WorldWideScience

Sample records for mercury fine particulate

  1. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  2. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  3. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  4. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  5. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  6. A novel high efficiency fine particulate and mercury control device. Final report for the Department of Energy Contract Number DE-FG02-95ER81968

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-05-05

    This Phase II SBIR program was conducted to demonstrate the ability of a circulating fluidized bed (CFB) of flyash to cause particle agglomeration and consequent reduction in the quantity of fine particulate emissions from the system. Another objective was to show that carbon addition to the bed would result in the removal of mercury compounds from the flue gas at carbon utilization levels significantly better than duct injection of activated carbon. The pilot-scale testing was carried out in 1997. The pilot-scale fluid bed reactor was a 1000 CFM system, drawing gas from a slipstream of the exhaust of a 325 MW coal-fired boiler. Flue gas for the pilot unit was drawn downstream of the air preheater and returned to the same unit. Particle agglomeration testing was carried out for which the parameters of gas flow rate and water evaporation rate were varied, and the particle size distribution leaving the fluid bed system was monitored. The bed was able to cause a reduction in total particulate concentration by a factor of 10 and in fine particulate concentration by a factor of 5, and it was found that the best agglomeration of particles was obtained with simultaneous water spray evaporation. Tests were then carried out in which activated carbon was added to the fluid bed for mercury adsorption. Carbon addition in the bed was shown to yield both higher Hg removal and higher carbon utilization than normal carbon addition with the bed. The fluid bed fly ash alone, without the injection of activated carbon, will capture 50% of the inlet Hg vapor. A total of 80% removal of Hg vapor is achieved with the addition to the bed of 1000 g iodine impregnated activated carbon per gram of inlet Hg. The ability of the fluid bed to capture SO{sub 2} and HCl was also evaluated, using hydrated lime added to the bed. It was found that the fluid bed alone, without lime injection, removed 16% of the SO{sub 2}. Complete utilization of hydrated lime is achieved for SO{sub 2} removal at mole

  7. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  8. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  9. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    International Nuclear Information System (INIS)

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-01-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control

  10. Mercury Control With The Advanced Hybrid Particulate Collector

    International Nuclear Information System (INIS)

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-01-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy and Environmental Research Center as the main contractor; W.L. Gore and Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid(trademark) filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to

  11. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    International Nuclear Information System (INIS)

    Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2001-01-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot-Scale. The project team will include the Energy and Environmental Research Center (EERC) as the main contractor, W.L. Gore and Associates, Inc., as a technical and financial partner, and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a

  12. Atmospheric particulate mercury at the urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2016-02-01

    Particulate mercury concentrations were investigated during intensive field campaigns at the urban and forest sites in central Poland, between April 2013 and October 2014. For the first time, quantitative determination of total particulate mercury in coarse (PHg2.2) and fine (PHg0.7) aerosol samples was conducted in Poznań and Jeziory. The concentrations in urban fine and coarse aerosol fractions amounted to mercury concentrations. A strong impact of meteorological conditions (wind velocity, air mass direction, air temperature, and precipitation amount) on particulate mercury concentrations was also observed. In particular, higher variation and concentration range of PHg0.7 and PHg2.2 was reported for wintertime measurements. An increase in atmospheric particulate mercury during the cold season in the study region indicated that coal combustion, i.e., residential and industrial heating, is the main contribution factor for the selected particle size modes. Coarse particulate Hg at the urban site during summer was mainly attributed to anthropogenic sources, with significant contribution from resuspension processes and long-range transport. The highest values of PHg0.7 and PHg2.2 were found during westerly and southerly wind events, reflecting local emission from highly polluted areas. The period from late fall to spring showed that advection from the southern part of Poland was the main factor responsible for elevated Hg concentrations in fine and coarse particles in the investigated region. Moreover, September 2013 could be given as an example of the influence of additional urban activities which occurred approx. 10 m from the sampling site-construction works connected with replacement of the road surface, asphalting, etc. The concentrations of particulate Hg (>600.0 pg m(-3)) were much higher than during the following months when any similar situation did not occur. Our investigations confirmed that Hg in urban aerosol samples was predominantly related to local

  13. Fine particulate pollution and asthma exacerbations.

    Science.gov (United States)

    Bouazza, Naïm; Foissac, Frantz; Urien, Saik; Guedj, Romain; Carbajal, Ricardo; Tréluyer, Jean-Marc; Chappuy, Hélène

    2017-12-19

    As the results from epidemiological studies about the impact of outdoor air pollution on asthma in children are heterogeneous, our objective was to investigate the association between asthma exacerbation in children and exposure to air pollutants. A database of 1 264 585 paediatric visits during the 2010-2015 period to the emergency rooms from 20 emergency departments (EDs) of 'Assistance Publique Hôpitaux de Paris (APHP)', the largest hospital group in Europe, was used. A total of 47 107 visits were classified as asthma exacerbations. Concentration of air pollutants (nitrogen dioxide, ozone, fine particulate matter (PM) with an aerodynamic diameter smaller than 10  µm (PM 10 ) and 2.5 µm (PM 2.5 )), as well as meteorological data, evolution of respiratory syncytial virus infection and pollen exposition, were collected on an hourly or daily basis for the same period using institutional databases. To assess the association between air pollution and asthma, mixed-effects quasi-Poisson regression modelling was performed. The only compound independently associated with ED visits for asthma was PM 2.5 (Ppollutants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Mercury speciation and fine particle size distribution on combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wang, Shuxiao; Hao, Jiming [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering and State Key Joint Lab. of Environment Simulation and Pollution Control; Daukoru, Michael; Torkamani, Sarah; Biswas, Pratim [Washington Univ., St. Louis, MO (United States). Aerosol and Air Quality Research Lab.

    2013-07-01

    Coal combustion is the dominant anthropogenic mercury emission source of the world. Electrostatic precipitator (ESP) can remove almost all the particulate mercury (Hg{sub p}), and wet flue gas desulfurization (WFGD) can retain a large part of the gaseous oxidized mercury (Hg{sup 2+}). Only a small percentage of gaseous elemental mercury (Hg{sup 0}) can be abated by the air pollution control devices (APCDs). Therefore, the mercury behavior across APCDs largely depends on the mercury speciation in the flue gas exhausting from the coal combustor. To better understand the formation process of three mercury species, i.e. Hg{sup 0}, Hg{sup 2+} and Hg{sub p}, in gaseous phase and fine particles, bench-scale measurements for the flue gas exhausting from combustion of different types of coal in a drop-tube furnace set-up, were carried out. It was observed that with the limitation of reaction kinetics, higher mercury concentration in flue gas will lead to lower Hg{sup 2+} proportion. The concentration of chlorine has the opposite effect, not as significantly as that of mercury though. With the chlorine concentration increasing, the proportion of Hg{sup 2+} increases. Combusting the finer coal powder results in the formation of more Hg{sup 2+}. Mineral composition of coal and coal particle size has a great impact on fine particle formation. Al in coal is in favor of finer particle formation, while Fe in coal can benefit the formation of larger particles. The coexistence of Al and Si can strengthen the particle coagulation process. This process can also be improved by the feeding of more or finer coal powder. The oxy-coal condition can make for both the mercury oxidation process and the metal oxidation in the fine particle formation process.

  15. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  16. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013) ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  17. Distribution spatiale intra-urbaine des particules fines : monitoring ...

    African Journals Online (AJOL)

    SARAH

    30 sept. 2014 ... En outre, l'accumulation des particules fines est faible pendant un mois pluvieux par rapport à un mois sec ..... benjamina, et la structure (tige, branches) des arborées ... par Zhang et al., (2006) sur des feuilles de Pinus pumila.

  18. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  19. Comparison of Particulate Mercury Measured with Manual and Automated Methods

    Directory of Open Access Journals (Sweden)

    Rachel Russo

    2011-01-01

    Full Text Available A study was conducted to compare measuring particulate mercury (HgP with the manual filter method and the automated Tekran system. Simultaneous measurements were conducted with the Tekran and Teflon filter methodologies in the marine and coastal continental atmospheres. Overall, the filter HgP values were on the average 21% higher than the Tekran HgP, and >85% of the data were outside of ±25% region surrounding the 1:1 line. In some cases the filter values were as much as 3-fold greater, with

  20. Ultra fine particulates. Small particulates with large consequences?; Ultrafijn stof. Kleine deeltjes met grote gevolgen?

    Energy Technology Data Exchange (ETDEWEB)

    Hensema, A.; Keuken, M.; Kooter, I.; Verbeek, R.; Van Vugt, M. [TNO Science and Industry, Delft (Netherlands)

    2009-02-15

    The concentrations of ultra fine particles (and elementary carbon) have increased significantly near traffic routes. The amount of ultra fine particles (and the chemical composition of particulate matter) are related to traffic emissions and are therefore relevant to the established health effects. Better insight in the effectiveness of particulate matter policy requires more attention for ultra fine particles than just maintaining the standards for PM2,5 and PM10. [mk]. [Dutch] De concentraties van ultrafijne deeltjes (en elementair koolstof) zijn fors verhoogd in de buurt van verkeerswegen. Het aantal ultrafijne deeltjes (en de chemische samenstelling van fijnstof) gerelateerd aan verkeersemissies lijkt daarom relevant voor de vastgestelde gezondheidseffecten. Voor een beter inzicht in de effectiviteit van het fijnstofbeleid is meer aandacht nodig voor ultrafijne deeltjes dan alleen handhaving van de normen voor PM2,5 en PM10.

  1. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  2. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment.

    Science.gov (United States)

    Duan, Lian; Cheng, Na; Xiu, Guangli; Wang, Fujiang; Chen, Ying

    2017-05-01

    Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m -3 , while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m -3 , 0.15 ± 0.03 ng m -3 , 0.15 ± 0.05 ng m -3 and 0.27 ± 0.26 ng m -3 , respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    International Nuclear Information System (INIS)

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-01-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 (micro)m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO 2 emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue gas

  4. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes.

    Science.gov (United States)

    Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao

    2009-08-01

    Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.

  5. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  6. Electromagnetic characterization of fine-scale particulate composite materials

    International Nuclear Information System (INIS)

    Talbot, P.; Konn, A.M.; Brosseau, C.

    2002-01-01

    We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe 2 O 3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe 2 O 3 . As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials

  7. Tackling the problem of fine particulate (HAP) collection

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K.; Sanyal, A.

    2000-07-01

    With increasing concern over the emission of hazardous air pollutants (HAPs), measures are being considered to limit their discharge from many industrial sources. The main thrust o the proposed legislation is towards the power generators, because of their potentially large mass emissions, but also at specific targets, such as incinerators. Legislation already exists governing the emission of heavy metals, etc., from various types of incineration process and regulations controlling the emission of pM 2.5 material are proposed for the US. Provided the HAPs are in a solid particulate phase then their collection can be accomplished by correctly designed and operated control systems, such as electrostatic precipitators and bag filters. There are, however, other HAP species which are usually in a gaseous phase at normal back end temperatures, such as elemental mercury, dioxins, furans, etc. These need special consideration and equipment in order to satisfy the proposed regulations. one of the difficulties facing the designers and operators of processes giving rise to these species is the accurate measurement of these trace elements and predicting the uncontrolled emission level in order to size the collection system such as to remain in compliance. The options for the effective collection of these normally gaseous phase pollutants will be examined; these methods will include combined wet and dry collection, absorption and carbon injection systems. Finally, whichever system is finally considered and adopted, in order to satisfy and proposed regulations, will add significant capital and operating cost to the overall installation.

  8. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  9. Mercury partition in the interface between a contaminated lagoon and the ocean: The role of particulate load and composition

    International Nuclear Information System (INIS)

    Pato, P.; Otero, M.; Valega, M.; Lopes, C.B.; Pereira, M.E.; Duarte, A.C.

    2010-01-01

    After having estimated the patterns of flow to the ocean and found some seasonal and tidal differences, mainly with regard to the relative importance of dissolved and particulate fractions, mercury partitioning at the interface between a contaminated lagoon and the Atlantic Ocean was investigated during four tidal cycles in contrasting season and tidal regimes. Mercury was found to be located predominantely in the particulate fraction throughout the year, contributing to its retention within the system. Seasonal conditions, variations in marine and fluvial signals and processes affecting bed sediment resuspension influenced the character and concentration of suspended particulate matter in the water column. Variation in the nature, levels and partitioning of organic carbon in the particulate fraction affected levels of particulate mercury as well as mercury partitioning. These results highlight the dominant role of suspended particulate matter in the distribution of anthropogenic mercury and reinforce the importance of competitive behavior related to organic carbon in mercury scavenging.

  10. Chemical Composition of Fine Particulate Matter and Life Expectancy

    Science.gov (United States)

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  11. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  12. Smog episodes, fine particulate pollution and mortality in China.

    Science.gov (United States)

    Zhou, Maigeng; He, Guojun; Fan, Maoyong; Wang, Zhaoxi; Liu, Yang; Ma, Jing; Ma, Zongwei; Liu, Jiangmei; Liu, Yunning; Wang, Linhong; Liu, Yuanli

    2015-01-01

    Starting from early January 2013, northern China was hit by multiple prolonged and severe smog events which were characterized by extremely high-level concentrations of ambient fine particulate matter (PM2.5) with hourly peaks of PM2.5 over 800 µg/m(3). However, the consequences of this severe air pollution are largely unknown. This study investigates the acute effect of the smog episodes and PM2.5 on mortality for both urban and rural areas in northern China. We collected PM2.5, mortality, and meteorological data for 5 urban city districts and 2 rural counties in Beijing, Tianjin and Hebei Province of China from January 1, 2013 through December 31, 2013. We employed the generalized additive models to estimate the associations between smog episodes or PM2.5 and daily mortality for each district/county. Without any meteorological control, the smog episodes are positively and statistically significantly associated with mortality in 5 out of 7 districts/counties. However, the findings are sensitive to the meteorological factors. After controlling for temperature, humidity, dew point and wind, the statistical significance disappears in all urban districts. In contrast, the smog episodes are consistently and statistically significantly associated with higher total mortality and mortality from cardiovascular/respiratory diseases in the two rural counties. In Ji County, a smog episode is associated with 6.94% (95% Confidence Interval, -0.20 to 14.58) increase in overall mortality, and in Ci County it is associated with a 19.26% (95% CI, 6.66-33.34) increase in overall mortality. The smog episodes kill people primarily through its impact on cardiovascular and respiratory diseases. On average, a smog episode is associated with 11.66% (95% CI, 3.12-20.90) increase in cardiovascular and respiratory mortality in Ji County, and it is associated with a 22.23% (95% CI, 8.11-38.20) increase in cardiovascular and respiratory mortality in Ci County. A 10 μg/m(3) increase in PM2

  13. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  14. Investigating respirable particulates (PM10) around the world's largest mercury mine, Almaden, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W.; Jones, T. [Cardiff Univ., Cardiff, Wales (United Kingdom). Dept. of Earth Sciences; Moreno, T.; Richards, R. [Cardiff Univ., Cardiff, Wales (United Kingdom). School of Biosciences; Higueras, P. [Almaden Univ. of Castilla-La Mancha, Almaden (Spain). Dept. of Geological Engineering

    2003-07-01

    The Almaden area in Spain has been mined for mercury since pre-Roman days. There is no evidence for significant contamination of the groundwater supply, since the lack of pyrite in the mercury deposits has prevented the formation of acid mine drainage. However, the main recognized environmental problem related to mercury mining has been the progressive poisoning of workers who are in direct contact with mercury vapours. This paper presents results of a study in which dust samples were collected from former mining and urban locations around Almaden. The samples were processed to extract their fine, respirable fraction. Mining activities have left contaminated ground, which under semi-arid conditions has created respirable mercury-bearing dusts. In some places the ground is severely contaminated with mercury as cinnabar and as schuetteite. Some of the contaminated areas are used for livestock grazing and growing plants for human consumption. A higher incidence of mercury-bearing particles is found in the finer fraction. The sizes of the mercury-bearing resuspended particles at all sites varies from inhalable dust, through respirable dust, to fine and ultrafine size capable of reaching the deepest levels of the lung alveoli. The most significant contamination is associated with old processing plants. Dust samples collected from Almaden, a town of 6,500 inhabitants, were found to contain significant amounts of respirable mercury-bearing aerosols.

  15. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  16. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  17. 75 FR 55711 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone...

    Science.gov (United States)

    2010-09-14

    ...: (919) 541-0824; e-mail address: [email protected] . SUPPLEMENTARY INFORMATION: The proposed Transport... (i.e., section V.D.4.a (75 FR 45307-9)) that discusses in detail the proposed Transport Rule trading...-9201-6] RIN 2060-AP50 Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

  18. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  19. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. [Brigham Young University, Provo, UT (United States)

    2003-03-06

    A study was conducted to the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. Fine particulate and sulfur oxide-related pollution were found to be associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-{mu}g/m{sup 3} elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. It was concluded that long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality. 31 refs., 5 figs., 2 tabs.

  20. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-05-25

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...

  1. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  2. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  3. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  4. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  5. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  6. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  7. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  8. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protect human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.

  9. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Han Gyul; Kim, Hong Seok [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30{mu}m. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.

  10. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  11. Artificial neural network forecast application for fine particulate matter concentration using meteorological data

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2017-09-01

    Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.

  12. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  13. Winter fine particulate air quality in Cranbrook, British Columbia, 1973 to 1999

    International Nuclear Information System (INIS)

    McDonald, L.E.

    2001-06-01

    Fine particulate levels in Cranbrook, BC, are analyzed and reported based on monitoring records which began in 1973. Prior to 1988 the sampler collected all particle sizes, but was subsequently replaced with a selective size inlet to capture only PM 1 0 particles or smaller. A mathematical relationship was produced and used to convert historical total suspended particulates measurements to PM 1 0. It was determined that only monitoring records obtained during the winter months could be reliably converted in this fashion; however, that was not a problem since the winter months happen to correspond to the highest levels of fine particulates. Results of the analysis showed increased levels of PM 1 0 from the early 1970s to the early 1980s; during this time average and maximum annual PM 1 0 levels in Cranbrook were higher than those in Los Angeles in 1999. Winter PM 1 0 levels began to fall through the late 1980s and early 1990s. The lowest average and maximum (18 microgram/cubic metre and 47 microgram/cubic metre, respectively) was recorded in the winter of 1996/1997. Worst conditions were recorded in 1980/1981 when 15 of 21 samples exceeded the current provincial PM 1 0 air quality objective of 50 microgram/cubic metre. In the five winters between 1994/1995 and 1998/1999 only three of 109 samples exceeded the provincial objective. There appears to be no correlation between known changes in industrial and mobile sources of pollutants and historical patterns of fine particulate air pollution in Cranbrook, BC. Observation and experience over three decades suggest that the major source of PM 1 0 in Cranbrook was combustion of wood for home heating. The most probable major cause of the improvements in winter air quality was identified as the gradual conversion from wood to natural gas fired appliances through the 1980s and the 1990s. The 115 per cent increase in the cost of natural gas in the last two years unfortunately, will again make wood an attractive alternative

  14. Source contributions of fine particulate matter during one winter haze episodes in Xi'an, China

    Science.gov (United States)

    Yang, X.; Wu, Q.

    2017-12-01

    Long-term exposure to high levels of fine particulate matter (PM2.5) is found to be associated with adverse effects on human health, ecological environment and climate change. Identification the major source regions of fine particulate matter are essential to proposing proper joint prevention and control strategies for heavy haze mitigation. In this work, the Comprehensive Air Quality Model with extensions (CAMx) together with the Particulate Source Apportionment Technology (PSAT) and the Weather Research and Forecast Model (WRF), have been applied to analyze the major source regions of PM2.5 in Xi'an during the heavy haze episodes in winter (29, December, 2016 - 5 January 2017), and the framework of the model system is shown in Fig. 1. Firstly, according to the model evaluation of the daily PM2.5 concentrations for the two months, the model has well performance, and the fraction of predictions within a factor of 2 of the observations (FAC2) is 84%, while the correlation coefficient (R) is 0.80 in Xi'an. By using the PSAT in CAMx model, a detailed source region contribution matrix is derived for all points within the Xi'an region and its six surrounding areas, and long-range regional transport. The results show that the local emission in Xi'an is the mainly sources at downtown area, which contributing 72.9% as shown in Fig.2, and the contribution rate of transportations between adjacent areas depends on wind direction. Meanwhile, three different suburban areas selected for detailed analysis in fine particles sources. Comparing to downtown area, the sources of suburban areas are more multiply, and the transportations make the contribution 40%-82%. In the suburban areas, regional inflows play an important role in the fine particles concentrations, indicating a strong need for regional joint emission control efforts. The results enhance the quantitative understanding of the PM2.5 source regions and provide a basis for policymaking to advance the control of pollution

  15. Effects of Particulate Organic Matter Complexation and Photo-Irradiation on the Fate and Toxicity of Mercury(II) in Aqueous Systems

    Science.gov (United States)

    Gelfond, C. E.; Kocar, B. D.; Carrasquillo, A. J.

    2015-12-01

    This project investigates how interactions between mercury (Hg) and particulate organic matter (POM) affect the fate, transport, and toxicity of Hg in the environment. Previous studies have evaluated the coordination of dissolved organic matter (DOM) with Hg, but the coordination of POM with Hg has not been thoroughly addressed. Owing to a high density of reactive functional groups, POM will sorb appreciable quantities of Hg, resulting in a large pool of Hg susceptible to organic matter dependent transformations. Particulate organic carbon is also susceptible photolysis, hence chemical changes induced by irradiation by natural sunlight is also important. Further, photo-reduction of Hg(II) to elemental mercury in the presence of DOM has been observed, yet studies examining this process with Hg(II) complexed to POM are less exhaustive. Here, we illustrate that POM derived from fresh plant detritus is a powerful sorbent of Hg(II), and sorbent properties are altered during POM photolysis. Further, we examine redox transformations of Hg(II), and examine functional groups that contribute to mercury association with POM. Batch sorption isotherms of Hg to dark and irradiated POM from ground Phragmites australis ("common reed") were performed and data was collected using ICP-MS. Coordination of Hg to POM was lower in the irradiated samples, resulting from the decrease in Hg-associated (reduced) sulfur bearing functional groups as measured using X-ray adsorption near-edge spectroscopy (XANES) and extended x-ray adsorption fine structure (EXAFS). Further analysis of the dark and irradiated POM was performed using FT-IR microscopy and STXM to determine changes in distribution and alteration of functional groups responsible for Hg sorption to POM.

  16. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark.

    Science.gov (United States)

    Raaschou-Nielsen, Ole; Sørensen, Mette; Hertel, Ole; Chawes, Bo L K; Vissing, Nadja; Bønnelykke, Klaus; Bisgaard, Hans

    2011-01-01

    Particulate matter (PM) in ambient air is responsible for adverse health effects in adults and children. Relatively little is known about the concentrations, sources and health effects of PM in indoor air. To identify sources of fine PM in infants' bedrooms. We conducted 1122 measurements of fine PM (PM(2.5) and black smoke) in the bedrooms of 389 infants and registered indoor activities and characteristics of the house. We used mixed models to identify and quantify associations between predictors and concentrations. The concentration of PM(2.5) was 2.8 times (95% confidence interval [CI], 1.4-5.5 times) higher in houses where people smoked; the concentration increased by 19% (95% CI, 15-23%) per doubling of the amount of tobacco smoked and decreased by 16% (95% CI, 9-27%) per 5-m increase in the distance between the smoking area and the infant's bedroom. Frying without a range hood was associated with a 32% (95% CI, 12-54%) higher PM(2.5) concentration per time per day, whereas frying with use of a range hood did not increase the concentration in the infant's bedroom. Use of a fireplace, stove, candles or vacuum-cleaner, interior rebuilding or renovation, local traffic, inner city residence and cold season increased the fine PM concentration. Open windows decreased the PM(2.5) concentration in homes with smokers but increased the concentration in non-smoking homes. We identified several sources of fine PM in infants' bedrooms. The concentrations can be reduced by use of a range hood for frying, by not using candles, a fireplace or a stove, by increasing the distance between the bedroom and the smoking area and by opening windows in houses of smokers. Smoking is a strong predictor of fine PM in infants' bedrooms and should be avoided. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter.

    Science.gov (United States)

    Nolte, Christopher G; Schauer, James J; Cass, Glen R; Simoneit, Bernd R T

    2002-10-15

    Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.

  18. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    International Nuclear Information System (INIS)

    Taner, Simge; Pekey, Beyhan; Pekey, Hakan

    2013-01-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM 2.5 ) than coarse particles (PM >2.5 ), and the major trace elements identified in the PM 2.5 included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM 2.5 . Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM 2.5 were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM 2.5 of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM 2.5 was 1.57 × 10 −4 , which is higher than the acceptable limit of 1.0 × 10 −6 . Among all of the carcinogenic elements present in the PM 2.5 , the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10 −4 and 3.89 × 10 −5 , respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM 2.5 . • Charcoal combustion and indoor activities were the

  19. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Simge; Pekey, Beyhan, E-mail: bpekey@kocaeli.edu.tr; Pekey, Hakan

    2013-06-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM{sub 2.5}) than coarse particles (PM{sub >2.5}), and the major trace elements identified in the PM{sub 2.5} included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM{sub 2.5}. Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM{sub 2.5} were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM{sub 2.5} of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM{sub 2.5} was 1.57 × 10{sup −4}, which is higher than the acceptable limit of 1.0 × 10{sup −6}. Among all of the carcinogenic elements present in the PM{sub 2.5}, the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10{sup −4} and 3.89 × 10{sup −5}, respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM{sub 2.5}.

  20. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo

    2016-01-01

    Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...... per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building......-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier...

  1. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  2. Characterizing health impacts from indoor and outdoor exposure to fine particulates

    DEFF Research Database (Denmark)

    Vigon, Bruce; Fantke, Peter; McKone, Thomas E

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  3. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Directory of Open Access Journals (Sweden)

    Ana Cristina Gobbo César

    2016-03-01

    Full Text Available Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5 and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088; lag 2 (RR=1.066, 95%CI: 1.023 to 1.113; lag 3 (RR=1.053, 95%CI: 1.015 to 1.092; lag 4 (RR=1.043, 95%CI: 1.004 to 1.088 and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106. The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes.

  4. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.

    Science.gov (United States)

    Shimadera, Hikari; Hayami, Hiroshi; Chatani, Satoru; Morino, Yu; Mori, Yasuaki; Morikawa, Tazuko; Yamaji, Kazuyo; Ohara, Toshimasa

    2014-04-01

    Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.

