measured at high spatial resolution for samples collected at 49 outlet ports. This allowed...

  8. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    Science.gov (United States)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  10. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry.

    Science.gov (United States)

    Dong, Xiaoling; Ma, Lena Q; Zhu, Yingjia; Li, Yuncong; Gu, Binhe

    2013-01-01

    We investigated the mechanisms of Hg sorption onto biochars produced from Brazilian pepper (BP; Schinus terebinthifolius) at 300, 450, and 600 °C using different analytical techniques. The Hg sorption capacity of BP300, BP450, and BP600 was 24.2, 18.8, and 15.1 mg g(-1) based on Langmuir isotherm. FTIR data suggested the participation of phenolic hydroxyl and carboxylic groups in Hg sorption by biochars. XPS analysis showed that 23-31% and 77-69% of sorbed Hg was associated with carboxylic and phenolic hydroxyl groups in biochars BP300-450, whereas 91% of sorbed Hg was associated with a graphite-like domain on an aromatic structure in BP600 biochar, which were consistent with flow calorimetry data. Based on flow calorimetry, sorption of K and Ca onto biochar was exchangeable with the molar heat of sorption of 3.1 kJ mol(-1). By comparison, Hg sorption was via complexation with functional groups as it was not exchangeable by K or Ca with molar heat of sorption of -19.7, -18.3, and -25.4 kJ mol(-1) for BP300, BP450, and BP600. Our research suggested that Hg was irreversibly sorbed via complexation with phenolic hydroxyl and carboxylic groups in low temperature biochars (BP300 and BP450) and graphite-like structure in high temperature biochar (BP600).

  11. New technological developments provide deep-sea sediment density flow insights: the Monterey Coordinated Canyon Experiment

    Science.gov (United States)

    O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.

    2017-12-01

    The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3

  12. Mercury pollution in Malaysia.

    Science.gov (United States)

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  13. Fabrication of mercury target vessel

    International Nuclear Information System (INIS)

    Wakui, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Futakawa, Masatoshi; Hayashi, Ryoichi; Uchiyama, Naoyoshi; Okamoto, Yoshinao; Nakamura, Koji

    2010-03-01

    The construction of materials and life science experimental facility in J-PARC (Japan Proton Accelerator Complex) project had been completed and accepted pulsed proton beams with low power. Since 2003, the detailed design, fabrication and examination for the mercury target vessel as a pulsed neutron source were carried out by the vender. The mercury target vessel consists of triple-walled structure in order to prevent the leak of mercury to outside at the failure of the mercury vessel and to remove the heat of the safety hull, which covers the mercury vessel, due to the injection of the pulsed proton beams. The high fabrication accuracy is required for the mercury target vessel assembled by the welding, because there are the relationships between the mercury target vessel and other components (target trolley, target storage container, flange of helium vessel, reflector and water-cooled shield). At each fabrication step, the examinations for the mercury target vessel with multi-walled structure were required. In this report, the required specification and basic structure of parts in the mercury target vessel are described and the fabrication procedure of the mercury target vessel by the vender is reported. In the fabrication of the mercury target vessel, there were many troubles such as large deformation due to the welding and then the vender repaired and brought the mercury target vessel to completion. Furthermore, improvements for the design and fabrication of the mercury target are reported. (author)

  14. [Open-top Chamber for in situ Research on Response of Mercury Enrichment in Rice to the Rising Gaseous Elemental Mercury in the Atmosphere].

    Science.gov (United States)

    Chen, Jian; Wang, Zhang-wei; Zhang, Xiao-shan; Qin, Pu-feng; Lu, Hai-jun

    2015-08-01

    In situ research was conducted on the response of mercury enrichment in rice organs to elevated gaseous elemental mercury (GEM) with open-top chambers (OTCs) fumigation experiment and soil Hg enriched experiment. The results showed that Hg concentrations in roots were generally correlated with soil Hg concentrations (R = 0.9988, P 0.05), indicating that Hg in rice roots was mainly from soil. Hg concentrations in stems increased linearly (R(B) = 0.9646, R(U) = 0.9831, P atmosphere respectively, and yet only 8%-56% of mercury in bottom-stem was attributed to air. Therefore, mercury in rice aboveground biomass was mainly from the atmosphere, and these results will provide theoretical basis for the regional atmospheric mercury budgets and the model of mercury cycling.

  15. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  16. Numerical simulations of the flow with the prescribed displacement of the airfoil and comparison with experiment

    Science.gov (United States)

    Řidký, V.; Šidlof, P.; Vlček, V.

    2013-04-01

    The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.

  17. NRC experiences in hydrocoin: An international project for studying ground-water flow modeling strategies

    International Nuclear Information System (INIS)

    Nicholson, T.J.; McCartin, T.J.; Davis, P.A.; Beyeler, W.

    1987-01-01

    The ''Hydrologic Code Intercomparison Study'' (HYDROCOIN) is an international study designed to investigate various ground-water modeling strategies used to analyze the performance of high-level waste disposal sites. The various ground-water models considered are to be used for safety assessments of low- and high-level radioactive waste facilities. The work completed to date has been simulations of test cases developed to verify and validate the numerical codes chosen by the individual project teams. Twenty-five computer codes were tested during the verification phase of the HYDROCOIN effort. To test the codes, seven cases, which include both saturated and unsaturated conditions in both fractured and porous media, were simulated. Simulation results from the 22 international project teams were then intercompared as well as compared to analytical solutions wherever possible. Current work deals with validation of ground-water flow models. After an exhaustive background study, it was determined that validation of complex ground-water flow models based upon a comprehensive data base is presently not possible. Therefore, the test cases accepted for the validation phase are for relatively simple ground-water flow systems where comparison of the simulation results are with limited field or laboratory data. Additionally, work dealing with uncertainty and sensitivity analyses has recently begun. This work explores appropriate ways of using hydrogeologic models in performance assessment by examining uncertainties in the conceptual models and the hydrogeologic parameters. Valuable lessons have been learned from the HYDROCOIN experiences in understanding limitations of the models, available data sets, and modeling strategies

  18. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2011-12-01

    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  19. Blockage and flow: intimate experiences of condoms and microbicides in a South African clinical trial.

    Science.gov (United States)

    Stadler, Jonathan; Saethre, Eirik

    2011-01-01

    Based on qualitative research undertaken during a phase-three microbicide gel trial, this paper explores female participants' experiences and perceptions of gel and condom use and the opinions of their male partners and community members. Participants were aware that condoms were effective in preventing HIV infection and that the efficacy of the microbicide was unproven. Yet, in narratives about gel and condom use, participants ascribed improvements to their reproductive health and intimate relationships with men to gel use. In contrast, condoms were believed to prevent disease, yet also embodied mistrust, were believed to contain dangerous substances and were felt to block the womb. These apparently contradictory views about condoms and gels are explored in the light of conceptions of flow and blockage. Health is achieved by maintaining a steady balance of substances within the body, while preventing fluid flow results in illness. We argue that women enrolled in the trial broadened the meaning of the gel beyond its primary intended effect of preventing HIV. Through their accounts of gel use, women 'reinvented' the gel as a substance that transformed their bodies and sexual relations. This has implications for understanding how local knowledge of health and illness intersects with biomedical knowledge.

  20. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  1. Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard

    2011-01-01

    The Hybrid-Laminar Flow Control (HLFC) Crossflow Experiment, completed in 1995. generated a large database of boundary layer stability and transition data that was only partially analyzed before data analysis was abruptly ended in the late 1990's. Renewed interest in laminar flow technologies prompted additional data analysis, to integrate all data, including some post-test roughness and porosity measurements. The objective is to gain new insights into the effects of suction on boundary layer stability. A number of challenges were encountered during the data analysis, and their solutions are discussed in detail. They include the effect of the probe vibration, the effect of the time-varying surface temperature on traveling crossflow instabilities, and the effect of the stationary crossflow modes on the approximation of wall location. Despite the low turbulence intensity of the wind tunnel (0.01 to 0.02%), traveling crosflow disturbances were present in the data, in some cases at amplitudes up to 1% of the freestream velocity. However, the data suggests that transition was dominated by stationary crossflow. Traveling crossflow results and stationary data in the presence of suction are compared with linear parabolized stability equations results as a way of testing the quality of the results.