  5. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  6. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  7. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  8. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  9. Control of fine particulate (PM2.5) emissions from restaurant operations.

    Science.gov (United States)

    Whynot, J; Quinn, G; Perryman, P; Votlucka, P

    1999-09-01

    This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.

  10. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  11. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  12. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS RECOVERY BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    Science.gov (United States)

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  13. Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Evans, John S.

    2015-01-01

    Purpose Fine particulate matter (PM2.5) is considered to be one of the most important environmental factors contributing to the global human disease burden. However, due to the lack of broad consensus and harmonization in the life cycle assessment (LCA) community, there is no clear guidance on ho...

  14. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  15. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  16. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    Science.gov (United States)

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  17. Characterization of Fine Particulate Matter in Sharjah, United Arab Emirates Using Complementary Experimental Techniques

    Directory of Open Access Journals (Sweden)

    Nasser M. Hamdan

    2018-04-01

    Full Text Available Airborne particulate matter (PM pollutants were sampled from an urban background site in Sharjah, United Arab Emirates. The fine fraction (PM2.5 (particulates with aerodynamic diameters of less than 2.5 μm was collected on 47-mm Teflon filters and analyzed using a combined set of non-destructive techniques in order to provide better understanding of the sources of pollutants and their interaction during transport in the atmosphere. These techniques included gravimetric analysis, equivalent black carbon (EBC, X-ray fluorescence, scanning electron microscopy, and X-ray diffraction. Generally, the PM2.5 concentrations are within the limits set by the World Health Organization (WHO and the United States (US Environmental Protection Agency. The EBC content is in the range of 10–12% of the total PM concentration (2–4 µg m−3, while S (as ammonium sulfate, Ca (as calcite, gypsum, and calcium carbonate, Si (as quartz, Fe, and Al were the major sources of PM pollution. EBC, ammonium sulfate, Zn, V, and Mn originate from anthropogenic sources such as fossil fuel burning, traffic, and industrial emissions. Natural elements such as Ca, Fe, Al, Si, and Ti are due to natural sources such as crustal materials (enhanced during dust episodes and sea salts. The average contribution of natural sources in the total PM2.5 mass concentration over the sampling period is about 40%, and the contribution of the secondary inorganic compounds is about 27% (mainly ammonium sulfate in our case. The remaining 22% is assumed to be secondary organic compounds.

  18. Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003.

    Science.gov (United States)

    Sax, Sonja N; Koutrakis, Petros; Rudolph, Pablo A Ruiz; Cereceda-Balic, Francisco; Gramsch, Ernesto; Oyola, Pedro

    2007-07-01

    Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus

  19. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  20. Fine particulate matter air pollution and cognitive function among U.S. older adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Clarke, Philippa

    2015-03-01

    There is growing interest in understanding how exposures in the residential environment relate to cognitive function in older adults. The goal of this study is to determine if neighborhood-level exposure to fine particulate matter air pollution (PM2.5) is associated with cognitive function in a diverse, national sample of older U.S. adults. We use cross-sectional data on non-Hispanic black and white men and women aged 55 and older from the 2001/2002 Americans' Changing Lives Study (N = 780). EPA air monitoring data were linked to respondents using census tract identifiers. Cognitive function was assessed with tests of working memory and orientation. Negative binomial regression models were used to examine the association between PM2.5 and the number of errors on the cognitive assessment. Older adults living in areas with high concentrations of PM2.5 had an error rate 1.5 times greater than those exposed to lower concentrations, net of individual and neighborhood-level demographic and socioeconomic characteristics. This study adds to a growing body of research demonstrating the importance of air pollution to cognitive function in older adults. Improvements to air quality may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. An update on mortality in Denmark caused by fine particulate matter air pollution

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Andersen, Mikael Skou; Brandt, Jørgen

    Introduction In terms of effects on mortality fine particulate matter (PM2.5) is considered the most important component of air polllution. Several international studies have investigated the effect size. It is estimated that overall mortality increases 6% per 10µg/m3 increase in annual PM2.......5 and that PM2.5 affects global mortality signficantly (Hoek, 2013). The first attempt to describe the size of the effects of PM2.5 in Denmark were published in 2002 (Raaschou-Nielsen, 2002). At that time only PM10 data were available and only with a great deal of uncertainty. Since then the knowledge of PM2...... to what extent the changes in estimates of mortality from PM2.5 exposure over the years is due to changes in population and in pollution and to what extent they are due to improved models. Methods Several methods of calculation were compared for the year 2012. First the method used in 2002 in which...

  2. Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods

    Directory of Open Access Journals (Sweden)

    Yi-Ming Kuo

    2011-06-01

    Full Text Available Fine airborne particulate matter (PM2.5 has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS, the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME method. The resulting epistemic framework can assimilate knowledge bases including: (a empirical-based spatial trends of PM concentration based on landuse regression, (b the spatio-temporal dependence among PM observation information, and (c site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan from 2005–2007.

  3. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    Science.gov (United States)

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  4. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    Science.gov (United States)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  5. Impact of agricultural emission reductions on fine-particulate matter and public health

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2017-10-01

    Full Text Available A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5, with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3 released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by  ∼ 250 000 people yr−1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  6. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    Science.gov (United States)

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  7. Impact of agricultural emission reductions on fine-particulate matter and public health

    Science.gov (United States)

    Pozzer, Andrea; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; de Meij, Alexander; Lelieveld, Jos

    2017-10-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5), with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3) released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by ˜ 250 000 people yr-1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  8. Cost-effective reduction of fine primary particulate matter emissions in Finland

    International Nuclear Information System (INIS)

    Karvosenoja, Niko; Klimont, Zbigniew; Tohka, Antti; Johansson, Matti

    2007-01-01

    Policies to reduce adverse health impacts of fine particulate matter (PM 2.5 ) require information on costs of abatement and associated costs. This paper explores the potential for cost-efficient control of anthropogenic primary PM 2.5 emissions in Finland. Based on a Kyoto-compliant energy projection, two emission control scenarios for 2020 were developed. 'Baseline' assumes implementation of PM controls in compliance with existing legislation. 'Reduction' assumes ambitious further reductions. Emissions for 2020 were estimated at 26 and 18.6 Gg a -1 for 'Baseline' and 'Reduction', respectively. The largest abatement potential, 3.0 Gg a -1 , was calculated for power plants and industrial combustion. The largest potential with marginal costs below 5000 Euro MG(PM 2.5 ) -1 was for domestic wood combustion, 1.7 Gg a -1 . For traffic the potential was estimated at 1.0 Gg a -1 , but was associated with high costs. The results from this paper are used in the policy-driven national integrated assessment modeling that explores cost-efficient reductions of the health impacts of PM

  9. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang.

    Science.gov (United States)

    Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling

    2015-09-01

    Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  11. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  12. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort

    OpenAIRE

    Weichenthal, Scott; Villeneuve, Paul J.; Burnett, Richard T.; van Donkelaar, Aaron; Martin, Randall V.; Jones, Rena R.; DellaValle, Curt T.; Sandler, Dale P.; Ward, Mary H.; Hoppin, Jane A.

    2014-01-01

    Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations. Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort. Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between ...

  13. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the

  14. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    Science.gov (United States)

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-06-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory protection, individual differences in sensitivity to WTC PM2

  15. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  16. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    Science.gov (United States)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    . Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  17. Fine particulate air pollution and hospital visits for asthma in Beijing, China

    International Nuclear Information System (INIS)

    Tian, Yaohua; Xiang, Xiao; Juan, Juan; Sun, Kexin; Song, Jing; Cao, Yaying; Hu, Yonghua

    2017-01-01

    Data on fine particulate matter (PM 2.5 ) in China were first announced in 2013. The primary objective of this study was to evaluate the acute effects of PM 2.5 on asthma morbidity in Beijing, China. A total of 978,658 asthma hospital visits consisting of 928,607 outpatient visits, 40,063 emergency room visits and 9988 hospital admissions from January 1, 2010, to June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to explore the association between PM 2.5 and health service use. The mean daily PM 2.5 concentration was 99.5 μg/m 3 with a range from 7.2 μg/m 3 to 492.8 μg/m 3 . Ambient PM 2.5 concentration was significantly associated with increased use of asthma-related health services. Every 10 μg/m 3 increase in PM 2.5 concentration on the same day was significantly associated with a 0.67% (95% CI, 0.53%–0.81%), 0.65% (95% CI, 0.51%–0.80%), and 0.49% (95% CI, 0.35%–0.64%) increase in total hospital visits, outpatient visits and emergency room visits, respectively. The exposure–response association between PM 2.5 concentration and hospital visits for asthma exacerbations was approximately linear. In conclusion, this study found that short-term elevations in PM 2.5 concentration may increase the risk of asthma exacerbations. Our findings contribute to the limited scientific literature concerning the acute effects of PM 2.5 on asthma morbidity outcomes in developing countries. - Graphical abstract: The exposure-response curve of 3-day (lag0–2) moving average fine particulate matter (PM 2.5 ) concentrations and hospital visits for asthma between January 1, 2010, and June 30, 2012, in Beijing, China. Note: The X-axis is the 3-day (lag0–2) moving average PM 2.5 concentrations (μg/m 3 ). Y-axis is the predicted log (relative risk (RR)), after adjusting for temperature, relative humidity, day of week, public holiday, and calendar time, is shown by the solid line, and the dotted

  18. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  19. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter

    International Nuclear Information System (INIS)

    Wei, Hongying; Feng, Yan; Liang, Fan; Cheng, Wei; Wu, Xiaomeng; Zhou, Ren; Wang, Yan

    2017-01-01

    Highlights: • Oxidative stress-mediated neurocytotoxicity and DNA hydroxymethylation abnormalities involved in neuronal pathology of PM 2.5 . • PM 2.5 particles and toxic compounds adsorbed on the particle caused different types of neurocytotoxicity. • DNA hydroxymethylation abnormalities participated in PM 2.5 -induced impairments in neurite outgrowth and synapse formation. - Abstract: Epidemiological studies have implicated fine particulate matter (PM 2.5 ) as a risk factor for neurodegenerative diseases and neurodevelopmental disorders. However, the underlying molecular mechanisms and the influences of different components remain largely elusive. Here, we extended our previous work to investigate the role of oxidative stress and DNA hydroxymethylation in neuronal pathology of PM 2.5 . We found PM 2.5 and its extracts (water-soluble extracts, organic extracts and carbon core component) differentially caused cell cycle arrest, cell apoptosis and the cell proliferation inhibition in neuronal cells. These effects were mechanistically related to each other and oxidative stress, suggesting PM 2.5 and toxic compounds adsorbed on the particles may cause different types of brain damages. In addition, PM 2.5 and its organic extracts increased global DNA hydroxymethylation and gene-specific DNA hydroxymethylation of neuronal genes, and subsequently interfered with their mRNA expression. The impairments in neuronal progression characterized with decreased length of neurite and reduced mRNA expression of neuronal markers and synaptic markers. The blocking effects of antioxidants demonstrated the involvement of oxidative stress-mediated hydroxymethylation abnormalities in PM 2.5 -induced defects in neurite outgrowth and synapse formation. Our results first revealed the role of oxidative stress-mediated abnormal DNA hydroxymethylation in neuronal impairments of PM 2.5 , and thoroughly evaluated the neurocytotoxicity of different components.

  1. Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums

    Directory of Open Access Journals (Sweden)

    Kanyiva Muindi

    2016-07-01

    Full Text Available With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5 level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7% as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani, and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani. Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1 were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles.

  2. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    Science.gov (United States)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; hide

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  3. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology

    International Nuclear Information System (INIS)

    Cakmak, Sabit; Dales, Robert; Kauri, Lisa Marie; Mahmud, Mamun; Van Ryswyk, Keith; Vanos, Jennifer; Liu, Ling; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Weichenthal, Scott

    2014-01-01

    Background: Studying the physiologic effects of components of fine particulate mass (PM 2.5 ) could contribute to a better understanding of the nature of toxicity of air pollution. Objectives: We examined the relation between acute changes in cardiovascular and respiratory function, and PM 2.5 -associated-metals. Methods: Using generalized linear mixed models, daily changes in ambient PM 2.5 -associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus. Results: Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1–3 beats per minute, increases of 1–3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity. Conclusion: Metals contained in PM 2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology. - Highlights: • We measured daily lung function, heart rate and blood pressure in 61 subjects. • Study sites were adjacent to a steel plant and on a college campus. • PM 2.5 -associated metal concentrations were measured daily at each site. • On days of higher metal concentrations, physiologic variables slightly deteriorated. • Some metal components may contribute to the toxicity of PM 2.5 . - Several PM 2.5 metals were associated with acute changes in cardiovascular or respiratory physiology. Given the evidence of source specificity, our study provides novel information

  4. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    Science.gov (United States)

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  5. Fine particulate air pollution and hospital visits for asthma in Beijing, China.

    Science.gov (United States)

    Tian, Yaohua; Xiang, Xiao; Juan, Juan; Sun, Kexin; Song, Jing; Cao, Yaying; Hu, Yonghua

    2017-11-01

    Data on fine particulate matter (PM 2.5 ) in China were first announced in 2013. The primary objective of this study was to evaluate the acute effects of PM 2.5 on asthma morbidity in Beijing, China. A total of 978,658 asthma hospital visits consisting of 928,607 outpatient visits, 40,063 emergency room visits and 9988 hospital admissions from January 1, 2010, to June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to explore the association between PM 2.5 and health service use. The mean daily PM 2.5 concentration was 99.5 μg/m 3 with a range from 7.2 μg/m 3 to 492.8 μg/m 3 . Ambient PM 2.5 concentration was significantly associated with increased use of asthma-related health services. Every 10 μg/m 3 increase in PM 2.5 concentration on the same day was significantly associated with a 0.67% (95% CI, 0.53%-0.81%), 0.65% (95% CI, 0.51%-0.80%), and 0.49% (95% CI, 0.35%-0.64%) increase in total hospital visits, outpatient visits and emergency room visits, respectively. The exposure-response association between PM 2.5 concentration and hospital visits for asthma exacerbations was approximately linear. In conclusion, this study found that short-term elevations in PM 2.5 concentration may increase the risk of asthma exacerbations. Our findings contribute to the limited scientific literature concerning the acute effects of PM 2.5 on asthma morbidity outcomes in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities.

    Science.gov (United States)

    Chen, Renjie; Yin, Peng; Meng, Xia; Liu, Cong; Wang, Lijun; Xu, Xiaohui; Ross, Jennifer A; Tse, Lap A; Zhao, Zhuohui; Kan, Haidong; Zhou, Maigeng

    2017-07-01

    Evidence concerning the acute health effects of air pollution caused by fine particulate matter (PM 2.5 ) in developing countries is quite limited. To evaluate short-term associations between PM 2.5 and daily cause-specific mortality in China. A nationwide time-series analysis was performed in 272 representative Chinese cities from 2013 to 2015. Two-stage Bayesian hierarchical models were applied to estimate regional- and national-average associations between PM 2.5 concentrations and daily cause-specific mortality. City-specific effects of PM 2.5 were estimated using the overdispersed generalized additive models after adjusting for time trends, day of the week, and weather conditions. Exposure-response relationship curves and potential effect modifiers were also evaluated. The average of annual mean PM 2.5 concentration in each city was 56 μg/m 3 (minimum, 18 μg/m 3 ; maximum, 127 μg/m 3 ). Each 10-μg/m 3 increase in 2-day moving average of PM 2.5 concentrations was significantly associated with increments in mortality of 0.22% from total nonaccidental causes, 0.27% from cardiovascular diseases, 0.39% from hypertension, 0.30% from coronary heart diseases, 0.23% from stroke, 0.29% from respiratory diseases, and 0.38% from chronic obstructive pulmonary disease. There was a leveling off in the exposure-response curves at high concentrations in most, but not all, regions. The associations were stronger in cities with lower PM 2.5 levels or higher temperatures, and in subpopulations with elder age or less education. This nationwide investigation provided robust evidence of the associations between short-term exposure to PM 2.5 and increased mortality from various cardiopulmonary diseases in China. The magnitude of associations was lower than those reported in Europe and North America.

  7. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States.

    Science.gov (United States)

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R

    2015-08-01

    Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 μm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001-2008 from the U.S. Environmental Protection Agency's down-scaled estimates and obtained 2007-2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01-1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99-1.14). This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains.

  8. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  9. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  10. Acute effects of fine particulate air pollution on ST segment height: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Wu Rongling

    2010-11-01

    Full Text Available Abstract Background The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods We investigate the acute effects and the time course of fine particulate pollution (PM2.5 on myocardium ischemic injury as assessed by ST-segment height in a community-based sample of 106 healthy non-smokers. Twenty-four hour beat-to-beat electrocardiogram (ECG data were obtained using a high resolution 12-lead Holter ECG system. After visually identifying and removing all the artifacts and arrhythmic beats, we calculated beat-to-beat ST-height from ten leads (inferior leads II, III, and aVF; anterior leads V3 and V4; septal leads V1 and V2; lateral leads I, V5, and V6,. Individual-level 24-hour real-time PM2.5 concentration was obtained by a continuous personal PM2.5 monitor. We then calculated, on a 30-minute basis, the corresponding time-of-the-day specific average exposure to PM2.5 for each participant. Distributed lag models under a linear mixed-effects models framework were used to assess the regression coefficients between 30-minute PM2.5 and ST-height measures from each lead; i.e., one lag indicates a 30-minute separation between the exposure and outcome. Results The mean (SD age was 56 (7.6 years, with 41% male and 74% white. The mean (SD PM2.5 exposure was 14 (22 μg/m3. All inferior leads (II, III, and aVF and two out of three lateral leads (I and V6, showed a significant association between higher PM2.5 levels and higher ST-height. Most of the adverse effects occurred within two hours after PM2.5 exposure. The multivariable adjusted regression coefficients β (95% CI of the cumulative effect due to a 10 μg/m3 increase in Lag 0-4 PM2.5 on ST-I, II, III, aVF and ST-V6 were 0.29 (0.01-0.56 μV, 0.79 (0.20-1.39 μV, 0.52 (0.01-1.05 μV, 0.65 (0.11-1.19 μV, and 0.58 (0.07-1.09 μV, respectively, with all p

  11. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    Science.gov (United States)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  12. Impact of Agricultural Emission Reductions on Fine Particulate Matter and Public Health

    Science.gov (United States)

    Pozzer, A.; Tsimpidi, A.; Karydis, V.; De Meij, A.; Lelieveld, J.

    2017-12-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine particulate matter (PM2.5), with a focus on Europe, North America, South and East Asia. Hypothetical reduction of agricultural emission of 50%, 66% and 100% have been simulated and compared with the reference simulation. The simulations results reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, and this effect can almost be exclusively explain by the reduction of ammonia (NH3) emissions, released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases, although the relative reduction is very low (below 13% for a full removal of agricultural emissions) . Conversely, over Europe and North America, aerosol formation is not directly limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5concentrations over the latter regions, especially when emissions are abated systematically and an ammonia limited regions of aerosol growth is reached. Further, our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. It is calculated that ammonia emission controls could reduce the particle pH up to 1.5 pH-units in East Asia during winter, and more than 1.7 pH-units in South Asia, theoretically assuming complete agricultural emission removal, which could have repercussions for the reactive uptake of gases from the gas phase and the outgassing of relative weak acids. It is finally shown that a 50% reduction of agricultural emissions could prevent the mortality attributable to air pollution by 250 thousands people per year worldwide, amounting to reductions of 30%, 19% , 8% and 3% over North America, Europe and South Asia and East Asia, respectively

  13. Fine Particulate Matter Pollution and Risk of Community-Acquired Sepsis.

    Science.gov (United States)

    Sarmiento, Elisa J; Moore, Justin Xavier; McClure, Leslie A; Griffin, Russell; Al-Hamdan, Mohammad Z; Wang, Henry E

    2018-04-21

    While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM 2.5 ) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM 2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM 2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM 2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM 2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m³; p = 0.28) and mean one-year PM 2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m³; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM 2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85⁻1.32). Similarly, there were no associations between one-year PM 2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78⁻1.18). In the REGARDS cohort, PM 2.5 air pollution exposure was not associated with risk of sepsis.

  14. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi

    International Nuclear Information System (INIS)

    Wang, Rong; Xiao, Xue; Cao, Lei; Shen, Zhen-xing; Lei, Ying; Cao, Yong-xiao

    2016-01-01

    Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ET A and ET B receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ET A and ET B receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ET A and ET B receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ET B receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ET A receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ET B receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ET A receptor is involved in JNK and p38 pathways. - Highlights: • Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ET B and ET A receptors in rats. • PM2.5 increases mRNA and protein expressions of endothelin ET B and ET A receptors in bronchi. • The upregulation of ET B receptor is associated with MEK1/2 and p38 pathways. • The upregulation of ET A receptor is involved in JNK and p38 pathways. • The research provides novel understanding for PM2.5-associated respiratory diseases.

  15. Exposure to Fine Particulate Matter Leads to Rapid Heart Rate Variability Changes

    Directory of Open Access Journals (Sweden)

    Michael Riediker

    2018-01-01

    Full Text Available Introduction: Heart Rate Variability (HRV reflects the adaptability of the heart to internal and external stimuli. Reduced HRV is a predictor of post-infarction mortality. We previously found in road maintenance workers HRV-increases several hours after exposure to fine particulate matter (PM2.5. This seemed to conflict with studies where PM-exposure acutely reduced HRV. We therefore assessed whether time from exposure to HRV-assessment could explain the differences observed.Methods: On five non-consecutive days, workers carried nephelometers providing 1-min-interval PM2.5-exposure. Five-min HRV-intervals of SDNN (Standard Deviation of Normal to Normal beat intervals and pNN50 (Percentage of the interval differences exceeding 50 ms were extracted from 24-h electrocardiograms (ECGs. Following 60 min PM2.5-exposure, changes in HRV-parameters were assessed during 120-min visually and by regression analysis with control for time at work, at home, and during the night using autoregressive integrating moving average (ARIMA models to account for autocorrelation of the time-series. Additional controls included changing the time windows and including body mass index (BMI and age in the models.Result: Pattern analysis of 12,669 data points showed high modulation of mean, standard deviation (SD, and time trend of HRV (SDNN and pNN50 at low, and much reduced modulation at high PM2.5-exposures. The time trend following exposure was highly symmetrical, resembling a funnel plot. Regression analysis showed significant associations of decreasing SDNN and pNN50 (average, SD, and absolute value of time trend with increasing PM2.5-exposure, which remained significant when controlling for activity phases. Changing time windows did not change the pattern of response. Including BMI and age did not change the results.Conclusions: The reduced modulation of HRV following PM2.5-exposure is striking. It suggests strong interference with homeostatic controls. Such an

  16. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Science.gov (United States)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  17. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max

    2018-02-01

    This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source

  18. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  19. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  1. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    Science.gov (United States)

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  2. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  3. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Science.gov (United States)

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  4. Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India.

    Science.gov (United States)

    Nayek, Sukanta; Padhy, Pratap Kumar

    2018-03-27

    More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .

  5. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    Science.gov (United States)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  6. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, ...

  7. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  8. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    Science.gov (United States)

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  9. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Directory of Open Access Journals (Sweden)

    L. Wang

    2018-03-01

    Full Text Available Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m−3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m−3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  10. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was

  11. INJECTING FASTENING LOESS SOILS GROZNY FINE PARTICULATE MATTER SUCH AS «MIKRODUR»

    Directory of Open Access Journals (Sweden)

    S-A. Y. Murtazaev

    2014-01-01

    Full Text Available The paper is devoted to the actual problem of development and implementation of effective ways to increase the bearing capacity of foundations of buildings and structures by impregnating the soil very finely dispersed binders such as "Mikrodur", turning it into a constructive element of the structure.The article shows that the use of a fine binder improves impervious properties strengthened by arrays, resistance to aggressive influences, hardening in a negative temperature, the strength development, etc. 

  12. Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy)

    Science.gov (United States)

    Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A.

    2014-01-01

    Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day−1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day−1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.

  13. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults

    OpenAIRE

    Ailshire, Jennifer A.; Crimmins, Eileen M.

    2014-01-01

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large...

  14. Mercury

    Science.gov (United States)

    ... that mercuric chloride and methylmercury are possible human carcinogens. top How does mercury affect children? Very young ... billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum ...

  15. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  16. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  17. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Sørensen, Mette; Hertel, Ole

    2011-01-01

    conducted 1122 measurements of fine PM (PM2.5 and black smoke) in the bedrooms of 389 infants and registered indoor activities and characteristics of the house. We used mixed models to identify and quantify associations between predictors and concentrations. Results The concentration of PM2.5 was 2.8 times....... Frying without a range hood was associated with a 32% (95% CI, 12–54%) higher PM2.5 concentration per time per day, whereas frying with use of a range hood did not increase the concentration in the infant’s bedroom. Use of a fireplace, stove, candles or vacuum-cleaner, interior rebuilding or renovation......, local traffic, inner city residence and cold season increased the fine PM concentration. Open windows decreased the PM2.5 concentration in homes with smokers but increased the concentration in non-smoking homes. Conclusions We identified several sources of fine PM in infants’ bedrooms...

  18. Association of fine particulate matter from different sources with daily mortality in six US cities

    Energy Technology Data Exchange (ETDEWEB)

    Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. [Harvard University, Boston, MA (USA). School of Medicine, Brigham & Womens Hospital

    2000-07-01

    In this study, the authors use the elemental composition of size-fractionated particles to identify several distinct source-related fractions of fine particles and examined the association of these fractions with daily mortality in each of six US cities. Using specific rotation factor analysis for each city, a silicon factor classified as soil and crustal material, a lead factor classified as motor vehicle exhaust, a selenium factor representing coal combustion, and up to two additional factors were identified. Daily counts of deaths from National Center for Health Statistics records were extracted and city-specific associations of mortality with each source factor were estimated. Combined effect estimates were calculated as the inverse variance weighted mean of the city-specific estimates. Results indicated that combustion particles in the fine fraction from mobile and coal combustion sources, but not fine crustal particles, are associated with increased mortality.

  19. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass.

    Science.gov (United States)

    Wang, Xinfeng; Gu, Rongrong; Wang, Liwei; Xu, Wenxue; Zhang, Yating; Chen, Bing; Li, Weijun; Xue, Likun; Chen, Jianmin; Wang, Wenxing

    2017-11-01

    Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m -3 . The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88-95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM 2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM 2.5 emission factors from literature and were approximately 0.75-11.1 mg kg -1 . According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning and

  20. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    Science.gov (United States)

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  1. The measurement of the charging properties of fine particulate materials in pneumatic suspension

    International Nuclear Information System (INIS)

    Armour-Chelu, D.I.