  2. Rheology of wet granular materials in shear flow: experiments and discrete simulations

    Directory of Open Access Journals (Sweden)

    Badetti Michel

    2016-01-01

    Full Text Available The behaviour of wet granular media in shear flow is characterized by the dependence of apparent friction μ* and solid fraction ΦS on the reduced pressure P* and the inertia number I. Reduced pressure, P*= σ22a2/F0, compares the applied normal stress σ22 on grains of diameter a to the tensile strength of contact F0 (proportional to the surface tension Γ of the liquid and the beads diameter. A specifically modified rotational rheometer is used to characterize the response of model wet granular material (beads with diameter of submillimetric range to applied shear rate γ under controlled normal stress σ22. Discrete Element Method (DEM simulations in 3D are carried out in parallel and numerical results are compared with experimental ones. As P* is reduced, an increase of the apparent friction coefficient μ*=σ12/σ22, measured in the critical state and in slow flows with inertial effects is observed. While the agreement between experiments and simulations is good for dry materials as well as for wet materials in the quasistatic limit (I→0, some differences appear at finite I, for which some possible origins are discussed.

  3. Flow Characterization of a Detonation Gun Facility and First Coating Experiments

    Science.gov (United States)

    Henkes, C.; Olivier, H.

    2014-06-01

    A computer-controlled detonation gun based spraying device has been designed and tested to obtain particle velocities over 1200 m/s. The device is able to be operated in two modes based on different flow-physical principles. In one mode, the device functions like a conventional detonation gun in which the powder is accelerated in a blast wave. In the other mode, an extension of the facility with a nozzle uses the detonated gas for an intermittently operated shock tunnel process in which the particles are injected into and accelerated by a quasi-steady high enthalpy nozzle flow with high reservoir conditions. Presented are experimental results of the operation without nozzle in which the device generates moderate to high particle velocities in an intermittent process with a frequency of 5 Hz. A hydrogen/oxygen mixture and Cu and WC-Co (88/12) powders are used in the experiments. Operation performance and tube outflow are characterized by time-resolved Schlieren images and pressure measurements. The particle velocities in the outflow are obtained by laser Doppler anemometry. Different substrate/powder combinations (Al/Cu, Steel/Cu, Al/WC-Co, and Steel/WC-Co) have been investigated by light microscopy and measurements of microhardness.

  4. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Poellot, Michael [University of North Dakota

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellite program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.

  5. Degenerate two-phase incompressible flow problems III: Perturbation analysis and numerical experiments

    Directory of Open Access Journals (Sweden)

    Zhangxin Chen

    1999-12-01

    Full Text Available This is the third paper of a three-part series where we develop and analyze a finite element approximation for a degenerate elliptic-parabolic partial differential system which describes the flow of two incompressible, immiscible fluids in porous media. The approximation uses a mixed finite element method for the pressure equation and a Galerkin finite element method for the saturation equation. It is based on a regularization of the saturation equation. In the first paper cite{RckA} we analyzed the regularized differential system and presented numerical results. In the second paper cite{RckB} we obtained error estimates. In the present paper we describe a perturbation analysis for the saturation equation and numerical experiments for complementing this analysis.

  6. Performance study of the anisotropic flow and reaction plane reconstruction in the CBM experiment

    International Nuclear Information System (INIS)

    Mikhaylov, V; Kugler, A; Kushpil, V; Tlustý, P; Selyuzhenkov, I

    2016-01-01

    The Projectile Spectator Detector (PSD) is a subsystem of the CBM experiment at the future FAIR facility designed to determine centrality and reaction plane orientation in the heavy-ion collisions. It will be done by measurement of the energy distribution of the heavy nucleons and nuclei fragments emitted close to the beam rapidity in forward direction. For the anticipated beam energies of FAIR SIS100 and SIS300 accelerators, different event generators (iQMD, UrQMD, DCM-QGSM, LA-QGSM and HSD) were used for the study of directed and elliptic proton flow in Au+Au collisions. Produced particles were transported with the GEANT4 Monte-Carlo using the CBM detector geometry. Performance of the reaction plane determination is shown for different PSD setups to demonstrate effects of the detector granularity and magnetic field. Simulation results are compared with the FOPI, AGS E877, E895 and STAR experimental data. (paper)

  7. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  8. Mercury Emissions: The Global Context

    Science.gov (United States)

    Mercury emissions are a global problem that knows no national or continental boundaries. Mercury that is emitted to the air can travel thousands of miles in the atmosphere before it is eventually deposited back to the earth.

  9. The effect of mercury on baseline corticosterone in a breeding songbird.

    Science.gov (United States)

    Maddux, Sarah L; Cristol, Daniel A; Varian-Ramos, Claire W; Bradley, Eric L

    2015-02-01

    Although songbirds accumulate mercury at rates equivalent to better-studied aquatic avian species, effects of mercury bioaccumulation in songbirds remain understudied. Little is known about the effects of mercury on endocrine physiology, but recent evidence indicates that mercury may disrupt the function of the hypothalamic-pituitary-adrenal axis. Both field-based correlational studies and a recent dosing experiment suggest that mercury exposure alters levels of the primary avian stress hormone, CORT. We sampled zebra finches that had been dosed with 0, 0.5, or 1.0 ppm dietary methylmercury for baseline CORT twice; once during pairing and once after successfully fledging young. Circulating levels of CORT were not significantly affected by mercury exposure. However, our findings indicate potentially important differences in CORT responses between the sexes when exposed to environmentally relevant doses of mercury across the nesting cycle.

  10. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-15

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  11. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    International Nuclear Information System (INIS)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-01

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  12. Flow generated by an aerated rushton impeller: two-phase PIV experiments and numerical simulations

    NARCIS (Netherlands)

    Deen, N.G.; Solberg, Tron; Hjertager, H.

    2002-01-01

    A two-camera PIV technique was used to obtain angle resolved velocity and turbulence data of the flow in a lab-scale stirred tank, equipped with a Rushton turbine. Two cases were investigated: a single-phase flow and a gas-liquid flow. In the former case, the classical radial jet flow pattern

  13. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  14. Study of Multi-phase Flow in Porous Media : Comparison of SPH Simulations with Micro-model Experiments

    OpenAIRE

    Kunz, P.; Zarikos, I. M.; Karadimitriou, N. K.; Huber, M.; Nieken, U.; Hassanizadeh, S. M.

    2016-01-01

    We present simulations and experiments of drainage processes in a micro-model. A direct numerical simulation is introduced which is capable of describing wetting phenomena on the pore scale. A numerical smoothed particle hydrodynamics model was developed and used to simulate the two-phase flow of immiscible fluids. The experiments were performed in a micro-model which allows the visualization of interface propagation in detail. We compare the experiments and simulations of a quasistatic drain...

  15. Length Scales of Reactive Transport in Basalt: Hydrothermal Flow-through Experiments and Anhydrite Precipitation

    Science.gov (United States)

    Los, C.; Kahl, W. A.; Bach, W.

    2017-12-01

    Hydrothermal circulation is a large contributor to mass and heat exchange between oceanic lithosphere and hydrosphere. Cold, unaltered seawater infiltrates in the shallow basaltic crust, leading to sulfate precipitation and clogging of fluid pathways. Anhydrite (CaSO4) veins are common in hydrothermal discharge zones, where entrained seawater is heated and anhydrite quickly forms. Anhydrite is also found in hydrothermal recharge zones, but questions regarding time and length scale in this setting remain. To investigate element transport and anhydrite precipitation we have conducted flow-through experiments using a gypsum-undersaturated CaSO4 solution in pre-fractured basalt at 95, 110 and 140°C. Each run was terminated upon clogging of the input tubes, which took 2-8 weeks. The rock core was scanned before the run and weekly during the experiment using X-ray tomography. Fluid major element chemistry was analyzed using ICP-OES. Geochemical modeling with the software package EQ3/6 showed that the starting solution became supersaturated in anhydrite (SI=IAP/K of 2.5 or higher) in all cases upon heating to the experimental temperature. The software CRUNCH FLOW was used to analyze chemical effects over the length of the core (3cm). The 95°C run and a first run at 110°C did not show any anhydrite. Instead, hematite rosettes and sulfur-bearing (maximum of 1 wt.%) globular Fe-rich structures were present. Tomography images showed that fractures and pores were slightly thinned over the whole core length. Single pores in a second 110°C run and fractures in the 140°C run did show formation of anhydrite and quartz close to the outlet. CRUNCH FLOW modeling predicts the observed release of Mg, Fe, Si, Al, Na and K due to silicate dissolution close to the inlet, while the outlet area should contain some anhydrite. No other sulfur-bearing phases were predicted. The results of this study show that anhydrite needs a large supersaturation (SI>2.5) to precipitate at temperatures

  16. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  17. Mercury content of edible mushrooms

    Energy Technology Data Exchange (ETDEWEB)

    Woidich, H.; Pfannhauser, W.

    1975-05-01

    The mercury content of edible fungi is different. Relatively high burdened are Boletus and Agaricus campestris. A minimum of mercury is found in Russula, Agaricus bisporus and Cantharellus cibarius. The possibilities of mercury uptake and the potential cumulation mechanism is discussed. 8 references, 3 tables.

  18. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Mercury The Basics Mercury — sometimes called quicksilver — is a natural metal. It’s ... to breathe it in without knowing it. When mercury combines with other chemical elements, it creates compounds, ...

  19. Total mercury in fish, sediments and soil from the River Pra Basin, southwestern Ghana.

    Science.gov (United States)

    Oppong, S O B; Voegborlo, R B; Agorku, S E; Adimado, A A

    2010-09-01

    Total Mercury (Hg) concentrations were determined in soil, river sediments and six (6) species of fish from the River Pra Basin in southwestern Ghana by Cold Vapour Atomic Absorption Spectrometry. Mercury concentration (microg g(-1)) ranged from 0.042 to 0.145 for soil: from 0.390 to 0.707 for sediments and from Pra Basin are unlikely to constitute any significant mercury exposure to the public through consumption. No apparent trend of increasing mercury concentration along the main river as it flows downward toward the sea was observed.

  20. Comparison of the Mercury and earth magnetospheres - electron measurements and substorm time scales

    International Nuclear Information System (INIS)

    Christon, S.P.

    1987-01-01

    The present search for similarities between earth and Mercury plasma electron distribution and large-scale dynamics notes that both spectral shapes are similar to a kappa-distribution. A model distribution of this type which incorporates convective flow is used to simulate the observed plasma electron spectral variations near the Mariner 10-Mercury 1 A event; convection appears to be stronger before, rather than during, the A event, in contradiction to the Baker (1986) convective injection model for Mercury's two relativistic electron flux enhancements. Mercury's postmidnight energetic electron B and B-prime events seem to be multiple onsets in the course of a substorm. 65 references

  1. U.S. experience with hydrazine and flow-accelerated corrosion

    International Nuclear Information System (INIS)

    Merilo, M.; Munson, D.; Horowitz, J.S.; Bouchacourt, M.

    2002-01-01

    Flow-accelerated corrosion (FAC) has been studied intensely for the last 30 years. In most regards, the parametric behavior of FAC has been well understood since the eighties. However, recent experience showing the impact of hydrazine has challenged this understanding. Until the early 1990's, hydrazine levels at most U.S. PWRs had been low, typically around 20 ppb. Since the mid 1990's the U.S. trend has been to increase hydrazine concentration (> 100 ppb) to provide further protection the steam generators tubes from stress corrosion cracking. In the last five years, high concentrations of hydrazine have been shown in the laboratory to affect the rate of FAC. These experiments have demonstrated this effect although there remains considerable scatter in the data supporting this conclusion. It is believed that the impact of hydrazine is due to the change in the oxidizing-reducing potential of the solution, but there is no generally accepted theory to completely describe its behavior. Recently, plant experience has begun to support the laboratory data that high hydrazine does increase the rate of FAC. It should be noted that there are several factors affecting the rate of FAC. Since most plants have changed their water chemistry in recent years, it has been difficult to ''back-out'' the influence of hydrazine. But now, plant experience has clearly shown the impact of high hydrazine especially in the high temperature portions of the feedwater piping. This has been seen at two PWRs, discussed below, and perhaps at several others. This accelerated thinning of the feedwater piping is especially significant since feedwater piping is particularly expensive to inspect and to replace. In addition to the experience with piping, there has also been degradation reported in steam generators, particularly at Gravelines in France, possibly linked to high hydrazine. In order to deal with this issue, the EPRI computer program CHECWORKS was modified in 1998 to determine the local

  2. Sensing Mercury for Biomedical and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2009-07-01

    Full Text Available Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury.

  3. Experimental evaluation and set-up of a new apparatus designed for transitional flow experiments

    Directory of Open Access Journals (Sweden)

    Rozehnal Dalibor

    2012-04-01

    Full Text Available Experimental exercise has been conducted to validate the capability of a new test apparatus. The test stand has been designed and constructed at the laboratory of aerodynamics, University of Defence to carry out the experimental investigation of transitional flow prediction and development over flat plate. The test facility consists of a rectangular duct set on the suction side of air source apparatus. The working section is 2 m long with a cross section of 0.44 m in width and 0.25 m in height. The exercise is performed into two stages. In the first stage, the basic parameters such as freestream velocity, turbulence intensity and pressure gradient in streamwise direction were measured and manipulated to setup acceptable values. Second stage of the exercise, the bottom wall of the test section was used as a flat plate model to conduct turbulent boundary-layer experiment. The characteristics of the boundary layer obtained by using the apparatus are represented by a qualitative and quantitative agreement with those predicted by boundary-layer theory for turbulent boundary layer while more improvements seems to be required to satisfy the rules of boundary layer stability experiments. The results are show a fair agreement for mean velocity profile, U∞, boundary layer thickness, δ, momentum thickness, θ, and skin friction coefficient, Cf.

  4. Polymethylmethacrylate (PMMA) Material Test Results for the Capillary Flow Experiments (CFE)

    Science.gov (United States)

    Lerch, Bradley A.; Thesken, John C.; Bunnell, Charles T.

    2007-01-01

    In support of the Capillary Flow Experiments (CFE) program, several polymethylmethacrylate (PMMA) flight vessels were constructed. Some vessels used a multipiece design, which was chemically welded together. Due to questions regarding the effects of the experiment fluid (silicone oil) on the weld integrity, a series of tests were conducted to provide evidence of the adequacy of the current vessel design. Tensile tests were conducted on PMMA samples that were both in the as-received condition, and also aged in air or oil for up to 8 weeks. Both welded and unwelded samples were examined. Fracture of the joints was studied using notched tensile specimens and Brazilian disk tests. Results showed that aging had no effect on tensile properties. While the welded samples were weaker than the base parent material, the weld strength was found to be further degraded by bubbles in the weld zone. Finally a fracture analysis using the worst-case fracture conditions of the vessel was performed, and the vessel design was found to have a factor of three safety margin.

  5. A gaming approach to learning medical microbiology: students' experiences of flow.

    Science.gov (United States)

    Beylefeld, Adriana A; Struwig, Magdalena C

    2007-11-01

    There is a growing awareness in medical education of general skills(1) required for lifelong learning. Such skills are best achieved when students experience positive affective states while they are learning, as put forth by the Csikszentmihalyian theory of flow. This study describes how a quiz-type board game was used in the School of Medicine of the Faculty of Health Sciences at the University of the Free State to address students' negativity towards medical microbiology. The study population consisted of third-year medical students who had recently completed the Infections module of the undergraduate Learning Programme for Professional Medicine. Data gathered by means of two questionnaire surveys and direct observation showed that the game impacted positively on students' perceptions of and attitudes towards medical microbiology as a subject. A high perceived probability of the game contributing to the acquisition of general skills was recorded, since the experience of positive affect during the process of informal learning went hand-in-hand with heightened team effort and spontaneous communication. This article may be of value to health educators who wish to supplement formal teaching with informal learning so as to enhance not only the recall of factual knowledge, but also the advancement of general skills.