    1998-11-01

    This document describes a programme of work that was designed to develop an improved understanding of the electrostatic charging properties of particulate materials with a view to applying this knowledge to the measurement of particulate concentrations in air-solid suspensions. An extensive literature review has been carried out. Some eighty published works were found and these concentrated on indirect charge measurement, the measurement of the two-phase pipe flow parameters, and on finding suitable models to explain tile work function given to insulators during metal to insulator contact. These areas are covered well in the field of electrostatics but data currently available in the area of programme of work being described here is very, limited, and so it is proposed that this research project will aim to improve such understanding. A test facility was developed to provide information from the flow of a particulate material under known conditions (particle velocity, suspension density). This test facility utilised three sensing probes, each with discrete charge amplifier units, at specific locations: one at the beginning and two further down the pipeline being utilised. Hence, the charging tendencies of any material were observed using this facility. The results obtained from this facility show the charging tendency of three particulate materials under various flow conditions. Signal processing techniques were developed to infer the suspension density for each flow condition and to estimate average particle velocity. Further analysis of the data resulted in tile derivation of a power spectral estimate for some of the flow conditions. This estimate was considered with the particle size distribution, as well as the estimate of tile average particle velocity, and there is a linkage. The main material selected for this programme was aluminium hydroxide. This was tested at environmental temperatures of 19 and 30 deg. C with relative humidity (RH) levels of 35, 45, and

  2. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass

    International Nuclear Information System (INIS)

    Wang, Xinfeng; Gu, Rongrong; Wang, Liwei; Xu, Wenxue; Zhang, Yating; Chen, Bing; Li, Weijun; Xue, Likun; Chen, Jianmin; Wang, Wenxing

    2017-01-01

    Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m −3 . The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88–95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM 2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM 2.5 emission factors from literature and were approximately 0.75–11.1 mg kg −1 . According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning

  3. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  4. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  5. Association of Exposure to Fine Particulate Matter and Risk Factors of Non-Communicable Diseases in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Parinaz Poursafa

    2017-10-01

    Full Text Available Background: Risk factors of non-communicable disease (NCD origin from early life, and exposure to environmental pollutant may be a predisposing factor. This study aimed to investigate the association of air quality index (AQI and fine particulate matter (PM2.5 with some NCD risk factors in a sample of Iranian children and adolescents. Materials and Methods: This cross-sectional study was conducted in 2014 to 2016 among children and adolescents, aged 6-18 years, in Isfahan, Iran. Physical examination, including weight, height, and blood pressure, was conducted by standard methods. Fasting blood sample was obtained for fasting blood glucose, total cholesterol, high density lipoprotein-cholesterol, low-density lipoprotein- cholesterol, and triglycerides. The mean AQI and PM2.5 values from the study time till one year prior to the survey were used. Multiple linear regression analysis was conducted for the association of AQI and PM2.5 with other variables. Results: Participants consisted of 186 children and adolescents with mean (SD age of 10.52(2.38 years. Exposure to higher level of PM2.5 had significant associations with higher levels of systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. It also had positive relationship with other risk factors and inverse association with low-density lipoprotein cholesterol (LDL-C, but these associations were not statistically significant. The corresponding figures were not significant for AQI. Conclusion: At current study results showed that exposure to higher levels of fine particulates was associated with some NCD risk factors in children and adolescents. Early life prevention of NCDs can lead to large reductions in disease risk; adverse effects of ambient pollutants should be considered in this regard.

  6. The relationship between fine particulate matter (PM2.5) and schizophrenia severity.

    Science.gov (United States)

    Eguchi, Rika; Onozuka, Daisuke; Ikeda, Kouji; Kuroda, Kenji; Ieiri, Ichiro; Hagihara, Akihito

    2018-04-23

    Although particulate matter (PM) is reported to affect the rate of emergency admissions for schizophrenia, no study has examined the relationship between particulate matter less than 2.5 μm in diameter (PM 2.5 ) and the severity of schizophrenia. We obtained data on patients with schizophrenia at a psychiatric hospital, and on air pollution in Sakai, Japan between Feb 1, 2013 and April 30, 2016. Multivariate logistic regression analyses were used to estimate the relationship between PM 2.5 concentrations and scores on the Brief Psychiatric Rating Scale (BPRS) of schizophrenia patients at admission, with a lag of up to 7 days. During the study period, there were 1193 schizophrenia cases. The odds ratio (OR) for a BPRS score ≥ 50 at admission was 1.05 [95% confidence interval 1.00-1.10] and the effect of PM 2.5 concentration was significant for lag period of 2 days. The ORs associated with PM 2.5 concentration increased substantially for patients over 65 years of age. Ambient PM 2.5 concentration was associated with exacerbation of schizophrenia. Our results suggest that protection for several days should be considered for controlling PM 2.5 -related schizophrenia, especially among elderly patients.

  7. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  8. Measurement of emissions of fine particulate organic matter from Chinese cooking

    Science.gov (United States)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  9. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Zheng Wei; Wang Shaofeng; Lu, Julia Y.

    2008-01-01

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m -3 , which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m -3 ) while the minimum mean concentration was observed in winter (4.0 pg m -3 ). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m -3 and had a clear seasonal variation: winter (74.1 pg m -3 ), autumn (22.5 pg m -3 ), spring (15.3 pg m -3 ) and summer (10.8 pg m -3 ), listed in decreasing order. The annual wet deposition was 9.1 μg m -2 and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation

  10. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.W.; Feng, X.B.; Zhu, W.Z.; Zheng, W.; Wang, S.F.; Lu, J.Y. [Chinese Academy of Sciences, Guiyang (China)

    2008-03-15

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m{sup -3}, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m{sup -3}) while the minimum mean concentration was observed in winter (4.0 pg m{sup -3}). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 Pg m{sup -3} and had a clear seasonal variation: winter (74.1 pg m{sup -3}), autumn (22.5 Pg m{sup -3}), spring (15.3 Pg m{sup -3}) and summer (10.8 Pg m{sup -3}), listed in decreasing order. The annual wet deposition was 9.1 {mu} g m{sup -2} and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.

  11. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xuewu [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of the Chinese Academy Sciences, Beijing 100049 (China); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)], E-mail: fengxinbin@vip.skleg.cn; Zhu Wanze [Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041 (China); Zheng Wei; Wang Shaofeng [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of the Chinese Academy Sciences, Beijing 100049 (China); Lu, Julia Y. [Department of Chemistry and Biology, Ryerson University, Toronto, Ont., M5B 2K3 (Canada)

    2008-03-15

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m{sup -3}, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m{sup -3}) while the minimum mean concentration was observed in winter (4.0 pg m{sup -3}). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m{sup -3} and had a clear seasonal variation: winter (74.1 pg m{sup -3}), autumn (22.5 pg m{sup -3}), spring (15.3 pg m{sup -3}) and summer (10.8 pg m{sup -3}), listed in decreasing order. The annual wet deposition was 9.1 {mu}g m{sup -2} and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.

  12. Mercury

    CERN Document Server

    Mahoney, T J

    2014-01-01

    This gazetteer and atlas on Mercury lists, defines and illustrates every named (as opposed to merely catalogued) object and term as related to Mercury within a single reference work. It contains a glossary of terminology used, an index of all the headwords in the gazetteer, an atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer, and appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets. This book is useful for the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature.

  13. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  14. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  15. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS HOGGED FUEL BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    Science.gov (United States)

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  17. A conditional Poisson analysis of fine particulate matter and U.S. Medicare hospitalization, 1999-2010, by individual-level chronic health conditions.

    Science.gov (United States)

    Background/Aim: A previous analysis suggested that U.S. counties with higher county-level prevalence of chronic conditions had stronger associations of mortality with fine particulate matter (PM2.5). This study assesses the modification of the effect of PM2.5 on daily hospitaliz...

  18. 40 CFR Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

    Science.gov (United States)

    2010-07-01

    ... and 1000 W/m2 solar radiation intensity. 7.4.8.2 The ambient temperature sensor shall be of such a... measurement of the mass concentration of fine particulate matter having an aerodynamic diameter less than or... matter specified in § 50.7 and § 50.13 of this part are met. The measurement process is considered to be...

  19. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    NARCIS (Netherlands)

    Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; Weiden-Reinmüller, S.L. von der; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q.J.; Michoud, V.; Slowik, J.G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J.L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-01-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions.

  20. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  1. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  2. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Directory of Open Access Journals (Sweden)

    Dongyang Nie

    2018-03-01

    Full Text Available Particulate matter (PM air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER model was applied to assess premature mortality, years of life lost (YLL attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF, stroke was the major cause of death, followed by ischemic heart disease (IHD, lung cancer (LC and chronic obstructive pulmonary disease (COPD. The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO Air Quality Guidelines (AQG of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  3. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  4. Fine particulate matter air pollution and cognitive function among older US adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Crimmins, Eileen M

    2014-08-15

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large, nationally representative sample of US adults aged 50 years or older. We linked participant data with 2000 US Census tract data and 2004 census tract-level annual average PM2.5 concentrations. Older adults living in areas with higher PM2.5 concentrations had worse cognitive function (β = -0.26, 95% confidence interval: -0.47, -0.05) even after adjustment for community- and individual-level social and economic characteristics. Results suggest that the association is strongest for the episodic memory component of cognitive function. This study adds to a growing body of research highlighting the importance of air pollution to cognitive function in older adults. Improving air quality in large metropolitan areas, where much of the aging US population resides, may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  6. Ambient fine particulate matter in China: Its negative impacts and possible countermeasures.

    Science.gov (United States)

    Qi, Zihan; Chen, Tingjia; Chen, Jiang; Qi, Xiaofei

    2018-03-01

    In recent decades, China has experienced rapid economic development accompanied by increasing concentrations of ambient PM 2.5 , particulate matter of less than 2.5 μm in diameter. PM 2.5 is now believed to be a carcinogen, causing higher lung cancer risks and generating losses to the economy and society. This meta-analysis evaluates the losses generated by ambient PM 2.5 in Suzhou from 2014 to 2016 and predicts losses at different concentrations. Estimations of total losses in Beijing, Shanghai, Hangzhou, Guangzhou, Dalian, and Xiamen are also presented, with a total national loss in 2015. The authors then demonstrate that lowering ambient PM 2.5 concentrations would be a realistic way for China to reduce the evaluated social losses in the short term. Possible legal measures are listed for lowering ambient PM 2.5 concentrations. The present findings quantify the economic effects of ambient PM 2.5 due to the increased incidence rate and mortality rate of lung cancer. Lowering ambient PM 2.5 concentrations would be the most realistic way for China to reduce tghe evaluated social losses in the short term. Possible legal measures for lowering ambient PM 2.5 concentrations to reduce the total losses are identified.

  7. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  8. Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities

    Science.gov (United States)

    Sarnat, Jeremy A.; Moise, Tamar; Shpund, Jacob; Liu, Yang; Pachon, Jorge E.; Qasrawi, Radwan; Abdeen, Ziad; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Schauer, James J.

    2010-07-01

    This manuscript presents results from an extensive, multi-country comparative monitoring study of fine particulate matter (PM 2.5) and its primary chemical components in Israeli, Jordanian and Palestinian cities. This study represented the first time that researchers from these countries have worked together to examine spatial and temporal relationships for PM 2.5 and its major components among the study sites. The findings indicated that total PM 2.5 mass was relatively homogenous among many of the 11 sites as shown from strong between-site correlations. Mean annual concentrations ranged from 19.9 to 34.9 μg m -3 in Haifa and Amman, respectively, and exceeded accepted international air quality standards for annual PM 2.5 mass. Similarity of total mass was largely driven by SO 42- and crustal PM 2.5 components. Despite the close proximity of the seven, well correlated sites with respect to PM 2.5, there were pronounced differences among the cities for EC and, to a lesser degree, OC. EC, in particular, exhibited spatiotemporal trends that were indicative of strong local source contributions. Interestingly, there were moderate to strong EC correlations ( r > 0.65) among the large metropolitan cities, West Jerusalem, Tel Aviv and Amman. For these relatively large cities, (i.e., West Jerusalem, Tel Aviv and Amman), EC sources from the fleet of buses and cars typical for many urban areas predominate and likely drive spatiotemporal EC distributions. As new airshed management strategies and public health interventions are implemented throughout the Middle East, our findings support regulatory strategies that target integrated regional and local control strategies to reduce PM 2.5 mass and specific components suspected to drive adverse health effects of particulate matter exposure.

  9. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  10. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    Science.gov (United States)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  11. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex.

    Science.gov (United States)

    Lee, Alison; Leon Hsu, Hsiao-Hsien; Mathilda Chiu, Yueh-Hsiu; Bose, Sonali; Rosa, Maria José; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Cohen, Sheldon; Coull, Brent A; Wright, Robert O; Wright, Rosalind J

    2018-05-01

    The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM 2.5 ) and maternal stress and childhood asthma (n = 736). Daily PM 2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE stress and child sex. Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m 3 ] increase in prenatal PM 2.5 level) during which children concomitantly exposed to prenatal PM 2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM 2.5 ). Prenatal PM 2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    Science.gov (United States)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  13. Pregnancy and Lifetime Exposure to Fine Particulate Matter and Infant Mortality in Massachusetts, 2001-2007.

    Science.gov (United States)

    Son, Ji-Young; Lee, Hyung Joo; Koutrakis, Petros; Bell, Michelle L

    2017-12-01

    Many studies have found associations between particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) and adult mortality. Comparatively few studies evaluated particles and infant mortality, although infants and children are particularly vulnerable to pollution. Moreover, existing studies mostly focused on short-term exposure to larger particles. We investigated PM2.5 exposure during pregnancy and lifetime and postneonatal infant mortality. The study included 465,682 births with 385 deaths in Massachusetts (2001-2007). Exposures were estimated from PM2.5-prediction models based on satellite imagery. We applied extended Cox proportional hazards modeling with time-dependent covariates to total, respiratory, and sudden infant death syndrome mortality. Exposure was calculated from birth to death (or end of eligibility for outcome, at age 1 year) and pregnancy (gestation and each trimester). Models adjusted for sex, birth weight, gestational length, season of birth, temperature, relative humidity, and maternal characteristics. Hazard ratios for total, respiratory, and sudden infant death syndrome mortality per-interquartile-range increase (1.3 μg/m3) in lifetime PM2.5 exposure were 2.66 (95% confidence interval (CI): 2.11, 3.36), 3.14 (95% CI: 2.39, 4.13), and 2.50 (95% CI: 1.56, 4.00), respectively. We did not observe a statistically significant relationship between gestational exposure and mortality. Our findings provide supportive evidence that lifetime exposure to PM2.5 increases risk of infant mortality. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Fine Particulate Matter in Urban Environments: A Trigger of Respiratory Symptoms in Sensitive Children

    Directory of Open Access Journals (Sweden)

    Daniel Dunea

    2016-12-01

    Full Text Available The overall objective of this research was to study children’s respiratory illness levels in Targoviste (Romania in relationship to the outdoor concentrations of airborne particulate matter with an aerodynamic diameter below 2.5 µm (PM2.5. We monitored and analysed the PM2.5 concentrations according to a complex experimental protocol. The health trial was conducted over three months (October–December 2015 and required the active cooperation of the children’s parents to monitor carefully the respiratory symptoms of the child, i.e., coughing, rhinorrhoea, wheezing, and fever, as well as their outdoor program. We selected the most sensitive children (n = 25; age: 2–10 years with perturbed respiratory health, i.e., wheezing, asthma, and associated symptoms. The estimated average PM2.5 doses were 0.8–14.5 µg·day−1 for weekdays, and 0.4–6.6 µg·day−1 for the weekend. The frequency and duration of the symptoms decreased with increasing age. The 4- to 5-year old children recorded the longest duration of symptoms, except for rhinorrhoea, which suggested that this age interval is the most vulnerable to exogenous trigger agents (p < 0.01 compared to the other age groups. PM2.5 air pollution was found to have a direct positive correlation with the number of wheezing episodes (r = 0.87; p < 0.01 in November 2015. Monitoring of wheezing occurrences in the absence of fever can provide a reliable assessment of the air pollution effect on the exacerbation of asthma and respiratory disorders in sensitive children.

  15. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  16. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    Science.gov (United States)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  17. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    Science.gov (United States)

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  18. Fine particulate air pollution and its components in association with cause-specific emergency admissions

    Directory of Open Access Journals (Sweden)

    Koutrakis Petros

    2009-12-01

    Full Text Available Abstract Background Although the association between exposure to particulate matter and health is well established, there remains uncertainty as to whether certain chemical components are more harmful than others. We explored whether the association between cause-specific hospital admissions and PM2.5 was modified by PM2.5 chemical composition. Methods We estimated the association between daily PM2.5 and emergency hospital admissions for cardiac causes (CVD, myocardial infarction (MI, congestive heart failure (CHF, respiratory disease, and diabetes in 26 US communities, for the years 2000-2003. Using meta-regression, we examined how this association was modified by season- and community-specific PM2.5 composition, controlling for seasonal temperature as a surrogate for ventilation. Results For a 10 μg/m3 increase in 2-day averaged PM2.5 concentration we found an increase of 1.89% (95% CI: 1.34- 2.45 in CVD, 2.25% (95% CI: 1.10- 3.42 in MI, 1.85% (95% CI: 1.19- 2.51 in CHF, 2.74% (95% CI: 1.30- 4.2 in diabetes, and 2.07% (95% CI: 1.20- 2.95 in respiratory admissions. The association between PM2.5 and CVD admissions was significantly modified when the mass was high in Br, Cr, Ni, and Na+, while mass high in As, Cr, Mn, OC, Ni, and Na+ modified MI, and mass high in As, OC, and SO42- modified diabetes admissions. For these species, an interquartile range increase in their relative proportion was associated with a 1-2% additional increase in daily admissions per 10 μg/m3 increase in mass. Conclusions We found that PM2.5 mass higher in Ni, As, and Cr, as well as Br and OC significantly increased its effect on hospital admissions. This result suggests that particles from industrial combustion sources and traffic may, on average, have greater toxicity.

  19. Water-soluble ions measured in fine particulate matter next to cement works

    Science.gov (United States)

    Galindo, N.; Yubero, E.; Nicolás, J. F.; Crespo, J.; Pastor, C.; Carratalá, A.; Santacatalina, M.

    2011-04-01

    PM2.5 samples were collected for one year in a suburban area close to an industrial complex formed by two cement factories and some quarries in southeastern Spain. Samples were analyzed by ion chromatography to determine the concentrations of major inorganic ions: Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+. The average PM2.5 concentration (17.6 μg m -3) was within the interval reported for other Mediterranean suburban environments. Concentration peaks were registered during both winter and summer, concurrently with maxima levels of nitrate and sulfate, due to stagnation conditions and African dust episodes, respectively. Sulfate was found to be a main contributor to PM2.5 aerosol mass (4.2 μg m -3, 24%), followed by nitrate and ammonium (1.5 μg m -3, 9% each one). Correlation analyses demonstrated that fine sulfate was present as (NH 4) 2SO 4, CaSO 4 and Na 2SO 4 since ammonium concentrations were not high enough to neutralize both anions. The mean concentration of calcium (1.0 μg m -3), an element commonly found in the coarse fraction, was higher than those found in other locations of the Mediterranean basin. Additionally, the lowest levels were registered during summer, in contrast with previous findings. This was attributed to resuspension and transport of mineral dust from the neighboring quarries and cement plants during fall and winter, which was supported by the results of the CPF analysis. Atmospheric levels of potassium and chloride (0.28 and 0.51 μg m -3 annual average, respectively) also seemed to be affected by cement works, as suggested by correlation and CPF analyses. In the case of Cl -, a marked seasonality was observed, with mean winter concentrations considerably higher than summer ones, indicating a clear prevalence of anthropogenic sources over sea spray emissions.

  20. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  1. More than 500 million Chinese urban residents (14% of the global urban population) are imperiled by fine particulate hazard.

    Science.gov (United States)

    He, Chunyang; Han, Lijian; Zhang, Robin Q

    2016-11-01

    China's urbanization and the subsequent public vulnerability to degenerated environment is important to global public health. Among the environmental problems, fine particulate (PM 2.5 ) pollution has become a serious hazard in rapidly urbanizing China. However, quantitative information remains inadequate. We thus collected PM 2.5 concentrations and population census records, to illustrate the spatial patterns and changes in the PM 2.5 hazard levels in China, and to quantify public vulnerability to the hazard during 2000-2010, following the air quality standards of World Health Organization. We found that 28% (2.72 million km 2 ) of China's territory, including 78% of cities (154 cities) with a population of >1 million, was exposed to PM 2.5 hazard in 2010; a 15% increase (1.47 million km 2 ) from 2000 to 2010. The hazards potentially impacted the health of 72% of the total population (942 million) in 2010, including 70% of the young (206 million) and 76% of the old (71 million). This was a significant increase from the 42% of total the population (279 million) exposed in 2000. Of the total urban residents, 76% (501 million) were affected in 2010. Along with PM 2.5 concentration increase, massive number of rural to urban migration also contributed greatly to China's urban public health vulnerability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2010-01-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5 ) and coarse (PM 2.5-10 ) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  3. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system.

    Directory of Open Access Journals (Sweden)

    Sônia de Fátima Soto

    Full Text Available Female Wistar rats were exposed to filtered air (F or to concentrated fine particulate matter (P for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR.Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII and its receptors AT1 (AT1R and AT2 (AT2R were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group.Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.

  4. Air quality at outdoor community events: findings from fine particulate (PM2.5) sampling at festivals in Edmonton, Alberta.

    Science.gov (United States)

    Collins, Damian; Parsons, Marc; Zinyemba, Chaka

    2014-01-01

    Exposure to fine particulate matter (PM2.5) is associated with a broad range of health risks. This study assessed the impacts of cooking smoke and environmental tobacco smoke on air quality at outdoor community events in Edmonton, Alberta (Canada). Data were collected at three festivals in July-August 2011 using a portable real-time airborne particle monitor. The pooled mean PM2.5 level was 12.41 μg/m(3). Peak readings varied from 52 to 1877 μg/m(3). Mean PM2.5 near food stalls was 35.42 μg/m(3), which exceeds the WHO limit for 24 h exposure. Mean PM2.5 levels with smokers present were 16.39 μg/m(3) (all points) and 9.64 μg/m(3) (excluding points near food stalls). Although some smokers withdrew from common spaces, on average 20 smokers/hour were observed within 3 m. Extending smoking bans would improve air quality and address related concerns. However, food preparation is a more pressing area for policy action to reduce PM2.5 exposure at these community events.

  5. An association between fine particulate matter (PM2.5) levels and emergency ambulance dispatches for cardiovascular diseases in Japan.

    Science.gov (United States)

    Ichiki, Toshihiro; Onozuka, Daisuke; Kamouchi, Masahiro; Hagihara, Akihito

    2016-11-01

    The aim of this study is to determine whether short-term exposure to fine particulate matter (PM 2.5 ) is associated with emergency ambulance dispatches for cardiovascular diseases in Japan. The nationwide data on emergency dispatches of ambulance for cardiovascular diseases classified as I00-I99 by International Classification of Diseases-10th revision in 30 Japanese prefectures between April 1 and December 31, in 2010 were analyzed. Data on weather variability including PM 2.5 , temperature and relative humidity were acquired from ambient air pollution monitoring stations. Conditional Poisson regression models were used to estimate the prefecture-specific effects of PM 2.5 on morbidity, and adjust for confounding factors. A meta-analysis was then applied to pool estimates at the 30-prefecture level. A total of 160,566 emergency ambulance dispatches for cardiovascular diseases were reported during the study period. The risk of emergency ambulance dispatch for cardiovascular diseases significantly increased with an increase in the exposure to PM 2.5 in Fukuoka and Iwate Prefectures. However, we found no statistically significant associations between PM 2.5 and emergency ambulance dispatches in the pooled analysis (odds ratio 1.00, 95 % confidence interval 0.99-1.00). Heterogeneity was not observed between prefectures (Cochran Q test, p = 0.187, I 2  = 18.4 %). Exposure to PM 2.5 is not associated with overall emergency ambulance dispatches for cardiovascular diseases in Japan.

  6. Impact of natural gas development in the Marcellus and Utica shales on regional ozone and fine particulate matter levels

    Science.gov (United States)

    Roohani, Yusuf H.; Roy, Anirban A.; Heo, Jinhyok; Robinson, Allen L.; Adams, Peter J.

    2017-04-01

    The Marcellus and Utica shale formations have recently been the focus of intense natural gas development and production, increasing regional air pollutant emissions. Here we examine the effects of these emissions on regional ozone and fine particulate matter (PM2.5) levels using the chemical transport model, CAMx, and estimate the public health costs with BenMAP. Simulations were performed for three emissions scenarios for the year 2020 that span a range potential development storylines. In areas with the most gas development, the 'Medium Emissions' scenario, which corresponds to an intermediate level of development and widespread adoption of new equipment with lower emissions, is predicted to increase 8-hourly ozone design values by up to 2.5 ppbv and average annual PM2.5 concentrations by as much as 0.27 μg/m3. These impacts could range from as much as a factor of two higher to a factor of three lower depending on the level of development and the adoption of emission controls. Smaller impacts (e.g. 0.1-0.5 ppbv of ozone, depending on the emissions scenario) are predicted for non-attainment areas located downwind of the Marcellus region such as New York City, Philadelphia and Washington, DC. Premature deaths for the 'Medium Emissions' scenario are predicted to increase by 200-460 annually. The health impacts as well as the changes in ozone and PM2.5 were all driven primarily by NOx emissions.

  7. Spatiotemporal Changes in Fine Particulate Matter Pollution and the Associated Mortality Burden in China between 2015 and 2016

    Directory of Open Access Journals (Sweden)

    Luwei Feng

    2017-10-01

    Full Text Available In recent years, research on the spatiotemporal distribution and health effects of fine particulate matter (PM2.5 has been conducted in China. However, the limitations of different research scopes and methods have led to low comparability between regions regarding the mortality burden of PM2.5. A kriging model was used to simulate the distribution of PM2.5 in 2015 and 2016. Relative risk (RR at a specified PM2.5 exposure concentration was estimated with an integrated exposure–response (IER model for different causes of mortality: lung cancer (LC, ischaemic heart disease (IHD, cerebrovascular disease (stroke and chronic obstructive pulmonary disease (COPD. The population attributable fraction (PAF was adopted to estimate deaths attributed to PM2.5. 72.02% of cities experienced decreases in PM2.5 from 2015 to 2016. Due to the overall decrease in the PM2.5 concentration, the total number of deaths decreased by approximately 10,658 per million in 336 cities, including a decrease of 1400, 1836, 6312 and 1110 caused by LC, IHD, stroke and COPD, respectively. Our results suggest that the overall PM2.5 concentration and PM2.5-related deaths exhibited decreasing trends in China, although air quality in local areas has deteriorated. To improve air pollution control strategies, regional PM2.5 concentrations and trends should be fully considered.