  6. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Um, Wooyong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Wang, Zheming [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Reinoso-Maset, Estela [Sierra; Washton, Nancy M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Mueller, Karl T. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Perdrial, Nicolas [Department; Department; O’Day, Peggy A. [Sierra; Chorover, Jon [Department

    2017-09-21

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  7. CFD code development for incompressible two-phase flow using two-fluid model: preliminary calculation and plume validation experiment

    International Nuclear Information System (INIS)

    Heo, B. G.; Jung, C. H.; Yoon, H. Y.; Yeo, D. J.; Song, C. H.

    2002-01-01

    A multidimensional numerical code for solving incompressible two-fluid is presented based on the Finite Volume Method (FVM) and the Simplified Marker And Cell (SMAC) method. Details of the present method and comparisons between the calculation and experiment are described for two-dimensional flow patterns of bubbly flow which show good agreement. Further implementations of the interfacial correlations are required for the application of the present code to various two-phase problems

  8. Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions Under Waves, Currents, and Combined Flows

    Science.gov (United States)

    2015-12-01

    different roughness (smooth PVC versus pitted steel) in unidirectional flow. In addition , based on flows resulting in initiation of motion, particle image...roughly 0.047 mm. The flume was temporarily narrowed to 0.55 m wide with cinder blocks and a plastic waterproof covering for these experiments (see...determining and recording even a small amount of movement by hand can become prohibitively time-consuming. In addition , while the movement of the cartridge

  9. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  10. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution.

    Science.gov (United States)

    Cordy, Paul; Veiga, Marcello M; Salih, Ibrahim; Al-Saadi, Sari; Console, Stephanie; Garcia, Oseas; Mesa, Luis Alberto; Velásquez-López, Patricio C; Roeser, Monika

    2011-12-01

    The artisanal gold mining sector in Colombia has 200,000 miners officially producing 30tonnes Au/a. In the Northeast of the Department of Antioquia, there are 17 mining towns and between 15,000 and 30,000 artisanal gold miners. Guerrillas and paramilitary activities in the rural areas of Antioquia pushed miners to bring their gold ores to the towns to be processed in Processing Centers or entables. These Centers operate in the urban areas amalgamating the whole ore, i.e. without previous concentration, and later burn gold amalgam without any filtering/condensing system. Based on mercury mass balance in 15 entables, 50% of the mercury added to small ball mills (cocos) is lost: 46% with tailings and 4% when amalgam is burned. In just 5 cities of Antioquia, with a total of 150,000 inhabitants: Segovia, Remedios, Zaragoza, El Bagre, and Nechí, there are 323 entables producing 10-20tonnes Au/a. Considering the average levels of mercury consumption estimated by mass balance and interviews of entables owners, the mercury consumed (and lost) in these 5 municipalities must be around 93tonnes/a. Urban air mercury levels range from 300ng Hg/m(3) (background) to 1million ng Hg/m(3) (inside gold shops) with 10,000ng Hg/m(3) being common in residential areas. The WHO limit for public exposure is 1000ng/m(3). The total mercury release/emissions to the Colombian environment can be as high as 150tonnes/a giving this country the shameful first position as the world's largest mercury polluter per capita from artisanal gold mining. One necessary government intervention is to cut the supply of mercury to the entables. In 2009, eleven companies in Colombia legally imported 130tonnes of metallic mercury, much of it flowing to artisanal gold mines. Entables must be removed from urban centers and technical assistance is badly needed to improve their technology and reduce emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio; Malek-Mohammadi, Siamak

    2013-01-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  12. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  13. Thermal Treatment of Mercury Mine Wastes Using a Rotary Solar Kiln

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2014-01-01

    Full Text Available Thermal desorption, by a rotary kiln of mercury contaminated soil and mine wastes, has been used in order to volatilize mercury from the contaminated medium. Solar thermal desorption is an innovative treatment that uses solar energy to increase the volatility of contaminants, which are removed from a solid matrix by a controlled air flow system. Samples of soils and mine wastes used in the experiments were collected in the abandoned Valle del Azogue mine (SE, Spain, where a complex ore, composed mainly of cinnabar, arsenic minerals (realgar and orpiment and stibnite, was mined. The results showed that thermal treatment at temperatures >400 °C successfully lowered the Hg content (2070–116 ppm to <15 mg kg−1. The lowest values of mercury in treated samples were obtained at a higher temperature and exposition time. The samples that showed a high removal efficiency (>99% were associated with the presence of significant contents of cinnabar and an equivalent diameter above 0.8 mm.

  14. Water Tank Experiments on Stratified Flow over Double Mountain-Shaped Obstacles at High-Reynolds Number

    Directory of Open Access Journals (Sweden)

    Ivana Stiperski

    2017-01-01

    Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.

  15. Immediate Flow Disruption as a Prognostic Factor after Flow Diverter Treatment: Long-term Experience with the Pipeline Embolization Device.

    Science.gov (United States)

    Dodier, Philippe; Frischer, Josa M; Wang, Wei-Te; Auzinger, Thomas; Mallouhi, Ammar; Serles, Wolfgang; Gruber, Andreas; Knosp, Engelbert; Bavinzski, Gerhard

    2018-02-22

    The authors report long-term results after PED implantation, characterize complex and standard aneurysms comprehensively and introduce a modified flow disruption scale. The authors retrospectively reviewed a consecutive series of 40 patients, harboring 59 aneurysms treated with 54 PEDs. Aneurysm complexity was assessed using our proposed classification. Immediate angiographic results were analyzed using previously published grading scales and our novel flow disruption scale (BD scale). Forty-six (78%) aneurysms were classified as complex according to our new definition. The vast majority of PED interventions was performed in the paraophthalmic and cavernous ICA segments. Excellent neurological outcome (mRS 0 and 1) was observed in 94% of patients. Our data demonstrate low permanent procedure-related mortality (0%) and morbidity rates (3%). The long-term angiographic follow-up showed complete occlusion in 81% and near total obliteration in further 14%. All standard aneurysms with one-year-follow-up achieved complete obliteration after deployment of a single PED. Our new BD scale was revealed as an independent predictor of aneurysm occlusion in a multivariable analysis. All aneurysms with a high flow disruption grade showed complete occlusion at follow-up irrespective of PED number or aneurysm complexity. Our data suggest that treatment with the Pipeline Embolization Device should be recognized as a primary management strategy for a highly selected cohort of predominantly complex intracranial aneurysms. We further show that a priori assessment of aneurysm complexity and our new post-interventional angiographic flow disruption scale predict the occlusion probability and may help to determine the adequate number of per-aneurysm devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  17. Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.

    2008-04-01

    Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution

  18. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    International Nuclear Information System (INIS)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T.

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent

  19. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  20. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  1. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    Science.gov (United States)

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base

  2. Ripples and Dunes in Directionally Varying Flows--Three Decades of Experiments, Theory, and Modeling (Invited)

    Science.gov (United States)

    Rubin, D. M.

    2013-12-01

    The morphology and dynamics of ripples and dunes have received considerable study for the past half-century, but most studies have focused on only the small subset of flows that are convenient to study in a lab: using flumes with flows that are constant in direction or wave tanks with flows that reverse by 180°. Many natural flows are free to change in direction by other angles (seasonal or daily cycles in wind direction; reversing wave-generated flows combined with alongshore currents; reversing tidal currents in curved channels; unsteady separated flows). A handful of studies have addressed a broader set of such flows using specialized lab setups (rotating beds in unidirectional flows; oscillating or pulsed beds in static or flowing water; unsteady flows that arise in channel expansions or topographic depressions). Other studies have applied theory or modeling (usually incorporating simplified relations between topography, flow, and sediment transport) to bedform morphology and orientation. The studies that have addressed this broader variety of natural flows have found that compared to the relatively sinuous barchanoid morphology of ripples and dunes in unidirectional flows, bedforms in bi-directional flows can have relatively long straight crests (wave ripples or linear dunes); and multi-directional flows have been shown to produce brick- or tile-pattern ripples under interfering waves, star dunes in deserts, and polygonal dunes within craters on Mars. The topic receiving most study in directionally varying flows is bedform orientation in bi-directional flows. A number of lab, field, theoretical, and modeling studies have found that bedforms arise with the orientation subject to maximum gross-normal transport, but some recent results suggest other orientations are possible where a bed is only partially covered in sand.

  3. Development of Methods for Obtaining Position Image and Chemical Binding Information from Flow Experiments of Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Haugan, Are

    1998-12-01

    Existing oil reservoirs might be more fully exploited if the properties of the flow of oil and water in porous media were better known. In laboratory experiments it is important to collect as much information as possible to make a descriptive model of the system, including position imaging and chemical binding information. This thesis develops nuclear methods for obtaining position image and chemical binding information from flow experiments of porous media. A combined positron emission tomography and single photon emission computed tomography system to obtain position images, and a time-differential perturbed angular correlation system to obtain chemical binding information, have been built and thoroughly tested. 68 refs., 123 figs., 14 tabs.

  4. Mercury-cycling in surface waters and in the atmosphere - species analysis for the investigation of transformation and transport properties of mercury

    International Nuclear Information System (INIS)

    Ebinghaus, R.; Hintelmann, H.; Wilken, R.D.

    1994-01-01

    The river Elbe has been one of the most contaminated rivers with regard to mercury for many years. In 1991 a length-profile has been measured for mercury and methylmercury (CH 3 Hg + ) from Obristvi, Czech Republic, to the German bight. Total mercury has been measured by cold vapor atomic absorption spectrometry (CVAAS). The organo mercury compounds have been separated by high performance liquid chromatography (HPLC) connected on-line to an atomic fluorescence spectrometer (AFS) by a continuous flow-system. Total mercury up to 120 mg Hg + /kg and CH 3 Hg + concentrations up to 130 μg CH 3 Hg + /kg could be detected in special sites. The formation of CH 3 Hg + in sediments can be caused besides the methylation of mercury, by sulphate reducing or methanogenic bacteria and transmethylation reactions with organometals. Atmospheric mercury concentrations have been measured at three different European sites. Samples have been collected on gold-coated glass balls or on quartz wool, respectively. After thermal desorption mercury has been determined using the two step amalgamation technique with AFS detection. Compared to natural background concentrations of total gaseous mercury (TGM), slightly increased levels could be detected at a rural site in Germany. This increase can probably be explained by long-range transport processes. Within the vicinity of a inactivated mercury production plant high concentrations of up to 13.5 ng/m 3 particle associated mercury (Hg part ) have been detected. Consequently, dry deposition of mercury in the particulate form can intensify the total deposition flux close to Hg-emitting sources. (orig.)

  5. Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments

    NARCIS (Netherlands)

    Krzeminska, D.M.; Bogaard, T.A.; Debieche, T.H.; Cervi, F.; Marc, V.; Malet, J.P.

    2014-01-01

    The unsaturated zone largely controls groundwater recharge by buffering precipitation while at the same time providing preferential flow paths for infiltration. The importance of preferential flow on landslide hydrology is recognised in the literature; however, its monitoring and quantification

  6. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  7. Mercury bioaccumulation and elimination by Xenomelanires brasiliensis - radioactive tracers technique

    International Nuclear Information System (INIS)

    Malagrino, Waldir; Mesquita, Carlos Henrique de; Sousa, Eduinetty Ceci P.M. de

    2002-01-01

    The present work has as main objective to emphasized the importance of using radioactive tracers as well as to establish a methodology for the utilization of 203 Hg in the bioaccumulation study of mercury by X enomelanires brasiliensis. The exposure time was 168 hours. The bioaccumulation of mercury from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 203 Hg, which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behavior of the stable mercury since the radioisotope used is an isotope of the same element and therefore presents the same chemical properties. The results obtained show that the absorption and elimination of mercury by Xenomelanires brasiliensis is slow, 168 hours being necessary for the elimination of 38 % of the previously absorbed mercury. The results are of main concern if it is considered that the literature about bioaccumulation of mercury by the Brazilian ichthyofauna is scarce. Furthermore the species Xenomelanires brasiliensis is part of the food chain and the results can be used in the evaluation of the potential risk of the mercury bioaccumulation by fishes of higher trophic levels and by men who are the final link of the food chain. (author)

  8. Structure - Slug Flow Coupling: Small Scale Experiments with Submerged Flexible Pipes

    OpenAIRE

    Mohamed Hemeda, Amr Khalil Hemeda Khalil

    2015-01-01

    Multiphase flows include several flow regimes that exist with different conditions. The time varying forces in flexible pipes conveying two-phase flows results in very dynamic structural behavior. These varying forces contribute to fatigue stresses which have a major effect on a riser life time. Studying the dynamic response of flexible pipes conveying two-phase flows can reveal crucial information regarding induced vibrations and oscillations in risers. These information can be utilized i...

  9. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  10. Soil pipe flow tracer experiments: 2. Application of a transient storage zone model

    Science.gov (United States)

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  11. Characterization of gas flow through low-permeability clay-stone: laboratory experiments and two-phase flow analyses

    International Nuclear Information System (INIS)

    Senger, R.K.; Romero, E.; Ferrari, A.; Marschall, P.L.

    2012-01-01

    Document available in extended abstract form only. The characterization of gas migration through a low-permeability clay host rock for repositories is important because significant amounts of waste-generated gas are expected to migrate from low- and intermediate-level waste (L/ILW) and high-level waste (HLW) repositories into the surrounding host rock. In order to assess the long-term safety of the repository, a comprehensive understanding of the relevant transport phenomena of gas flow through low-permeability clay is required. The assessment of gas migration from the repository is done through large-scale numerical models which incorporate the two-phase flow and associated constitutive models needed to properly represent the relevant processes. The National Cooperative for the Disposal of Radioactive Waste (NAGRA), Switzerland has proposed the Opalinus Clay (OPA) as one of the host rocks for the Stage 1 of the Sectoral Plan process. For this, Nagra has developed a comprehensive program to characterize gas flow through the Opalinus Clay through laboratory tests to determine the relevant hydraulic, geomechanical, and two-phase properties and detailed analyses for developing appropriate constitutive models. Laboratory tests on OPA cores from the borehole BHG-D1 borehole in Mont Terri were performed by two different laboratories. Whereas EPFL focused on retention behaviour and geomechanical tests, UPC performed specific water and air injection tests to determine single-phase liquid and two-phase properties. Oedometer tests were performed by both laboratories to study rock compressibility at different stress levels and water permeability dependency on void ratio. The retention data measured by EPFL and UPC were comparable and could be fitted with a van Genuchten model using the same parameters. The focus of this paper is on the air-injection test, which was performed on two core samples with flow parallel and perpendicular to bedding. Figure 2 shows the time evolution

  12. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    International Nuclear Information System (INIS)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-01

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  13. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-15

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  14. TOPFLOW-experiments, development and validation of CFD models for steam-water flows with phase transfer. Final report

    International Nuclear Information System (INIS)

    Lucas, D.; Beyer, M.; Krepper, E.

    2011-11-01

    The aim of the project was the qualification of CFD codes for steam-water flows with phase transfer. While CFD methods for single-phase flows are already widely used for industrial applications, a corresponding use for two-phase flows is only at the beginning due to the complex structure of the interface and the related interactions between the phases. For the further development and validation of appropriate closure models, experimental data with high spatial and temporal resolution are required. Such data were obtained at the TOPFLOW test facility of HZDR by combination of experiments at realistic parameters for the nuclear reactor safety (large scales, high pressures and temperatures) with innovative measuring techniques. The wire-mesh sensor technology, which provides detailed information on the structure of the interface, was applied in adiabatic air-water experiments as well as in condensation and pressure relief experiments in a large DN200 pipe. As the result of the project, extensive databases with high quality are available. The technology for the fast X-ray tomography, which allows measurements without influencing the flow, was further developed and successfully applied in a first test series. High-resolution data were also obtained from experiments in a model of the hot leg of a pressurized water reactor for different flow situations, including counter-current flow limitation. For the corresponding steam-water experiments conducted at pressures of up to 5 MPa, the newly developed pressure tank technology was successfully used for the first time. For the qualification of CFD codes for two-phase flows the Inhomogeneous MUSIG model was extended in co.operation with ANSYS to consider phase transfer and validated on the basis of the above mentioned TOPFLOW experiments. In addition, improvements were achieved e.g. for turbulence modelling in bubbly flows and simulations were done to validate models for bubble forces and bubble coalescence and breakup. A

  15. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  16. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  17. Mercury analysis in hair

    DEFF Research Database (Denmark)

    Esteban, Marta; Schindler, Birgit Karin; Jiménez, José Antonio

    2015-01-01

    laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0...