  8. Study on the Relationship between the Inhalable Fine Particulate Matter of Xuanwei Coal Combustion and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jiapeng YANG

    2015-07-01

    Full Text Available Background and objective The high incidence of lung cancer in Xuanwei, China, has become an important restricting factor for livelihood development, thus exerting local social and economic impacts. Coal is the main fuel of the local community and also the main source of indoor pollution. This study aims to explore the coal combustion inhalable fine particulate matter (PM2.5 and its component output differences in different areas of Xuanwei, Yunnan. Moreover, the aim of this study is to investigate the relationship between inhalation of fine particles and high incidence of local lung cancer. Methods For combustion test, coal mines designated as C1, K7 and M30 were collected from LaoLin Colliery of Laibing Town, Huchang Colliery of Baoshan Town, and Taiping Colliery of Wenxing Town in Xuanwei, respectively. PM2.5 of indoor air was weighed, analyzed for elemental composition, and morphologically compared. The pathological specimen of lung cancer patients in Xuanwei who underwent operation was observed through electron microscope. Results The PM2.5 concentrations in indoor air were (8.244 ±1.460 mg/m3 (C1, (5.066±0.984 mg/m3 (K7, and (5.071±1.460 mg/m3 (M30. The differences among pairwise comparisons were statistically significant (P=0.029. The filter impurities of C1 coal seam primarily include Si- and O-enriched compounds. Moreover, three membranes that comprised other elements, including C, S, and Si, were observed. These membranes were evident from the aggregation of silica and a Ca-Al membrane. Compared with that of other coal seams, C1 coal generated a mass of impurities, in which several particles have irregular shape. We found nanoscale fine particles in some specimens of Xuanwei lung cancer patients. Conclusion The produced combustion of C1 coal was different from that of K7 and M30 coal. PM2.5 composition may be associated with the high local incidence of lung cancer.

  9. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  10. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke.

    Science.gov (United States)

    Kowalska, Małgorzata; Kocot, Krzysztof

    2016-09-28

    Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5) on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm) has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old), obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health are necessary.

  11. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10 and the risk of heart rhythm abnormalities and stroke

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-09-01

    Full Text Available Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5 on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old, obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health

  12. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

    Directory of Open Access Journals (Sweden)

    A. G. Megaritis

    2013-03-01

    Full Text Available PMCAMx-2008, a three dimensional chemical transport model (CTM, was applied in Europe to quantify the changes in fine particle (PM2.5 concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2, ammonia (NH3, nitrogen oxides (NOx, anthropogenic volatile organic compounds (VOCs and anthropogenic primary organic aerosol (POA emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m−3 and 1.8 μg m−3 (5.5% and 4% on average during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3 (20% on average in both periods. The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m−3 during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans. The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m−3 during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2

  13. Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques

    Directory of Open Access Journals (Sweden)

    Kimmel Veljo

    2009-03-01

    Full Text Available Abstract Background Health impact assessments (HIA use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches. Methods Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5 from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11% per 10 μg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67% and 0.73% (95% CI 0.47–0.93% per 10 μg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY. Results The annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 μg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528 premature deaths resulting in 3859 (95% CI 10236636 Years of Life Lost (YLL per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10 years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of

  14. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  15. Short-term Effect of Fine Particulate Matter on Children?s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis

    OpenAIRE

    Lim, Hyungryul; Kwon, Ho-Jang; Lim, Ji-Ae; Choi, Jong Hyuk; Ha, Mina; Hwang, Seung-Sik; Choi, Won-Jun

    2016-01-01

    Objectives: No children-specified review and meta-analysis paper about the short-term effect of fine particulate matter (PM2.5) on hospital admissions and emergency department visits for asthma has been published. We calculated more precise pooled effect estimates on this topic and evaluated the variation in effect size according to the differences in study characteristics not considered in previous studies. Methods: Two authors each independently searched PubMed and EMBASE for relevant studi...

  16. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2012-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  17. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea)

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2011-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  18. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire

  19. A persisting secondhand smoke hazard in urban public places: results from fine particulate (PM2.5) air sampling.

    Science.gov (United States)

    Wilson, Nick; Edwards, Richard; Parry, Rhys

    2011-03-04

    To assess the need for additional smokefree settings, by measuring secondhand smoke (SHS) in a range of public places in an urban setting. Measurements were made in Wellington City during the 6-year period after the implementation of legislation that made indoor areas of restaurants and bars/pubs smokefree in December 2004, and up to 20 years after the 1990 legislation making most indoor workplaces smokefree. Fine particulate levels (PM2.5) were measured with a portable real-time airborne particle monitor. We collated data from our previously published work involving random sampling, purposeful sampling and convenience sampling of a wide range of settings (in 2006) and from additional sampling of selected indoor and outdoor areas (in 2007-2008 and 2010). The "outdoor" smoking areas of hospitality venues had the highest particulate levels, with a mean value of 72 mcg/m3 (range of maximum values 51-284 mcg/m3) (n=20 sampling periods). These levels are likely to create health hazards for some workers and patrons (i.e., when considered in relation to the WHO air quality guidelines). National survey data also indicate that these venues are the ones where SHS exposure is most frequently reported by non-smokers. Areas inside bars that were adjacent to "outdoor" smoking areas also had high levels, with a mean of 54 mcg/m3 (range of maximum values: 18-239 mcg/m3, for n=13 measurements). In all other settings mean levels were lower (means: 2-22 mcg/m3). These other settings included inside traditional style pubs/sports bars (n=10), bars (n=18), restaurants (n=9), cafes (n=5), inside public buildings (n=15), inside transportation settings (n=15), and various outdoor street/park settings (n=22). During the data collection in all settings made smokefree by law, there was only one occasion of a person observed smoking. The results suggest that compliance in pubs/bars and restaurants has remained extremely high in this city in the nearly six years since implementation of the

  20. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    Science.gov (United States)

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  1. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model.

    Science.gov (United States)

    Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin

    2017-12-01

    China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59

  2. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels.

    Science.gov (United States)

    Wu, Di; Zhang, Fei; Lou, Wenhao; Li, Dan; Chen, Jianmin

    2017-12-15

    Fuel consumption is one of the major contributors to air pollution worldwide. Plenty of studies have demonstrated that the diesel and petrol exhaust fine particulate matters (FPMs) are associated with increases of various diseases. However, the influences of different fuel types and their chemical components on toxicity have been less investigated. In this study, four kinds of fuels that widely used in China were burned in a laboratory simulation, and the FPMs were collected and analyzed. Transmission electron microscopy showed that black carbon was mainly soot with a dendritic morphology. For light diesel oil, marine heavy diesel oil, 93 octane petrol and 97 octane petrol diesel oil, the emission factors of FPMs were 3.05±0.29, 3.21±0.54, 2.36±0.33, and 2.28±0.25g/kg fuel, respectively. And the emission factors for the "16 US EPA" PAHs of FPM were 0.45±0.20, 0.80±0.22, 1.00±0.20, and 1.05±0.19mg/g FPMs, respectively. Fe is the most abundant metal in these FPMs, and the emission factors of FPMs were 2.58±1.70, 4.45±0.11, 8.18±0.58, and 9.24±0.17mg/g FPMs, respectively. We ranked the cytotoxicity of the FPMs emission from fuels combustion: marine heavy diesel oil>97 octane petrol>93 octane petrol>light diesel oil, and the genotoxicity of FPMs emission from fuels combustion: marine heavy diesel oil>light diesel oil>93 octane petrol>97 octane petrol. Significant correlations were found between PAH concentrations and reactive oxygen species (ROS) generation. Our results demonstrated that fuels exhaust FPMs have strong association with ROS activity, cytotoxicity and genotoxicity. These results indicated that fuels exhaust FPMs pose a potentially serious health, and emphasized the importance of assessing the health risks posed by the particulate pollutants in vehicle exhausts. Copyright © 2017. Published by Elsevier B.V.

  3. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    Science.gov (United States)

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.

  4. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  5. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China

    Science.gov (United States)

    Wang, Jinfeng; Yin, Qian; Tong, Shilu; Ren, Zhoupeng; Hu, Maogui; Zhang, Hongrui

    2017-11-01

    Although many studies examined the effects of fine particulate matter (PM2.5) on the deaths of cardiovascular disease (CVD) and respiratory disease (RD), few research has paid attention to the effects of prolonged continuous exposure to high PM2.5 pollution. This study estimated the excess risks (ER) of CVD and RD mortalities associated with prolonged continuous exposure to high PM2.5 pollution for the whole population and specific subsociodemographic groups in Beijing, which is the capital city of China with over 20 million residents and having severe PM2.5 pollution problems. Our results suggested that when high PM2.5 pollution occurred continuously, at various thresholds and durations, the adverse effects on CVD and RD mortalities varied significantly. The CVD mortality risks in association with prolonged continuous high PM2.5 pollution exposure were more serious for single individuals (including unmarried, divorced, and widowed), illiterate and outdoor workers than for other specific subsociodemographic groups. When the daily PM2.5 concentration higher than 105 μg/m3 consecutively occurs, at the ninth day, the ERs of CVD death for single individuals, illiterate and outdoor workers groups reached to 45% (95% CI: 22, 71), 51% (95% CI: 28, 79) and 53% (95% CI: 29, 82) respectively. On the other hand, prolonged continuous high PM2.5 pollution level appeared to contribute a higher proportion of RD deaths among illiterate and outdoor workers, but less significant for the other specific subsociodemographic groups. When the duration with daily PM2.5 pollution higher than 115 μg/m3 reached to six days, the ERs for outdoor workers and illiterate attributed to prolonged continuous PM2.5 pollution exposure increased 36% (95% CI: 5, 76) and 49% (95% CI: 16, 91) respectively.

  6. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  7. Spatiotemporal prediction of fine particulate matter using high resolution satellite images in the southeastern U.S 2003–2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 μm in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure; however, induces measurement error. Land use regression provides spatially resolved predictions but land use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables such as meteorological variables, land use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1 km2 resolution of the southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 through 2011. We divided the study area into 3 regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors (RMSPE) of 2.89, 2.51, and 2.82 μg/m3 for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas due to the paucity of monitors in rural areas. PMID:26082149

  8. Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit

    Directory of Open Access Journals (Sweden)

    Leonardo Martínez

    2016-11-01

    Full Text Available Indoor air quality in school classrooms is a major pediatric health concern because children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter (PM2.5 emitted from mining waste deposits within and near cities in northern Chile is a serious environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in six indoor and outdoor school environments during the summer and winter of 2012 and 2013. Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were higher in indoor microenvironments during the winter, at times exceeding national and international recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers should enact environmental management strategies to minimize further environmental damage and mitigate the risks that this pollution poses for pediatric health.

  9. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    Science.gov (United States)

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  10. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    Science.gov (United States)

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  11. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan.

    Science.gov (United States)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-07-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Neighborhood social stressors, fine particulate matter air pollution, and cognitive function among older U.S. adults.

    Science.gov (United States)

    Ailshire, Jennifer; Karraker, Amelia; Clarke, Philippa

    2017-01-01

    A growing number of studies have found a link between outdoor air pollution and cognitive function among older adults. Psychosocial stress is considered an important factor determining differential susceptibility to environmental hazards and older adults living in stressful neighborhoods may be particularly vulnerable to the adverse health effects of exposure to hazards such as air pollution. The objective of this study is to determine if neighborhood social stress amplifies the association between fine particulate matter air pollution (PM 2.5 ) and poor cognitive function in older, community-dwelling adults. We use data on 779 U.S. adults ages 55 and older from the 2001/2002 wave of the Americans' Changing Lives study. We determined annual average PM 2.5 concentration in 2001 in the area of residence by linking respondents with EPA air monitoring data using census tract identifiers. Cognitive function was measured using the number of errors on the Short Portable Mental Status Questionnaire (SPMSQ). Exposure to neighborhood social stressors was measured using perceptions of disorder and decay and included subjective evaluations of neighborhood upkeep and the presence of deteriorating/abandoned buildings, trash, and empty lots. We used negative binomial regression to examine the interaction of neighborhood perceived stress and PM 2.5 on the count of errors on the cognitive function assessment. We found that the association between PM 2.5 and cognitive errors was stronger among older adults living in high stress neighborhoods. These findings support recent theoretical developments in environmental health and health disparities research emphasizing the synergistic effects of neighborhood social stressors and environmental hazards on residents' health. Those living in socioeconomically disadvantaged neighborhoods, where social stressors and environmental hazards are more common, may be particularly susceptible to adverse health effects of social and physical

  13. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions

    Directory of Open Access Journals (Sweden)

    Herbst Margaret C

    2004-12-01

    Full Text Available Abstract Background Exposure to fine particulate matter air pollutants (PM2.5 affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1 crustal material, 2 wear of steel automotive components, 3 gasoline combustion, 4 speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score, heart rate variability (+16%, supraventricular ectopic beats (+39%, % neutrophils (+7%, % lymphocytes (-10%, red blood cell volume MCV (+1%, von Willebrand Factor (+9%, blood urea nitrogen (+7%, and protein C (-11%. The "crustal" factor (but not the "collapsed" source was associated with MCL (+3% and serum uric acid concentrations (+5%. Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.

  14. Impact of Oxidant Gases on the Relationship between Outdoor Fine Particulate Air Pollution and Nonaccidental, Cardiovascular, and Respiratory Mortality.

    Science.gov (United States)

    Weichenthal, Scott; Pinault, Lauren L; Burnett, Richard T

    2017-11-27

    Outdoor fine particulate air pollution (PM 2.5 ) is known to increase mortality risk and is recognized as an important contributor to global disease burden. However, less is known about how oxidant gases may modify the chronic health effects of PM 2.5 . In this study, we examined how the oxidant capacity of O 3 and NO 2 (using a redox-weighted average, O x ) may modify the relationship between PM 2.5 and mortality in the 2001 Canadian Census Health and Environment Cohort. In total, 2,448,500 people were followed over a 10.6-year period. Each 3.86 µg/m 3 increase in PM 2.5 was associated with nonaccidental (Hazard Ratio (HR) = 1.095, 95% CI: 1.077, 1.112), cardiovascular (HR = 1.088, 95% CI: 1.059, 1.118), and respiratory mortality (HR = 1.110, 95% CI: 1.051, 1.171) in the highest tertile of O x whereas weaker/null associations were observed in the middle and lower tertiles. Analysis of joint non-linear concentration-response relationships for PM 2.5 and O x suggested threshold concentrations between approximately 23 and 25 ppb with O x concentrations above these values strengthening PM 2.5 -mortality associations. Overall, our findings suggest that oxidant gases enhance the chronic health risks of PM 2.5 . In some areas, reductions in O x concentrations may have the added benefit of reducing the public health impacts of PM 2.5 even if mass concentrations remain unchanged.

  15. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  16. Hearing Schedule and List of Speakers for the Public Hearing on Revisions to FIPs to Reduce Interstate Transport of Fine Particulate Matter and Ozone – October 28, 2011, Washington, D.C.

    Science.gov (United States)

    List of Speakers and Hearing Schedule for the October 28 Public Hearing on the proposed Revisions to the Federal Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone.

  17. Polycyclic aromatic hydrocarbon in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all data in figures in the manuscript and supporting information for the publication entitled "Particulate polycyclic aromatic hydrocarbon...

  18. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates

    Science.gov (United States)

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...

  19. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    Science.gov (United States)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  20. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suyang; Zhang, Kai, E-mail: Kai.Zhang@uth.tmc.edu

    2015-12-15

    Fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM{sub 2.5}) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM{sub 2.5} sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM{sub 2.5} components and mortality during 2000–2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM{sub 2.5} components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM{sub 2.5} components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000–2005 and 2006–2011. Interquartile range increases in ammonium (0.881 μg/m{sup 3}), nitrate (0.487 μg/m{sup 3}), sulfate (2.245 μg/m{sup 3}), and vanadium (0.004 μg/m{sup 3}) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM{sub 2.5} mass and mortality decreased during 2000–2011, however, the PM{sub 2.5} components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM{sub 2.5} and mortality differ across the PM{sub 2.5} components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. - Highlights: • PM{sub 2.5} concentrations were associated with increased mortality risk. • A few major PM{sub 2.5} components were associated with increased mortality risk.

  1. Spatiotemporal Prediction of Fine Particulate Matter Using High-Resolution Satellite Images in the Southeastern US 2003-2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM(sub 2.5) to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM(sub 2.5) exposures. In this paper, we used AOD data with other PM(sub 2.5) variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM(sub 2.5) at a 1 sq km resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM(sub 2.5) measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 cu micrograms for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM(sub 2.5) concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM(sub 2.5). Our model results will also extend the existing studies on PM(sub 2.5) which have mostly focused on urban areas because of the paucity of monitors in rural areas.

  2. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    Directory of Open Access Journals (Sweden)

    Zhengmeng Ye

    2018-03-01

    Full Text Available Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5 exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R, regulated by G protein-coupled receptor kinase type 4 (GRK4, plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the

  3. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    Science.gov (United States)

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  4. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan

    International Nuclear Information System (INIS)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-01-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM 2.5 ) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM 2.5 , the sampling days were classified into high PM 2.5 concentration event days (PM 2.5 >35 μg m −3 ) and non-event days (PM 2.5 <35 μg m −3 ). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl − and NO 3 − increased when a high PM 2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM 2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM 2.5 concentration event days. In order to reduction of high PM 2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. - Highlights: • The mass fractions of NH 4 + , K + , Cl − and NO 3 − increased during PM 2.5 event days. • Reduction of coal combustion/urban waste incineration emissions should be prioritized. • The control of vehicle emission is important in the locally emitted periods. • Secondary

  5. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013.

    Directory of Open Access Journals (Sweden)

    Qin Xu

    Full Text Available Heavy fine particulate matter (PM2.5 air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV for total and cause-specific respiratory diseases in urban areas in Beijing.Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender.A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%, 0.19% for upper respiratory tract infection (URTI (95%CI: 0.04%-0.35%, 0.34% for lower respiratory tract infection (LRTI (95%CI: 0.14%-0.53% and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD (95%CI: 0.13%-2.79%. The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%. The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure.PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.

  6. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    International Nuclear Information System (INIS)

    Liu, Suyang; Zhang, Kai

    2015-01-01

    Fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM_2_._5) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM_2_._5 sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM_2_._5 components and mortality during 2000–2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM_2_._5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM_2_._5 components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000–2005 and 2006–2011. Interquartile range increases in ammonium (0.881 μg/m"3), nitrate (0.487 μg/m"3), sulfate (2.245 μg/m"3), and vanadium (0.004 μg/m"3) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM_2_._5 mass and mortality decreased during 2000–2011, however, the PM_2_._5 components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM_2_._5 and mortality differ across the PM_2_._5 components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. - Highlights: • PM_2_._5 concentrations were associated with increased mortality risk. • A few major PM_2_._5 components were associated with increased mortality risk. • Associations were generally strongest in winter in Greater

  7. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013.

    Science.gov (United States)

    Xu, Qin; Li, Xia; Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei; Guo, Xiuhua

    2016-01-01

    Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender. A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure. PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.

  8. NAAQS Designated Area Polygons - Fine Particulate Matter (24-Hr, PM-2.5), Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Designated Areas for Particulate Matter < 2.5 microns, according to the 24-Hour National Ambient Air Quality Standards (NAAQS). Nonattainment areas are geographic...

  9. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  10. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    Science.gov (United States)

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  11. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    Science.gov (United States)

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  12. Effects of particulate air pollution on human health. Statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution; Partikulaere Luftverunreinigung und ihre Folgen fuer die menschliche Gesundheit. Stellungnahme der deutschen Gesellschaft fuer Pneumologie (DGP) zur aktuellen Feinstaub-Diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Voshaar, T.H. [Krankenhaus Bethanien, Moers (Germany). Zentrum fuer Schlafmedizin und Heimbeatmung; Heyder, J. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Koehler, D. [Fachkrankenhaus Kloster Grafschaft, Schmallenberg (Germany); Krug, N. [Fraunhofer-Inst. Toxikologie und Experimentelle Medizin, Hannover (Germany); Nowak, D. [Inst. und Poliklinik fuer Arbeits- und Umweltmedizin, Ludwig-Maximilians-Univ., Muenchen (Germany); Scheuch, G. [Inamed GmbH, Muenchen-Gauting und Gemuenden/Wohra (Germany); Schulz, H. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Witt, C. [Charite-Universitaetsklinik, Schwerpunkt Pneumologie, Berlin (Germany)

    2005-07-01

    The statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution reviews recent research on the matter: effects of particulates depending on particle size, abundance indoor and outdoor, tobacco smoke, diesel soot particles, health hazards especially for children, epidemiology, toxicological studies, aerosols. (uke)

  13. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    Science.gov (United States)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  14. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Li, Xiangyu; Huang, Shuqiong; Jiao, Anqi; Yang, Xuhao; Yun, Junfeng; Wang, Yuxin; Xue, Xiaowei; Chu, Yuanyuan; Liu, Feifei; Liu, Yisi; Ren, Meng

    2017-01-01

    An increasing number of studies have been conducted to determine a possible linkage between maternal exposure to ambient fine particulate matter and effects on the developing human fetus that can lead to adverse birth outcomes, but, the present results are not consistent. A total of 23 studies published before July 2016 were collected and analyzed and the mean value of reported exposure to fine particulate matter (PM 2.5 ) ranged from 1.82 to 22.11 We found a significantly increased risk of preterm birth with interquartile range increase in PM 2.5 exposure throughout pregnancy (odds ratio (OR) = 1.03; 95% conditional independence (CI): 1.01–1.05). The pooled OR for the association between PM 2.5 exposure, per interquartile range increment, and term low birth weight throughout pregnancy was 1.03 (95% CI: 1.02–1.03). The pooled ORs for the association between PM 2.5 exposure per 10 increment, and term low birth weight and preterm birth were 1.05 (95% CI: 0.98–1.12) and 1.02 (95% CI: 0.93–1.12), respectively throughout pregnancy. There is a significant heterogeneity in most meta-analyses, except for pooled OR per interquartile range increase for term low birth weight throughout pregnancy. We here show that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight. However, the effect of exposure time needs to be further explored. In the future, prospective cohort studies and personal exposure measurements needs to be more widely utilized to better characterize the relationship between ambient fine particulate exposure and adverse birth outcomes. - Highlights: • The results had shorter intervals indicate and smaller heterogeneity by using IQR increment increase as selected standard. • The manuscript included the latest research results and updated the previous systematic review and meta-analysis. - Meta-analysis of preterm birth and term low birth weight of PM 2.5

  15. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  16. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    Science.gov (United States)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  17. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    2016-02-01

    Full Text Available Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM, coarse particulate organic matter. Mechanical and biological processing converts this into fine particulate organic matter (FPOM. Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU, of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina, Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems.

  18. Report on fine particulates and ozone in Quebec in connection with the Canada Wide Standard : 2009 report

    International Nuclear Information System (INIS)

    Busque, D.; Bisson, M.; Paradis, J.; Proulx, M.; Guay, M.

    2010-05-01

    In June 2000, the federal and provincial governments, with the exception of Quebec, adopted a Canada Wide Standard (CWS) for particulates and ozone and set out to reduce these pollutants by 2010. Although Quebec was not a signatory to the CWS, it acts in coherence with the other governments regarding these air quality standards. Ozone and particulates are the main precursors to smog and are known to cause health and environmental problems. Ozone forms when nitrogen oxides and volatile organic compounds (VOCs) chemically react, particularly during hot sunny days. The CWS is a strategy to reduce the risk of these pollutants to public health and the environment. In order to apply this standard, Quebec must verify conformity for regions with a population of more than 100,000, which includes 6 regions, notably Montreal, Quebec City, Gatineau, the Saguenay, Sherbrooke and Trois Rivieres. Results of a 2008 study showed that air quality in Gatineau and 3 subregions of Montreal exceeded the allow limit of 65 ppb for ozone. However, ozone concentrations in Quebec City, the Saguenay, Sherbrooke and Trois Rivieres were under the allowable limits. Results of the 2008 study showed that particulate concentration in all regions were blow the allowable limits. This document revealed that there has been an improvement in air quality in terms of ozone and particulates since 2005. Most regions in Quebec were under the allowable limits projected for 2010. 7 refs., 1 tab., 6 figs., 6 appendices.

  19. Long-Term Exposure to Fine Particulate Matter and Breast Cancer Incidence in the Danish Nurse Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Zorana J; Ravnskjaer, Line; Andersen, Klaus Kaae

    BACKGROUND: An association between air pollution and breast cancer risk has been suggested but evidence is sparse and inconclusive. METHODS: We included 22,877 female nurses from the Danish Nurse cohort who were recruited in 1993 or 1999, and followed them for incidence of breast cancer (N=1......,145) until 2013 in the Danish Cancer Register. We estimated annual mean concentrations of particulate matter with diameter nurses' residences since 1990 using an atmospheric chemistry transport model. We examined the association between...

  20. Quality and Reputation: The Indirect Effect of Fine Particulate Matter on Health through Individuals' Life-style

    OpenAIRE

    Cinzia Di Novi

    2011-01-01

    Limited literature has been published on the association between environmental health indicators, life-style habits and ambient air pollution. We have examined the association of asthma prevalence and the amount of health investment with daily mean concentrations of particulate matter (PM) with a mass median aerodynamic diameter less than 2.5 mm (PM 2.5 ) in 16 metropolitan areas in U.S. using the Behavioral Risk Factor Surveillance System (2001) data in conjunction with the Air Quality Syste...

  1. Behavior of mercury and iodine during vitrification of simulated alkaline Purex waste

    International Nuclear Information System (INIS)

    Holton, L.K.