  18. Mercury exposure in Ireland

    DEFF Research Database (Denmark)

    Cullen, Elizabeth; Evans, David S; Davidson, Fred

    2014-01-01

    of a study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES) pilot biomonitoring study. METHODS: Hair mercury concentrations were determined from a convenience sample of 120 mother/child pairs. Mothers also completed a questionnaire. Rigorous quality assurance within DEMOCOPHES...

  19. Metabolic models for methyl and inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.R.; Purdue, P.

    1984-03-01

    Following the outbreak of mercury poisoning in Minimata, Japan (1953-60), much work has been done on the toxicology of mercury - in particular methyl mercury. In this paper, the authors derive two compartmental models for the metabolism of methyl mercury and inorganic mercury based upon the data which have been collected since 1960.

  20. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    Science.gov (United States)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  1. Flow-sediment-large woody debris interplay: Introducing an appropriately scaled laboratory experiment

    Science.gov (United States)

    Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.

    2017-12-01

    The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.

  2. [Mercury in vaccines].

    Science.gov (United States)

    Hessel, Luc

    2003-01-01

    Thiomersal, also called thimerosal, is an ethyl mercury derivative used as a preservative to prevent bacterial contamination of multidose vaccine vials after they have been opened. Exposure to low doses of thiomersal has essentially been associated with hypersensitivity reactions. Nevertheless there is no evidence that allergy to thiomersal could be induced by thiomersal-containing vaccines. Allergy to thiomersal is usually of delayed-hypersensitivity type, but its detection through cutaneous tests is not very reliable. Hypersensitivity to thiomersal is not considered as a contraindication to the use of thiomersal-containing vaccines. In 1999 in the USA, thiomersal was present in approximately 30 different childhood vaccines, whereas there were only 2 in France. Although there were no evidence of neurological toxicity in infants related to the use of thiomersal-containing vaccines, the FDA considered that the cumulative dose of mercury received by young infants following vaccination was high enough (although lower than the FDA threshold for methyl mercury) to request vaccine manufacturers to remove thiomersal from vaccine formulations. Since 2002, all childhood vaccines used in Europe and the USA are thiomersal-free or contain only minute amounts of thiomersal. Recently published studies have shown that the mercury levels in the blood, faeces and urine of children who had received thiomersal-containing vaccines were much lower than those accepted by the American Environmental Protection Agency. It has also been demonstrated that the elimination of mercury in children was much faster than what was expected on the basis of studies conducted with methyl mercury originating from food. Recently, the hypothesis that mercury contained in vaccines could be the cause of autism and other neurological developmental disorders created a new debate in the medical community and the general public. To date, none of the epidemiological studies conducted in Europe and elsewhere

  3. Mercury Information Clearinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  4. Two-dimensional numerical experiments with DRIX-2D on two-phase-water-flows referring to the HDR-blowdown-experiments

    International Nuclear Information System (INIS)

    Moesinger, H.

    1979-08-01

    The computer program DRIX-2D has been developed from SOLA-DF. The essential elements of the program structure are described. In order to verify DRIX-2D an Edwards-Blowdown-Experiment is calculated and other numerical results are compared with steady state experiments and models. Numerical experiments on transient two-phase flow, occurring in the broken pipe of a PWR in the case of a hypothetic LOCA, are performed. The essential results of the two-dimensional calculations are: 1. The appearance of a radial profile of void-fraction, velocity, sound speed and mass flow-rate inside the blowdown nozzle. The reason for this is the flow contraction at the nozzle inlet leading to more vapour production in the vicinity of the pipe wall. 2. A comparison between modelling in axisymmetric and Cartesian coordinates and calculations with and without the core barrel show the following: a) The three-dimensional flow pattern at the nozzle inlet is poorly described using Cartesian coordinates. In consequence a considerable difference in pressure history results. b) The core barrel alters the reflection behaviour of the pressure waves oscillating in the blowdown-nozzle. Therefore, the core barrel should be modelled as a wall normal to the nozzle axis. (orig./HP) [de

  5. Small Mercury Relativity Orbiter

    Science.gov (United States)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  6. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Shah, H. [Savannah River Remediation, LLC., Aiken, SC (United States). Sludge and Salt Planning; Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-25

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  7. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  8. Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment

    International Nuclear Information System (INIS)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin

    2015-01-01

    In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow

  9. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    Science.gov (United States)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  10. A Mixed Methods Assessment of Students' Flow Experiences during a Mobile Augmented Reality Science Game

    Science.gov (United States)

    Bressler, D. M.; Bodzin, A. M.

    2013-01-01

    Current studies have reported that secondary students are highly engaged while playing mobile augmented reality (AR) learning games. Some researchers have posited that players' engagement may indicate a flow experience, but no research results have confirmed this hypothesis with vision-based AR learning games. This study investigated factors…

  11. Large eddy simulation and wind tunnel experiment of turbulent boundary-layer flow around a floor-mounted cube

    DEFF Research Database (Denmark)

    Jørgensen, Nina Gall; Koss, Holger; Bennetsen, Jens Chr.

    2014-01-01

    experiments. The computations were performed with the commercial CFD software ANSYS FLUENT at a Reynolds number at the cube height of Reh = 1.3x105. The object was to evaluate the numerically generated flow upstream and around the cube and the accuracy of the timeaveraged surface pressure on the cube...

  12. A comparative study on the flow experience in web-based and text-based interaction environments.

    Science.gov (United States)

    Huang, Li-Ting; Chiu, Chen-An; Sung, Kai; Farn, Cheng-Kiang

    2011-01-01

    The purpose of this study was to explore a substantial phenomenon related to flow experiences (immersion) in text-based interaction systems. Most previous research emphasizes the effects of challenge/skill, focused attention, telepresence, web characteristics, and systems' interface design on users' flow experiences in online environments. However, text-based interaction systems without telepresence features and web characteristics still seem to create opportunities for flow experience. To explore this phenomenon, this study incorporates subject involvement and interpersonal interaction as critical antecedents into the model of flow experience, as well as considers the existence of telepresence. Results reveal that subject involvement, interpersonal interaction, and interactivity speed are critical to focused attention, which enhances users' immersion. With regard to the effect of telepresence, the perceived attractiveness of the interface is a significant facilitator determining users' immersion in web-based, rather than in text-based, interaction environments. Interactivity speed is unrelated to immersion in both web-based and text-based interaction environments. The influence of interpersonal involvement is diminished in web-based interaction environments. The implications and limitations of this study are discussed.

  13. Using Educational Games and Simulation Software in a Computer Science Course: Learning Achievements and Student Flow Experiences

    Science.gov (United States)

    Liu, Tsung-Yu

    2016-01-01

    This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…

  14. The Effects of Game Strategy and Preference-Matching on Flow Experience and Programming Performance in Game-Based Learning

    Science.gov (United States)

    Wang, Li-Chun; Chen, Ming-Puu

    2010-01-01

    Learning to program is difficult for novices, even for those undergraduates who have majored in computer science. The study described in this paper has investigated the effects of game strategy and preference-matching on novice learners' flow experience and performance in learning to program using an experiential gaming activity. One hundred and…

  15. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  16. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    Science.gov (United States)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  17. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  18. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  19. Fly Ash and Mercury Oxidation/Chlorination Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  20. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  1. Fundamental experiment on the problem of large, structured rooms with internal two-phase flow

    International Nuclear Information System (INIS)

    Geweke, M.

    1992-01-01

    A loss of coolant accident in a pressurized water reactor results in two phase flow in the upper plenum region. Steam will be generated from the fuel elements and will flow upwards into the upper plenum. Water drops will be entrained and transported by the steam and will be deentrained in the upper plenum. The deentrained water and the upflowing steam can lead to a condition defined as countercurrent flow limitation which tends to restrict the water downflow. The aim of this research project is to investigate the co- and countercurrent flow in the upper plenum region. The influence of the internals, which are installed in scale 1:1 and the outlet flow conditions into the hot leg is investigated. The establishing flow regime depends on the volumetric flow rates of gas and liquid and the area in the upper plenum, which is simulated by the arangement of the internals. An increasing gas flow rate causes flooding in the tie plate. A turbulent froth layer is established above the tie plate. A further increase in the gas flow rate causes flooding in the upper plenum. The experimental results are compared with well-known empirical correlations and with the experimental investigations from the UPTF. A suitable measurement technique is developed to measure the local and time-dependent liquid hold-up, the diameter and the velocity of the drops. (orig.) [de

  2. Refrigerant flow characteristics of electronic expansion valve based on thermodynamic analysis and experiment

    International Nuclear Information System (INIS)

    Xue Zhifang; Shi Lin; Ou Hongfei

    2008-01-01

    A mass flow correlation for R134a through an EEV (electronic expansion valve) is developed from extensive experimental data. The refrigerant mass flow characteristics of the EEV are an important issue in heat pump/refrigeration system operation because the valve regulates the refrigerant flow to match various operating conditions. Based on the throttling mechanism and thermodynamic analysis, the mass flow rate is a function of various parameters. The selected decision parameters include the valve's geometric parameters, the inlet refrigerant pressure and temperature, the outlet refrigerant pressure, and the refrigerant thermophysical properties represented by the dynamic viscosity and the surface tension, which are sufficient and irredundant for determining the flow coefficient. Because these parameters have very complex and coupled effects on the mass flow characteristics, two combined non-dimensional parameters are defined to describe the coupled effects based on the influence and uncertainty analysis of parameters. The experimental results illustrate that the defined non-dimensional parameters can reveal the EEV flow characteristics correctly. Then, the semi-theoretical flow coefficient correlation with respect to the defined non-dimensional parameters is proposed and identified from several hundred sets of experimental samples using multivariable regression analysis. The proposed correlation agrees well with experimental data for R134a within a wide range of operating conditions. The investigation method in this paper can be adopted by the flow characteristics studies for other types of the EEVs and refrigerants

  3. The influence of slope-angle ratio on the dynamics of granular flows: insights from laboratory experiments

    Science.gov (United States)

    Sulpizio, R.; Castioni, D.; Rodriguez-Sedano, L. A.; Sarocchi, D.; Lucchi, F.

    2016-11-01

    Laboratory experiments on granular flows using natural material were carried out in order to investigate the behaviour of granular flows passing over a break in slope. Sensors in the depositional area recorded the flow kinematics, while video footage permitted reconstruction of the deposit formation, which allowed investigation of the deposit shape as a function of the change in slope. We defined the slope-angle ratio as the proportion between slope angle in the depositional area and that of the channel. When the granular flow encounters the break in slope part of the flow front forms a bouncing clast zone due to elastic impact with the expansion box floor. During this process, part of the kinetic energy of the dense granular flow is transferred to elutriating fine ash, which subsequently forms turbulent ash cloud accompanying the granular flow until it comes to rest. Morphometric analysis of the deposits shows that they are all elliptical, with an almost constant minor axis and a variable major axis. The almost constant value of the minor axis relates to the spreading angle of flow at the end of the channel, which resembles the basal friction angle of the material. The variation of the major axis is interpreted to relate to the effect of competing inertial and frictional forces. This effect also reflects the partitioning of centripetal and tangential velocities, which changes as the flow passes over the break in slope. After normalization, morphometric data provided empirical relationships that highlight the dependence of runout from the product of slope-angle ratio and the difference in height between granular material release and deposit. The empirical relationships were tested against the runouts of hot avalanches formed during the 1944 ad eruption at Vesuvius, with differences among actual and calculated values are between 1.7 and 15 %. Velocity measurements of laboratory granular flows record deceleration paths at different breaks in slope. When normalized

  4. Recovery of mercury from acid waste residues

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  5. Mercury Poisoning Linked to Skin Products

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Mercury Poisoning Linked to Skin Products Share Tweet Linkedin ... and, in some situations, criminal prosecution. Dangers of Mercury Exposure to mercury can have serious health consequences. ...

  6. Transient analysis of mercury experimental loop using the RELAP5 code. 3rd report. Transient analysis using mercury properties

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Hino, Ryutaro

    2000-02-01

    In order to promote the Neutron Science Project of JAERI, the design of a 5MW-spallation target system is in progress with the purpose of producing a practical neutron application while at the same time adhering to the highest levels of safety. To establish the safety of the target system, it is important to understand the transient behaviors during anticipated operational events of the system, and to design the safety protection systems for the safe termination of the transients. This report presents the analytical results of transient behaviors in the mercury experimental loop using mercury properties. At first, the analytical pressure distributions were compared with experimental data measured with the mercury experimental loop. The modeling data were modified to reproduce the actual pressure distributions of the mercury experimental loop. Then a loss of forced convection and a loss of coolant accident were analyzed. In the case of the pump trip, the transient analysis was conducted using two types of mercury pumps, the mechanical type pump with moment of inertia, and the electrical-magnetic type pump without moment of inertia. The results show there was no clear difference in the two analyses, since the mercury had a large inertia, which was 13.5 times that of the water. Moreover, in the case of a pipe rupture at the pump exit, a moderate pressure decrease was confirmed when a small breakage area existed in which the coolant flowed out gradually. Based on these results, it was appeared that the transient fluctuation of pressure in the mercury loop would not become large and accidents would have to be detected by small fluctuations in pressure. Based on these analyses, we plan to conduct a simulation test to verify the RELAP5 code, and then the analysis of a full-scale mercury system will be performed. (author)

  7. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    Science.gov (United States)

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  8. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  9. Stress dependent fluid flow in porous rock: experiments and network modelling

    Energy Technology Data Exchange (ETDEWEB)

    Flornes, Olav

    2005-07-01

    During the lifetime of a hydrocarbon reservoir, the pore pressure decreases because fluids are drained. Changed pore pressure causes a deformation of the reservoir rock, and the flow channels may be narrowed by the increased weight carried by the rock matrix. Knowledge of how the rocks ability to transport fluids, the permeability, is changed by increased stress can be important for effective reservoir management. In this work, we present experimental results for how permeability changes with applied stress. The materials tested are several different sandstones and one limestone, all having porosities higher than 19 percent. Application of stress is done in a number of different ways. We subject the sample to an isotropic stress, and see how changing this applied stress affects permeability as opposed to changing the pore fluid pressure. This allows for investigating the effective stress law for permeability. Permeability decreased by 10 to 20 percent, when we deformed the materials hydro statically within the elastic regime. For all of our samples, we observed a higher permeability change than predicted by a conventional model for relating porosity and permeability, the Kozeny Carman model. For Red Wildmoor, a sandstone having some clay content, we observed that a change in pore pressure was slightly more important for permeability than a change in the applied stress with the same amount. A sandstone with no clay content, Bad Durckheim, showed the opposite behavior, with applied stress slightly more important than pore pressure. We present a new method for measuring permeability in two directions in the same experiment. We apply different anisotropic stresses, and see if a high stress in one direction causes a difference in permeability changes parallel and perpendicular to maximum stress. We observe that deforming the sample axially, causes a larger decrease in axial permeability than in the radial at low confining pressure. At high confining pressure, the

  10. Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org).

    Science.gov (United States)

    Spidlen, Josef; Breuer, Karin; Brinkman, Ryan

    2012-07-01

    FlowRepository.org is a Web-based flow cytometry data repository provided by the International Society for Advancement of Cytometry (ISAC). It supports storage, annotation, analysis, and sharing of flow cytometry datasets. A fundamental tenet of scientific research is that published results should be open to independent validation and refutation. With FlowRepository, researchers can annotate their datasets in compliance with the Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard, thus greatly facilitating third-party interpretation of their data. In this unit, we will mainly focus on the deposition, sharing, and annotation of flow cytometry data.

  11. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows

    Science.gov (United States)

    Rubin, David M.; Ikeda, Hiroshi

    1990-01-01

    For more than a century geologists have wondered why some bedforms are orientated roughly transverse to flow, whereas others are parallel or oblique to flow. This problem of bedform alignment was studied experimentally using subaqueous dunes on a 3–6-m-diameter sand-covered turntable on the floor of a 4-m-wide flume.

  12. Flow of entangled wormlike micellar fluids: mesoscopic simulations, rheology and micro-PIV experiments

    NARCIS (Netherlands)

    Boek, E.S.; Boek, E.S.; Padding, J.T.; Anderson, V.J.; Briels, Willem J.; Crawshaw, J.P.

    2007-01-01

    There is a great need for understanding the relationship between the structure and chemistry of surfactants forming wormlike micelles, and their macroscopic flow properties. Available macroscopic Rheological Equations of State (REoS) are often inadequate to predict flow behaviour in complex

  13. Experiments on rheology of non-Newtonian flow of tylose-alginate ...

    African Journals Online (AJOL)

    Newtonian tylose-alginate (solid-liquid) suspensions in isothermal laminar flow in a horizontal conduit with variable geometry. The complex flow of loaded spherical and large-sized particles of 4.4 mm diameter, and dependence of hydrodynamics ...

  14. Numerical experiments in the stability of leading edge boundary layer flow. A two-dimensional study

    NARCIS (Netherlands)

    Theofilis, Vassilios; Theofilis, V.

    1993-01-01

    A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full

  15. How effective is aeration with vortex flow regulators? Pilot scale experiments

    Science.gov (United States)

    Wójtowicz, Patryk; Szlachta, Małgorzata

    2017-11-01

    Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.

  16. No Man is an Island: Social Distance, Network Flow, and Other-Regarding Behaviors in a Natural Field Experiment

    Directory of Open Access Journals (Sweden)

    XIAOYE LI

    2012-01-01

    Full Text Available A natural field experiment is designed to explore the impacts of social distanceand network flow on other-regarding behaviors. A greater degree ofcommunication between the voluntary organization and volunteers was found toreduce their social distance and thereby improve volunteering commitment. Theimprovement was even more notable if the party initiating communication was thevoluntary organization. Two other practical means of lessening social distancewere for volunteers to learn more about other volunteers, and for informationtobe dispersed throughout the organization more rapidly. Additionally, this studyshows a reversed “U-shaped” relationship between network flow and volunteeringcommitment.

  17. Fundamental changes of granular flows dynamics, deposition and erosion processes at high slope angles: insights from laboratory experiments.

    Science.gov (United States)

    Farin, Maxime; Mangeney, Anne; Roche, Olivier

    2014-05-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On steeper slopes, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing slope angle, column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect

  18. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  19. Mercury, Vaccines, and Autism

    Science.gov (United States)

    Baker, Jeffrey P.

    2008-01-01

    The controversy regarding the once widely used mercury-containing preservative thimerosal in childhood vaccines has raised many historical questions that have not been adequately explored. Why was this preservative incorporated in the first place? Was there any real evidence that it caused harm? And how did thimerosal become linked in the public mind to the “autism epidemic”? I examine the origins of the thimerosal controversy and their legacy for the debate that has followed. More specifically, I explore the parallel histories of three factors that converged to create the crisis: vaccine preservatives, mercury poisoning, and autism. An understanding of this history provides important lessons for physicians and policymakers seeking to preserve the public’s trust in the nation’s vaccine system. PMID:18172138

  20. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  1. Contato Improvisação em São Paulo: Flow e Communitas na Experiência Urbana

    OpenAIRE

    Novelli, Guilherme

    2015-01-01

    Este artigo propõe um diálogo entre antropologia da performance e antropologia urbana, relacionando a experiência da dança contemporânea Contato Improvisação à experiência urbana. Os conceitos teóricos dos estudos urbanos deGeorge Simmel, como a experiência fragmentada na metrópole, ganharão ressonância na antropologia da experiência de Victor Turner.Registros etnográficos e vivências de dez anos de prática desta dança mostram como as experiências de flow e communitasse articulam em meio à me...

  2. Method for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  3. Apparatus for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  4. Apparatus for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  5. Method for scavenging mercury

    Science.gov (United States)

    Chang, Shih-ger [El Cerrito, CA; Liu, Shou-heng [Kaohsiung, TW; Liu, Zhao-rong [Beijing, CN; Yan, Naiqiang [Berkeley, CA

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  6. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  7. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  8. The impact of structural development on near bed flow dynamics in gravel bed rivers: coupling flume experiments with numerical modelling

    Science.gov (United States)

    Ockelford, A.; Hardy, R. J.; Rice, S. P.; Powell, M.

    2017-12-01

    It is increasingly being recognised that gravel bed rivers develop a surface `texture' in response to changes in the flow and sediment regime. This textural response often takes the form of a bed structure which develops to ultimately stabilise the surface across a range of spatio-temporal scales and it is these topographical structures which determine the flow structures that develop over the river bed. However, our ability to measure and parameterise that structure in ways that are useful and meaningful for the prediction of flow dynamics, still remains inadequate; this paper uses a three dimensional numerical model to assess how the temporal development of structure influences the near bed flow dynamics. Using a suite of flume based experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to three different levels of constant bed shear that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Surface structuring characteristics were measured at a high spatio-temporal resolution such that the time evolution of the beds could be fully described. In total 54 surfaces were generated and run through a Reynolds averaged three dimensional numerical model with an Rng turbulence closure. The topography input included using an immersed boundary technique within a Cartesian framework. Discussion concentrates on the how the trajectory of structural evolution under the different treatments affects the near bed flow dynamics. Specifically links are made between how the scales of boundary topography influence the flow and discusses how the measured flow variability at any one point will contain both locally derived and upstream-inherited flow structures, according to the range of scales of bed topography present. Keywords: Graded, Sediment, Structure, Turbulence, Modelling

  9. Determination of Mercury in Fish: A Low-Cost Implementation of Cold-Vapor Atomic Absorbance for the Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Niece, Brian K.; Hauri, James F.

    2013-01-01

    Mercury is a known neurotoxin that is particularly harmful to children and unborn fetuses. Consumption of contaminated fish is one major route of mercury exposure. This laboratory experiment gives students an opportunity to measure mercury concentrations in store-bought seafood and compare the results to suggested exposure limits. The U.S.…

  10. Design of model experiments for melt flow and solidification in a square container under time-dependent magnetic fields

    Science.gov (United States)

    Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.

    2017-03-01

    This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.

  11. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  12. The effect of mercury on the growth efficiency of Tilapia mossambica (Peters)

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Qasim, S.Z.

    Three concentrations of mercury (0.01, 0.04 and 0.4 ppm) were used for experiments on growth efficiency of Tilapia mossambica. Growth efficiencies were determined on a dry weight basis. High concentration of mercury (0.4 ppm) caused considerable...

  13. TROPHIC ACCUMULATION AND DEPURATION OF MERCURY BY BLUE CRABS (CALLINECTES SAPIDUS) AND PINK SHRIMP (PENAEUS DUORARUM).

    Science.gov (United States)

    Mercury concentrations in blue crabs (Callinectes sapidus) collected from an area of mercury-contaminated sediments in Lavaca Bay, TX, USA, are more than an order of magnitude greater than concentrations in penaeid shrimp from the same area. Laboratory feeding experiments using ...

  14. Determining concentration fields of tracer plumes for layered porous media in flow-tank experiments

    Science.gov (United States)

    Yu, Zhongbo; Schwartz, Franklin W.

    In the laboratory, computer-assisted image analysis provides an accurate and efficient way to monitor tracer experiments. This paper describes the determination of detailed temporal concentration distributions of tracers in a flow-tank experiment by analyzing photographs of plumes of Rhodamine dye through the glass wall of the tank. The methodology developed for this purpose consists of four steps: (1) digitally scanning black and