    1981-09-01

    Current plans indicate that the high-level wastes stored at the Savannah River Plant will be solidified by vitrification. The behavior of mercury and iodine during the vitrification process is of concern because: mercury is present in the waste in high concentrations (0.1 to 2.8 wt%); mercury will react with iodine and the other halogens present in the waste during vitrification and; the mercury compounds formed will be volatilized from the vitrification process placing a high particulate load in the vitrification system off-gas. Twelve experiments were completed to study the behavior of mercury during vitrification of simulated SRP Purex waste. The mercury was completely volatized from the vitrification system in all experiments. The mercury reacted with iodine, chlorine and oxygen to form a fine particulate solid. Quantitative recovery of mercury compounds formed in the vitrification system off-gas was not possible due to high (37 to 90%) deposition of solids in the off-gas piping. The behavior of mercury and iodine was most strongly influenced by the vitrification system atmosphere. During experiments performed in which the oxygen content of the vitrification system atmosphere was low (< 1 vol%); iodine retention in the glass product was 27 to 55%, the mercury composition of the solids recovered from the off-gas scrub solutions was 75 to 85 wt%, and a small quantity of metallic mercury was recovered from the off-gas scrub solution. During experiments performed in which the oxygen content of the vitrification system atmosphere was high (20 vol%), iodide retention in the glass product was 3 to 15%, the mercury composition of the solids recovered from the off-gas scrub solutions was 60 to 80 wt%, and very little metallic mercury was recovered from the off-gas scrub solution

  2. Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-01-15

    Recent studies have reported adverse health effects of short-term exposure to coarse particles independent of particulate matter less than 2.5 μm in diameter (PM2.5), but evidence in Asian countries is limited. We therefore evaluated associations between short-term exposure to particulate matter (PM) and mortality among older people in Tokyo, Japan. We used a time-stratified, case-crossover design. Study participants included 664,509 older people (≥65 years old) in the 23 urbanized wards of the Tokyo Metropolitan Government, who died between January 2002 and December 2013. We obtained PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM to account for coarse particles. We then used conditional logistic regression to estimate odds ratios (ORs) and 95 confidence intervals (CIs). Same-day PM2.5 and PM7-2.5 were independently associated with all-cause and cause-specific mortality related to cardiovascular and respiratory diseases; for example, both pollutants were positively associated with increased risk of all-cause mortality even after simultaneous adjustment for each pollutant: OR of 1.006 (95% CI: 1.003, 1.009) for PM2.5 and 1.016 (95% CI: 1.011, 1.022) for PM7-2.5. Even below concentrations stipulated by the Japanese air quality guidelines for PM2.5 and SPM (PM7), we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles is associated with increased risk of mortality among older people. Rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles should be continued. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    Science.gov (United States)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  4. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  5. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen

    2016-01-01

    AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...... Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter ... diabetes. We detected a significant positive association between PM2.5 and diabetes incidence (hazard ratio; 95% confidence interval: 1.11; 1.02-1.22 per interquartile range of 3.1μg/m(3)), and weaker associations for PM10 (1.06; 0.98-1.14 per 2.8μg/m(3)), NO2 (1.05; 0.99-1.12 per 7.5μg/m(3)), and NOx (1...

  6. Online molecular characterization of fine particulate matter in Port Angeles, WA: Evidence for a major impact from residential wood smoke

    Science.gov (United States)

    Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Whybrew, Lauren E.; Hadley, Odelle; McNair, Fran; Gao, Honglian; Jaffe, Daniel A.; Thornton, Joel A.

    2016-08-01

    We present on-line molecular composition measurements of wintertime particulate matter (PM) during 2014 using an iodide-adduct high-resolution, time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO). These measurements were part of an intensive effort to characterize PM in the region with a focus on ultrafine particle sources. The technique was used to detect and quantify different classes of wood burning tracers, including levoglucosan, methoxyphenols, and nitrocatechols, among other compounds in near real-time. During the campaign, particulate mass concentrations of compounds with the same molecular composition as levoglucosan ranged from 0.002 to 19 μg/m3 with a median mass concentration of 0.9 μg/m3. Wood burning markers, in general, showed a strong diurnal pattern peaking at night and in the early morning. This diurnal profile combined with cold, stagnant conditions, wind directions from predominantly residential areas, and observations of lower combustion efficiency at night support residential wood burning as a dominant source of wintertime PM in Port Angeles. This finding has implications for improving wintertime air quality in the region by encouraging the use of high efficiency wood-burning stoves or other cleaner home heating options throughout the relevant domain.

  7. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaowei; Deng, Furong; Hao, Yu [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Shima, Masayuki [Department of Public Health, Hyogo College of Medicine, Hyogo (Japan); Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Guo, Xinbiao, E-mail: guoxb@bjmu.edu.cn [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China)

    2013-09-15

    Highlights: • Study subjects relocated between areas with different air pollution contents. • PM{sub 2.5} showed the most consistent inverse associations with pulmonary function. • Cu, Cd, As and Sn were consistently associated with reduced pulmonary function. • Carbonaceous fractions, SO{sub 4}{sup 2−} and Sb were also associated with pulmonary function. • Sources may include traffic, industry, coal burning, and long range transported dust. -- Abstract: The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM{sub 2.5}) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV{sub 1}) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV{sub 1} associated with various air pollutants and PM{sub 2.5} constituents. Four PM{sub 2.5} constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution.

  8. Air quality in the Kootenays: fine particulate (PM10) airborne metals and sulphur dioxide levels, 1993-1999

    International Nuclear Information System (INIS)

    2000-09-01

    Air quality monitoring data collected in the Kootenays over a seven year period from 1993 to 1999 are summarized in an effort to inform the public about air quality in the Kootenays and to assist them in understanding air quality monitoring results. Data includes hourly (TEOM) and weekly (NAPS) data for particulate matter (PM 1 0) airborne metals (arsenic, cadmium, lead and zinc) and sulphur dioxide. Analysis of monitoring data showed that particulate matter levels remained constant in most communities, with Johnson Lake and Slocan reporting the lowest levels, while Golden had the highest values during this period. Trail-Butler Park showed a clear declining trend in PM 1 0. Airborne metals and sulphur dioxide levels have decreased in the Kootenays during the seven year period, with only occasional exceedances of both Level A and B air quality objectives in some communities. The report includes a detailed description of the sampling methodology and the analyzed results for PM 1 0, airborne metals and sulphur dioxide for 10 communities in the region. 6 refs., 1 tab., 16 figs., 1 map

  9. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    International Nuclear Information System (INIS)

    Basu, Rupa; Harris, Maria; Sie, Lillian; Malig, Brian; Broadwin, Rachel; Green, Rochelle

    2014-01-01

    Relationships between prenatal exposure to fine particles (PM 2.5 ) and birth weight have been observed previously. Few studies have investigated specific constituents of PM 2.5 , which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM 2.5 mass and 23 PM 2.5 constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; 2.5 mass and several PM 2.5 constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM 2.5 constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM 2.5 , especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity

  10. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    Science.gov (United States)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  11. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  12. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Short-term Associations between Fine and Coarse Particulate Matter and Hospitalizations in Southern Europe: Results from the MED-PARTICLES Project

    Science.gov (United States)

    Samoli, Evangelia; Alessandrini, Ester; Cadum, Ennio; Ostro, Bart; Berti, Giovanna; Faustini, Annunziata; Jacquemin, Benedicte; Linares, Cristina; Pascal, Mathilde; Randi, Giorgia; Ranzi, Andrea; Stivanello, Elisa; Forastiere, Francesco

    2013-01-01

    Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach. Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days). Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards. Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short

  14. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rupa, E-mail: Rupa.Basu@oehha.ca.gov [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States); Harris, Maria [School of Public Health, Boston University, Boston, MA (United States); Sie, Lillian [School of Public Health, University of California, Berkeley, CA (United States); Malig, Brian; Broadwin, Rachel; Green, Rochelle [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States)

    2014-01-15

    Relationships between prenatal exposure to fine particles (PM{sub 2.5}) and birth weight have been observed previously. Few studies have investigated specific constituents of PM{sub 2.5}, which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM{sub 2.5} mass and 23 PM{sub 2.5} constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; <2500 g), respectively. Models were adjusted for individual demographic characteristics, apparent temperature, month and year of birth, region, and socioeconomic indicators. Higher full gestational exposures to PM{sub 2.5} mass and several PM{sub 2.5} constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM{sub 2.5} constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM{sub 2.5}, especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity.

  15. Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1

    Energy Technology Data Exchange (ETDEWEB)

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2007-08-15

    The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

  16. Estimation of exposure to fine particulate air pollution using GIS-based modeling approach in an urban area in Tehran

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2016-10-01

    Full Text Available In many industrialized areas, the highest concentration of particulate matter, as a major concern on public health, is being felt worldwide problem. Since the air pollution assessment and its evaluation with considering spatial dispersion analysis because of various factors are complex, in this paper, GIS-based modeling approach was utilized to zoning PM2.5 dispersion over Tehran, during one year, from 21 March 2014 to 20 March 2015. The RBF method was applied to obtain the zoning maps and determining the highest concentration of PM2.5 in the 22 Tehran’s regions for each season. The RMSEmin values according to the number of neighbors and types of functions in the radial basis function method, including completely regularized spline, Spline with tension, Multiquadric function, Inverse multiquadric function, and Thin-plate spline  for each month have been assessed. By performing analysis on the errors, the numbers of neighbors were estimated. The numbers of neighbors in the model for each function were varied from 2 to 30. The results indicate that the models with 3 and 4 neighbors have the best performance with the lowest RMSE values with using RBF method. The highest PM2.5 concentrations have been occurred in the summer and winter especially at the center, south, and in some cases at northeast of the city.

  17. Reduction of fine airborne particulates (PM3) in a small city centre office, by altering electrostatic forces.

    Science.gov (United States)

    Richardson, G; Harwood, D J; Eick, S A; Dobbs, F; Rosén, K G

    2001-03-26

    A two stage intervention study was carried out to establish the degree to which a newly developed, electrostatic air cleaning (EAC) system can improve indoor air quality (IAQ) by reducing the number of airborne fine particles. The IAQ and how employees in a city centre office (49 m2) perceived it, was monitored from May until November 1998. The number of fine particles, PM3 (0.3-3.0 microm); number of coarse particles, PM7 (3.0-7.0 microm); number of small positive and negative air ions; relative humidity and temperature were recorded in and out of doors. To assess the employees' perception of any changes in their work environment, a questionnaire was completed. Number of particles, relative humidity and temperature were also recorded in a nearby office, equipped with an identical air processor, where no interventions were made. The results from the first intervention (Stage 1), comparing number of airborne particles outdoors to indoors, gave a 19% reduction for PM3 and a 67% reduction for PM7 (P PM7 from outdoors and the removal of PM7 created indoors was achieved by optimizing the existing air moving equipment. The results from the second intervention (Stage 2--with EAC units installed) comparing indoor to outdoor values, gave a further reduction in PM3 of 21% (P PM7 (P > 0.05). Therefore, at the end of Stage 2, the total reductions in particles from outdoors to indoors were 40% for PM3 and 70% for PM7 (P PM7. The questionnaire indicated an improvement in the IAQ, as perceived by the employees. The results suggest that the EAC system is effective in reducing PM3 and thereby improving IAQ in an urban office.

  18. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China

    Science.gov (United States)

    Wang, Weifeng; Yu, Jie; Cui, Yang; He, Jun; Xue, Peng; Cao, Wan; Ying, Hongmei; Gao, Wenkang; Yan, Yingchao; Hu, Bo; Xin, Jinyuan; Wang, Lili; Liu, Zirui; Sun, Yang; Ji, Dongsheng; Wang, Yuesi

    2018-05-01

    Chemical information is essential in understanding the characteristics of airborne particles, and effectively controlling airborne particulate matter pollution, but it remains unclear in some regions due to the scarcity of measurement data. In the present study, 92 daily PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) samples as well as historical observation data of air pollutants were collected in urban Ningbo, one of important industrial cities in the coastal area of the Yangtze River Delta, China in autumn and winter (from Nov. 2014 to Feb. 2015). Various chemical species in PM2.5 were determined including water soluble ions, organic and elemental carbon and elements. Positive matrix factorization model, cluster analysis of back trajectories, potential source contribution function (PSCF) model and concentration-weighted trajectory (CWT) model were used for identifying sources, apportioning contributions from each source and tracking potential areas of sources. The results showed the PM2.5 concentration has been reducing; nonetheless, the concentrations of PM2.5 are still much higher than the World Health Organization guideline with high PM2.5 concentrations observed in autumn and winter for the past few years. During the sampling period, the average PM2.5 mass concentration was 77 μg/m3 with the major components of OC, NO3-, SO42 -, NH4+ and EC, accounting for 24.7, 18.8, 14.5, 11.8 and 6.4% in the total mass concentration, respectively. When the aerosol pollution got worse during the sampling period, the NO3-, SO42 - and NH4+ concentrations increased accordingly and NO3- appeared to increase at fastest rate. SO42 - transported from industrial areas led to slight difference in spatial distribution of SO42 - in Ningbo. More secondary organic carbon was formed and the enrichment factor values of Cu, Ag, Cd, Sn and Pb increased with the degradation of air quality. Ten types of sources were identified for PM2.5 in the autumn and winter of

  19. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  20. Fine particulate air pollution and premature atrial contractions: The REasons for Geographic And Racial Differences in Stroke study.

    Science.gov (United States)

    O'Neal, Wesley T; Soliman, Elsayed Z; Efird, Jimmy T; Judd, Suzanne E; Howard, Virginia J; Howard, George; McClure, Leslie A

    2017-05-01

    Several reports have suggested that particulate matter (PM) exposure increases the risk for atrial arrhythmias. However, data from large-scale epidemiologic studies supporting this hypothesis are lacking. We examined the association of PM <2.5 μm in diameter (PM 2.5 ) concentration with premature atrial contractions (PACs) in 26,609 (mean age=65±9.4 years; 55% female; 41% black) participants from the REGARDS (REasons for Geographic And Racial Differences in Stroke) study. Estimates of short- (2 weeks) and long-term (1 year) PM 2.5 exposure were computed before each participant's baseline visit using geographic information system data on the individual level at the coordinates of study participants' residences. PACs were identified from baseline electrocardiograms. A total of 2140 (8.2%) participants had evidence of PACs on the baseline electrocardiogram. Short-term PM 2.5 (per 10 μg/m 3 ) exposure was not associated with PACs (OR=1.09, 95% CI=0.98, 1.23). Increases in long-term PM 2.5 (per 10 μg/m 3 ) were associated with PACs (OR=1.40, 95% CI=1.10, 1.78). Interactions were not detected for short- and long-term PM 2.5 exposure by age, sex, or race. Long- but not short-term PM 2.5 exposure is associated with PACs. This suggests a role for long-term PM 2.5 exposure in initiating supraventricular arrhythmias that are triggered by PACs.

  1. Composition and source apportionment of fine particulate matter during extended calm periods in the city of Rijeka, Croatia

    Science.gov (United States)

    Ivošević, T.; Orlić, I.; Bogdanović Radović, I.; Čargonja, M.; Stelcer, E.

    2017-09-01

    In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaign was recently completed. During that period, 345 samples of fine fraction of aerosols were collected on stretched Teflon filters. All samples were analyzed by Ion Beam Analysis techniques Proton Induced X-ray Emission and Proton Induced γ-Ray Emission and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where the city of Rijeka is located, long periods of calm weather are common. As a consequence, during these periods, air pollution is steadily increasing. To pin-point and characterize local, mostly anthropogenic, air pollution sources, only samples collected during the extended calm periods were used in this work. As a cut-off wind speed, speed of 1.5 m/s was used. In that way, out of all 345 samples, only 188 were selected. Those samples were statistically evaluated by means of positive matrix factorization. Results show that from all anthropogenic sources (vehicles, secondary sulphates, smoke, heavy oil combustion, road dust, industry Fe and port activities) only secondary sulphates and heavy oil combustion were significantly higher (40% and 50%, respectively) during calm periods. On the other hand, natural components of aerosol pollution such as soil and sea salts, (typically present in concentrations of 1.4% and 9%, respectively) are practically non-existent for calm weather conditions.

  2. Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter

    Science.gov (United States)

    Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo

    2017-07-01

    Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a

  3. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-08-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

  4. In-situ, satellite measurement and model evidence for a~dominant regional contribution to fine particulate matter levels in the Paris Megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-03-01

    A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns and from additional one year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in-situ measurements during short intensive and longer term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only controlling part of its own average and peak PM levels has important implications for air pollution regulation policies.

  5. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  6. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  7. The attributable risk of chronic obstructive pulmonary disease due to ambient fine particulate pollution among older adults.

    Science.gov (United States)

    Lin, Hualiang; Qian, Zhengmin Min; Guo, Yanfei; Zheng, Yang; Ai, Siqi; Hang, Jian; Wang, Xiaojie; Zhang, Lingli; Liu, Tao; Guan, Weijie; Li, Xing; Xiao, Jianpeng; Zeng, Weilin; Xian, Hong; Howard, Steven W; Ma, Wenjun; Wu, Fan

    2018-04-01

    The linkage between ambient fine particle pollution (PM 2.5 ) and chronic obstructive pulmonary disease (COPD) and the attributable risk remained largely unknown. This study determined the cross-sectional association between ambient PM 2.5 and prevalence of COPD among adults ≥50 years of age. We surveyed 29,290 participants aged 50 years and above in this study. The annual average concentrations of PM 2.5 derived from satellite data were used as the exposure indicator. A mixed effect model was applied to determine the associations and the burden of COPD attributable to PM 2.5. RESULTS: Among the participants, 1872 (6.39%) were classified as COPD cases. Our analysis observed a threshold concentration of 30 μg/m 3 in the PM 2.5 -COPD association, above which we found a linear positive exposure-response association between ambient PM 2.5 and COPD. The odds ratio (OR) for each 10 μg/m 3 increase in ambient PM 2.5 was 1.21(95% CI: 1.13, 1.30). Stratified analyses suggested that males, older subjects (65 years and older) and those with lower education attainment might be the vulnerable subpopulations. We further estimated that about 13.79% (95% CI: 7.82%, 21.62%) of the COPD cases could be attributable to PM 2.5 levels higher than 30 μg/m 3 in the study population. Our analysis indicates that ambient PM 2.5 exposure could increase the risk of COPD and accounts for a substantial fraction of COPD among the study population. Copyright © 2018. Published by Elsevier Ltd.

  8. The influence of model spatial resolution on simulated ozone and fine particulate matter for Europe: implications for health impact assessments

    Science.gov (United States)

    Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.

    2018-04-01

    We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when

  9. Exposure to fine particulate matter and hospital admissions due to pneumonia: Effects on the number of hospital admissions and its costs.

    Science.gov (United States)

    Patto, Nicole Vargas; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina C; Vieira, Luciana C P F S; Moreira, Demerval S

    2016-07-01

    Given that respiratory diseases are a major cause of hospitalization in children, the objectives of this study are to estimate the role of exposure to fine particulate matter in hospitalizations due to pneumonia and a possible reduction in the number of these hospitalizations and costs. An ecological time-series study was developed with data on hospitalization for pneumonia among children under 10 years of age living in São José do Rio Preto, state of São Paulo, using PM2.5 concentrations estimated using a mathematical model. We used Poisson regression with a dependent variable (hospitalization) associated with PM2.5 concentrations and adjusted for effective temperature, seasonality and day of the week, with estimates of reductions in the number of hospitalizations and costs. 1,161 children were admitted to hospital between October 1st, 2011, and September 30th, 2013; the average concentration of PM2.5 was 18.7 µg/m3 (≈32 µg/m3 of PM10) and exposure to this pollutant was associated with hospitalization four and five days after exposure. A 10 µg/m3 decrease in concentration would imply 256 less hospital admissions and savings of approximately R$ 220,000 in a medium-sized city.

  10. Reduced in vitro toxicity of fine particulate matter collected during the 2008 Summer Olympic Games in Beijing: the roles of chemical and biological components.

    Science.gov (United States)

    Shang, Yu; Zhu, Tong; Lenz, Anke-Gabriele; Frankenberger, Birgit; Tian, Feng; Chen, Chenyong; Stoeger, Tobias

    2013-10-01

    Beijing has implemented systematic air pollution control legislation to reduce particulate emissions and improve air quality during the 2008 Summer Olympics, but whether the toxicity of fine fraction of particles (PM(2.5)) would be changed remains unclear. In present study we compared in vitro biological responses of PM(2.5) collected before and during the Olympics and tried to reveal possible correlations between its chemical components and toxicological mechanism(s). We measured cytotoxicity, cytokines/chemokines, and related gene expressions in murine alveolar macrophages, MH-S, after treated with 20 PM(2.5) samples. Significant, dose-dependent effects on cell viability, cytokine/chemokine release and mRNA expressions were observed. The cytotoxicity caused at equal mass concentration of PM(2.5) was notably reduced (p<0.05) by control measures, and significant association was found for viability and elemental zinc in PM(2.5). Endotoxin content in PM(2.5) correlated with all of the eight detected cytokines/chemokines; elemental and organic carbon correlated with four; arsenic and chromium correlated with six and three, respectively; iron and barium showed associations with two; nickel, magnesium, potassium, and calcium showed associations with one. PM(2.5) toxicity in Beijing was substantially dependent on its chemical components, and lowering the levels of specific components in PM(2.5) during the 2008 Olympics resulted in reduced biological responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Sources and oxidative potential of water-soluble humic-like substances (HULISWS in fine particulate matter (PM2.5 in Beijing

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2018-04-01

    Full Text Available Water-soluble humic-like substances (HULISWS are a major redox-active component of ambient fine particulate matter (PM2.5; however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( >  59 % to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for  >  70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  12. Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM2.5) during Clear, Fog, and Haze Episodes in Winter in Beijing, China.

    Science.gov (United States)

    Wang, Ting; Tian, Mi; Ding, Nan; Yan, Xiao; Chen, She-Jun; Mo, Yang-Zhi; Yang, Wei-Qiang; Bi, Xin-Hui; Wang, Xin-Ming; Mai, Bi-Xian

    2018-05-01

    Few efforts have been made to elucidate the influence of weather conditions on the fate of semivolatile organic compounds (SOCs). Here, daily fine particulate matter (PM 2.5 ) during clear, haze, and fog episodes collected in the winter in Beijing, China was analyzed for polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and organophosphate flame retardants (OPFRs). The total concentrations of PAHs, OPFRs, and BFRs had medians of 45.1 ng/m 3 and 1347 and 46.7 pg/m 3 , respectively. The temporal pattern for PAH concentrations was largely dependent on coal combustion for residential heating. OPFR compositions that change during colder period were related to enhanced indoor emissions due to heating. The mean concentrations of SOCs during haze and fog days were 2-10 times higher than those during clear days. We found that BFRs with lower octanol and air partition coefficients tended to increase during haze and fog episodes, be removed from PM 2.5 during clear episodes, or both. For PAHs and OPFRs, pollutants that are more recalcitrant to degradation were prone to accumulate during haze and fog days. The potential source contribution function (PSCF) model indicated that southern and eastern cities were major source regions of SOCs at this site.

  13. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

    Science.gov (United States)

    Ma, Yiqiu; Cheng, Yubo; Qiu, Xinghua; Cao, Gang; Fang, Yanhua; Wang, Junxia; Zhu, Tong; Yu, Jianzhen; Hu, Di

    2018-04-01

    Water-soluble humic-like substances (HULISWS) are a major redox-active component of ambient fine particulate matter (PM2.5); however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT) activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( > 59 %) to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for > 70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  14. Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the US/Mexico border

    Science.gov (United States)

    Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.

    High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.

  15. Understanding Spatiotemporal Variability of Fine Particulate Matter in an Urban Environment Using Combined Fixed and Mobile Measurements

    Science.gov (United States)

    Sullivan, R.; Pryor, S. C.; Barthelmie, R. J.; Filippelli, G. M.

    2013-12-01

    Acute and chronic exposure to elevated levels of aerosol particles represents a well-documented threat to public health. This is especially true in urban areas where in situ emissions elevate concentrations above regional background levels and population density is high, exposing a greater number of people to unhealthy air. The EPA's evaluation of compliance with National Ambient Air Quality Standards (NAAQS) for ambient fine particle (PM 2.5) concentrations in a city is frequently based on a limited number of observing stations and daily average concentrations. For example, data from only three locations indicates that Indianapolis (a city of nearly 1 million people) fails the NAAQS for PM2.5. However, the true population exposure exhibits spatial and temporal variability and thus is not adequately represented by long-term measurements. Thus, since 2011 we have conducted additional highly time-resolved PM2.5 measurements at four additional stations within Indianapolis. Analyses of these data indicate: ● PM2.5 concentrations in the city are an average of over 4 micrograms per cubic meter above a non-urban regionally representative site. ● A distinct diurnal cycle of PM2.5 concentrations in the city with a daily maximum in concentrations and higher outliers typically occurring during the morning hours (approx. 0700-0900 LST) and a daily minimum in concentrations and fewer outliers occurring in the afternoon (approx. 1400-1800 LST). ● Highest concentrations typically occur during weekdays. This hebdomadal pattern was amplified in proximity to the main interstate junction through the center of the city. ● PM2.5 concentrations thus exhibit similar timescales of variability to carbon monoxide, of which over 90% derives from the mobile sector, indicating a strong signature from motor vehicles. An additional mode of variability in PM2.5 as observed in power spectra equates to synoptic time scales (four days up to two weeks). ● On average wind speeds during

  16. Effects of the Ambient Fine Particulate Matter on Public Awareness of Lung Cancer Risk in China: Evidence from the Internet-Based Big Data Platform.

    Science.gov (United States)

    Yang, Hongxi; Li, Shu; Sun, Li; Zhang, Xinyu; Hou, Jie; Wang, Yaogang

    2017-10-03

    In October 2013, the International Agency for Research on Cancer classified the particulate matter from outdoor air pollution as a group 1 carcinogen and declared that particulate matter can cause lung cancer. Fine particular matter (PM 2.5 ) pollution is becoming a serious public health concern in urban areas of China. It is essential to emphasize the importance of the public's awareness and knowledge of modifiable risk factors of lung cancer for prevention. The objective of our study was to explore the public's awareness of the association of PM 2.5 with lung cancer risk in China by analyzing the relationship between the daily PM 2.5 concentration and searches for the term "lung cancer" on an Internet big data platform, Baidu. We collected daily PM 2.5 concentration data and daily Baidu Index data in 31 Chinese capital cities from January 1, 2014 to December 31, 2016. We used Spearman correlation analysis to explore correlations between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration. Granger causality test was used to analyze the causal relationship between the 2 time-series variables. In 23 of the 31 cities, the pairwise correlation coefficients (Spearman rho) between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration were positive and statistically significant (P<.05). However, the correlation between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration was poor (all r 2 s <.1). Results of Granger causality testing illustrated that there was no unidirectional causality from the daily PM 2.5 concentration to the daily Baidu Index for lung cancer searches, which was statistically significant at the 5% level for each city. The daily average PM 2.5 concentration had a weak positive impact on the daily search interest for lung cancer on the Baidu search engine. Well-designed awareness campaigns are needed to enhance the general public's awareness of

  17. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  18. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  19. Short-term population-based non-linear concentration-response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis.

    Science.gov (United States)

    Yu, Hwa-Lung; Chien, Lung-Chang

    2016-01-01

    Fine particulate matter respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.

  20. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults.

    Science.gov (United States)

    Zhang, Zilong; Chang, Ly-Yun; Lau, Alexis K H; Chan, Ta-Chien; Chieh Chuang, Yuan; Chan, Jimmy; Lin, Changqing; Kai Jiang, Wun; Dear, Keith; Zee, Benny C Y; Yeoh, Eng-Kiong; Hoek, Gerard; Tam, Tony; Qian Lao, Xiang

    2017-08-01

    Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant's address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  1. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis.

    Science.gov (United States)

    Goettems-Fiorin, Pauline Brendler; Grochanke, Bethânia Salamoni; Baldissera, Fernanda Giesel; Dos Santos, Analu Bender; Homem de Bittencourt, Paulo Ivo; Ludwig, Mirna Stela; Rhoden, Claudia Ramos; Heck, Thiago Gomes

    2016-12-01

    Exposure to fine particulate matter (PM 2.5 ) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM 2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM 2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM 2.5 , HFD, and HFD + PM 2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM 2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM 2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.

  2. Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio

    Directory of Open Access Journals (Sweden)

    Aline Sfalcin Mai

    2017-01-01

    Full Text Available Fine particulate matter (PM2.5 promotes heart oxidative stress (OS and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70. Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70, which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index, a biomarker of inflammatory status. Male mice (n=32, 30 days old, were divided into six groups for 12 weeks: control (CON, moderate (MIT and high intensity training (HIT, exposure to 5 μg of PM2.5 daily (PM2.5, and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups. The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index. High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.

  3. Short-term effects of ambient fine particulate matter pollution on hospital visits for chronic obstructive pulmonary disease in Beijing, China.

    Science.gov (United States)

    Tian, Yaohua; Xiang, Xiao; Juan, Juan; Song, Jing; Cao, Yaying; Huang, Chao; Li, Man; Hu, Yonghua

    2018-02-27

    Little is known about the effect of ambient fine particulate matter (PM 2.5 ) on chronic obstructive pulmonary disease (COPD) in China. The objective of this study was to explore the short-term effects of PM 2.5 on outpatient and inpatient visits for COPD in Beijing, China. A total of 3,503,313 outpatient visits and 126,982 inpatient visits for COPD between January 1, 2010, and June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to estimate the percentage change with 95% confidence interval (CI) in hospital visits for COPD in relation to an interquartile range (IQR) (90.8 μg/m 3 ) increase in PM 2.5 concentrations. Short-term exposure to PM 2.5 was significantly associated with increased use of COPD-related health services. There were clear exposure-response associations of PM 2.5 with COPD outpatient and inpatient visits. An IQR increase in the concurrent day PM 2.5 concentrations was significantly associated with a 2.38% (95% CI, 2.22%-2.53%) and 6.03% (95% CI, 5.19%-6.87%) increase in daily outpatient visits and inpatient visits, respectively. Elderly people were more sensitive to the adverse effects. The estimated risk was higher during the warm season compared to the cool season. Short-term exposure to PM 2.5 was associated with increased risk of hospital visits for COPD. Our findings contributed to the limited evidence concerning the effects of ambient PM 2.5 on COPD morbidity in developing countries.

  4. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  5. Fine particulate air pollution and all-cause mortality within the Harvard Six-Cities Study: variations in risk by period of exposure.

    Science.gov (United States)

    Villeneuve, Paul J; Goldberg, Mark S; Krewski, Daniel; Burnett, Richard T; Chen, Yue

    2002-11-01

    We used Poisson regression methods to examine the relation between temporal changes in the levels of fine particulate air pollution (PM(2.5)) and the risk of mortality among participants of the Harvard Six Cities longitudinal study. Our analyses were based on 1430 deaths that occurred between 1974 and 1991 in a cohort that accumulated 105,714 person-years of follow-up. For each city, indices of PM(2.5) were derived using daily samples. Individual level data were collected on several risk factors including: smoking, education, body mass index (BMI), and occupational exposure to dusts. Time-dependent indices of PM(2.5) were created across 13 calendar periods (/= 1990) to explore whether recent or chronic exposures were more important predictors of mortality. The relative risk (RR) of mortality calculated using Poisson regression based on average city-specific exposures that remained constant during follow-up was 1.31 [95% confidence interval (CI) = 1.12-1.52] per 18.6 microg/m(3) of PM(2.5). This result was similar to the risk calculated using the Cox model (RR = 1.26, 95% CI = 1.08-1.46). The RR of mortality was attenuated when the Poisson regression model included a time-dependent estimate of exposure (RR = 1.19, 95% CI = 1.04-1.36). There was little variation in RR across time-dependent indices of PM(2.5). The attenuated risk of mortality that was observed with a time-dependent index of PM(2.5) is due to the combined influence of city-specific variations in mortality rates and decreasing levels of air pollution that occurred during follow-up. The RR of mortality associated with PM(2.5) did not depend on when exposure occurred in relation to death, possibly because of little variation between the time-dependent city-specific exposure indices.

  6. Impact of 2000–2050 climate change on fine particulate matter (PM2.5 air quality inferred from a multi-model analysis of meteorological modes

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2012-12-01

    Full Text Available Studies of the effect of climate change on fine particulate matter (PM2.5 air quality using general circulation models (GCMs show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5 of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period sensitivity (dPM2.5/dT from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.

  7. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  8. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor

    Directory of Open Access Journals (Sweden)

    Baeza-Squiban Armelle

    2010-07-01

    Full Text Available Abstract Background Nowadays, effects of fine particulate matter (PM2.5 are well-documented and related to oxidative stress and pro-inflammatory response. Nevertheless, epidemiological studies show that PM2.5 exposure is correlated with an increase of pulmonary cancers and the remodeling of the airway epithelium involving the regulation of cell death processes. Here, we investigated the components of Parisian PM2.5 involved in either the induction or the inhibition of cell death quantified by different parameters of apoptosis and delineated the mechanism underlying this effect. Results In this study, we showed that low levels of Parisian PM2.5 are not cytotoxic for three different cell lines and primary cultures of human bronchial epithelial cells. Conversely, a 4 hour-pretreatment with PM2.5 prevent mitochondria-driven apoptosis triggered by broad spectrum inducers (A23187, staurosporine and oligomycin by reducing the mitochondrial transmembrane potential loss, the subsequent ROS production, phosphatidylserine externalization, plasma membrane permeabilization and typical morphological outcomes (cell size decrease, massive chromatin and nuclear condensation, formation of apoptotic bodies. The use of recombinant EGF and specific inhibitor led us to rule out the involvement of the classical EGFR signaling pathway as well as the proinflammatory cytokines secretion. Experiments performed with different compounds of PM2.5 suggest that endotoxins as well as carbon black do not participate to the antiapoptotic effect of PM2.5. Instead, the water-soluble fraction, washed particles and organic compounds such as polycyclic aromatic hydrocarbons (PAH could mimic this antiapoptotic activity. Finally, the activation or silencing of the aryl hydrocarbon receptor (AhR showed that it is involved into the molecular mechanism of the antiapoptotic effect of PM2.5 at the mitochondrial checkpoint of apoptosis. Conclusions The PM2.5-antiapoptotic effect in addition

  9. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Directory of Open Access Journals (Sweden)

    T. Jayarathne

    2018-02-01

    Full Text Available Fine particulate matter (PM2.5 was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE values of 0.725–0.833. PM emissions were determined and chemically characterized for elemental carbon (EC, organic carbon (OC, water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs ranged from 6.0 to 29.6 g kg−1 with an average of 17.3 ± 6.0 g kg−1. EC was detected only in 15 plumes and comprised  ∼ 1 % of PM mass. Together, OC (72 %, EC (1 %, water-soluble ions (1 %, and metal oxides (0.1 % comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %, primarily water-insoluble OC (84 ± 11 %C, low EC mass fractions (1 %, vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C with a carbon preference index of 1.2–1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2–11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016, it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to

  10. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Science.gov (United States)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the

  11. Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China.

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Yim, S H L; Chan, Chuen-Yu

    2017-12-01

    Concurrent ambient and personal measurements of fine particulate matter (PM 2.5 ) were conducted in eight districts of Guangzhou during the winter of 2011. Personal-to-ambient (P-C) relationships of PM 2.5 chemical components were determined and sources of personal PM 2.5 exposures were evaluated using principal component analysis and a mixed-effects model. Water-soluble inorganic ions (e.g., SO 4 2- , NO 3 - , NH 4 + , C 2 O 4 2- ) and anhydrosugars (e.g., levoglucosan, mannosan) exhibited median personal-to-ambient (P/C) ratios personal PM 2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca 2+ ) showed median P/C ratios greater than unity, illustrating significant impact of local traffic, indoor sources, and/or personal activities on individual's exposure. SO 4 2- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO 4 2- in the urban area of Guangzhou. EC, Ca 2+ , and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM 2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca 2+ to personal PM 2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient concentrations and personal exposures, indicating caution should be taken when using ambient concentrations as proxies for personal exposures in epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Method for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  13. Apparatus for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  14. Apparatus for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  15. Method for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  16. Saccharide Composition in Fine and Coarse Particulate Matter and Soils in Central Arizona and Use of Saccharides as Molecular Markers for Source Apportionment

    Science.gov (United States)

    Jia, Y.; Clements, A.; Fraser, M.

    2009-04-01

    The desert southwestern United States routinely exceeds health-based standards for coarse particulate matter [1]. PM10 concentrations are high in both urban and rural areas and are believed to originate from fugitive dust emissions from agricultural fields and roads and soil erosion from the surrounding desert locations. Soil together with its associated biota contains a complex mixture of biogenic detritus, including plant detritus, airborne microbes comprised of bacteria, viruses, spores of lichens and fungi, small algae, and protozoan cysts [4][5], which can mostly become airborne when winds are strong enough and soil dry enough to be re-entrained into the atmosphere [3]. Other potential sources to PM10 may include primary biological aerosol particles (PBAPs), given a multitude of flower, grass, and fungal species that thrive in the Sonoran desert and actively release pollens and spores throughout the year [2]. However, because soil and fugitive dust is also believed to contain a large number of these biological particles and is considered as a secondary host of PBAPs [3] [4], the role and contribution of PBAPs as a direct ambient PM source in the desert southwest have not been clearly stated or investigated. In an effort to identify and assess the relative contribution of these and other major PM sources in the southwestern US region, and particularly to assess the contribution from soil and fugitive dust, a series of ambient PM samples and soil samples were collected in Higley, AZ, USA, a suburb of the Phoenix metropolitan area which has seen rapid urban sprawl onto agricultural lands. Because of their suggested ability to track biologically important organic materials from natural environment [4][6][7][8][9][10], saccharides were chosen as the key compounds to trace the release of soil dusts into the atmosphere, and to elucidate other major sources that contribute to the PM levels in this location in the arid southwestern US. To this end, saccharide compounds

  17. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    Science.gov (United States)

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  18. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    Science.gov (United States)

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  19. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  20. Mercury distribution in Douro estuary (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Ramalhosa, E. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Pereira, E. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)]. E-mail: eduper@dq.ua.pt; Vale, C. [National Institute for Agronomy and Fishery Research, IPIMAR, Avenida Brasilia, 1449-006 Lisboa (Portugal); Valega, M. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Monterroso, P. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Duarte, A.C. [Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2005-11-15

    Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm{sup -3}, and concentrations of DOC in the range <1.0-1.8 mg dm{sup -3}. The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm{sup -3}, whereas for the more saline bottom waters it was about 65 ng dm{sup -3}. The surface waters had maximum concentrations of total suspended particulate mercury of {approx}7 {mu}g g{sup -1} and the bottom waters were always <1 {mu}g g{sup -1}. Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 {mu}g g{sup -1}. The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.

  1. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  2. Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea

    Science.gov (United States)

    Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan; Guo, Jia

    2016-04-01

    The objectives of this study are to identify the spatial and temporal distributions of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and fine particulate mercury (HgP2.5) in the marine boundary layer (MBL) of the Bohai Sea (BS) and Yellow Sea (YS), and to investigate the relationships between mercury species and meteorological parameters. The mean concentrations of GEM, RGM, and HgP2.5 were 2.03 ng m-3, 2.5 pg m-3, and 8.2 pg m-3 in spring, and 2.09 ng m-3, 4.3 pg m-3, and 8.3 pg m-3 in fall. Reactive mercury (RGM + HgP2.5) represented RGM + HgP2.5), which indicated that most mercury export in the MBL was GEM and the direct outflow of reactive mercury was very small. Moreover, GEM concentrations over the BS were generally higher than those over the YS both in spring and fall. Although RGM showed a homogeneous distribution over the BS and YS both in spring and fall, the mean RGM concentration in fall was significantly higher than that in spring. In contrast, the spatial distribution of HgP2.5 generally reflected a gradient with high levels near the coast of China and low levels in the open sea, suggesting the significant atmospheric mercury outflow from China. Interestingly, the mean RGM concentrations during daytime were significantly higher than those during nighttime both in spring and fall, while the opposite results were observed for HgP2.5. Additionally, RGM positively correlates with air temperature while negatively correlates with relative humidity. In conclusion, the elevated atmospheric mercury levels in the BS and YS compared to other open seas suggested that the human activities had a significant influence on the oceanic mercury cycle downwind of China.

  3. Proposal for a European standard dealing with measuring methods for fine particulate emissions of solid-fuel fired furnaces; Vorschlag einer europaeischen Staubmessnorm fuer Feststoff-Feuerstaetten - Ausarbeitung und Untersuchung eines Typenpruef-Messverfahrens fuer Staubemissionen

    Energy Technology Data Exchange (ETDEWEB)

    Gaegauf, Ch. [Oekozentrum, Langenbruck (Switzerland); Griffin, T. [Fachhochschule Nordwestschweiz/ITFE, Muttenz (Switzerland)

    2007-10-15

    The European standards for type testing of solid fuel burning appliances require only the measurement of carbon monoxide emissions. Many European countries urge the standardisation committees to establish standards for the regulation of fine particulate emissions from flue gases since they face exceeding threshold values of particulate matter in the ambient air. The Technical Committee CEN/TC 295 for the standardisation of solid fuel burning appliances assigned the Centre for Appropriate Technology in Langenbruck, Switzerland with the development of a European Technical Specification (CEN TS) for the determination of particulate emission. The new draft of the TS is based on constant volume sampling (CVS) of the entire flue gas flow in a dilution tunnel. The scientific research has been done in the Swiss test laboratory for solid fuel burning appliances and boilers at the University of Applied Sciences, in Basle. The TS is designed in such a way that it can be integrated into the test cycles required by various European standards. The investigation covered work on parameters such as dilution factor, sampling temperature and isokinetics. Tests with a wood log burning appliance and a pellet stove showed that emissions in the dilution tunnel were between 7% and 26% for the pellet stove and from 40% up to 160% higher if they were sampled directly from the stack using heated gravimetric filters. It was demonstrated that the differences between the emissions seen in the dilution tunnel and those from the stack increased along with increasing levels of incomplete combustion. (author)

  4. Fine particulate matter measurements in Swiss restaurants, cafés and bars: what is the effect of spatial separation between smoking and non-smoking areas?

    NARCIS (Netherlands)

    Huss, A.; Kooijman, C.; Breuer, M.; Bohler, P.; Zund, T.; Wenk, S.; Roosli, M.

    2010-01-01

    We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking

  5. Near-road enhancement and solubility of fine and coarse particulate matter trace elements near a major interstate in Detroit, Michigan

    Science.gov (United States)

    Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physi...

  6. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  7. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Science.gov (United States)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  8. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds

    Science.gov (United States)

    Gabriel, Mark C.; Williamson, Derek G.; Brooks, Steve; Lindberg, Steve

    Simultaneous measurement of gaseous elemental, reactive gaseous, and fine particulate mercury took place in Tuscaloosa AL, (urban airshed) and Cove Mountain, TN (non-urban airshed) during the summers of 2002 and 2003. The objective of this research was to (1) summarize the temporal distribution of each mercury specie at each site and compare to other speciation data sets developed by other researchers and (2) provide insight into urban and non-urban mercury speciation effects using various statistical methods. Average specie concentrations were as follows: 4.05 ng m -3 (GEM), 13.6 pg m -3 (RGM), 16.4 pg m -3 (Hg-p) for Tuscaloosa; 3.20 ng m -3 (GEM), 13.6 pg m -3 (RGM), 9.73 pg m -3 (Hg-p) for Cove Mountain. As a result of urban airshed impacts, short periods of high concentration for all mercury species was common in Tuscaloosa. At Cove Mountain a consistent mid-day rise and evening drop for mercury species was found. This pattern was primarily the result of un-impacted physical boundary layer movement, although, other potential impacts were ambient photochemistry and air-surface exchange of mercury. Meteorological parameters that are known to heavily impact mercury speciation were similar for the study period for Tuscaloosa and Cove Mountain except for wind speed (m s -1), which was higher at Cove Mountain. For both sites statistically significant ( p<0.0001), inverse relationships existed between wind speed and Hg 0 concentration. A weaker windspeed-Hg 0 correlation existed for Tuscaloosa. By analyzing Hg concentration—wind speed magnitude change at both sites it was found that wind speed at Cove Mountain had a greater influence on Hg 0 concentration variability than Tuscaloosa by a factor of 3. Using various statistical tests, we concluded that the nature of Tuscaloosa's atmospheric mercury speciation was the result of typical urban airshed impacts. Cove Mountain showed atmospheric mercury speciation characteristics indicative of a non-urban area along with

  9. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    Directory of Open Access Journals (Sweden)

    Lixin Li

    2014-09-01

    Full Text Available Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate

  10. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    Science.gov (United States)

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-01-01

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  11. Fast inverse distance weighting-based spatiotemporal interpolation: a web-based application of interpolating daily fine particulate matter PM2:5 in the contiguous U.S. using parallel programming and k-d tree.

    Science.gov (United States)

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-09-03

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  12. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM).

    Science.gov (United States)

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M

    2015-02-13

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations.

  13. Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific

    International Nuclear Information System (INIS)

    Jahnke, R.A.; Emerson, S.R.; Cochran, J.K.; Hirschberg, D.J.

    1986-01-01

    Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess 210 Pb and CaCO 3 . Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO 3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5-10 mm depth. At the carbonate ooze sites, excess 210 Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess 210 Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO 3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess 210 Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms. (orig.)

  14. Air quality in the Kootenays: fine particulate (PM{sub 1}0) airborne metals and sulphur dioxide levels, 1993-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Air quality monitoring data collected in the Kootenays over a seven year period from 1993 to 1999 are summarized in an effort to inform the public about air quality in the Kootenays and to assist them in understanding air quality monitoring results. Data includes hourly (TEOM) and weekly (NAPS) data for particulate matter (PM{sub 1}0) airborne metals (arsenic, cadmium, lead and zinc) and sulphur dioxide. Analysis of monitoring data showed that particulate matter levels remained constant in most communities, with Johnson Lake and Slocan reporting the lowest levels, while Golden had the highest values during this period. Trail-Butler Park showed a clear declining trend in PM{sub 1}0. Airborne metals and sulphur dioxide levels have decreased in the Kootenays during the seven year period, with only occasional exceedances of both Level A and B air quality objectives in some communities. The report includes a detailed description of the sampling methodology and the analyzed results for PM{sub 1}0, airborne metals and sulphur dioxide for 10 communities in the region. 6 refs., 1 tab., 16 figs., 1 map.

  15. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Fine, Phillip M; Hays, Michael D; Schauer, James J; Hannigan, Michael P

    2009-01-15

    Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.

  16. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice.

    Science.gov (United States)

    Hogan, Matthew K; Kovalycsik, Taylor; Sun, Qinghua; Rajagopalan, Sanjay; Nelson, Randy J

    2015-11-01

    Air and light pollution contribute to fetal abnormalities, increase prevalence of cancer, metabolic and cardiorespiratory diseases, and central nervous system (CNS) disorders. A component of air pollution, particulate matter, and the phenomenon of dim light at night (dLAN) both result in neuroinflammation, which has been implicated in several CNS disorders. The combinatorial role of these pollutants on health outcomes has not been assessed. Male C3H/HeNHsd mice, with intact melatonin production, were used to model humans exposed to circadian disruption by dLAN and contaminated environmental air. We hypothesized exposure to 2.5 μm of particulate matter (PM2.5) and dLAN (5lx) combines to upregulate neuroinflammatory cytokine expression and alter hippocampal morphology compared to mice exposed to filtered air (FA) and housed under dark nights (LD). We also hypothesized that exposure to PM2.5 and dLAN provokes anxiety-like and depressive-like responses. For four weeks, four groups of mice were simultaneously exposed to ambient concentrated PM2.5 or FA and/or dLAN or LD. Following exposure, mice underwent several behavioral assays and hippocampi were collected for qPCR and morphological analyses. Our results are generally comparable to previous PM2.5 and dLAN reports conducted on mice and implicate PM2.5 and dLAN as potential factors contributing to depression and anxiety. Short-term exposure to PM2.5 and dLAN upregulated neuroinflammatory cytokines and altered CA1 hippocampal structural changes, as well as provoked depressive-like responses (anhedonia). However, combined, PM2.5 and dLAN exposure did not have additive effects, as hypothesized, suggesting a ceiling effect of neuroinflammation may exist in response to multiple pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dose-dependent relationship between prenatal exposure to fine particulates and exhaled carbon monoxide in non-asthmatic children. A population-based birth cohort study

    Directory of Open Access Journals (Sweden)

    Wiesław A. Jędrychowski

    2013-02-01

    Full Text Available Objectives: The main goal of the study was to assess possible association between fetal exposure to fi ne particulate matter (PM2.5 and exhaled carbon monoxide (eCO measured in non-asthmatic children. Material and Methods: The subjects include 118 children taking part in an ongoing population-based birth cohort study in Kraków. Personal samplers of PM2.5 were used to measure fi ne particle mass in the fetal period and carbon monoxide (CO in exhaled breath from a single exhalation effort at the age of 7. In the statistical analysis of the effect of prenatal PM2.5 exposure on eCO, a set of potential confounders, such as environmental tobacco smoke (ETS, city residence area, sensitization to house dust allergens and the occurrence of respiratory symptoms monitored over the seven-year follow-up was considered. Results: The level of eCO did not correlate with the self-reported ETS exposure recorded over the follow-up, however, there was a positive signifi cant relationship with the prenatal PM2.5 exposure (non-parametric trend p = 0.042. The eCO mean level was higher in atopic children (geometric mean = 2.06 ppm, 95% CI: 1.58–2.66 ppm than in non-atopic ones (geometric mean = 1.57 ppm, 95% CI: 1.47–1.73 ppm and the difference was statistically signifi cant (p = 0.036. As for the respiratory symptoms, eCO values were associated positively only with the cough severity score recorded in the follow-up (nonparametric trend p = 0.057. In the nested multivariable linear regression model, only the effects of prenatal PM2.5 and cough severity recorded in the follow-up were related to eCO level. The prenatal PM2.5 exposure represented 5.1%, while children’s cough represented only 2.6% of the eCO variability. Conclusion: Our study suggests that elevated eCO in non-asthmatic children may result from oxidative stress experienced in the fetal period and that heme oxygenase (HO activity in body tissues may be programmed in the fetal period by the exposure to

  18. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China.

    Science.gov (United States)

    Su, Chang; Breitner, Susanne; Schneider, Alexandra; Liu, Liqun; Franck, Ulrich; Peters, Annette; Pan, Xiaochuan

    2016-05-01

    The link between particulate matter (PM) and cardiovascular morbidity has been investigated in numerous studies. Less evidence exists, however, about how age, gender and season may modify this relationship. The aim of this study was to evaluate the association between ambient PM2.5 (PM ≤ 2.5 µm) and daily hospital emergency room visits (ERV) for cardiovascular diseases in Beijing, China. Moreover, potential effect modification by age, gender, season, air mass origin and the specific period with 2008 Beijing Olympic were investigated. Finally, the temporal lag structure of PM2.5 has also been explored. Daily counts of cardiovascular ERV were obtained from the Peking University Third Hospital from January 2007 to December 2008. Concurrently, data on PM2.5, PM10 (PM ≤ 10 µm), nitrogen dioxide and sulfur dioxide concentrations were obtained from monitoring networks and a fixed monitoring station. Poisson regression models adjusting for confounders were used to estimate immediate, delayed and cumulative air pollution effects. The temporal lag structure was also estimated using polynomial distributed lag (PDL) models. We calculated the relative risk (RR) for overall cardiovascular disease ERV as well as for specific causes of disease; and also investigated the potential modifying effect of age, gender, season, air mass origin and the period with 2008 Beijing Olympics. We observed adverse effects of PM2.5 on cardiovascular ERV--an IQR increase (68 μg/m(3)) in PM2.5 was associated with an overall RR of 1.022 (95% CI 0.990-1.057) obtained from PDL model. Strongest effects of PM2.5 on cardiovascular ERV were found for a lag of 7 days; the respective estimate was 1.012 (95% CI 1.002-1.022). The effects were more pronounced in females and in spring. Arrhythmia and cerebrovascular diseases showed a stronger association with PM2.5. We also found stronger PM-effects for stagnant and southern air masses and the period of Olympics modified the air pollution effects. We

  19. Isolating the Meteorological Impact of 21st Century GHG Warming on the Removal and Atmospheric Loading of Anthropogenic Fine Particulate Matter Pollution at Global Scale

    Science.gov (United States)

    Xu, Yangyang; Lamarque, Jean-François

    2018-03-01

    Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.

  20. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  1. Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2017-03-01

    Full Text Available Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM2.5 on health. However, epidemiologic evidence focusing on the effects of PM2.5 on skin health remains limited. An important aspect of Asian dust (AD in relationship to health is the amount of PM2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM2.5 and AD particles. Increases in the levels of PM2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m3 in PM2.5 and 0.01 km−1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM2.5 and AD does not impact skin symptoms in schoolchildren.

  2. Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens

    Directory of Open Access Journals (Sweden)

    Dorina Gabriela Karottki

    2015-02-01

    Full Text Available To explore associations of exposure to ambient and indoor air particulate and bio-aerosol pollutants with cardiovascular and respiratory disease markers, we utilized seven repeated measurements from 48 elderly subjects participating in a 4-week home air filtration study. Microvascular function (MVF, lung function, blood leukocyte counts, monocyte adhesion molecule expression, C-reactive protein, Clara cell protein (CC16 and surfactant protein-D (SPD were examined in relation to exposure preceding each measurement. Exposure assessment included 48-h urban background monitoring of PM10, PM2.5 and particle number concentration (PNC, weekly measurements of PM2.5 in living- and bedroom, 24-h measurements of indoor PNC three times, and bio-aerosol components in settled dust on a 2-week basis. Statistically significant inverse associations included: MVF with outdoor PNC; granulocyte counts with PM2.5; CD31 expression with dust fungi; SPD with dust endotoxin. Significant positive associations included: MVF with dust bacteria; monocyte expression of CD11 with PM2.5 in the bedroom and dust bacteria and endotoxin, CD31 expression with dust serine protease; serum CC16 with dust NAGase. Multiple comparisons demand cautious interpretation of results, which suggest that outdoor PNC have adverse effects on MVF, and outdoor and indoor PM2.5 and bio-aerosols are associated with markers of inflammation and lung cell integrity.

  3. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM)

    Science.gov (United States)

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.

    2015-01-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348

  4. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0 and Coarse (PM10–2.5 Particulate Matter in Seoul (Korea by Computer-Controlled Scanning Electron Microscopy (CCSEM

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Byeon

    2015-02-01

    Full Text Available Outdoor and indoor (subway samples were collected by passive sampling in urban Seoul (Korea and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX. Soil/road dust particles accounted for 42%–60% (by weight of fine particulate matter larger than 1 µm (PM2.5–1.0 in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5 with soil/road dust particles dominating outdoor samples (66%–83% and iron-containing particles contributing most to subway PM10–2.5 (44%. As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations.

  5. Measurement of fine particulate matter water-soluble inorganic species and precursor gases in the Alberta Oil Sands Region using an improved semicontinuous monitor.

    Science.gov (United States)

    Hsu, Yu-Mei; Clair, Thomas A

    2015-04-01

    The ambient ion monitor-ion chromatography (AIM-IC) system, which provides hourly measurements of the main chemical components of PM2.5 (particulate matter with an aerodynamic diametergases, was evaluated and deployed from May to July 2011 and April to December 2013 in the Athabasca Oil Sands Region (AOSR) of northeastern Alberta, Canada. The collection efficiencies for the gas-phase SO2 and HNO3 using the cellulose membrane were 96% and 100%, respectively, and the collection efficiency of NH3 using the nylon membrane was 100%. The AIM-IC was compared with a collocated annular denuder sampling system (ADSS) and a Federal Reference Method (FRM) Partisol PM2.5 sampler. The correlation coefficients of SO4(2-) concentrations between the AIM-IC and ADSS and between the AIM-IC and the Partisol PM2.5 sampler were 0.98 and 0.95, respectively. The comparisons also showed no statistically significant difference between the measurement sets, suggesting that the AIM-IC measurements of the PM2.5 chemical composition are comparable to the ADSS and Partisol PM2.5 methods. NH3 concentration in the summer (mean±standard deviation, 1.9±0.7 µg m(-3)) was higher than in the winter (1.3±0.9 µg m(-3)). HNO3 and NO3- concentrations were generally low in the AOSR, and especially in the winter months. NH4+ (0.94±0.96 µg m(-3)) and SO4(2-) (0.58±0.93 µg m(-3)) were the major ionic species of PM2.5. Direct SO2 emissions from oil sands processing operations influenced ambient particulate NH4+ and SO4(2-) values, with hourly concentrations of NH4+ and SO4(2-) measured downwind (~30 km away from the stack) at 10 and 28 µg m(-3). During the regional forest fire event in 2011, high concentrations of NO3-, NH4+, HNO3, NH3, and PM2.5 were observed and the corresponding maximum hourly concentrations were 31, 15, 9.6, 89, and >450 (the upper limit of PM2.5 measurement) µg m(-3), suggesting the formation of NH4NO3. The AOSR in Canada is one of the most scrutinized industrial regions in the

  6. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  7. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study.

    Science.gov (United States)

    Panni, Tommaso; Mehta, Amar J; Schwartz, Joel D; Baccarelli, Andrea A; Just, Allan C; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-07-01

    Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. We collected whole blood samples from three independent studies-KORA F3 (2004-2005) and F4 (2006-2008) in Germany, and the Normative Aging Study (1999-2007) in the United States-and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 F4, and the Normative Aging Study. Environ Health Perspect 124:983-990; http://dx.doi.org/10.1289/ehp.1509966.

  8. Evaluation of cellular effects of fine particulate matter from combustion of solid fuels used for indoor heating on the Navajo Nation using a stratified oxidative stress response model

    Science.gov (United States)

    Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.

    2018-06-01

    Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.

  9. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC with Fine Particulate Matters (PM2.5 in Urban Hotspots of South Korea

    Directory of Open Access Journals (Sweden)

    Sungroul Kim

    2017-11-01

    Full Text Available We evaluated the spatiotemporal distributions of black carbon (BC and particulate matters with aerodynamic diameters of less than 2.5 m (PM2.5 concentrations at urban diesel engine emission (DEE hotspots of South Korea. Concentrations of BC and PM2.5 were measured at the entrance gate of two diesel bus terminals and a train station, in 2014. Measurements were conducted simultaneously at the hotspot (Site 1 and at its adjacent, randomly selected, residential areas, apartment complex near major roadways, located with the same direction of 300 m (Site 2 and 500 m (Site 3 away from Site 1 on 4 different days over the season, thrice per day; morning (n = 120 measurements for each day and site, evening (n = 120, and noon (n = 120. The median (interquartile range PM2.5 ranged from 12.6 (11.3–14.3 to 60.1 (47.0–76.0 μg/m3 while those of BC concentrations ranged from 2.6 (1.9–3.7 to 6.3 (4.2–10.3 μg/m3. We observed a strong relationship of PM2.5 concentrations between sites (slopes 0.89–0.9, the coefficient of determination 0.89–0.96 while the relationship for BC concentrations between sites was relatively weak (slopes 0.76–0.85, the coefficient of determination 0.54–0.72. PM2.5 concentrations were changed from 4% to 140% by unit increase of BC concentration, depending on site and time while likely supporting the necessity of monitoring of BC as well as PM2.5, especially at urban DEE related hotspot areas.

  10. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China.

    Science.gov (United States)

    Liu, Anni; Qian, Naisi; Yu, Huiting; Chen, Renjie; Kan, Haidong

    2017-12-31

    Studies have shown that maternal exposure to particulate matter ≤2.5μm in aerodynamic diameter (PM 2.5 ) was associated with adverse birth outcomes such as preterm birth (PTB) and low birth weight (LBW). However, the burdens of PTB and LBW attributable to PM 2.5 were rarely evaluated, especially in developing countries. To estimate the burdens of PTBs and LBWs attributable to outdoor PM 2.5 in Shanghai, China. We collected annual-average PM 2.5 concentrations, concentration-response relationships between PM 2.5 exposure during pregnancy and PTBs and LBWs, rates of PTB and LBW, number of live births, and population sizes in grids of 10km×10km in Shanghai in 2013. Then, they were combined to estimate the odds ratios (ORs), relative risks (RRs), attributable fractions (AFs), and numbers of PTBs and LBWs associated with PM 2.5 exposure. The population-weighted annual-average concentration of PM 2.5 in Shanghai was 56.19μg/m 3 in 2013. According to the first-class limit of PM 2.5 (15μg/m 3 ) in the Ambient Air Quality Standards of China, the weighted RRs of PTBs or LBWs associated with PM 2.5 in Shanghai were 1.49 [95% confidence interval (CI): 1.16-1.80] and 1.31 (95% CI: 1.04-1.67), respectively. There might be 32.61% (95% CI: 13.93%-44.42%) or 4160 (95% CI: 1778-5667) PTBs and 23.36% (95% CI: 3.86%-40.02%) or 1882 (95% CI: 311-3224) LBWs attributable to PM 2.5 exposure. The estimates varied appreciably among different districts of Shanghai. Our analysis suggested that outdoor PM 2.5 air pollution might have led to considerable burdens of PTBs and LBWs in Shanghai, China. Copyright © 2017. Published by Elsevier B.V.

  11. Estimation of Satellite-Based SO42- and NH4+ Composition of Ambient Fine Particulate Matter Over China Using Chemical Transport Model

    Science.gov (United States)

    Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.

    2018-04-01

    follows: winter > summer > autumn > spring. High concentrations of these species were concentrated in the NCP and SCB, originating from coal-fired power plants and agricultural activities, respectively. Efforts to reduce sulfur dioxide (SO2) emissions have yielded remarkable results since the government has adopted stricter control measures in recent years. Moreover, ammonia emissions should be controlled while reducing the concentration of sulfur, nitrogen and particulate matter. This study provides an assessment of the population's exposure to certain chemical components.

  12. Interactive effects of specific fine particulate matter compositions and airborne pollen on frequency of clinic visits for pollinosis in Fukuoka, Japan.

    Science.gov (United States)

    Phosri, Arthit; Ueda, Kayo; Tasmin, Saira; Kishikawa, Reiko; Hayashi, Masahiko; Hara, Keiichiro; Uehara, Yamato; Phung, Vera Ling Hui; Yasukouchi, Shusuke; Konishi, Shoko; Honda, Akiko; Takano, Hirohisa

    2017-07-01

    Previous studies have revealed the interactive effects of airborne pollen and particulate matter on the daily consultations for pollinosis, but it is uncertain which compositions are responsible. This study aimed to investigate the interactive effects of specific PM 2.5 compositions and airborne pollen on the daily number of clinic visits for pollinosis in Fukuoka. We obtained daily data on pollen concentrations, PM 2.5 compositions, PM 2.5 mass, gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ), and weather variables monitored in Fukuoka between February and April, 2002-2012. In total, 73,995 clinic visits for pollinosis were made at 10 clinics in Fukuoka Prefecture during the study period. A time-stratified case-crossover design was applied to examine the interactive effects. The concentrations of PM 2.5 and its compositions were stratified into low (85th percentile) levels, and the association between airborne pollen and daily clinic visits for pollinosis was analyzed within each level. We found a significant interaction between specific PM 2.5 compositions and airborne pollen. Specifically, the odds ratio of daily clinic visits for pollinosis per interquartile increase in pollen concentration (39.8 grains/cm 2 ) at the average cumulative lag of 0 and 2 days during high levels of non-sea-salt Ca 2+ was 1.446 (95% CI: 1.323-1.581), compared to 1.075 (95% CI: 1.067-1.083) when only moderate levels were observed. This result remained significant when other air pollutants were incorporated into the model and was fairly persistent even when different percentile cut-off points were used. A similar interaction was found when we stratified the data according to non-sea-salt SO 4 2- levels. This finding differed from estimates made according to PM 2.5 and NO 3 - levels, which predicted that the effects of pollen were strongest in the lower levels. Associations between airborne pollen and daily clinic visits for pollinosis could be enhanced by high levels of specific PM 2

  13. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    Science.gov (United States)

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  14. Short-term effect of fine particulate air pollution on daily mortality: a case-crossover study in a tropical city, Kaohsiung, Taiwan.

    Science.gov (United States)

    Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2014-01-01

    Many studies have examined the short-term effects of air pollution on frequency of daily mortality over the past two decades. However, information on the relationship between levels of fine particles (PM(2.5)) and daily mortality is relatively sparse due to limited availability of monitoring data. Further the results are inconsistent. This study was undertaken to determine whether there was an association between PM(2.5) levels and daily mortality rate in Kaohsiung, Taiwan, a large industrial city with a tropical climate. Daily mortality rate, air pollution parameters, and weather data for Kaohsiung were obtained for the period from 2006 through 2008. The relative risk of daily mortality occurrence was estimated using a time-stratified case-crossover approach, controlling for (1) weather variables, (2) day of the week, (3) seasonality, and (4) long-term time trends. For the single-pollutant model (without adjustment for other pollutants), no significant effects were found between PM(2.5) and frequency of daily mortality on warm days (≥25°C). On cool days, PM(2.5) showed significant correlation with increased risk of mortality rate for all causes and circulatory diseases in single-pollutant model. There was no indication of an association between PM(2.5) and deaths due to respiratory diseases. The relationship appeared to be stronger on cool days. This study provided evidence of associations between short-term exposure to PM(2.5) and elevated risk of death for all cause and circulatory diseases.

  15. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix; Stabilite sous irradiation de particules d'oxydes finement dispersees dans des alliages ferritiques

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, I

    1999-07-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO{sub 2}+Y{sub 2}O{sub 3}) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide (< 20 nm) disappear, the modification of oxide composition, and a halo of fine oxides appear around the larger oxides. The use of such a material requires a study of oxide stability under irradiation, since the oxide particles provide the desired mechanical properties. The study is based on two types of alloys, the DY and four ferritic steels Fe-9Cr-1Mo reinforced by Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, MgO or MgAl{sub 2}O{sub 4}. These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel

  17. Mercury emissions and coal-fired power plants: Understanding the problems and identifying solutions

    International Nuclear Information System (INIS)

    Davis, S.E.

    1997-01-01

    Electric utility emissions contribute to an array of air quality concerns, most notably ground-level ozone, acid deposition, global warming, and fine particulate pollution. More recently, electric utility emissions of air toxics such as mercury have been linked to serious ecological health effects, especially in fish-eating birds. Another issue that is gaining attention is that of eutrophication in marine waters from nitrogen oxide emissions. Coal-fired power plants warrant special consideration, particularly in regards to mercury. Coal-fired power plants currently represent over 30% of controllable anthropogenic emissions in the US and are expected to emit nearly half of all anthropogenic emissions in the US by 2010. However, because the human health threshold for mercury is not known with certainty and mercury control technologies such as activated carbon injection are extremely expensive, mercury emissions from electric utilities have not been addressed in the US through either regulation or voluntary initiatives. The Center is beginning to evaluate the viability of no- or low-regrets measures that may be more consistent with the current state of the science on human and ecological health effects. The Center is also looking at options to reduce eutophication. Specifically, the Center has: hosted a workshop to assess the viability of low-cost mercury control options for electric utilities, developed a proposal to undertake a mercury banking initiative, worked to reduce compliance costs associated with multiple and conflicting regulations, and investigated the potential benefits and workability of NOx trading between air and water sources These activities are described in greater detail in the Center's paper

  18. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  19. Flow Alteration and Chemical Reduction: Air Stripping to Lessen Subsurface Discharges of Mercury to Surface Water

    Science.gov (United States)

    Brooks, S. C.; Bogle, M.; Liang, L.; Miller, C. L.; Peterson, M.; Southworth, G. R.; Spalding, B. P.

    2009-12-01

    Mercury concentrations in groundwater, surface water, and biota near an industrial facility in Oak Ridge, Tennessee remain high some 50 years after the original major releases from the facility to the environment. Since the mid-1980s, various remedial and abatement actions have been implemented at the facility, including re-routing water flows, armoring contaminated stream banks, relining or cleanout of facility storm drains, and activated charcoal treatment of groundwater and sump discharges. These actions were taken to reduce inorganic mercury inputs from the facility to the stream; a strategy that assumes limiting the inorganic mercury precursor will reduce Hg methylation and its subsequent bioaccumulation. To date, such actions have reduced mercury loading from the site by approximately 90% from levels typical of the mid 1980's, but waterborne mercury at the facility boundary remains roughly 100 times the typical local background concentration and methylmercury accumulation in aquatic biota exceed standards for safe consumption by humans and wildlife. In 2008 and 2009, a series of investigations was initiated to explore innovative approaches to further control mercury concentrations in stream water. Efforts in this study focused on decreasing waterborne inorganic mercury inputs from two sources. The first, a highly localized source, is the discharge point of the enclosed stormdrain network whereas the second is a more diffuse short reach of stream where metallic Hg in streambed sediments generates a continued input of dissolved Hg to the overlying water. Moving a clean water flow management discharge point to a position downstream of the contaminated reach reduced mercury loading from the streambed source by 75% - 100%, likely by minimizing resuspension of Hg-rich fine particulates and changing characteristic hyporheic flow path length and residence time. Mercury in the stormdrain discharge exists as highly reactive dissolved Hg(II) due to residual chlorine in

  20. Methods for Investigating Mercury Speciation, Transport, Methylation, and Bioaccumulation in Watersheds Affected by Historical Mining

    Science.gov (United States)

    Alpers, C. N.; Marvin-DiPasquale, M. C.; Fleck, J.; Ackerman, J. T.; Eagles-Smith, C.; Stewart, A. R.; Windham-Myers, L.

    2016-12-01

    Many watersheds in the western U.S. have mercury (Hg) contamination from historical mining of Hg and precious metals (gold and silver), which were concentrated using Hg amalgamation (mid 1800's to early 1900's). Today, specialized sampling and analytical protocols for characterizing Hg and methylmercury (MeHg) in water, sediment, and biota generate high-quality data to inform management of land, water, and biological resources. Collection of vertically and horizontally integrated water samples in flowing streams and use of a Teflon churn splitter or cone splitter ensure that samples and subsamples are representative. Both dissolved and particulate components of Hg species in water are quantified because each responds to different hydrobiogeochemical processes. Suspended particles trapped on pre-combusted (Hg-free) glass- or quartz-fiber filters are analyzed for total mercury (THg), MeHg, and reactive divalent mercury. Filtrates are analyzed for THg and MeHg to approximate the dissolved fraction. The sum of concentrations in particulate and filtrate fractions represents whole water, equivalent to an unfiltered sample. This approach improves upon analysis of filtered and unfiltered samples and computation of particulate concentration by difference; volume filtered is adjusted based on suspended-sediment concentration to minimize particulate non-detects. Information from bed-sediment sampling is enhanced by sieving into multiple size fractions and determining detailed grain-size distribution. Wet sieving ensures particle disaggregation; sieve water is retained and fines are recovered by centrifugation. Speciation analysis by sequential extraction and examination of heavy mineral concentrates by scanning electron microscopy provide additional information regarding Hg mineralogy and geochemistry. Biomagnification of MeHg in food webs is tracked using phytoplankton, zooplankton, aquatic and emergent vegetation, invertebrates, fish, and birds. Analysis of zooplankton in

  1. Distribution of mercury in a tropical estuary (India) situated near a chloro-alkali plant

    OpenAIRE

    Gouda, Rajashree; Panigrahy, R.C.

    1995-01-01

    The distribution of mercury in water, sediment and some biological samples of the Rushikulya estuary, east coast of India were assessed during Jan-Dec. 1989. Both the dissolved plus acid leachable mercury contents in water and the sediment mercury discerned conspicuous spatial and seasonal fluctuations. Adsorption on to the suspended particulates was found to be the most likely mechanism for removal of mercury from the water column. Exchange of mercury from sediments to water was observed at ...

  2. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  3. Decameter-Scale Regolith Textures on Mercury

    Science.gov (United States)

    Kreslavsky, M. A.; Zharkova, A. Yu.; Head, J. W.

    2018-05-01

    Like on the Moon, regolith gardening smooths the surface. Small craters are in equilibrium. “Elephant hide“ typical on the lunar slopes is infrequent on Mercury. Finely Textured Slope Patches have no analog on the Moon.

  4. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  5. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-01-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  6. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  7. Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury.

    Science.gov (United States)

    Castro, Mark S; Sherwell, John

    2015-12-15

    Coal-fired power plants in the United States are required to reduce their emissions of mercury (Hg) into the atmosphere to lower the exposure of Hg to humans. The effectiveness of power-plant emission controls on the atmospheric concentrations of Hg in the United States is largely unknown because there are few long-term high-quality atmospheric Hg data sets. Here, we present the atmospheric concentrations of Hg and sulfur dioxide (SO2) measured from 2006 to 2015 at a relatively pristine location in western Maryland that is several (>50 km) kilometers downwind of power plants in Ohio, Pennsylvania, and West Virginia. Annual average atmospheric concentrations of gaseous oxidized mercury (GOM), SO2, fine particulate mercury (PBM2.5), and gaseous elemental mercury (GEM) declined by 75%, 75%, 43%, and 13%, respectively, and were strongly correlated with power-plant Hg emissions from the upwind states. These results provide compelling evidence that reductions in Hg emissions from power plants in the United States had their intended impact to reduce regional Hg pollution.

  8. Exposure to mercury and silver during removal of amalgam restorations

    International Nuclear Information System (INIS)

    Brune, D.; Hensten-Pettersen, A.; Beltesbrekke, H.

    1980-01-01

    The content of particulate matter and mercury vapor in dentist breathing air during removal of amalgam restorations was assessed. Mercury and silver were quantitatively assayed by nuclerar chemical analysis, and the mercury vapor concentration was measured with a sniffer. When the water spray was not used, the short time threshold limit values for exposure to mercury and silver were exceeded about 10 times. With water spray the mercury content was reduced to a level considerably lower that the threshold limit value, whereas the silver concentration slightly exceeded the corresponding limit. (author)

  9. Exposure to mercury and silver during removal of amalgam restorations

    International Nuclear Information System (INIS)

    Brune, D.; Hensten-Pettersen, A.; Beltesbrekke, H.

    1980-01-01

    The content of particulate matter and mercury vapor in dentist breathing air during removal of amalgam restorations was assessed. Mercury and silver were quantitatively assayed by nuclear chemical analysis, and the mercury vapor concentration was measured with a sniffer. When the water spray was not used, the short time threshold limit values for exposure to mercury and silver were exceeded about 10 times. With water spray the mercury content was reduced to a level considerably lower than the threshold limit value, whereas the silver concentration slightly exceeded the corresponding limit. (author)

  10. Fine Particulate Matter and Cardiovascular Disease ...

    Science.gov (United States)

    Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however few studies have compared results across different exposure assessment methods. Methods We utilized a cohort of 5679 patients who had undergone a cardiac catheterization between 2002–2009 and resided in NC. Exposure to PM2.5 for the year prior to catheterization was estimated using data from air quality monitors (AQS), Community Multiscale Air Quality (CMAQ) fused models at the census tract and 12 km spatial resolutions, and satellite-based models at 10 km and 1 km resolutions. Case status was either a coronary artery disease (CAD) index >23 or a recent myocardial infarction (MI). Logistic regression was used to model odds of having CAD or an MI with each 1-unit (μg/m3) increase in PM2.5, adjusting for sex, race, smoking status, socioeconomic status, and urban/rural status. Results We found that the elevated odds for CAD>23 and MI were nearly equivalent for all exposure assessment methods. One difference was that data from AQS and the census tract CMAQ showed a rural/urban difference in relative risk, which was not apparent with the satellite or 12 km-CMAQ models. Conclusions

  11. Preparation of spherical fine particulate pigments within water-in-oil emulsions and their properties. (II). ; Formation mechanism and characteristic of spherical fine particulate pigment of tartrazine. W/O emulsion wo mochiita kyujo biryushi ganryo no chosei to seishitsu(dai 2 ho). ; Kiiro 4 go kyujo biryushi ganryo no seisei kiko to tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T.; Iwano, K.; Hotta, H.; Takano, S.; Tsutsumi, H. (Kao Corporation, Tokyo (Japan))

    1991-12-20

    The previous report explained that an excellent spherical particulate pigment with a grain size of 0.5 mm or less can be obtained by preparing multinuclear aluminum lakes from acidic dyes and multinuclear aluminum salt using water droplets in a W/O emulsion as reaction fields. This paper describes preparing pigments varying the charging concentrations of the pigments in a W/O emulsion and the droplet particle size to discuss the mechanism of forming the pigments. As a result, it was found that the particle sizes in the produced pigments have a clear correlation with the charging concentrations of the pigments and the droplet particle sizes in the W/O emulsion. A pigment produced in the W/O emulsion forms only in its own droplets, and reflects its particle sizes. Films dispersed with pigments having different particle sizes were prepared to discuss their tinting abilities, whereas it was clarified that the smaller the particle size, the higher the tinting ability and the higher saturation in colored paint films. 6 refs., 9 figs., 3 tabs.

  12. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  13. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    Science.gov (United States)

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  14. Impacts of 2000-2050 Climate Change on Fine Particulate Matter (PM2.5) Air Quality in China Based on Statistical Projections Using an Ensemble of Global Climate Models

    Science.gov (United States)

    Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.

    2017-12-01

    Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on

  15. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    OpenAIRE

    Faïn, X.; Obrist, D.; Hallar, A. G.; Mccubbin, I.; Rahn, T.

    2009-01-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m

  16. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  17. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    Science.gov (United States)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  18. Atmospheric mercury in Sweden, Northern Finland and Northern Europe. Results from national monitoring and European research

    Energy Technology Data Exchange (ETDEWEB)

    Waengberg, Ingvar; Munthe, John

    2001-01-01

    Atmospheric mercury concentrations and mercury fluxes measured during the period 1995 to 1999 at the AMAP master station of Pallas, a remote station in Northern Finland, and at Roervik an EMEP station located on the west coast of Sweden are reported. The results are discussed and compared with atmospheric mercury data generated within the EU-project, Mercury over Europe (MOE). Total particulate mercury exhibit a strong south to north gradient with the highest concentrations in the south, near source areas in Central Europe. Mercury in precipitation also exhibits a south to north gradient.

  19. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and

  20. Exposure to the elemental carbon, organic carbon, nitrate and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000-2005).

    Science.gov (United States)

    BACKGROUND: Particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.OBJECTIVE:We estimated risk differences (RD) of PTB (reported per 106 pregnancies...

  1. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  2. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  3. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  4. Mercury recycling in the United States in 2000

    Science.gov (United States)

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on

  5. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  6. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  7. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region

    Science.gov (United States)

    Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; Kock, H.; Lanzillotta, E.; Mamane, Y.; Mas, F.; Melamed, E.; Osnat, Y.; Prestbo, E.; Sommar, J.; Schmolke, S.; Spain, G.; Sprovieri, F.; Tuncel, G.

    Mercury species in air have been measured at five sites in Northwest Europe and at five coastal sites in the Mediterranean region during measurements at four seasons. Observed concentrations of total gaseous mercury (TGM), total particulate mercury (TPM) and reactive gaseous mercury (RGM) were generally slightly higher in the Mediterranean region than in Northwest Europe. Incoming clean Atlantic air seems to be enriched in TGM in comparison to air in Scandinavia. Trajectory analysis of events where high concentrations of TPM simultaneously were observed at sites in North Europe indicate source areas in Central Europe and provide evidence of transport of mercury on particles on a regional scale.

  8. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  9. Dynamics of snow-air mercury exchange at Ny Ålesund during springtime 2011

    Directory of Open Access Journals (Sweden)

    Manca G.

    2013-04-01

    Full Text Available Continuous time series of flux measurements were carried out in Ny Ålesund, Spitsbergen, during a springtime field campaign from 31 of March to 3 of May, 2011. Flux measurements were integrated with mercury speciation analysis in order to understand the fate of mercury during atmospheric elemental gaseous mercury depletion events (AMDEs. Moreover a methodology for quality assurance of flux measurements is presented. Measurements were made at Gruvebadet, 1 km west from the Ny-Ålesund village (78˚55' N, 11˚56' E at an elevation of 18 m above sea level. Ambient concentrations of gaseous elemental mercury, divalent reactive gaseous mercury and particulate phase mercury were semicontinuously measured using an integrated Tekran system. Mercury depletion events were observed during the month of April and were characterized by an incomplete mercury destruction. Indeed Hg0 concentration was never below 0.49 ng m−3.

  10. Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.

    Science.gov (United States)

    Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João

    2017-12-15

    Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  12. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  13. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    Science.gov (United States)

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  14. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    Science.gov (United States)

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  15. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  16. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  17. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    Science.gov (United States)

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  18. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    Science.gov (United States)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, 5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  19. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  20. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  1. Voltammetry of metallic powder suspensions on mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2006-01-01

    Roč. 18, č. 4 (2006), s. 423-426 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic particles * oxide layers * suspensions * mercury electrodes * particulate electrolysis Subject RIV: CG - Electrochemistry Impact factor: 2.444, year: 2006

  2. Individual-Level Concentrations of Fine Particulate Matter Chemical Components and Subclinical Atherosclerosis: A Cross-Sectional Analysis Based on 2 Advanced Exposure Prediction Models in the Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Kim, Sun-Young; Sheppard, Lianne; Kaufman, Joel D.; Bergen, Silas; Szpiro, Adam A.; Larson, Timothy V.; Adar, Sara D.; Diez Roux, Ana V.; Polak, Joseph F.; Vedal, Sverre

    2014-01-01

    Long-term exposure to outdoor particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) has been associated with cardiovascular morbidity and mortality. The chemical composition of PM2.5 that may be most responsible for producing these associations has not been identified. We assessed cross-sectional associations between long-term concentrations of PM2.5 and 4 of its chemical components (sulfur, silicon, elemental carbon, and organic carbon (OC)) and subclinical atherosclerosis, measured as carotid intima-media thickness (CIMT) and coronary artery calcium, between 2000 and 2002 among 5,488 Multi-Ethnic Study of Atherosclerosis participants residing in 6 US metropolitan areas. Long-term concentrations of PM2.5 components at participants' homes were predicted using both city-specific spatiotemporal models and a national spatial model. The estimated differences in CIMT associated with interquartile-range increases in sulfur, silicon, and OC predictions from the spatiotemporal model were 0.022 mm (95% confidence interval (CI): 0.014, 0.031), 0.006 mm (95% CI: 0.000, 0.012), and 0.026 mm (95% CI: 0.019, 0.034), respectively. Findings were generally similar using the national spatial model predictions but were often sensitive to adjustment for city. We did not find strong evidence of associations with coronary artery calcium. Long-term concentrations of sulfur and OC, and possibly silicon, were associated with CIMT using 2 distinct exposure prediction modeling approaches. PMID:25164422

  3. Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State.

    Science.gov (United States)

    Choi, Hyun-Deok; Huang, Jiaoyan; Mondal, Sumona; Holsen, Thomas M

    2013-03-15

    Tekran® Hg speciation systems were used at a rural site (Huntington Forest, NY; HF) and a suburban site (Rochester, NY; ROC) to measure gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM2.5) concentrations for two years (December 2007 to November 2009). Ancillary data were also available from the New York State Department of Environmental Conservation and the United States Environmental Protection Agency Clean Air Status and Trends Network. Seasonal GEM concentrations were similar at both sites and influenced by factors such as the planet boundary layer (PBL) height and mercury emissions from snow, soil, and point sources. In some seasons, O3 was negatively correlated with GEM at ROC and positively correlated with GEM at HF. At HF, O3 was correlated with GOM and was typically higher in the afternoon. The cause of this pattern may be photochemical reactions during the day, and the GOM diel pattern may also be due to deposition which is enhanced by dew formation during the night and early morning. PBM2.5 concentrations were higher in winter at both sites. This is indicative of local wood combustion for space heating in winter, increased sorption to particles at lower temperatures, and lower PBL in the winter. At the suburban site, 2 of 12 events with enhanced GEM/CO ratios were poorly correlated with SO2/GOM, implying that these two events were due either to long range transport or regional metallurgical industries in Canada. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Caracterização do material particulado fino e grosso e composição da fração inorgânica solúvel em água em São José dos Campos (SP Caracterization of fine and coarse particulate matter and composition of the water-soluble inorganic fraction in São José dos Campos (SP

    Directory of Open Access Journals (Sweden)

    Patricia Alexandre de Souza

    2010-01-01

    Full Text Available Air samples of fine (PM2,5 and coarse (PM2,5-10 particulate matter were collected in São José dos Campos from February 2004 to February 2005. Average PM10 mass concentrations was 31.2 ± 14.0 μg m-3, half of which belonging to the PM2.5 fraction. Ammonium and SO4(2- were predominantly found in the fine fraction. Average (NH42SO4 concentration was estimated to be about 2.9 μg m-3. Chloride, Na+ and NO3- were mostly associated with PM2,5-10. Chloride deficits with respect to sea-salt Cl/Na ratio were found in both size fractions.

  5. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-16

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%, though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements

  6. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Wilmarth, W. R.

    2016-01-01

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%, though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements

  7. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  8. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2001-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB

  9. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2002-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB

  10. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2001-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin coal

  11. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2001-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB

  12. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  13. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  14. Global Trends in Mercury Management

    Science.gov (United States)

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  15. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  16. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  17. Basic Information about Mercury

    Science.gov (United States)

    ... or metallic mercury is a shiny, silver-white metal and is liquid at room temperature. It is ... releases can happen naturally. Both volcanoes and forest fires send mercury into the atmosphere. Human activities, however, ...

  18. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  19. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources.

    Science.gov (United States)

    Manolopoulos, Helen; Snyder, David C; Schauer, James J; Hill, Jason S; Turner, Jay R; Olson, Mark L; Krabbenhoft, David P

    2007-08-15

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m(-3) for elemental mercury (Hg0) and 38 300 pg m(-3) for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NO(x) were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NO(x) ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site.

  20. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources

    Energy Technology Data Exchange (ETDEWEB)

    Helen Manolopoulos; David C. Snyder; James J. Schauer; Jason S. Hill; Jay R. Turner; Mark L. Olson; David P. Krabbenhoft [University of Wisconsin-Madison, Madison, WI (United States). Environmental Chemistry and Technology Program

    2007-08-15

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m{sup -3} for elemental mercury (Hg{sup 0}) and 38,300 pg m{sup -3} for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg{sup 0}, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg{sup 0}/RGM/PHg among plumes, with Hg{sup 0} dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NOx were not observed; however, a correlation between elevated SO{sub 2} and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO{sub 2} and Hg/NOx ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site. 35 refs., 5 figs.

  1. Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Lo, Chaur-Tsuen; Cho, Meng-Hsien; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Chao-Yang; Xiao, You-Fu

    2017-08-01

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000-2012.

  2. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  3. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  4. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  5. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  6. Method and apparatus for removing volatile hydrocarbons from particulate soils

    International Nuclear Information System (INIS)

    Mendenhall, R.L.

    1992-01-01

    This patent describes an apparatus for heating solid particulate mineral compositions. It comprises: a counterflow ratable drum having a first end and an opposite second end, a first portion of the drum extending from the first end for a first length and having a first diameter along the first length, and a second portion of the drum secured to and extending from the first portion to the second end for a second length and having a second diameter along the second length, the second diameter being less than the first diameter, a burner adjacent the first end for introducing and directing hot gases of combustion into the first portion of the drum toward the second end, means for introducing particulate composition into the drum at the second end, means for directing the particulate composition along the drum from the second end toward the first end, and means for recovering composition at the first end, means for removing a gaseous mixture of organic volatiles, gases of combustion and fine particles of the particulate composition adjacent the second drum end, means for separating fine particles of the particulate composition from the gaseous mixture, and means for returning the separated fine particulate composition particles to the first portion of the drum

  7. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  8. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  9. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    selenium and mercury, the majority of trace elements are well controlled due to their association with the particulate phase of flue gas. Reflecting the current focus of the US EPA and state environmental agencies on mercury as a potential candidate for regulation, the project specifically targets the measurement and control of mercury species. This paper discusses the results of testing on the quantity and species distribution of mercury while firing Ohio high-sulfur coal to assess the mercury emissions control potential of conventional SO 2 and particulate control systems. Results from recent AECDP tests are presented and two alternative mercury speciation methods are compared. The AECDP results clearly show that higher total mercury control efficiency can be achieved with a wet FGD scrubber than recently reported in the interim final US EPA report on HAP emissions from fossil-fired electric utility steam generating units

  10. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  11. Characteristics and distributions of atmospheric mercury ...

    Science.gov (United States)

    Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m−3 and the lowest 6.1 ± 3.9 ng·m−3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m−3 and the minimum average 55.9 pg·m−3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m−3 was measured at GPP, and the lowest level of 20.5 pg·m−3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM. Mercury (Hg) is a persistent hazardous pollutant with adverse effects on human health and wildlife due mainly to bioaccumulation and biomagnification in aquatic food webs (Lindqvist et al. 1991; Schroeder and Munt

  12. Emissions of mercury from the power sector in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zysk, J.; Wyrwa, A.; Pluta, M. [AGH University of Science & Technology, Krakow (Poland). Faculty of Energy & Fuels

    2011-01-15

    Poland belongs to the European Union countries with the highest mercury emissions. This is mainly related to coal combustion. This paper presents estimates of mercury emissions from power sector in Poland. In this work, the bottom-up approach was applied and over 160 emission point sources were analysed. For each, the characteristics of the whole technological chain starting from fuel quality, boiler type as well as emission controls were taken into account. Our results show that emissions of mercury from brown coal power plants in 2005 were nearly four times greater than those of hard coal power plants. These estimates differ significantly from national statistics and some possible reasons are discussed. For the first time total mercury emissions from the Polish power sector were differentiated into its main atmospheric forms: gaseous elemental (GEM), reactive gaseous (RGM) and particulate-bound mercury. Information on emission source location and the likely vertical distribution of mercury emissions, which can be used in modelling of atmospheric dispersion of mercury is also provided.

  13. Emissions of mercury from the power sector in Poland

    Science.gov (United States)

    Zyśk, J.; Wyrwa, A.; Pluta, M.

    2011-01-01

    Poland belongs to the European Union countries with the highest mercury emissions. This is mainly related to coal combustion. This paper presents estimates of mercury emissions from power sector in Poland. In this work, the bottom-up approach was applied and over 160 emission point sources were analysed. For each, the characteristics of the whole technological chain starting from fuel quality, boiler type as well as emission controls were taken into account. Our results show that emissions of mercury from brown coal power plants in 2005 were nearly four times greater than those of hard coal power plants. These estimates differ significantly from national statistics and some possible reasons are discussed. For the first time total mercury emissions from the Polish power sector were differentiated into its main atmospheric forms: gaseous elemental (GEM), reactive gaseous (RGM) and particulate-bound mercury. Information on emission source location and the likely vertical distribution of mercury emissions, which can be used in modelling of atmospheric dispersion of mercury is also provided.

  14. Behavior of mercury in high-temperature vitrification processes

    International Nuclear Information System (INIS)

    Goles, R.W.; Holton, K.K.; Sevigny, G.J.

    1992-01-01

    This paper reports that the Pacific Northwest Laboratory (PNL) has evaluated the waste processing behavior of mercury in simulated defense waste. A series of tests were performed under various operating conditions using an experimental-scale liquid-fed ceramic melter (LFCM). This solidification technology had no detectable capacity for incorporating mercury into its product, borosilicate glass. Chemically, the condensed mercury effluent was composed almost entirely of chlorides, and except in a low-temperature test, Hg 2 Cl 2 was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg 2 Cl 2 residues was capable of saturating the quenched process exhaust with mercury vapor. The vapor pressure of mercury, however, in the quenched melter exhaust was easily and predictably controlled with the off-gas stream chiller

  15. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  16. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  17. Airborne particulate discriminator

    Science.gov (United States)

    Creek, Kathryn Louise [San Diego, CA; Castro, Alonso [Santa Fe, NM; Gray, Perry Clayton [Los Alamos, NM

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  18. Report Task 2.3: Particulate waste and turbidity in (marine) RAS

    OpenAIRE

    Kals, J.; Schram, E.; Brummelhuis, E.B.M.; Bakel, van, B.

    2006-01-01

    Particulate waste management and removal is one of the most problematic parts of recirculation aquaculture systems (RAS). Particulate waste and thereby turbidity originates from three major sources: fish (faeces), feed and biofilm (heterotrophic bacteria and fungi). Based on size and density there are roughly four categories of particulate waste: settable, suspended, floatable and fine or dissolved solids. Specific problems related to high turbidity are a decreasing feed intake by fish, causi...

  19. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    Science.gov (United States)

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base

  20. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  1. Development and Applications of Fluorogenic Probes for Mercury(II) Based on Vinyl Ether Oxymercuration

    OpenAIRE

    Ando, Shin; Koide, Kazunori

    2011-01-01

    Mercury is a major threat to the environment and to human health. It is highly desirable to develop a user-friendly kit for on-site mercury detection. Such a method must be able to detect mercury below the threshold levels for drinking water, 1–2 ppb. We developed a fluorescence method based on the oxymercuration of vinyl ethers to detect mercury in dental and environmental samples. Chloride ions interfered with the oxymercuration reaction, but the addition of AgNO3 solved this problem. Fine ...

  2. Seasonal variations of ambient air mercury species nearby an airport

    Science.gov (United States)

    Fang, Guor-Cheng; Tsai, Kai-Hsiang; Huang, Chao-Yang; Yang, Kuang-Pu Ou; Xiao, You-Fu; Huang, Wen-Chuan; Zhuang, Yuan-Jie

    2018-04-01

    This study focuses on the collection of ambient air mercury species (total gaseous mercury (TGM), reactive gaseous mercury (RGM), gaseous element mercury (GEM) and particulate bound mercury (PBM) pollutants at airport nearby sampling site during the year of Apr. 2016 to Mar. 2017 by using Four-stage gold amalgamation and denuder. The results indicated that the average TGM, RGM and GEM concentrations were 5.04 ± 2.43 ng/m3, 29.58 ± 80.54 pg/m3, 4.70 ± 2.63 ng/m3, respectively during the year of Apr. 2016 to Mar. 2017 (n = 49) period at this airport sampling site nearby. In addition, the results also indicated that the average PBM concentrations in TSP and PM2.5 were 0.35 ± 0.08 ng/m3 and 0.09 ± 0.03 ng/m3, respectively. And the average PBM in TSP concentrations order follows as summer > autumn > spring > winter, while the average PBM in PM2.5 concentrations order follows as spring > summer > winter > autumn. Moreover, the average TGM, RGM and GEM concentrations order follow as spring > summer > autumn > winter. Finally, the Asian continent has the highest average mercury species concentrations (TGM, RGM, GEM and PBM) when compared with the American and European continents, and the average mercury species concentrations (TGM, RGM, GEM and PBM) displayed declined trends for North America (United States and Canada) and Europe (Spain, Sweden and Southern Baltic) during the years of 2004-2014. Also noteworthy is that the average mercury species concentrations (TGM, RGM, GEM) displayed increasing trends in China and Taiwan during the years of 2008-2016. Japan and Korea are the only two exceptions. Those above two countries mercury species concentrations displayed decreasing trends during years of 2008-2015.

  3. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  4. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... in contact with) to mercury is by eating fish or shellfish that have high levels of mercury. You can also get sick from: Touching it Breathing it in Drinking contaminated water How can mercury ...

  5. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  6. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    Science.gov (United States)

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  7. Streamwater fluxes of total mercury and methylmercury into and out of Lake Champlain

    International Nuclear Information System (INIS)

    Shanley, James B.; Chalmers, Ann T.

    2012-01-01

    From 2000 to 2004, we sampled for total mercury (THg) and methylmercury (MeHg) in inlet streams to Lake Champlain, targeting high flow periods to capture increases in THg and MeHg concentrations with increasing flow. We used these data to model stream THg and MeHg fluxes for Water Years 2001 through 2009. In this mountainous forested basin with a high watershed-to-lake area ratio of 18, fluvial export from the terrestrial watershed was the dominant source of Hg to the lake. Unfiltered THg and MeHg fluxes were dominated by the particulate fraction; about 40% of stream THg was in the filtered ( −2 yr −1 , or about 13% of atmospheric Hg wet and dry deposition to the basin. THg export from the lake represented only about 3% of atmospheric Hg input to the basin. - Highlights: ► We monitored total mercury and methylmercury in major tributaries to Lake Champlain. ► Mercury and methylmercury export was primarily as particulates during high flow. ► Only 13% of atmospheric total mercury input reached the lake via streams. ► Only 3% of atmospheric total mercury input reached the lake outlet. - Eighty-seven percent of total mercury deposition to the Lake Champlain basin is retained in the terrestrial basin; stream export of total and methylmercury to the lake is primarily in the particulate phase.

  8. Active methods of mercury removal from flue gases.

    Science.gov (United States)

    Marczak, Marta; Budzyń, Stanisław; Szczurowski, Jakub; Kogut, Krzysztof; Burmistrz, Piotr

    2018-03-23

    Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year -1 . According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg -1 . The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m -3 for sub-bituminous coal and 17.5 μg m -3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243-277 μg Hg kg -1 , while the largest fraction at only 95 μg Hg kg -1 . The CD fraction physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  9. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  10. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  11. Mercury-cycling in surface waters and in the atmosphere - species analysis for the investigation of transformation and transport properties of mercury

    International Nuclear Information System (INIS)

    Ebinghaus, R.; Hintelmann, H.; Wilken, R.D.

    1994-01-01

    The river Elbe has been one of the most contaminated rivers with regard to mercury for many years. In 1991 a length-profile has been measured for mercury and methylmercury (CH 3 Hg + ) from Obristvi, Czech Republic, to the German bight. Total mercury has been measured by cold vapor atomic absorption spectrometry (CVAAS). The organo mercury compounds have been separated by high performance liquid chromatography (HPLC) connected on-line to an atomic fluorescence spectrometer (AFS) by a continuous flow-system. Total mercury up to 120 mg Hg + /kg and CH 3 Hg + concentrations up to 130 μg CH 3 Hg + /kg could be detected in special sites. The formation of CH 3 Hg + in sediments can be caused besides the methylation of mercury, by sulphate reducing or methanogenic bacteria and transmethylation reactions with organometals. Atmospheric mercury concentrations have been measured at three different European sites. Samples have been collected on gold-coated glass balls or on quartz wool, respectively. After thermal desorption mercury has been determined using the two step amalgamation technique with AFS detection. Compared to natural background concentrations of total gaseous mercury (TGM), slightly increased levels could be detected at a rural site in Germany. This increase can probably be explained by long-range transport processes. Within the vicinity of a inactivated mercury production plant high concentrations of up to 13.5 ng/m 3 particle associated mercury (Hg part ) have been detected. Consequently, dry deposition of mercury in the particulate form can intensify the total deposition flux close to Hg-emitting sources. (orig.)

  12. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    Science.gov (United States)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  13. Sanitary impact of the particulate atmospheric urban pollution; Impact sanitaire de la pollution atmospherique urbaine particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Sentissi, M.

    1999-03-22

    The pollution of particulates origin is one of the principle actual problem relative to air quality. In France, the fine particulates come from industry and automobile traffic, especially, the diesel vehicles. The most worrying characteristic is their fineness, that allow them to stay in suspension during a long time and penetrate into pulmonary alveoli, with toxic elements at their surface such metals, acids, polycyclic aromatic hydrocarbons. The objective of this work is to take stock of epidemiology and toxicology studies evaluating the sanitary impact of particulates in suspension. (N.C.)

  14. DESIGN OF PARTICULATE MATERIAL COMPACTOR ROLLS DIAMETER

    Directory of Open Access Journals (Sweden)

    Peter Peciar

    2017-09-01

    Full Text Available At present, in a period of an industrial expansion great emphasis is placed on the environment. That means aiming for a reduced energy consumption, and also lessening dustiness from very fine powder material. This category also includes particulate material agglomeration processes. Because this process is very energy-intensive, it is necessary to correctly design these devices. The aim of this paper is to focus on a theoretical design of a production compactor with the rolls diameter for an experimental particulate material, based on Johanson’s theory and experimentally measured material properties. The material used for experimental measurements was an NPK-based industrial fertilizer consisting of several components. The results of this paper is the dependence of the ratio of the maximum compression pressure to the initial compression pressure from the rolls diameter of the proposed compactor.

  15. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  16. Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere

    International Nuclear Information System (INIS)

    Carpi, A.

    1997-01-01

    Different species of mercury have different physical/chemical properties and thus behave quite differentially in air pollution control equipment and in the atmosphere. In general, emission of mercury from coal combustion sources are approximately 20-50% elemental mercury (Hg 0 ) and 50-80% divalent mercury (Hg(II)), which may be predominantly HgCl 2 . Emissions of mercury from waste incinerators are approximately 10-20% Hg 0 and 75-85% Hg(II). The partitioning of mercury in flue gas between the elemental and divalent forms may be dependent on the concentration of particulate carbon, HCl and other pollutants in the stack emissions. The emission of mercury from combustion facilities depends on the species in the exhaust stream and the type of air pollution control equipment used at the source. Air pollution control equipment for mercury removal at combustion facilities includes activated carbon injection, sodium sulfide injection and wet lime/limestone flue gas desulfurization. White Hg(II) is water-soluble and may be removed form the atmosphere by wet and dry deposition close to the combustion sources, the combination of a high vapor pressure and low water-solubility facilitate the long-range transport of Hg 0 in the atmosphere. Background mercury in the atmosphere is predominantly Hg 0 . Elemental mercury is eventually removed from the atmosphere by dry deposition onto surfaces and by wet deposition after oxidation to water-soluble, divalent mercury. 62 refs., 2 figs., 1 tab

  17. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The

  18. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, N

    2008-09-30

    . Methylmercury ranged from 0.002 ng/l in Upper Three Runs to 2.60 ng/l in Tims Branch. Total mercury in the Savannah River ranged from 0.62 ng/l to 43.9 ng/l, and methylmercury ranged from 0.036 ng/l to 7.54 ng/l. Both total and methylmercury concentrations were consistently high in the river near the mouth of Steel Creek. Total mercury was positively correlated with methylmercury (r = 0.88). Total mercury bound to particulates ranged from 41% to 57% in the river and from 28% to 90% in the streams. Particulate methylmercury varied from 9% to 37% in the river and from 6% to 79% in the streams. Small temporary pools in the Savannah River swamp area near and around Fourmile Branch had the highest concentrations observed in the Savannah River watershed, reaching 1,890 ng/l for total mercury and 34.0 ng/l for methylmercury. The second study developed a mercury bioaccumulation factor (BAF) for the Savannah River near SRS. A BAF is the ratio of the concentration of mercury in fish flesh to the concentration of mercury in the water. BAFs are important in the TMDL process because target concentrations for mercury in water are computed from BAFs. Mercury BAFs are known to differ substantially among fish species, water bodies, and possibly seasons. Knowledge of such variation is needed to determine a BAF that accurately represents average and extreme conditions in the water body under study. Analysis of fish tissue and aqueous methylmercury samples collected at a number of locations and over several seasons in a 110 km (68 mile) reach of the Savannah River demonstrated that BAFs for each species under study varied by factors of three to eight. Influences on BAF variability were location, habitat and season-related differences in fish mercury levels and seasonal differences in methylmercury levels in the water. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10{sup 6} for largemouth bass, 1.4 x 10{sup 6} for sunfishes, and 2.5 x 10{sup 6} for white catfish. This study

  19. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  20. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    In this case report, intravenous complications, treatment strategies and possible ... Mercury toxicity is commonly associated with vapour inhalation or oral ingestion, for which there exist definite treatment options. Intravenous mercury ... personality, anxiousness, irritability, insomnia, depression and drowsi- ness.[1] However ...

  1. Mercury's shifting, rolling past

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and Mariner 10 images revealed decades ago that lobate scarps are among the youngest features on Mercury. Why don't we find more evidence of older compressive features?

  2. Global Mercury Assessment 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    mercury pollution. This summary report and the accompanying. Technical Background Report for the Global. Mercury Assessment 2013 are developed in response to Decision 25/5, paragraph ... The use of different pollution control technologies in different ...... vegetation, snow, freshwater, and seawater. One of the largest ...

  3. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  4. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  5. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decrease of emissions in Europe (Waengberg et al., 2007). For mercury in air (TGM), the geographical pattern is less pronounced indicating the influence of mercury emissions and distribution over a larger geographical area (i.e. hemispherical transport). Comparison of recent (surficial) and historical lake sediments show significantly elevated concentrations of mercury most likely caused by anthropogenic atmospheric deposition over the past century. The highest pollution impact was observed in the coastal areas of southern Norway, in south western Finland and in Sweden from the coastal areas in the southwest across the central parts to the north-east. The general increase in recent versus old sediments was 2-5 fold. Data on mercury in Nordic freshwater fish was assembled and evaluated with respect to geographical variations. The fish data were further compared with temporal and spatial trends in mercury deposition and mercury contamination of lake sediments in order to investigate the coupling between atmospheric transport and deposition of mercury and local mercury

  6. The monitoring of atmospheric mercury species in the Southern Indian Ocean at Amsterdam Island (38°S

    Directory of Open Access Journals (Sweden)

    Barret M.

    2013-04-01

    Full Text Available The role of oceans in the global cycle of mercury is still poorly characterized, mainly because of a lack a long-term data on atmospheric mercury concentrations in the remote Southern Ocean. In the frame of GMOS (Global Mercury Observation System, we present here the first results from a new monitoring station at Amsterdam Island in the Southern Indian Ocean. For the period January to April 2012, we recorded mean concentration of gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particulate-bounded mercury (PHg of 1.03 ng m−3, 0.37 and 0.34 pg m−3 respectively. While GEM concentrations showed little variations, RGM and PHg exhibited fast variations with alternation of value below the instrumental detection limit and maximum values up to 4 pg m−3.

  7. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    Science.gov (United States)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and

  8. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratorie